skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Authors:
; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1099077
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Name: Physical Review Letters Journal Volume: 108 Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Rupp, Matthias, Tkatchenko, Alexandre, Müller, Klaus-Robert, and von Lilienfeld, O. Anatole. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. United States: N. p., 2012. Web. doi:10.1103/PhysRevLett.108.058301.
Rupp, Matthias, Tkatchenko, Alexandre, Müller, Klaus-Robert, & von Lilienfeld, O. Anatole. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. United States. doi:10.1103/PhysRevLett.108.058301.
Rupp, Matthias, Tkatchenko, Alexandre, Müller, Klaus-Robert, and von Lilienfeld, O. Anatole. Tue . "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning". United States. doi:10.1103/PhysRevLett.108.058301.
@article{osti_1099077,
title = {Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning},
author = {Rupp, Matthias and Tkatchenko, Alexandre and Müller, Klaus-Robert and von Lilienfeld, O. Anatole},
abstractNote = {},
doi = {10.1103/PhysRevLett.108.058301},
journal = {Physical Review Letters},
number = 5,
volume = 108,
place = {United States},
year = {2012},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevLett.108.058301

Citation Metrics:
Cited by: 174 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Variational Particle Number Approach for Rational Compound Design
journal, October 2005

  • von Lilienfeld, O. Anatole; Lins, Roberto D.; Rothlisberger, Ursula
  • Physical Review Letters, Vol. 95, Issue 15
  • DOI: 10.1103/PhysRevLett.95.153002

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential
journal, May 2008


970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13
journal, July 2009

  • Blum, Lorenz C.; Reymond, Jean-Louis
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja902302h

Dynamically Polarizable Water Potential Based on Multipole Moments Trained by Machine Learning
journal, May 2009

  • Handley, Chris M.; Popelier, Paul L. A.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 6
  • DOI: 10.1021/ct800468h

An introduction to kernel-based learning algorithms
journal, March 2001

  • Muller, K. -R.; Mika, S.; Ratsch, G.
  • IEEE Transactions on Neural Networks, Vol. 12, Issue 2
  • DOI: 10.1109/72.914517

Accurate ab initio energy gradients in chemical compound space
journal, October 2009

  • Anatole von Lilienfeld, O.
  • The Journal of Chemical Physics, Vol. 131, Issue 16
  • DOI: 10.1063/1.3249969

Virtual Exploration of the Small-Molecule Chemical Universe below 160 Daltons
journal, February 2005

  • Fink, Tobias; Bruggesser, Heinz; Reymond, Jean-Louis
  • Angewandte Chemie International Edition, Vol. 44, Issue 10
  • DOI: 10.1002/anie.200462457

Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
journal, March 1999

  • Ernzerhof, Matthias; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 110, Issue 11
  • DOI: 10.1063/1.478401

Inhomogeneous Electron Gas
journal, November 1964


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Molecular grand-canonical ensemble density functional theory and exploration of chemical space
journal, October 2006

  • von Lilienfeld, O. Anatole; Tuckerman, Mark E.
  • The Journal of Chemical Physics, Vol. 125, Issue 15
  • DOI: 10.1063/1.2338537

Chemical space
journal, December 2004

  • Kirkpatrick, Peter; Ellis, Clare
  • Nature, Vol. 432, Issue 7019
  • DOI: 10.1038/432823a

Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
journal, September 2004


Ab initio molecular simulations with numeric atom-centered orbitals
journal, November 2009

  • Blum, Volker; Gehrke, Ralf; Hanke, Felix
  • Computer Physics Communications, Vol. 180, Issue 11
  • DOI: 10.1016/j.cpc.2009.06.022

The Blue Obelisk—Interoperability in Chemical Informatics
journal, May 2006

  • Guha, Rajarshi; Howard, Michael T.; Hutchison, Geoffrey R.
  • Journal of Chemical Information and Modeling, Vol. 46, Issue 3
  • DOI: 10.1021/ci050400b

Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements
journal, September 2007


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface
journal, November 2003

  • Brown, Alex; Braams, Bastiaan J.; Christoffel, Kurt
  • The Journal of Chemical Physics, Vol. 119, Issue 17
  • DOI: 10.1063/1.1622379

Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical Kinetics:  The MCCM/3 Suite and SAC/3
journal, May 2003

  • Lynch, Benjamin J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 19
  • DOI: 10.1021/jp0221993

Alchemical derivatives of reaction energetics
journal, August 2010

  • Sheppard, Daniel; Henkelman, Graeme; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 133, Issue 8
  • DOI: 10.1063/1.3474502

Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933

III - Bond energies
journal, September 1965

  • Benson, Sidney W.
  • Journal of Chemical Education, Vol. 42, Issue 9
  • DOI: 10.1021/ed042p502

Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems
journal, January 2008

  • Coifman, R. R.; Kevrekidis, I. G.; Lafon, S.
  • Multiscale Modeling & Simulation, Vol. 7, Issue 2
  • DOI: 10.1137/070696325

Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
journal, June 2010

  • Hautier, Geoffroy; Fischer, Christopher C.; Jain, Anubhav
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100795d

Virtual screening: an endless staircase?
journal, April 2010

  • Schneider, Gisbert
  • Nature Reviews Drug Discovery, Vol. 9, Issue 4
  • DOI: 10.1038/nrd3139

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717