DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics

Abstract

We provide here a derivation allowing the calculation of thermal conductance at interfaces by equilibrium molecular dynamics simulations and illustrate our approach by studying thermal conduction mechanisms in Si/Ge superlattices. Thermal conductance calculations of superlattices with period thicknesses ranging from 0.5 to 60 nm are presented as well as the temperature dependence. Results have been compared to complementary Green-Kubo thermal conductivity calculations demonstrating that thermal conductivity of perfect superlattices can be directly deduced from interfacial conductance in the investigated period range. This confirms the predominant role of interfaces in materials with large phonon mean free paths.

Authors:
 [1];  [2];  [3];  [4];  [2]
  1. Ecole Centrale Paris (France). Macroscopic and Molecular Energy Lab.; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Mechanical Engineering Dept.
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Mechanical Engineering Dept.
  3. Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering
  4. Ecole Centrale Paris (France). Macroscopic and Molecular Energy Lab.
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1067085
Grant/Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 85; Journal Issue: 19; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., and Chen, G.. Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics. United States: N. p., 2012. Web. doi:10.1103/PhysRevB.85.195302.
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., & Chen, G.. Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics. United States. https://doi.org/10.1103/PhysRevB.85.195302
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., and Chen, G.. Tue . "Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics". United States. https://doi.org/10.1103/PhysRevB.85.195302. https://www.osti.gov/servlets/purl/1067085.
@article{osti_1067085,
title = {Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics},
author = {Chalopin, Y. and Esfarjani, K. and Henry, A. and Volz, S. and Chen, G.},
abstractNote = {We provide here a derivation allowing the calculation of thermal conductance at interfaces by equilibrium molecular dynamics simulations and illustrate our approach by studying thermal conduction mechanisms in Si/Ge superlattices. Thermal conductance calculations of superlattices with period thicknesses ranging from 0.5 to 60 nm are presented as well as the temperature dependence. Results have been compared to complementary Green-Kubo thermal conductivity calculations demonstrating that thermal conductivity of perfect superlattices can be directly deduced from interfacial conductance in the investigated period range. This confirms the predominant role of interfaces in materials with large phonon mean free paths.},
doi = {10.1103/PhysRevB.85.195302},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 19,
volume = 85,
place = {United States},
year = {2012},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 124 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (Color online) Spatial configuration of the superlattice junctions. Thermal conductance is investigated along direction Z.

Save / Share:

Works referenced in this record:

Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques
journal, October 2000


Modification of Stillinger-Weber potentials for Si and Ge
journal, June 1990


Phonon superlattice transport
journal, November 1997


Epitaxial growth of Si 1− x Ge x on Si(100)2 × 1: A molecular-dynamics study
journal, October 1992

  • Ethier, Stéphane; Lewis, Laurent J.
  • Journal of Materials Research, Vol. 7, Issue 10
  • DOI: 10.1557/JMR.1992.2817

Nanostructured Interfaces for Thermoelectrics
journal, June 2010


Interfacial thermal transport in atomic junctions
journal, February 2011


Molecular dynamics calculation of the thermal conductivity of superlattices
journal, June 2002


A Review of Heat Transfer Physics
journal, January 2008

  • Carey, V. P.; Chen, G.; Grigoropoulos, C.
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 12, Issue 1
  • DOI: 10.1080/15567260801917520

Local Heating in Nanoscale Conductors
journal, December 2003

  • Chen, Yu-Chang; Zwolak, Michael; Di Ventra, Massimiliano
  • Nano Letters, Vol. 3, Issue 12, p. 1691-1694
  • DOI: 10.1021/nl0348544

Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces
journal, January 2005

  • Zhao, H.; Freund, J. B.
  • Journal of Applied Physics, Vol. 97, Issue 2
  • DOI: 10.1063/1.1835565

Numerical study of heat and mass transfer in an enthalpy exchanger with a hydrophobic-hydrophilic composite membrane core
journal, March 2007


Thermal resistance between low-dimensional nanostructures and semi-infinite media
journal, May 2008

  • Panzer, Matthew A.; Goodson, Ken E.
  • Journal of Applied Physics, Vol. 103, Issue 9
  • DOI: 10.1063/1.2903519

Effect of interfacial species mixing on phonon transport in semiconductor superlattices
journal, February 2009


Effect of film thickness on the thermal resistance of confined semiconductor thin films
journal, January 2010

  • Landry, E. S.; McGaughey, A. J. H.
  • Journal of Applied Physics, Vol. 107, Issue 1
  • DOI: 10.1063/1.3275506

Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


Thermal boundary resistance
journal, July 1989


Upper bound to the thermal conductivity of carbon nanotube pellets
journal, April 2009

  • Chalopin, Yann; Volz, Sebastian; Mingo, Natalio
  • Journal of Applied Physics, Vol. 105, Issue 8
  • DOI: 10.1063/1.3088924

Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
journal, October 2009


Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces
journal, June 2009

  • Termentzidis, Konstantinos; Chantrenne, Patrice; Keblinski, Pawel
  • Physical Review B, Vol. 79, Issue 21
  • DOI: 10.1103/PhysRevB.79.214307

Interfacial phonon scattering in semiconductor nanowires by molecular-dynamics simulation
journal, June 2006

  • Becker, Brian; Schelling, Patrick K.; Phillpot, Simon R.
  • Journal of Applied Physics, Vol. 99, Issue 12
  • DOI: 10.1063/1.2207503

Predominance of thermal contact resistance in a silicon nanowire on a planar substrate
journal, June 2008


Minimum superlattice thermal conductivity from molecular dynamics
journal, November 2005


Computer simulation of local order in condensed phases of silicon
journal, April 1985


Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
journal, May 1997


Theory of interface scattering of phonons in superlattices
journal, October 2010


Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method
journal, November 2007


Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach
journal, December 2003


Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation
journal, April 2002

  • Schelling, P. K.; Phillpot, S. R.; Keblinski, P.
  • Applied Physics Letters, Vol. 80, Issue 14
  • DOI: 10.1063/1.1465106

Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO 2
journal, April 2010


Modeling study of thermoelectric SiGe nanocomposites
journal, October 2009


A Quantum-statistical Theory of Transport Processes
journal, October 1956

  • Mori, Hazime
  • Journal of the Physical Society of Japan, Vol. 11, Issue 10
  • DOI: 10.1143/JPSJ.11.1029

Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305

Lattice thermal conductivity of wires
journal, March 1999

  • Walkauskas, S. G.; Broido, D. A.; Kempa, K.
  • Journal of Applied Physics, Vol. 85, Issue 5
  • DOI: 10.1063/1.369576

Local Heating in Nanoscale Conductors
journal, March 2005

  • Chen, Yu-Chang; Zwolak, Michael; Di Ventra, Massimiliano
  • Nano Letters, Vol. 5, Issue 4
  • DOI: 10.1021/nl050409s

Effect of film thickness on the thermal resistance of confined semiconductor thin films
text, January 2010


Thermal Boundary Resistance.
journal, August 1971


Thermal Boundary Resistance
journal, June 1971


Works referencing / citing this record:

Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering: Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering
journal, June 2013

  • Zhang, Gang; Zhang, Yong-Wei
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 7, Issue 10
  • DOI: 10.1002/pssr.201307188

Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
journal, March 2016

  • Gordiz, Kiarash; Henry, Asegun
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23139

Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities
journal, January 2020

  • Cui, Ying; Li, Man; Hu, Yongjie
  • Journal of Materials Chemistry C, Vol. 8, Issue 31
  • DOI: 10.1039/c9tc05415d

A microscopic formulation of the phonon transmission at the nanoscale
journal, July 2013

  • Chalopin, Y.; Volz, S.
  • Applied Physics Letters, Vol. 103, Issue 5
  • DOI: 10.1063/1.4816738

The importance of anharmonicity in thermal transport across solid-solid interfaces
journal, January 2014

  • Wu, Xufei; Luo, Tengfei
  • Journal of Applied Physics, Vol. 115, Issue 1
  • DOI: 10.1063/1.4859555

Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity
journal, January 2015

  • Gordiz, Kiarash; Singh, David J.; Henry, Asegun
  • Journal of Applied Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.4906957

A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer
journal, March 2015

  • Soussi, J.; Volz, S.; Palpant, B.
  • Applied Physics Letters, Vol. 106, Issue 9
  • DOI: 10.1063/1.4913905

Size- and structure-dependence of thermal and mechanical behaviors of single-crystalline and polytypic superlattice ZnS nanowires
journal, June 2015

  • Moon, Junghwan; Cho, Maenghyo; Zhou, Min
  • Journal of Applied Physics, Vol. 117, Issue 21
  • DOI: 10.1063/1.4921974

Kapitza resistance and the thermal conductivity of amorphous superlattices
journal, October 2015

  • Giri, Ashutosh; Hopkins, Patrick E.; Wessel, James G.
  • Journal of Applied Physics, Vol. 118, Issue 16
  • DOI: 10.1063/1.4934511

Phonon transport at interfaces: Determining the correct modes of vibration
journal, January 2016

  • Gordiz, Kiarash; Henry, Asegun
  • Journal of Applied Physics, Vol. 119, Issue 1
  • DOI: 10.1063/1.4939207

Phonon wave interference in graphene and boron nitride superlattice
journal, July 2016

  • Chen, Xue-Kun; Xie, Zhong-Xiang; Zhou, Wu-Xing
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4958688

Phonon transport at interfaces between different phases of silicon and germanium
journal, January 2017

  • Gordiz, Kiarash; Henry, Asegun
  • Journal of Applied Physics, Vol. 121, Issue 2
  • DOI: 10.1063/1.4973573

Phonon optimized interatomic potential for aluminum
journal, December 2017

  • Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor
  • AIP Advances, Vol. 7, Issue 12
  • DOI: 10.1063/1.5003158

Flexural resonance mechanism of thermal transport across graphene-SiO 2 interfaces
journal, March 2018

  • Ong, Zhun-Yong; Qiu, Bo; Xu, Shanglong
  • Journal of Applied Physics, Vol. 123, Issue 11
  • DOI: 10.1063/1.5020705

Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations
journal, May 2018

  • Liang, Zhi; Hu, Ming
  • Journal of Applied Physics, Vol. 123, Issue 19
  • DOI: 10.1063/1.5027519

Phonon transport across a Si–Ge interface: The role of inelastic bulk scattering
journal, January 2019

  • Maassen, Jesse; Askarpour, Vahid
  • APL Materials, Vol. 7, Issue 1
  • DOI: 10.1063/1.5051538

Cross-plane thermal conduction in superlattices: Impact of multiple length scales on phonon transport
journal, January 2019

  • Malhotra, Abhinav; Kothari, Kartik; Maldovan, Martin
  • Journal of Applied Physics, Vol. 125, Issue 4
  • DOI: 10.1063/1.5065904

Using Green-Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics
journal, February 2019

  • Seyf, Hamid Reza; Gordiz, Kiarash; DeAngelis, Freddy
  • Journal of Applied Physics, Vol. 125, Issue 8
  • DOI: 10.1063/1.5081722

Roughness and amorphization impact on thermal conductivity of nanofilms and nanowires: Making atomistic modeling more realistic
journal, October 2019

  • Verdier, Maxime; Lacroix, David; Termentzidis, Konstantinos
  • Journal of Applied Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.5108618

Prediction of Kapitza resistance at fluid-solid interfaces
journal, November 2019

  • Alosious, Sobin; Kannam, Sridhar Kumar; Sathian, Sarith P.
  • The Journal of Chemical Physics, Vol. 151, Issue 19
  • DOI: 10.1063/1.5126887

Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices
journal, October 2015


Advances in the measurement and computation of thermal phonon transport properties
journal, January 2015


Phonon transport in periodically and quasi-periodically modulated cylindrical nanowires
journal, September 2019

  • Xie, Zhong-Xiang; Zhang, Yong; Chen, Xue-Kun
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 50
  • DOI: 10.1088/1361-648x/ab41c0

Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study
journal, June 2017


A formalism for calculating the modal contributions to thermal interface conductance
journal, September 2015


Screw dislocation induced phonon transport suppression in SiGe superlattices
journal, August 2019


Tuning Phonon Transport: From Interfaces to Nanostructures
journal, May 2013

  • Norris, Pamela M.; Le, Nam Q.; Baker, Christopher H.
  • Journal of Heat Transfer, Vol. 135, Issue 6
  • DOI: 10.1115/1.4023584

Nanocomposites for thermoelectrics and thermal engineering
journal, September 2015


An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface
text, January 2016