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1.0 General 

In a mixture in either the condensed or gaseous phase in which the temperature is steady 
but not uniform, transport of both matter and heat may be observed. The process is known as 
thermal diffusion, and in condensed phases it is also known as the Soret effect, a direct 
measure of the degree of separation being the Soret coefficient a [1]. In the gas phase the 
degree of separation is known as the thermal diffusion factor ar The separation is a molecular 
migration of the components due to a temperature gradient. The inverse phenomenon, the 
development of a temperature gradient due to diffusion, is called the Dufour effect [2]. The 
transport of matter and heat are generally coupled. When the driving forces of thermal 
diffusion, the gradients of temperature and chemical potential, are sufficiently small, and the 
observed heat and matter fluxes are linear in the forces, thermal diffusion in either the 
condensed or gaseous phase may be described in terms of non-equilibrium thermodynamics, 
and the inverse effects related through the Onsager cross phenomenological coefficients for 
heat and matter flow [3-6]. 

The thermal diffusion phenomenon may be expressed in terms of a number of transport 
properties whose specific definitions in terms of experimental parameters are derived in the 
following through non-equilibrium thermodynamics. The typical ones are the previously 
mentioned measures of separation (o and ocr), the coefficients of thermal (DT) and ordinary 
(Z>12) diffusion and the heat (Q") and entropy (S*) of transport. The equivalence of the thermal 
diffusion and Dufour (DD) coefficients is given by the Onsager reciprocal relations. 

To derive these transport properties and their interactions we consider a system of n 
components in mechanical equilibrium at constant pressure and assume that the only processes 
occurring are those of heat and matter transport, which are linear processes. The derivation 
follows from the expression for the entropy flux and the entropy balance equation. In general 
there is an empirical relationship between a flow or flux, / , and a driving force, X, of the form 

/ = 

-11 J\n 

L, 'Ml nn 

*1 

V V 

(1) 

where the L.. are scalar quantities similar to a conductance, reciprocal resistance or an affinity. 
The most general set of linear equations is 

Ji = X^-3 (2) 
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where the L.. are known as the phenomenological coefficients. The diagonal coefficients Ls 
represent the direct effects, and the off­diagonal coefficients L..(i * j) represent the coupled 
effects. The heat flux is designated / , and the entropy change is dq divided by the absolute 
temperature. For heat and matter transport the entropy flux, Js, is 

/ =1 VEHT5I­ (3) 

with the \i. being the chemical potentials. 

Conservation of entropy requires that the rate of change of entropy in a unit volume be equal to 
the flow out plus any internal source of production. Denoting Sv as the entropy of the fluid per 
unit volume, the local change equations for entropy, heat, and matter are 

dS^ 
dt 

dt 

= ­d ivJ+<D, (4) 
s 

= ­ d i v / ,and (5) 

dc. 
­J­ = ­ d i v / . . (6) 
dt j 

In Equation (4) <1> is the source term for entropy production within the unit volume from 
irreversible processes and must be zero. The w. in Equation (6) are the mass fractions of the 
components. Onsager has chosen the forces in such a way that the productjof the internal 
entropy source and the absolute temperature is equal to the sum of the flows /. multiplied by 
the conjugate forces Xj. 

k (7) 
-*■ — » \ ­ ­ » ­ * — * 

= Jq ■ Xq + 2^ J] ' V̂ 
j 

The units of Equation (7) are JnrV1. The dissipation function TO is invariant with respect to 
choice of forces and fluxes and may therefore be described by different sets of fluxes and their 
respective conjugate forces which are related through the Onsager phenomenological coeffi­
cients. In general a reduced heat flux can be defined as 

Jq=Jq-^HjJj ■ (8) 
j 
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Substituting Equation (8) into Equation (7) produces 

T0=xJjq + ̂ Hjji\ +
 yZjj-Xj 

(9) 
= Jq-Xq + 2,Jj-(HjXq+x). 

In Equation (9) the partial molar enthalpy of the j * component is H-. A suitable choice of 
forces corresponding to fluxes of heat and matter, respectively, is given by Equations 
(10) and (11): 

Xq = gad(l/T) (10) 

and 

. (ID Xj = grad(­ny/r 

The heat and material flux equations then become, respectively, 

Jq = Lqq giad(l/r) + X ^ gndf­Mf/r) (12) 
j ^ J 

and 

7, = L.n grad(l/r) + X ^ godf­M^/r]. (13) 

The matrix of phenomenological coefficients is symmetric, i.e., L.. = L.., according to the 
Onsager reciprocity relation. They are the generalized transport coefficients and are the 
subjects of experimental determination. To show this we define H- such that 

L =Y L- H = L ■ (14) 
iq La ij j qi v ' 

j 

and substitute Equation (14) into Equations (12) and (13) to yield 

' « -

and 
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?i = %h\_Hi g rad( l / r ) + g r a d ^ ; / r j } . (16) 

Under isothermal conditions, i.e. the temperature gradient is zero, Equation (15) becomes 

(17) 

Equation (17) suggests that H. is the transported enthalpy of species y under isothermal condi­
tions. The reduced heat of transport, Q", when grad T = 0, is 

%-1«J7J-Z"J7J (18) 

so that 

lQ'jJj = lfijJj-^HjJj (19) 

or 

'* = 

It then follows that 

-Hj = 
gradu.;. 
grad/nT 

(20) 

Z-lti?J (21) 

The reduced (or "corrected") heat of transport, Q", is the enthalpy of transport less the partial 
enthalpy carried by species j , or in other words, the heat supplied to or absorbed by the 
thermostat to maintain the system in an isothermal condition. When all fluxes are independent, 
Hj may be measured at the steady state (ss). Setting all /,- = 0, Equation (16) yields 

H. = 
j 

grad ULJ/TU grad (1/T) = L. IL.. 
ss iq i) 

(22) 

4 
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This may not be obvious from Equation (16) unless this equation is expanded in matrix 
form: 

V 

\Jn) 

Al 

LA 

L\n X\ +H\Xq 

*-nn J yXn + HnXq _, 

(23) 

The first expansion term is 

h =M*i+ / / iX« ) + Ln\X2 + HiXq + •• (24) 

from which it follows that all Jt must be set equal to zero in order for each term (XJ + HJX^ 
to be equalto zero. Equivalently, if every element of the l.h.s. matrix is zero, every element of 
the (X. + H.X ) column vector must also be zero, since the L-matrix has no zero elements. 

The above analysis may also be carried out in terms of the entropy fluxes Js and Js. 
Denoting S. as the transported entropy, Sj = Sj + S*, one obtains: 

Js =l\S'*Jj-l\dSJj 

(25) 

(26) 

At the limiting isothermal state S y may be measured at the steady state and is given by 

TS* = [grad \ijl grad (- In T)} ss • (27) 

From the Gibb's free energy, G = H - TS, and the definition of the chemical potential at 
constant temperature and pressure, jx. = (3G / dn)TJJ)i, one arrives at 

HJ-TSJ+VJ (28) 

5 
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Combining Equations (20) and (27) leads to 

TS~ = Q; . (29) 

The implication of Equations (28) and (29) is interesting. Particles taking part in linear 
transport processes carry with them a non-zero heat (enthalpy) and entropy of transport. 
However the chemical potential of transport, i.e. for a moving y, is zero. This follows 
because of the principle of local equilibrium [7]. 

The heat and entropy of transport must obey a conservation relation. This may be deduced 
from Equation (27) which requires at the steady state that 

-g radua l ; gradT . (30) 

Multiplying the above equation by £,xj yields 
j 

- 2 * . g r adu^ . -XxX gradT = \\XjS'* . (31) 
; j J 

where the x. are the mole fractions. 

Now the Gibbs-Duhem equation can be used to define partial molar quantities in terms of any 
extensive state function. In terms of the chemical potential and partial molar entropies at 
constant pressure 

(diij/dT) = -Sj (32) 

and Equation (31) reduces to 

Iy7 = 0 . (33) 

It should also be noted that 5*and Qj are independent of the frame of reference of the 
diffusion fluxes. This is because the dissipation function is invariant with respect to the frame 
of reference. 

For a binary system the phenomenological coefficients appearing in the flux equations can 
be defined in a slightly different form which defines the macroscopic quantities to be measured 

6 
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by the experiments discussed later. These quantities are the thermal diffusion (or Soret), 
Dufour, mass diffusion, and thermal conductivity coefficients. They are, respectively: 

DD=LqiM/(pXlx2T^ 

Dn=LnM 

K = LIT 
qq> 

V 
dx. P.Uz 

I \Qx,T 

(34) 

(35) 

(36) 

(37) 

where M = xxM1 + xjd2 and the M. are the molecular weights. 

From the equivalence of Lx and L v it follows that DT = DD; the existence of a thermal gradient 
gives rise to a concentration gradient and vice versa. 

7 
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1.1 Thermal Diffusion in Liquids 

Thermal diffusion is a well recognized tool for the study of molecular interactions in the gas 
phase. The phenomenon is strongly influenced by the form of the intermolecular potential 
energy relationship, and data derived from thermal diffusion experiments with gas phase 
mixtures provide a sensitive test of proposed models for the potential energy function. 

Thermal diffusion in liquids, or the Soret effect [1], can also yield useful information about 
liquid phase systems. In recent years the study of the Soret effect has taken on a new signifi­
cance and has yielded new and interesting information about the nature of solutions. Thermal 
diffusion data are expected to be useful in the investigation of the nature of interaction in 
solutions and perhaps especially in those areas where dynamics and the structure are involved. 
Soret data, for example, have been found to be particularly helpful in understanding ionic 
hydration structure in electrolyte solutions [8]. 

The Soret effect in liquids can be investigated through the measurements of a number of 
transport properties. The typical ones are the thermal diffusion coefficient DT, the Soret 
coefficient o, and the heat Q* and entropy S* of transport. In preparation for the discussion of 
experimental techniques it is worthwhile to consider the effect of the frame of reference on these 
quantities. 

1.1.1 Frames of Reference 

S* and Q\ are independent of me frame of reference of the diffusion fluxes. This is because 
the dissipation function is an invariant with respect to the frame of reference. To show this we 
transform fluxes Ji to fluxes/­ in the frame F. Denoting u as the velocity of the new frame, 
/• is given by 

J.F=Trc.uF (38) 

The dissipation function in terms of Ji is 

T<D =/ ? ­g i ad ( ­ to r ) + £y;­gradT(­u i.) 

= f ■ grad (­ In T) + £ JF ■ gradr (- u.. J + M F £ C{ gradr {- |i.J (39) 

= / ? ­grad( ­ ta r ) + X­/f­grad^­u,.) 

8 
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Thus, by defining Q*.F as the heat of transport associated with the fluxes /,., it can shown that, 

(40) 

by noting that Zc.Q* = 0. It follows from Equation (40) that, Q*[ = Q\, provided that the 
fluxes / . are all independent. 

Although the heat of transport is independent of the frame of reference, diffusion fluxes in 
different frames may not give rise to the same experimental heat of transport. Three frequently 
adopted fluxes are; the mass j m , volume /. and Hittorf y. frames of reference. The fluxes in 
each frame are mutually dependent and the relationship can be expressed by the equation 

Irfj^O (41) 

where r™ = 1, r* = V., the partial molar volume of i and r" = 5.o. By substituting 
Equation (41) into Equation (40), one obtains 

(42) 

i*r V J i±r 

where r indicates the reference component chosen. 

Equation (42) implies that for two component (i = 0 and 1) mixtures, when the y; is 
adopted, the heat of transport that is measured is Q *. _On_the other hand if J. or j . is used, 
the relative heat of transport, (Q* - Q*) or (Q* - QlV^VJ isobtained. Since the differences 
are a likely source of error when comparing thermal diffusion data among different experi­
ments, it is useful to ascertain the uncertainties. For a binary mixture and from Equation (33), 

9 
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Thus Q * - Qg measured with /, differs from Q * measured with /,- by a factor, (co + cj / co. 
For dilute solutions this factor approaches unity and the results in two experiments are identical. 
This same analysis can be applied to experiments based on the volume-fixed frame of reference. 

In electrolyte solutions ionic fluxes are mutually dependent because of the electroneutrality 
requirement. For a simple electrolyte solution containing solvent (0), and one species each of 
the cation (+) and anion (-), the electroneutrality condition x>+ Z+ + \) Z = 0 requires that 

Js* = JJv+=JJV- (44> 

Here Z. is the ionic valence, and M. measures the number of moles of ion i produced from one 
mole of the salt. The expression for the reduced heat flux is 

/ = / Q*+J . I D Q* + X>Q* 
q o ^o salt 1 +*^+ - _ 

(45) 

= / Q*+J , Q* 
Equation (45) shows that a simple electrolyte solution is a binary system, and only the molar 
heat of transport, Q*^ = "0+Q+ + ~o_ Q*, can be measured experimentally using /^lt. It is Q*sah 
and not Q*im that is independent of the frame of reference in a simple electrolyte solution. 

Other thermal diffusion properties such as the thermal diffusion coefficients and the Soret 
coefficients can also be expressed in terms of the fluxes. A convenient frame of reference for 
this discussion is the Hittorf frame of reference. For a binary solution the phenomonological 
equations are, 

Jq = ^ g i a d ( - l n T ) + L9lgiad7.(-n1) (46) 

Jl =L1<?grad(-lnr)+L11grad r(-^1) (47) 

where in the case of a simple electrolyte solution denoting fx. as the electrochemical potential 
of the ion /', 

\h = halt = *°+ K + a)_M-_ = -o+ £+ u_£_ (48) 

10 
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The isothermal diffusion coefficient D, and the thermal diffusion coefficient DT. are defined in 
terms of / as 

J" = - D1 gradex - c ^ g r a d T (49) 

Comparing Equations (48) and (49), one arrives at the results, 

Dx = L^d^/dcXp/T and D^ = Llq/T2cl (50) 

Dj is commonly defined in terms the molarity cv However, the Soret coefficient and heat of 
transport are more conveniently defined in terms of the molality mv Thus, to relate Dl and D\ 
to CTj and Q\, a conversion factor, / = {dmx I dej is required [9]. In cases where solutions are 
very dilute, / —> 1 and one obtains 

c = DT
lIDl = Q*/(d[il/dlnm^\pT/T (51) 

It should be pointed out also that in Equation (49) the isothermal diffusion coefficient is 
defined in the Hittorf (solvent-fixed) frame, which is not the same as the experimental diffusion 
coefficient measured in the volume frame of reference. Transformations exist, however, for 
passing from one frame to another. Although both solvent-fixed and volume-fixed diffusion 
coefficients are identical at infinite dilution, they diverge significantly in concentrated so­
lution [10]. 

1.1.2 Experimental Methods 

Methods of studying the Soret effect and the calculation of the Soret coefficient and other 
thermal diffusion properties in liquids up to 1961 have been summarized in a monograph by 
Tyrrell [11]. Our task here will, therefore, be devoted to providing a brief account of more 
recent work in this field. The investigation, in liquids, of the Dufour effect (the heat flow 
associated with a concentration gradient) is relatively new. This is perhaps because of the 
relatively high thermal conductivities of liquids, which makes experimental measurements 
difficult. (In contrast, both theory and experiment for the study of the Dufour effect in gases 
have been well developed). 

11 
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1.1.2.1. The Soret Effect 

In the study of the Soret effect most measurements start by applying a constant temperature 
gradient to an isothermal homogeneous solution. As the concentration of the solution becomes 
non-uniform due to thermal diffusion, an opposing process of ordinary diffusion develops 
which eventually exactly balances the thermal diffusion process, thereby leading the system to 
a Soret steady-state. The Soret coefficient and the heat of transport are then derived from the 
steady-state concentration gradient. Although it is the steady-state property that we measure, 
the approach to the steady-state needs to be followed in order to verify the phenomenology of 
the thermal diffusion process. 

In a typical pure thermal diffusion experiment, the solution is placed in a flat cell and a one-
dimensional temperature gradient (usually of the order less than 10° cm'1 and in the direction 
opposite to the gravitational field) is applied by bringing the flat end-plates of the cell into 
contact with heat reservoirs maintained at temperature 7" and T\ For a binary solution the rate 
of change of concentration during the establishment of the Soret steady-state can be 
written as [12], 

Amt = Amst[l-g(t)} 

= Amst < l - f8 /7 t 2 ) X f 1 / * 2 ) exp -n2(t-t')/e > (52) 

n = 1,3,.. 

where Amt = m'-m at time t (measured from the instant the temperature gradient is applied) 
and m'and m are the molalities at temperatures T'and T, respectively. The thermal diffusion 
relaxation time is 8 = a21 %2D where a is the distance between the end-plates, and D is the 
effective diffusion coefficient. When I T"-T'\ is small, D is, to a good approximation, the 
isothermal diffusion coefficient at the mean temperature T = 1/2 (T + T"). The warming-up 
correction is accounted for by t. Assuming that the end-plates warm up exponentially with a 
characteristic time x, 

t = x - \a2ll2K\ (53) 

where K is the thermal diffusivity of the liquid. When K is infinitely large the end-plates warm 
up instantaneously, resulting in t = 0 and t = 0. 

12 
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Equation (53) is due to Agar [13]. The warming-up correction t can be positive or negative 
in sign, and there is a plausible qualitative rationale. During the warming-up period the tem­
perature gradient (and hence the local rate of thermal diffusion) exceeds that of the steady-state 
value near the end of the cell, but lags behind in the central regions; the net balance of these 
effects in time and space, while the thermal transients decay, governs the sense of the correction. 
When t < 0, the warming-up correction acts in the gained-time sense. The warming-up 
correction has also been discussed by Home and Anderson [14]. Their analysis results in 
requiring that the warming-up correction always act in the lost-time sense. This seems an 
unrealistic prediction. A discussion of this can be found in Lin, Bierlein and Becsey [15]. 

Equation (52) gives rise to the changes in other solution properties such as the thermal 
e.m.f., conductance, the refractive index, etc. Thus the Soret effect can be investigated by the 
potentiometric, conductimetric and optical methods. There are also methods based on direct 
measurement of the concentration gradient at the steady state. One example of the latter is the 
flow cell method. 

Thermal diffusion properties have also often been investigated using the thermogravita-
tional column. We shall, however, not discuss the latter method since the separation is 
facilitated by the convection, and the method is not a direct method designed for the study of the 
pure Soret effect. 

(a) The Potentiometric Method. [16] 

This method is limited to electrolyte systems for which stable electrodes can be found. The 
electrolyte is confined in a cell (thermocell) which has electrically insulating sidewalls between 
end-plates, which also serve as electrodes. The simplest thermocell employs two identical 
electrodes kept at different temperatures, such as; 

Terminal^) — Electrode(T.) / Electrolyte^) / Electrode(T) — Terminal(T) 
° M M 

The sign convention is such that a positive thermal e.m.f. E of the thermocell causes the current 
to flow from hot to cold in metallic conductor(s) M. Consider the thermocell with electrode 
reaction 

X V; + l M , + ' = o (54) 

in which ionic and molecular constituents of the solution are denoted by A., and possible sub­
stances existing in phases other than the solution by Ar. The stoichiometric coefficient is taken 
as zero for those substances that do not take part in the electrode reaction. The thermal e.m.f. 
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dEt at time t after a temperature difference of dT has been applied to the two electrodes is given 
by [16,17] 

FdE, = FdE , + Y (x.-w\{d\i.ldm\BVdm. ■ 
t st Lay] J)\ J })p>T JJ 

(55) 

+ lfa-^SjdT 
where F is the Faraday constant, W. is the Washburn number (the transport number r. divided by 
the ionic valence) and dmt denotes the concentration difference of the species y at the surfaces 
of the electrodes at time t. Note that at time t = 0, that is the instant when the temperature 
gradient is applied, the solution is homogeneous. Thus, dm.fi = 0 and 

F {dE5t­dE0) = X (Wj -Xj) S*dT (56) 

or 

F(Zst-eo) = l\{wj-Xj)s; (57) 

where e = dE/dT is the thermoelectric power. For a simple electrolyte solution, assuming that 
the electrode is reversible to ion 1 of the two ionic species Xx = Z"1, X2 = 0 and 

S 1,2 = ViSl + ifcSj 
(58) 

= F (e5 ,­e0)Z2U2/r2 

where the electroneutrality condition M^ZX + v2Z2 = 0 has been used. In a formal sense, neither 
Eo nor EM can be measured directly, and they must be obtained from unsteady­state experi­
ments. This requires Et as a function of t. Combining Equations (52), (55), and (56), it can be 
shown readily that Et varies with t according to 

Est-
E< = {Est-

Eo)s (0 (59) 

where the function g(t) has been defined in Equation (52). 
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Figures 1-3 illustrate results of an unsteady-state experiment for 0.05m CsCl at an average 
temperature of 20 ±0.003°C. The silver, silver chloride thermocell used is shown in Figure 4. It 
is a sandwich cell in which the plexiglass containing the solution is sandwiched between two 
pure copper disks. The temperature of the electrode is measured by two single-junction copper-
constantan thermocouples through the holes closely placed near the electrodes in the Cu discs. 
The cell length is 0.29 cm. The cell is left to equilibrate at the average temperature of 20°C for 
background calibration before the temperature gradient is applied. The isothermal residual 
e.m.f. (ideally zero) is of the order of 100 |iV at the most. (In this particular example 
it is 34 H.V). This is recorded and corrected from the thermal e.m.f. After the calibration, a 
temperature difference of approximately 2 to 3 degrees is applied by switching the circulating 
water on the water jackets to hot and cold water. This is taken as time f = 0. The temperature 
difference applied is relatively small. This is because the stability of the thermal diffusion cell is 
governed by a set of Rayleigh numbers which are proportional to (cell length)3 x (temperature 
difference), and the smaller this product, the better is the stability of the cell. Measurements of 
the e.m.f. are made with a HP3456A digital voltmeter together with a 3497A data acquisition 
unit interfaced to a HP85 computer. Each measurement requires less than 0.01 second and the 
thermal e.m.f: is measured to 0.1 microvolt. 

Figure 1 records the actual warming-up of the thermocell. Here the temperature differences 
of the two electrodes taken every six seconds (points) were plotted against t and are fitted to an 
exponential function to obtain the thermal relaxation time x. The thermal relaxation time x 

1 
< 

Z.U-

1.5-

1.0-

0.5-

u.u 

1° p 
O 

O 

p 1° 
r i 

O experimental 

— calculated 

1 i 
100 200 

t (sec) 
300 400 

Figure 1 - Determination of the warming-up time of a Soret cell. The measured temperature difference AT is fitted 
to an exponential function to obtain the relaxation time. 
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depends on the cell length a and ranges from 20 sec for a cell with a = 1 cm to 60 
sec when a - 0.3 cm. For a cell with a relatively large length the warming-up correction is, 
therefore, always in the gain-time sense, and vice versa. For the example shown here t = 61 sec 
and t = 56 sec. 

After the warming-up, thermal e.m.f.'s were recorded at an interval of 60 to 90 sec for at 
least 4 times 6. This is shown in Figure 2. For most experimental set-ups, E^ can be obtained 
rather accurately independent of the initial conditions. Thus Ea is first estimated by applying a 
standard non-linear fit of Et to Equation (59). The value of EH obtained is then used to con­
struct a \n{Ea - E) plot vs. time to obtain the Eg value and the thermal diffusion characteristic 
time 6. This logarithmic plot is shown in Figure 3. It indicates a linear relationship for 
t >q/2. This is because only the n = 1 term makes a significant contribution to the summation 
in Equation (59) when t > q 12. 

> 
s 
£ 

Figure 2 - Thermal emf against time during an experiment to measure the Soret coefficient of a 0.05 M CsCl 
solution by the potentiometric method. 

The experiment described above began by applying a constant temperature gradient to the 
cell at an isothermal state. One may perform the reverse experiment by following changes in Et 
from the Soret steady-state back to the isothermal state. The results obtained in both experi­
ments are essentially identical [16]. 

16 



THERMODYNAMICS OF THERMAL DIFFUSION 

&3 

s 

20 30 40 

f (nun) 

60 

Figure 3 - In {Esl - E) as a function of time for the thermal diffusion experiment with 0.05 M CsCl. 

Thermocouple 

Filling Hole -

Potentiometer ^ j — 
Connections I— 

T + AT 

Solution Chamber 

Ag/AgCl/Cr Electrode 

T 

a = Pure Copper Disk 
b = Plexiglass Cell 

Figure 4 - The silver-silver chloride cell for determination of Soret coefficients by the potentiometric method. 
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Accurate values for Eg can be obtained in a static experiment using the N-type cell shown in 
Figure 5. Here the electrodes are separated far enough to insure that the solution remains 
homogeneous during the measurements of Eo. Values of Eo obtained in this type of experiment 
agree well with unsteady-state experiments [16]. 

Electrode Thermocouple 

Circulating 
Water 

Circulating 
Water 

Son 

Figure 5 - An N-type cell for measurement of the initial thermal emf. 

For thermocells with stable electrodes such as the silver-silver chloride or bromide th-
ermocells, thermoelectric powers can be reproduced to within ±5 JJ.V / deg. However, this does 
not necessarily imply that a uniform experimental accuracy can be assigned to the measured 
heat or entropy of transport. This is because Q* and S* depend on the difference Es-Eg as well 
as the transport number. For systems such as R4NC1 salts where the cation transport numbers 
are small, the uncertainty in the 5* value can be as large as ±5 JK^moH [18]. 

(b) The Conductimetric Method. 

In the conductimetric method, the change in the concentration is followed by the change in 
the resistance of the solution, and the Soret coefficient is evaluated directly. The original cell 
used by Agar and Turner [9] is depicted in Figure 6. The end plates E' and E" were faced with 
platinum foil platinized over the area in contact with the solution. A platinized Pt wire, P, 
inserted in the side compartment and connected with the main part of the solution through H, 
served as a third electrode. By pairing P with either E' or E", the average resistance of the 
solution in the lower and upper parts of the cell could be measured. Z" and Z' were brass 
cylinders for circulating water from the thermostat. The cell was insulated electrically by 
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Z" 

Z' 

Figure 6 - The conductimetric cell used by Agar and Turner [9] for the determination of Soret coefficients. 

inserting mica sheets, M, lubricated with mineral oil to ensure good thermal contact. F was the 
filling hole for the cell. 

Denoting R' and R as the resistances respectively of the lower and upper halves of the cell 
and for t > 0.15 9, the Soret coefficient a can be evaluated from the equation. 

Yt-Y„= 7 0 - T J 32/7C2 exp - r / 6 (60) 

where 

and 

Y = \R -R \/\R +R (61) 

YQ-Y„ = - l / 4 o a i n c / a i n m L AT 1 + 9ln A / 3ln m (62) 
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and A is the equivalent conductance of the solution. Thus by plotting In (Yt - YJ vs. t, (Y, - YJ 
can be evaluated by extrapolation to t = 0 (Figure 7). For short times (t < 0.23 6) Yt is linear 
inf, 

where 

Yt-Y0 = 2fcni oATD 
a-

1 + Si2erfc a 
4V (Dt) 

(63) 

Y-Y = 
t o 

1+ ainA/ainc (64) 

and D is the diffusion coefficient of the solution. Accordingly, a can be deduced from the 
"initial" rate of change of Yt. This is shown in Figure 8. 

The conductimetric method appears to be a very accurate method even for a very dilute 
solution. For a 0.01m solution of a simple electrolyte, a can be measured to within 
±0.01 x 10-3 degr1. 

Figure 7 - In (Yt - YJ as a function of time for some conductimetric experiments. The upper curve, which has been 
displaced by a constant equal to +1, is for 0.01 M NaCl; the middle curve, not displaced (const = 0), is for 0.01 M 
CsCl; and the lower curve, displaced by const. = -1 , is for 0.01 M RbCl. 
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Figure 8 - The conductimetric experiment with 0.01 CsCl. Determination of the initial rate of increase of Y. The 
circles are values of Y plotted against time. The crosses are values of Y plotted against the function [1 + 8i2 erfc 
(a/VDt) + ]. 

(c) The Flow-Cell Method. 

Figure 9 illustrates the essential features of the flow cell that was used by Thomaes [19] for 
measurement of Soret coefficients. The fluid mixture was passed in laminar flow between two 
thermostated horizontal plates. The hot and cold plates were separated by a distance of the order 
of 0.1 mm. The liquid, introduced at A, flowed through the cell in a horizontal direction at a flow 
rate such that the steady state was established before the it reached the knife edge K at the 
opposite end. The knife edge separated the flow into hot and cold streams, designated by B and 
B', respectively. By analyzing the concentrations of both streams, the steady-state concentra­
tion gradient at a given flow-rate could be derived and the Soret coefficient computed by ex­
trapolation of the concentration gradient to zero flow rate. 

The experimental parameters for a flow cell experiment can be conveniently expressed in 
terms of a variable X defined by the equation 

P=D(U>/a)Q-i (65) 
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Figure 9 ­ Cell used by G. J. Thomaes [19] to determine Soret coefficients by the flow method. 

Here D is the effective diffusion coefficient at the mean temperature, L,b and a are respectively, 
the length, width and depth of the flow duct and Q is the flow rate. 

The thermal diffusion equation for the flow cell configuration is solved by using a vari­
ational calculus approximation [20], The difference in the mean concentration between the cold 
and hot streams is found to be 

■00- Acal Ac 
p ° 

= 1 ­ 1.045e ­i3­66P + o.026e ­106P (66) 

where Ac„ is the time­dependent concentration difference and Ac^ is the limit at as P goes to 
infinity. Plotting F(X) vs. Acx, one should thus obtain a straight line through the origin. By 
extrapolating this line to P = °° (Q = 0), Ac. can be deduced. The Soret coefficient a is then 
given by 

a = 8/3 c 
Aco 

AT 
<D ­ l 

solvent (67) 

where O . , is the volume fraction of the solvent. For dilute solution O , =1 and c can be 
solvent solvent 

computed directly by the measurement of the initial homogeneous concentration co, Acx and AT, 
the temperature difference applied to the horizontal plates. 

The flow­cell method is appliable to both electrolyte and non­electrolyte solutions, and the 
measurement can be carried to very dilute solutions. In a recent report by Hwang, Robinson, 
Billo and Lin [21], the Soret coefficient of aqueous NajCaEDTA solutions can be determined to 
within ±0.01 x 10"3 deg"1 at 0.10 m (a = 5.52 ±0.01 x 10"3 deg­1) and to within 0.20 x 10~3 deg"1 

(o = 4.75 ±0.20 x 10­3 deg"1) at 0.01 m. 
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(d) The Optical Method 

The optical method follows the concentration change during thermal diffusion by analyzing 
the distortion of a transmitted wave from the gradient of refractive index attending the diffusion 
process. The method has been used widely for the measurements of the Soret coefficients of 
non-electrolyte mixtures as well as electrolyte solutions. By the use of the wave-front-shearing 
interferometry, Becsey, Bierlein and Gustafsson [22] were able to measure a in very dilute 
solutions of KBr, KC1 and KI in nonaqueous solvents such as formamide, N-methyl formamide 
and N,N dimethyl formamide. 

The refractive index n in a binary mixture during thermal diffusion (under a constant one 
dimensional temperature gradient (AT/ Az) develops according to the Equation [23] 

n(z,t) = no + (dn/dT\AT(z/a) 

(68) 

+ (AT/AZ\KI 

( \ 
Z 4 ,,a . KZ e-*/e sm 

y 71 j 

where ng is the initial uniform refractive index. Denoting x as the mole fraction of the 
component of the lesser molecular weight and xg as that of x at the initial homogeneous 
state, Kx = xg (1 -xo) (dn /dx). 

The experimental diffusion cell is usually mounted vertically. The interferogram is then taken 
by illuminating the cell with collimated monochromatic light. All rays are assumed to enter the 
sample at normal incidence. The numerical work required for the evaluation of an interfero­
gram and the calculation of the Soret coefficient is substantial. Briefly, one analyzes the fringe 
shape and relates that to the optical path length of any ray leaving the cell a horizontal plane 
measured from the optical axis. The Soret coefficient o can be evaluated because the path 
length is a function of the refractive index n, which is in turn given by a as seen in Equation (68). 
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1.1.2.2 The Dufour Effect (The Diffusion Thermoeffect). 

The experimental investigation of the Dufour effect is concerned with the measurement of 
the temperature gradient due to diffusion. The temperature distribution in a Dufour cell is time 
dependent This is because the Dufour effect is gradually diminished along with the mixing 
process and eventually becomes negligible when the solution approaches the final homogenous 
solution. Thus, when two liquids at the same temperature are allowed to diffuse into each other, 
the temperature gradient in the system is expected to grow from zero to a maximum value and 
then gradually decay back to zero when the final equilibrium state is reached. For an ideal 
system where the heat of mixing of the two liquids is zero, the approximate value of the thermal 
diffusion coefficient and the heat of transport can be calculated from the observed maximum 
temperature gradient [24, 25] provided that the concentration gradient in the cell can also be 
evaluated. Since concentration changes in a Dufour cell have yet to be measured directly, 
thermal transport properties can only be estimated based on the measurements of the maximum 
temperature gradient alone. 

There are two principal difficulties in the experimental investigation of the Dufour effect; 
namely, the large thermal conductivity of liquids and the effect of the heat of mixing. Because 
of the large thermal conductivity, the temperature gradient produced by the diffusion thermoef­
fect can quickly decay. Thus unless the system is well insulated, measurements of the 
temperature effect can be difficult. The effect of the heat of mixing is obvious. It contributes to 
the temperature effect, and thus the contribution from the heat of mixing to the observed 
temperature gradient must be determined. Both problems have been addressed theoretically by 
Ingle and Home [26]. That the heat of transport can be obtained from the measurements of the 
temperature effect in a Dufour cell was first demonstrated by Rowley and Home [27]. 

Figure 10 shows the experimental arrangements of Rowley and Home for the investigation 
of the Dufour effect in carbon tetrachloride-cyclohexane liquid mixtures. The Dufour cell C-D 
is of the withdrawable liquid gate type. The upper container A serves as a container for the less 
dense liquid and is connected to the Dufour cell by a stopcock. The Dufour cell is filled by 
layering the denser liquid beneath up. Since water has a negligible solubility in either carbon 
tetrachloride or cyclohexane, it serves as an ideal third liquid which, when withdrawn from 
liquid gate F, will permit the two liquids to form a sharp boundary without turbulence and also 
at a well-defined initial time. Both the upper and the lower sections are thermally equilibrated 
with the thermostating jackets surrounding them. The experiment begins by slowly withdraw­
ing water through F. This permits the liquid in the upper reservoir to gradually replace water 
and finally, when the water is completely withdrawn, a sharp interface between the two liquids 
is formed. At the instant of formation of the interface the circulating water in the lower jacket 
(around the Dufour cell) is quickly evacuated to create an adiabatic condition during the 
measurement of the temperature effect. 

The change in temperature in the Dufour cell is monitored through thermocouple D in the 
cell. By measuring the temperature responses as a function of the position and time and using 
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the temperature data in conjunction with a solution of the energy transport equation (in the mass 
frame of reference), 

= -Vl-lji -VM-Hrl 

(69) 

i * r 

solved subject to experimental boundary conditions, a best nonlinear, least square estimate of 
the Onsager coefficients L. (and hence Q*) can be obtained. In Equation (69) p is the density 
and c is the specific heat capacity of the mixture. For the carbon tetrachloride-cyclohexane 
system at 1 atm, p and C are known as a function of the composition of the mixture. H. is the 
partial specific enthalpy of component i. For a mixture with two components 1 and 2, Hx - H2 
can be obtained from the heat of mixing data. Also, in Equation (69) a relatively small entropy 
source term for the bulk flow is ignored and the pressure of the system is assumed constant. 

Figure 10 - Cell used by Rowley and 
Home [27] to investigate the Dufour effect 
in liquids. 

ngs=iL=i8n 
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Figure 11 shows the temperature difference between positions z/a = 0.4 and z / a = 0.6 
observed by Rowley and Home for a mixture where the initial mole fractions of CC14 are 0.0179 
and 0.804, respectively, for the fluids in the upper and lower layers. The initial interface is 
formed at z/a = 0.5. Here z is the vertical axis and a is the cell length. The data points (dots) 
are compared with the theoretical predictions from the solution of the energy transport 
equation, 

3 K M£H*g--f)£-(^ 

+ D 

( \ 
d2HE 

dx\ 
\ J 

T,P 

dz 

fdr ^2 
*i 

dz 
V J 

+ D 
fdXl\2 

dz 
\ J 

fVx.^ 
dz* 

\ J 

d[M2Q*/M 

dx, T,P 

(70) 

subject to adiabatic (full line) and diathermic (dashed line) boundary conditions. In 
Equation (70) C is the molar heat capacity, V is the molar volume, xx is the mole fraction of 
component 1 (taken to be CC14), M. is the molecular weight of i, M = xlMl + M2x2 is the 

0.30 

o 

H 
< 

Time/10 Sec 

Figure 11 - Temperature difference AT as a function of time for a Dufour experiment with a carbon tetrachloride-
cyclohexane mixture. 
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weighted molecular weight of the mixture, K is the thermal conductivity and HE is the excess 
molar enthalpy. As expected, Figure 11 indicates that AT decays rapidly for a diathermic 
boundary condition. The maximum temperature difference observed is approximately 0.24°K. 
It turns out that when the thermocouples are symmetrically placed with respect to the initial 
interface, the heat of reaction contributes rather insignificantly to the observed temperature 
difference. This is because of the symmetric nature of the heat of mixing arising due to the fact 
that the mass frame of reference is used for the diffusion fluxes and thus the two fluxes are 
mutually against each other (Jx = ­ J2 ). The data reported according to the authors are the 
values of Q^. which provides the best fit for Equation (70) and the experimental AT. Since the 
data are evaluated with J. it seems that the data reported are really the values of Q^.Ch ­ Q^H . 

Rowley and coworkers [28, 29] investigated the diffusion thermoeffect in ternary liquid 
mixtures. They extended the theoretical work of Ingle and Home to obtain an analytical 
expression for AT when the thermocouples are placed symmetrically with respect to the initial 
interface. For a system with reasonably constant thermophysical properties, the temperature 
difference AT(z) between two points at an equal distance z from the initial interface is 

AT \z'\ = \4n/a2C 
2 
X[(c2;^1I­+G2^2i)A^/(e7.1­t­

(71) 

I Filsi 
sin 

/ = ! 
( 2 / ­ l ) 7 t z ' / a 

where £>.. is the mutual diffusion coefficient, Aw. is the initial difference in the mass fraction of 
</ « 

component above and below the interface and 0̂ . is the thermal diffusion characteristic 
time, 6.. = a2/ n2D... Also denoting K as the thermal conductivity 

T = pca 2 /%K (72) 

and 

'-■{ exp ­ ( 2 / ­ 1 ) t/Qu •exp ]}■ (21-1) t/x\ 5­/(2/­1) (73) 

In Equation (71), Q\ and Q*2 can be treated as two simultaneously adjustable parameters. Two 
experiments at different initial conditions must be performed at each mean composition to 
decouple the parameters. Again, because of the mass frame of reference used, <2* and Q*2 are 
strictly the relative heats of transport Q\ - Q*3 and Q*2 - Q*y respectively. 
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1.1.3 Experimental Data and Discussion 

Thermal diffusion and the diffusion thermoeffect are the results of the coupling of matter 
and heat transport. Eastman argued that the matter transport due to the relative motion of par­
ticles may result in a change in the (local) intensity of intermoiecular forces and the adjustment 
occasioned by such changes may result in a finite heat effect. Therefore, in a thermal diffusion 
experiment when a solute particle is transported between regions of differential temperature 
difference in a stationary solvent, a quantity of heat is absorbed from the heat reservoir behind 
and given out ahead of the moving particle. This heat is the heat of transport Q* of the particle. 
This picture clearly suggests that thermal diffusion data will be useful in the investigation of the 
nature of interaction in solutions and perhaps especially in those areas where dynamics and the 
structure are involved. 

Experimental data before 1963 have been reviewed by Agar [17] and Tyrrell [11]. The data 
surveyed here are recent ones. The survey will not be exhaustive, and only those data which will 
help to illustrate interesting aspects of the study of the Soret and Dufour effects will be 
discussed. 

There is a simple picture for the heat of transport and the diffusion thermoeffect. The tem­
perature surrounding a moving particle is generally not uniform. One way to see this is to 
recognize the possibiUty that the molecules in front of a moving particle are "pressured" by the 
approaching particle and therefore compressed. Conversely, the fluid molecules behind a 
moving particle are expanded. Since compression of fluids usually results in heating and vice 
versa, the temperature ahead of a moving particle is higher than the temperature behind it. 
Consequently, if an isothermal condition is applied, heat is evolved ahead and absorbed behind 
the moving particle. In a stationary state a heat flux is observed in the same direction as the 
diffusion flux. This is the diffusion thermoeffect. The heat flux in the diffusion thermoeffect is 
opposite to the conduction heat current that flows from a region of high temperature to a region 
of low temperature. 

When positive heat is evolved ahead, and absorbed behind, a moving particle, convention 
assigns a positive sign to the heat of transport of the particle. In the same way, when entropy is 
evolved ahead and absorbed behind, the entropy of transport 5* is positive. When entropy is 
absorbed behind the particle to keep the temperature constant, the particle is obviously a net 
"structure-maker". However, if entropy is evolved behind the moving particle, the particle is a 
"structure-breaker". Thermal diffusion data are therefore expected to reflect structural effects 
induced by the moving particle. 

In an effort to provide a theoretical interpretation for Q* and 5*, Agar [17] proposed a hydro-
dynamic theory for the heat of transport. The similarity between the heat sink and source 
surrounding a moving particle and the existence of the electrical charge sink and source in a 
dipolar molecule led Agar to suggest that the moving particles are surrounded by "thermal 
dipole moments". Agar, Mou and Lin [5] have calculated the thermal dipole moment and show 
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that, indeed, the heat of transport can be given in terms of the thermal polarization. The 
hydrodynamic expression for the standard single-particle heat of transport at infinite dilution is 

Q;° = \4*T/3)\^]f{r)r*dr (74) 

where S = S(r) is the entropy density at a distance r from the particle of interest, and/(r) is a 
function describing the velocity field of the solvent induced by the motion of the particle 
(f(r) = 1 at r = °o,and/(r) = 0 at the surface of the ion). The expression of Q*° given in 
Equation (74) is obtained by immersing a single particle in its solvent, which is regarded as a 
hydrodynamic continuum. The significance of the result lies in the fact that the relationships 
between the heat of transport and the structure (through dS / dr) and dynamics [through the f unc-
tion/(r)] are clearly stated. It indicates that if there are no polarizable structures surrounding the 
particle, i.e., in case (dS/dr) = 0, Q*° will be zero. 

Systematic measurements of the heats of transport of dilute aqueous electrolyte solutions 
have been reported using the silver-silver halide electrodes at 25°C. For 1:1 electrolytes, data 
available include alkali chlorides [30] and bromides [31], ammonium and tetraalkylammonium 
chlorides [32], and hydrochloric acid [15]. For 2:1 electrolytes there are data for nickel and 
alkaline earth chlorides [33], and for 3:1 electrolytes, data are available for rare earth chlorides 
[34]. The limiting law for the concentration dependence of the molar heat of transport is [35]. 

Q* = D O* + D Q* 
+- + + - -

= ell - « ("*-)r - 5 ^ ( V ? + »-z? ] r (75) 
B 

v+v_/v+ + x>_p; - Ri]\H+ - H_ r 

where T = V (4iiez'Lc.Zf / kBTe) is the reciprocal Debye length andi?Hs the Stokes law radius 
of i. The second term in the right-hand side of the second equality a (H+ _) is the limiting slope 
for the partial molar heat content. The third term is due to the direct ion-ion electrostatic 
interaction, and the last term is due to the electrophoretic effect. Because the ion-ion term 
describes the effect due to the ionic atmosphere and can be obtained from the Debye-Huckel 
equilibrium pair-distribution function, this term, together with the enthalpy term, have been 
referred to as the thermodynamic contribution to the limiting law of the molar heat of transport. 

The electrophoretic contribution to the limiting slope must be estimated because absolute 
ionic values for if. are not available. For most systems, however, it is small. This is because this 
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contribution is proportional to the product of the differences in the Stokes law radii and the 
transported enthalpy. In fact, for electrolytes such as KC1 where R|+ = R _̂, the electrophoretic 
effect is negligible. Figure 12 describes the concentration dependence of S^a at 20°C [36]. The 
line gives the least mean square fit of the experimental data (excluding the results of two most 
dilute solutions). The slope of the line is -34.2 (in J mol"1K~1nr1/2). The theoretical ion-ion 
electrostatic limiting slope is -35.2. 

1 
C/3 

0.05 

AM" 2 ) 

Figure 12 - The effect of concentration on the entropy of transport of CsCl at 20°C. 

In comparing experimental data with the result given in Equation (74) Q*°m and S*°n must be 
estimated from the molar quantities Q*°_ and S*°_, respectively. There are a number of ways that 
this can be accomplished. One approach proposed by Takeyama and Nakashima [37] is based 
on exploiting the consequences resulting from decomposing the experimental molar heat of 
transport into the ionic heats of transport in the laboratory frame. (As discussed earlier, 
although the molar heats of transport are independent of the frame of reference, the same is not 
true for the ionic heats of transport). Their method (known as the reduction rale) yields 
<2*£ = 0.53 kJ/mol which is close to Q*£_ = 0.37 kJ/mol based on the Gurney scale [38]. 
Table 1 lists standard single-ion heats of transport at infinite dilution according to the reduction 
rule of Takeyama and Nakashima. The experimental data are taken from references [30-34] 
and also from Takeyama and Nakashima [37]. 

We shall use data given in Table 1 to infer structural effects of the ions. Since structure-
makings and structure-breakings in aqueous electrolyte solutions refer commonly to those 
effects that are added to the simple ion-dipolar interaction, we shall take a spherical Bom ion 
with a slipping surface as a structurally neutral reference ion. For a Bom reference ion with a 
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slipping surface, the entropy density around the ion is given by the Born theory of hydration and 
Equation (74) can be integrated [5] to give, 

Q1° /Z2D. = 220 • 1012 J sec/molm2 (76) 
Bom J i 

where D. is the self-diffusion coefficient, which is related to the hydrodynamic radii R. in 
Equation (75) through the Stokes-Einstein relationship and which can also be deduced from the 
ionic equivalent conductance according to the Nemst equation [39]. The result given in 
Equation (76) can now be compared with the values of Q*° / ZfD. listed in Table 1. Take the 
alkali metal ions for example. Na* is a weak structure-maker, because Q*^i+/DNi+ = 2.60-1012, 

I— Table 1-The Single Ion Heat of Transport at Infinite Dilution —i 

Ion 

H+ 

Li+ 

Na+ 

K+ 

Rb+ 

Cs+ 

N H / 
Me„N+ 

Et4N+ 

n-Pr4N+ 

n-Bu4N+ 
Ag+ 

Tl+ 

Mg+2 

Ca+2 

Sr*2 

Ba+2 

N i + 2 

La+3 

Sm+3 

Yb+3 

OH-
F-
ci-
B r 
I-
NOj 
cio4-
10; 

D10» 
(m2/sec) 

9.31 
1.03 
1.33 
1.96 
2.07 
2.08 
1.95 
1.20 
0.87 
0.62 
0.51 
1.65 
1.99 
0.71 
0.79 
0.79 
0.85 
0.71 
0.62 
0.61 
0.58 
5.32 
1.47 
2.03 
2.08 
2.04 
1.90 
1.81 
1.45 

Q'r 
(lO^/mol) 

13.3 
0.53 
3.46 
2.59 
3.91 
4.01 
1.73 

10.00 
14.29 
18.36 
20.79 

6.37 
4.33 
9.04 
9.8 

11.1 
12.4 
9.3 

19.5 
19.6 
18.3 
17.2 
3.93 
0.53 
0.60 

-1.55 
-0.63 
-0.31 

2.00 

10raQ''lZ2pi 

(J sec/mol m2) 

1.43 
0.51 
2.60 
1.32 
1.89 
1.93 
0.89 
8.33 

16.43 
29.61 
40.76 

3.86 
2.18 
3.20 
3.10 
3.52 
3.66 
3.30 
3.49 
3.57 
3.51 
3.14 
2.67 
0.26 
0.29 

-0.76 
-0.33 
-0.17 

1.38 
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which is slightly larger than the value for the reference ion. In comparison, all other alkali metal 
ions carry smaller values and are structure-breakers. Following the same analysis, tetraalkylam-
monium ions are strong structure-makers as the result of the hydrophobic interactions. The 
structure promoting effect of the lanthanide ions has led Frank and Evans [40] to postulate the 
existence of a super-lattice structure around the lanthanide ions, generally referred to as the 
iceberg effect. Here, the heat of transport data also indicate that they are structure-makers. The 
halide ions show an expected trend, that is the F~ ion, the smallest ion in the group, is a structure-
maker, and T, the largest halide ion listed, is a structure-breaker. However, it is somewhat 
surprising to find that the smallest alkali metal ion Li+ is a structure-breaker. According to 
Chakroborty and Lin [41], the reason that Li+ is a structure-breaker is the exchange effect. The 
strong ion-dipolar interaction is likely to give Li+ an extended hydration cosphere resulting in a 
large hydrated ion for Li+. Thus water molecules in the outer hydration cosphere may undergo 
exchanges with the molecules in the bulk when the Li+ ion diffuses. Exchanges create disorder 
and Li+, therefore, is a structure-breaker. 

The heat of transport generally measures effects taking place not in the close vicinity of the 
particle, but those that are occurring at a distance from the particle. This is clearly indicated in 
Equation (74). Since f(r=R) = 0 and (dS/dr) = 0 at r = <», the integrand grows from zero 
at r = R. to a maximum, and eventually must decay to zero at r = «>. For a slipping Bom ion, 
the maximum occurs at r = 1.5/?.. For an ordinary ion with R. = 2A, the predominant contribu­
tions to the integral are from regions around 4~3 A. 

Investigation of the temperature dependence of the thermal diffusion properties may also 
give interesting insights into the nature of interaction in solutions. For 0.01m alkali chlorides in 
H20 and D20, both o and da I dT have been measured by Wood and Hawksworth [42] using 
the conductimetric method. Their results in EL,0 have been summarized below, assuming that 
a varies linearly with temperature. 

o(LiCl) =9 .9 • 10"5(r-25.1) (77) 

c(NaCl) = 0.091 • 10-3(r-2.8) (78) 

o(KCl) = 0.107- lO"3 (r-11.6) (79) 

a(RbCl) = 0.111 • 10-3(r-4.1) (80) 

o(CsCl) = 0.111 • 10-3O-U) (81) 

where f is temperature in °C. It is seen that da/dT for LiCl is unusually small and may indicate 
the structural effect discussed above. That is, if the exchange of water molecules between the 
hydration cosphere and the bulk is the principal reason for the small heat of transport observed, 
then the temperature data indicate that the exchange is not sensitive to change in the tempera­
ture. Values of do I dT for the other salts are comparable. What is significant here, however, 
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is the "transition temperature" that is predicted. For NaCl, a, and consequently Q*Naa, changes 
sign from positive to negative at 2.8°C. Similarly, Q*&a changes sign at 11.6°C and Q*Rba at 
4.1°C. The results are remarkable in view of the fact that the maximum density of H20 occurs 
at 4°C and at this temperature (dP / dT)v changes sign from positive to negative. Compression 
of the fluid ahead of, and expansion behind, the moving particle will generally cause the 
temperature to be higher ahead and lower behind resulting in a positive heat of transport for the 
particle. The situation is just the opposite for Kp below 4°C where (dP / dT)v < 0. Conse­
quently, the heat of transport is expected to reverse its sign around 4°C if indeed the compres­
sion and expansion contribute significantly to the heat of transport. For D20, where the 
temperature for the maximum density is at 11.2°C, Woodward and Hawksworth's data predict 
a "transition temperature" for Q'^ at 16.4°C, Q*Rba at 18.1°C, and Q^ at 18.3°C. 

Since (dP/dT)v = (dS / dV)T, the heat of transport can be viewed from yet another angle 
by inference from the entropy changes due to changes in volume induced by diffusion. Tyrrell 
[43] first noticed this and argued that when an ion is displaced, the void volume left behind must 
be reoccupied by the solvent molecules nearby. Further, when the Hittorf flux is adopted, the 
number of solvent molecules reoccupying the void volume must be exactly identical to the 
number of solvent molecules carried away by the ion, i.e., the hydration number nh in aqueous 
solution. The entropy change associated with this is AS, 

(82) 

which will contribute to the entropy of transport. In Equation (82) V H2O and V H2O are, respec­
tively the molar volume of ELp in the bulk and in the hydration cosphere, and V.on is that of the 
bare ion. A group of ions that is particularly suitable for testing the present hypothesis is the 
tetraalkylammonium ions. Because of the hydrophobic interaction, nh is very small or nearly 
zero. Thus if AS should make a significant contribution to the heat of transport, a correlation 
between Q*. and R\m is expected. Table 2 gives a summary of Q° listed in Table 1 and the ionic 
radii R. taken from Stokes and Robinson [39] for ammonium and tetraalkylammonium ions. 
The correlation found in this table, though not quantitative, is striking. 

Table 2 ­ The Standard Ionic Heats of Transport and the ionic radii R. 

H4N
+ 

Me4N
+ 

Et4N
+ 

n­Pr4N
+ 

n­Bu4N
+ . 

RLl) 

1.48 
3.47 
4.00 
4.52 
4.94 

(kJ/mol) 

1.73 
10.00 
14.23 
18.36 
20.79 

Q-m^t 

0.17 
1 
1.42 
1.84 
2.08 

RVR\c^ 

0.08 
1 
1.53 
2.21 
2.89 
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Equation (74) is derived based on the consideration of heat sink and source around a moving 
particle. It is, therefore, a general expression which should be applicable also to non-electro­
lytes. Although the same level of discussion for non-electrolyte solutions is not quite ready 
primarily because large volumes of systematic data are yet to be accumulated, there are several 
interesting non-electrolyte systems which have been investigated for some specific purposes. 
Two examples are discussed below. 

Thermal diffusion factors (To) for binary mixtures of alcohols and aromatic hydrocarbons 
with carbon tetrachloride were measured, using the optical method, by Belton and Tyrrell [44], 
Farsang and Tyrrell [45] and Anderson and Home [46] and by Story and Turner [47] using the 
flow-cell method. Beyerlein and coworkers, using the thermogravitational thermal diffusion 
column, extended the investigations to other compounds [48-51]. These included chloroform 
with acetone and aromatic hydrocarbons, and also the 2H thermal diffusion isotope effect in 
benzene and methanol. More recently, Rutherford used the thermal diffusion column to 
determine thermal diffusion effects for isotopic substitutions in benzene, substituted benzenes 
and carbon disulfide [52-54]. (We have not discussed the thermal gravitational thermal diffu­
sion method because in this method the separation observed is enhanced by the bulk flow and 
not by pure thermal diffusion alone. When thermal diffusion column measurements are done 
with great care and precision, good results can be obtained. However, in many studies there 
arise questions regarding conformance of the experiments to the ideal conditions assumed in the 
derivation of the theory of the thermogravitational process. In such circumstances, results are 
frequently produced that can not be confirmed by other independent methods [55]. 

Thermal diffusion factors are sensitive to the composition of solutions and are useful in 
studying the molecular association reaction and complex formation. For the methanol-benzene 
and ethanol-toluene mixtures, the thermal diffusion factor is found to increase from negative 
values at high alcohol concentrations to positive values when the alcohol concentration is 
decreased. It approaches a maximum and then gradually decreases at lower alcohol concentra­
tions. This concentration behavior is due to the self-association of the alcohol component and 
can be interpreted with the molecular association theory of Baranowski, deVries, Haring and 
Paul [56] or with the modified form of this theory due to Johnson and Beyerlein [48]. For some 
chloroform mixtures, where the molecular attraction between chloroform and the other compo­
nent is much stronger than the two chloroform molecules, complex formations have been 
observed. For example, in the chloroform-acetone system, the mixtures contain 1:1 chloro­
form-acetone complex as well as a small amount of 2:1 complex. The intermoiecular attraction 
between chloroform and benzene is found to be very strong and a 2:1 chloroform-benzene 
complex has been observed. The molecular interaction energy between chloroform and a 
benzene molecule estimated from the temperature dependence of the thermal diffusion factor is 
4.60 kJ, which is in good agreement with the other independent estimate [57]. 

That thermal diffusion studies can be sensitive to molecular association reactions was 
pointed out many years ago by Wagner [58]. Wagner developed a simple theory of diffusion for 
dilute solutions in which the solute A consists of two isomeric species A' and A " in equilibrium 
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with one another. When the equilibrium A''« A" is attained rapidly (in comparison with the 
time scale of the diffusion), Wagner showed that the application of a temperature gradient will 
cause A to migrate, thereby increasing the concentration A = A'+A" at one end of the cell and 
decreasing it at the other (thermal diffusion) and that diffusion under isothermal conditions will 
cause enthalpy flow, in addition to that associated with the partial molar enthalpy of A, i.e., the 
heat of transport An exact thermodynamic treatment of the "Wagner effect" has been given by 
Agar and Lin [7]. They showed that the heat of transport derived from the Dufour and Soret 
effects are identical. Accordingly, the reciprocity relation is confirmed for the Onsager 
phenomenological coefficient for heat-matter coupling. Agar and Lin's treatment can be 
extended readily to equilibria such as AX * A* + X~, and it suggests that the existence of such 
an equilibrium will give rise to an additional contributon to the heat of transport of a weak 
electrolyte when the rate of dissociation is around 50%. However, the additional heat of 
transport is proportional to the enthalpy of dissociation, and in a typical example such as a weak 
acid, the enthalpy of dissociation is small so that this additional heat of transport may be too 
small to be observed. 

The heats of transport from the diffusion thermoeffect in ternary mixtures of toluene-
chloroform-bromobenzene reported by Piatt, Vongvanich, Fowler, and Rowley [28,29], were 
re-investigated as binary mixtures by Rowley and Hall [59]. They show that the ternary data can 
be estimated from the binary results. We pointed out that the heats of transport measured in the 
diffusion thermoeffect experiments are the relative heats of transport. Consequently, compari­
sons of the diffusion thermoeffect results with results obtained by other methods based on /. 
require caution. However, at the infinite dilution limit, the heat of transport of the solvent 
component approaches zero so that the "pure component" heat of transport obtained at this limit 
is independent on the solvent component Yi and Rowley [60] reported the molar heat of 
transport of carbon tetrachloride in benzene, toulene, 2-propanone, n-hexane and n-octane at 
298.15 and 308.15°K at ambient pressure. At 298.15°K, values of 2 ^ found are within 1.46 
to 2.16 kJ/mol. and at 308.15°K, within 1.54-1.86 kJ/mol. 

Yi and Rowley [61] tested the existing theories of thermal diffusion using results obtained 
from diffusion thermoeffect measurements. The theories tested were the Brownian motion 
theory of Bearman, Kirkwood and Fixman [62], the thermodynamic theory of Guy [63], the 
transition state theory of Mortimer and Eyring [64], the revised Enskog theory of Barajas, 
Garcia-Collin and Pina [65] and the kinetic theory using the square-well model potential of 
McLaughlin and Davis [66]. Although none of the theories tested were able to provide even 
qualitative agreement with experiment, the square-well Enskog theory seems capable of 
providing approximate agreement with experimental data by adjusting the potential parameters 
for the mixtures. Yi and Rowley demonstrated the validity of the frequently expressed view that 
thermal diffusion properties are sensitive to the interaction potentials. Theory with a realistic 
potential energy model will be required for the discussion of thermal diffusion properties at the 
molecular level. 
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1.2 Thermal Diffusion in Gases 

The phenomenon of thermal diffusion is a second order effect which did not appear in the 
kinetic theory of gases developed by workers in the nineteenth century. It was first recognized 
by David Enskog [67] at the University of Uppsala in 1911 when he presented the kinetic theory 
for the special case of a Lorentzian gas, observing that a mass motion, or flux, of particles could 
be caused by a thermal gradient as well as a concentration gradient. In his doctoral dissertation, 
Enskog [68] propounded the theory for the general case and gave an explicit expression for the 
coefficient of thermal diffusion. Working independently, and at about the same time, Sidney 
Chapman [69] obtained a similar result and then proceeded to verify it experimentally [70]. The 
fact that the nineteenth century workers overlooked this is primarily due to its being a non-
equilibrium effect and furthermore the coefficient is identically zero for the Maxwellian 
molecule, which was the popular molecular model of that era. In reality the molecular 
interaction is much more complicated and a "unique and correct" analytical form is still not 
known. The method of Chapman and Enskog proceeds through solving the Boltzmann 
Equation with a perturbed Maxwelliam velocity distribution (the non-equilibrium case) and 
expresses the phenomenological coefficients in terms of "collision integrals". These collision 
integrals are expressed in terms of the intermoiecular forces and molecular weights. The 
mathematical and numerical procedures are very complicated and difficult to execute. 

While the initial discovery of thermal diffusion in gases evolved through the development of 
the rigorous kinetic theory, the derivation of the phenomenological coefficients from non-
equilibrium thermodynamics is a very illustrative approach. This method has the advantage of 
formulating the transport coefficients directly in terms of the experimental parameters and 
produces the defining equations for the transport coefficients, several of which have been given 
explicitly in the introductory section of this report. Equation (11) in that section states that the 
fundamental driving force for diffusion is the negative gradient of chemical potential divided by 
T. For gases the composition scale usually chosen is the molar concentration, cjt or equivalently 
the mole fraction, x~ The variation of chemical potential at constant pressure and given 
temperature is 

[d^T = [dMj/dc))pJdCj (83) 

or 

[d^pT = [d^j/dx)jpJdxj . (84) 

The mass fractions, w. = p./p, are related to the molar concentration or mole fractions, 
c, x. =N./N, through the expression for the mass density 

Pj=MjNj. (85) 
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For a binary system, the definitions of the thermal diffusion ratio, kT, and the thermal 
diffusion factor, aT, that quantity which is to be measured by the following experimental 
methods, are defined by the condition Jx = -J2 = 0 , the steady state, where the mass flux 
is zero but the heat flow is not zero. Thus 

D12 gradXj + DT xyx1 g r a d T = 0 (86) 

yields the ratio 

PI 
D 

gradjc1 

12 xx x2 gradT 
(87) 

known as the Soret coefficient, from which follow by definition the dimensionless quantities 

and 

. _ DJ_ 
KT ~ xix2r> 

DT 

gradXj 
grad In T 

1 gradjj 
x. x0 grad In T 

(88) 

(89) 

This equation may be readily integrated if aT is assumed independent of composition and 
temperature, an assumption which is reasonably justifiable for the former but may not be very 
good for the latter 

gradx1 

xA\-xx 

AT 

J T 
grad In T (90) 

which, after integrating by parts, yield 

aT = lnq/ln\TH/Tc] 

where 

a = xx/{\-x^TJ V^- ' i ) 

(91) 

(92) 

The quantity q is known as the separation factor. 
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Equations (91) and (92) are the working equations for determining the thermal diffusion 
factor from the experimental conditions. 

In each of the four experimental methods described in the following, the apparatus 
configuration is different and additional theory pertinent to the dynamics or material balance of 
the components in the device is necessary to extract the desired result. 

One final and rather complicated expression remains to be presented here. That is the 
theoretical expression obtained from the rigorous kinetic theory which expresses the thermal 
diffusion factor in terms of the two-particle interactions, or intermoiecular potential. This is 
most readily expressed in Chapman's determinant notation, 

CCy = lim 
m—>oo 

*1*2AS? 
,-1 r AW Mx + M2 /2M1 

1/2 

+ x A (/n) M1 +M2\/2M2 
ill (93) 

The quantities A{f are determinants obtained from a master determinant A(m) of order 
2m +1 by striking out columns i and./. As usual, the subscript 1 refers to the heavier component, 
x is the mole fraction, and M is the respective molecular weight. The order of approxima­
tion to aT is m and the first three approximations, which are those usually encountered, are 
designated [aT\, [ocT]2, and [aT]y The elements of A("°, which have been obtained for up to 
third order by Mason [71], are complicated functions of the collision integrals, molecular 
diameters, and molecular weights. The explicit expressions are too lengthy to be presented 
here. 

It is this expression that would be used to test a particular intermoiecular potential against 
experimental measurements. 

1.2.1 The Two-Bulb Method 

The first experimental confirmation of thermal diffusion in gases was obtained using the 
two-bulb method by Chapman and Dootson [70], as mentioned previously. They simply 
connected two bulbs together with a tube, filled the apparatus with an approximately equimolar 
mixture of H2/C02 or H2/S02 and heated one bulb. They found the hydrogen to be slightly 
enriched in the hot bulb by about 2 to 3% over that in the cold bulb. The concept of the two-bulb 
experiment is shown in Figure 13 using as an example the apparatus of Ibbs [72]. The method 
is very straightforward but one must orient the apparatus vertically with the hot bulb on top to 
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Figure 13 - Two-bulb apparatus used by Ibbs [72] for meas­
uring binary gas separations "in situ" at average temperatures 
above ambient A) Glass vessel surrounded by a heating jacket 
and held at temperature, TH\ B) water bath held at temperature, 
Tc; Q katherometer for measuring gas composition in cold 
bulb; D) reference gas for katherometer; and E) thermometer 
for measuring TH. 

avoid convection in the connecting tube. Also the bulbs and connecting tube must be sized in 
such a fashion that the equilibrium time is not excessively long. Because the separations are 
very small for a single stage separation, the method of analysis becomes an important considera­
tion in the experiment. Early workers [70,72] used a katharometer mounted in one of the bulbs 
which measured the change in composition of the mixture through the thermal conductivity 
variation which is a function of composition. The change in composition in the bulb containing 
the katharometer can be enhanced by making its volume smaller than the other bulb. A modem 
variation is to use a small solid state sensor called a thermistor to measure the mixture 
composition [73]. The thermistor is particularly useful at low to intermediate temperatures 
because various types are available with large negative coefficients of resistance for a given 
temperature range. 

A second method of analysis which is inherently extremely sensitive, is counting disintegra­
tions from a radioactive tracer. Several workers [74, 75], have used this technique but the 
method is generally restricted to trace amounts of the radioactive component for practical 
reasons. A third popular method is to remove a sample from the experiment and analyze it in a 
mass spectrometer. This method has the advantage, or at least potential, for excellent absolute 
accuracy for most gases and isotopic mixtures, but it is "invasive" in the sense that taking the 
necessary samples may disrapt the process substantially so that sampling is normally done at the 
end of the experiment. The first two methods are non-destructive in that they do not disrupt the 
course of the experiment. 
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In the case of the two-bulb apparatus, one region is held at a fixed temperature and the 
temperature of the other region is varied. From a series of experiments, aT is obtained from the 
slope of the logarithmic plot of THI Tc vs. the separation factor. The drawback of this method is 
that the numerical value of aT is very sensitive to the derivative of the curve of unspecified 
functional form which must be fitted to the experimental points, each of which in turn has 
uncertainties in In q and In (TH /Tc) associated with it. The problem is particularly severe at the 
end points of the curve. The apparatus shown in Figure 13 depicts the case where the lower 
temperature, Tc, is held constant by the water bath B and gas in the upper bulb A is raised to 
various higher temperatures by the heating mantle around A. 

Conversely the apparatus may be constructed in such a manner that the upper reservoir 
is held at a constant temperature and the lower reservoir is varied to successively lower 
temperatures. An example of such an apparatus is that of Ghozlan and Los [75] shown 
in Figure 14 which was used for the determination of aT for the hydrogen isotopes (including 
tritium). The upper chamber contained an ionization chamber to determine the concentration of 
tritium in the mixture. 

The apparatus constructed by Weissman [76] and extensively modified by Taylor [77] 
for use down to very low temperatures (~2K) on the helium isotopes, is shown in Figure 15. 
Because it is generally impractical to have a valve in the low temperature region which 
isolates the cold reservoir, it is necessary to obtain the composition at Tc from the feed and hot 
reservoir compositions. A rigorous theory for the two-bulb experiment was derived by 
Lonsdale and Mason [74, 78] for the case of one component present only in trace quantities 
based on a mass balance in the hot and cold reservoirs and the connecting tube. Taylor [77] 
extended the theory to the general binary mixture case. Now letX represent either one of the 
compositions Cx or C2 of the binary mixture, expressed as mole fraction. When the feed 
composition, xF = xH(0) = xc(0), and the steady state hot bulb composition, xH (°°), are 
known, the composition in the cold bulb at the end of the experiment with a connecting tube of 
length L is 

VHTC T 1 AnL 
*c<~> = XF + TT~ XF~ *"(oo) " A T • ( 94 ) 

VC1H L J i V C 

where AnL is the change in the number density of the light component in the connecting tube 
during the experiment and Nc is the total molecular density in the cold bulb which remains 
constant during the course of the experiment 
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Figure 14 - Two-bulb apparatus used by Ghozlan 
and Los [75] for determining aT at low tempera­
tures. A) Lower reservoir held at temperature, 
Tc; B) Dewar vessel containing cryogenic fluid; 
C) tube for introducing coolant; D) coolant vapor 
vent; D-) vacuum line for pumping on coolant; 
E) manometric device for coarse control of cool­
ant vapor pressure; F) manometric device for fine 
control of vapor pressure; G) upper reservoir held 
at temperature, TH; and H) gas inlet line 

Figure 15 - Schematic of the two-bulb device used 
by Taylor [77] to measure thermal diffusion factors 
on helium isotopes down to 2K. The components 
are: A) lower chamber containing three different 
temperature sensors, one Pt resistor mounted in the 
gas, another embedded in the copper base along with 
an Allen-Bradley carbon resistor; B) vacuum/ex­
change gas region; C) vacuum jacket around con­
necting tube; D) connecting tube; E) inner Dewar for 
LHe; F) outer Dewar for LN2; G) supporting flange; 
H) vacuum pass through for sensors, I) manifold for 
four sample bottles; J) water bath controlled by Haake 
circulator; and K) isolation valve. 
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The term AnJNc, is the correction for the finite volume of the connecting tube and is 
determined by the following: 

An, = nr(°°) = I dnr (<~, z) - NTx f L"F 

XL(~, 
J 0 

z) dNr (z) - x \ dNL 
J 0 

(z) (95) 

The differential dnL{°°, z) represents the composition gradient at the steady state due to the 
temperature gradient along the connecting tube. The variable z stands for any point on the 
connecting tube. Since Adz = dv, the quantity NL can be evaluated in terms of the ideal 
gas law for an incremental volume. 

| j c K z) PN A CL PN A 
AnL= RT(z)° dz ~XF) Rfjz)dz 

J 0 

(96) 

In order to integrate this equation, expressions must be assumed for the temperature and 
composition distributions. A reasonable approximation for the temperature distribution is 

T(z) = TH -
(T — T \ 1 H l C 

z . (97) 

and, from Equations (91) and (92) by letting XL(°<>, z) = Xc(o°, z), for the composition 
distribution 

xT{oo,z) = 1 + 
XH&> 

- 1 
1H 

T(Z) 
V. J 

- 1 

(98) 

The assumption is made here that aT is an "effective" thermal diffusion factor which must 
be obtained iteratively. Substitution of Equations (97) and (98) into (96) yields an expression 
which can be analytically integrated by making the change of variable x = a + bz. The second 
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term can be integrated directly. After integration and simplification, and noting that A L = VT, 
the correction term is 

AnL V T 
v T i c 

VC\TH-TC 

1 - xH(~) 

ln\\TH/Tc 

TH'TC\ T 

1 -xc xH(°°) 

- l / o , 
(99) 

The cold reservoir composition, xc(°°), can now be calculated from the experimental 
conditions and apparatus dimensions. The separation factor, q, and the thermal diffusion factor, 
aT, for the experiment may be calculated from Equations (91) and (92) respectively. The value 
of aT obtained must, of course, agree with the "effective" value of aT used in evaluating the 
correction factor. If it does not, the calculation must be iterated until a consistent value is 
obtained. 

Taylor [77] has compared the "slope" method to the iterative procedure above for the 
determination of aT for the helium isotopes. The problem in the second method is that a specific 
value of the temperature cannot be assigned to aT whereas in the "slope" method it can. Taylor 
found, however, that where most of the gas in the experiment was at a temperature at or near Tc 
and aT did not vary too rapidly with temperature in the region of interest, the iterative procedure 
gave more reasonable results. Apparently the inaccuracy introduced by differentiating the 
logarithmic plot of TH/TC vs. q, along with the inherent experimental uncertainty in the data, 
introduced a somewhat spurious temperature dependence in aT which was not exhibited by the 
iterated value of aT (T ) . 

Quite a few investigators have built and operated two-bulb experiments in addition to those 
already mentioned. An incomplete list would include, but not be limited to, the group at Exeter, 
U.K., under Grew [79], de Vries and coworkers at FOM-Institute in Amsterdam [80] and, more 
recently, Dunlop's group [81,82] in Adelaide, Australia. These citations show the experimental 
apparatus and discuss operating procedures. The accuracy of the two-bulb will depend strongly 
on the analytical technique used to measure the composition because the separation is usually 
very small with this method. In addition, differentiation of the separation curve magnifies 
scatter and may introduce an undetectable bias. Barring this, one might reasonably expect 
accuracies of approximately ± 5 to 8%, depending on the binary mixture. Dunlop's group 
reports an accuracy of approximately 2 to 3%, but in a very limited temperature range. 
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1.2.2 The Trennschaukel (Swing Separator) 

A device which has proven quite useful in the experimental determination of the thermal 
diffusion factor was developed by Clusius and Huber [83]. In principle, the trennschaukel, or 
swing separator, is a number, n, of two-bulb experiments connected in series as shown 
in Figure 16. The top and bottom ends of the tubes (approximately 1/3) are embedded in 
isothermal regions held at temperatures TH and Tc, respectively. The temperature gradient, AT, 
is established in the middle portion of the tubes. By connecting each successive tube top to 
bottom with a capillary and gently moving the gas to and fro by means of a pump, the 
concentrations of the components of the gas mixture in the top of one tube are made essentially 
identical with those at the bottom of the next tube. Since the temperature gradient is applied in 
the vertical direction with the hot end at the top, the effect of convection is eliminated. The 
separation factors of the individual tubes are multiplicative, so an n-fold increase in the 
separation is realized. Because n may be ten or twenty, an order of magnitude increase is quite 
feasible, resulting in a considerable analytical advantage over the two-bulb method. As simple 
as the apparatus in Figure 16 appears, it is still subject to certain restrictions which, if violated, 
will invalidate the results. For example, one must operate sufficiently long so that steady state 
concentrations in the regions under and over the pump are approached. The frequency of 
pumping lies within certain limits. If one pumps very slowly, backward diffusion in the 
capillaries sets in, but if pumping is too rapid, the motion of the gas disturbs the thermal 
diffusion balance in the tubes. The theory of material transport in the device was derived by van 
der Waerden [84] and yields explicit expressions involving the physical characteristics and 
operating parameters which must be considered in order to ensure successful operation. 

Figure 16 - Principle of the trennschauckel or "swing separator". A given number of tube/capillary pairs are 
connected top-to-bottom and the contained gas mixture is swung to-and-fro by a pump. A temperature difference, 
AT = TH - Tc, is imposed across the n tubes by embedding the top approximately 1/3 of the tubes in an isothermal 
region at TH and the bottom 1/3 in another isothermal region at Tc. 
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A practical limit will be encountered in the number of tube/capillary pairs employed by 
virtue of viscous flow restrictions encountered in the capillaries (Poiseuille's Law). A pressure 
gradient will be established in the capillaries due to pumping and this will in turn decrease the 
quantity of gas that is transported forward from tube to tube. The effect will be greatest in the 
middle tubes and will not only limit the total number of stages but will also restrict the operating 
conditions. Utilizing Poiseuille's Law, the pressure drop in the capillaries is equated to the 
volumetric rate of transport to yield a set of n time-dependent differential equations whose 
solutions are complex exponentials having both an amplitude and phase component. If the 
amplitude, a, represents the pumped volume per half cycle, then the maximum compression is 
realized in the middle tube with 

= af = a 1 - 1 
192 

( V 
nV 2%n 
cP t 

o p 

(100) 

where V is the tube volume, P is the gas pressure, and t is the pump period. The quantity c 
derives from the Poiseuille equation, e.g., 

c = 
nd 

128 nr I 
x 0.13332 x 10 (101) 

with the capillary diameter, d, and length, /, in centimeters and the viscosity, r\T, in poise at 
temperature T. If the volume on each side of the pump were exactly equal to the tube volume, 
then n could be replaced by n + 2 and an exact solution would result. Where the pump holdup 
is a fraction, e', between 0 and 1 of the tube volume, a good approximation is just to replace n in 
Eq. (28)withn + 2e'. 

It is of course possible to design a trennschaukel and/or operate it in such a manner that the 
multiplicative factor,/, approaches zero and no transport at all takes place in the middle tubes, 
or a phase reversal results, van der Waerden has suggested that conditions be such that / ~ 0.95 
so that the diminution in the amplitude can be neglected. 

The following three corrections for trennschaukel operations are applied to the measured 
composition difference at the end of the experiment. Equation (92) must therefore be rewritten 
in terms of this difference, e.g., 

1 + 
Q = 

1 + 

Axl(corr) /XATC) 

Ax2(corr) /XATC 

(102) 
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where Q is the separation factor for the trennschaukel across n tubes and 

Axx(corr) = 

A similiar expression holds for Ax2(corr) where x% = 1 - xv The elementary separation 
factor is <? = <2/w. 

i) Approach to equilibrium, 5: 

The equations for the approach to equilibrium are derived from a concentration balance in 
the n tubes and the pump volumes. The solution of the n + 2 differential equations is an 
exponential with a superimposed sine wave due to pumping. Since equilibrium is approached 
exponentially, it is reasonable to define an operating half-life for the experiment and operate for 
a sufficient number of half-lives so that equilibrium is closely approached. The expression for 
the half-life is 

ty2 = [tV/2a +L2/D12) [(/i + \)lnf In2 (104) 

where L is the tube length and£>12 is the binary mixture diffusion coefficient at the pressure and 
average temperature of the experiment. 

The equilibrium half-life is calculated from the operating conditions and the correction 
factor 

5 = ( l - [ l / 2 f j (105) 

(where N is the number of half-lives) is applied to the measured concentration difference. 

ii) Back diffusion in the capillaries, e: 

The major transport of either species due to thermal diffusion takes place in the tubes, 
whose cross section is large compared to that of the capillaries. There is, however, a finite 
amount of material transported back through the capillaries which tends to decrease the 
measured separation. A general transport equation for material through either the tubes or 
capillaries is obtained by setting the rate of change of the composition over the volume of a tube 

Xl[TH -Xl\TC meets 
1 + nse (103) 
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or capillary equal to the sum of the molecular flux from Equation (86) plus the material 
transported by the pump. Thus 

dt f 
Jo 

Kdz = aco sin cot [K]Z
Q - ADn C -K 

z z 
(106) 

where A is either the cross section of a tube or capillary, co is the pumping frequency, a is the 
pumped volume, K is the composition at time t, C is the equilibrium composition and C2, Kz are 
the spatial derivatives of C and K. 

Solution of this transport equation for the capillaries yields the correction factor 

e = 1 - (KdtpDnl%al\ (107) 

with the variables as defined previously. 

iii) Disturbance due to pumping, £: 

The final correction term is unusual in that it leads to an increase in the value of aT and was 
first predicted theoretically rather than first being observed experimentally. It is obtained by 
solving the general transport equation in the tubes with simultaneous thermal diffusion and 
transport due to pumping. The solution of the equation is quite lengthy and leads to a correction 
term, £, which is conveniently expressed in terms of hyperbolic functions, 

r a7C r C = 2VIm 
sinh 7(1 -2s) 
(1 - 2s) sinh 7 

with 
J/2 

(108) 

(109) 7 = 1/2 (l2co/2Dl2) ( 1 + 0 

and s the fraction of the total tube length in each of the isothermal zones. 

The experimental thermal diffusion factor is obtained from Equation (91) using the overall 
separation factor, Q, divided by the number of stages in the trennschaukel. Note that all of the 
apparatus dimensions and operating paramaters appear only in the correction terms S, e, £ which 
are applied to the measured composition difference at each end of the device. Equation (91) is 
now 

a = 1 °T n 
InQ 

ln\TH/Tc 
(110) 

where n is the number of tube/capillary stages in the experimental device. 
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One example of a trennschaukel system, which was constructed by Taylor et. al. [85], is 
shown in Figure 17 and has been in operation for quite a few years. The device contains twenty 
Inconel tube/capillary pairs welded into two massive toroidal nickel blocks. The gas is swing 
to-and-fro by a welded metal bellows pump mounted on the top block and the entire apparatus 
is mounted in an environmental chamber. The bottom block, which is heavily insulated, 
contains passages through which either compressed air or cold LN2 vapors are circulated by 
means of a surrounding manifold. The system can be operated in a temperature range from 
approximately 200 to 1000K. Samples are analyzed by mass spectrometric analysis. 

A trennschaukel designed for low temperature operation is shown in Figure 18 [86]. This 
particular device has ten tubes in a circular configuration and is placed inside a cryostat. Both 
top and bottom blocks are wound with heater wire and instrumented with platinum and carbon 
resistors for temperature measurement and control. The support for the entire apparatus inside 
the cryostat is a Cryotip® refrigerator passing through the toroidal top block and attached to the 
lower block. The temperature differential may then be established in either of two ways: 1) a 
cryogenic fluid (LHe, LNe, LN2, etc.) is filled well up the bottom block and it's temperature is 

Figure 17 - High temperature nickelAnconel trennschaukel used by Taylor et al. [85] to measure aT for numerous 
gas mixtures in the temperature range 200 to 1000K. A) 20-tube device with massive nickel blocks connected by 
inconel tubes and capillaries; B) drive shaft to pump mechanism; C) bellows pump; D) lower block cooling 
manifold; E) sampling parts; F) vacuum system; and G) feed gas supply. 
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Figure 18 - Low temperature 10-tube trennschaukel [86] in­
strumented with thermistors for "in-situ" measurement of the 
separation. The components are: A) sensor for unknown com­
position at TH; B) sensor in reference gas at TH; C) sensor for 
unknown composition at Tc; D) sensor in reference gas at Tc; 
and E) bellows pump that swings gas. 

regulated by means of the vapor pressure of the liquid, or 2) the bottom block is cooled by Joule-
Thomson expansion in the Cryotip® refrigerator. In either case AT is established by heating the 
top block. The compositions in this device may be sampled "in situ" by strategically placed 
thermistors or by samples withdrawn for mass spectrographic analysis. The temperature range 
accessible is approximately 2 to 250K. 

As was the case with the two-bulb method, the accuracy with which aT may be determined 
is affected by the binary gas mixture being investigated and, consequently, the analytical 
method utilized to deterrnine the separation. The number of tubes employed helps this and 
under most circumstances an accuracy of approximately ± 5 to 7% should be attainable. Excep­
tion to this would be measurements made at extreme temperature where temperature control and 
uniformity is difficult, or when the mass difference of the components is quite small. 

A number of other groups have employed "swing separators" in thermal diffusion 
research. Among these are Watson and coworkers [87-89] at Yale University, Kistemaker's 
group [90-93] at FOM-Institute, and researchers at the Gulbenkian Institute in Lisbon [94]. 
Oost and Haring [95] proposed an interesting variation of the trennschaukel which utilizes the 
thermo-syphon effect to transport material from one tube to the next instead of pumping to and 
fro. The method eliminates some of the transport corrections discussed above but apparently 
complicates the experimental apparatus considerably. Illustrations of the experimental equip­
ment are given in the references. 
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1.2 J The Thermal Diffusion Column 

A third experimental method which may be employed to measure thermal diffusion factors 
is the "trennrohr" or thermal diffusion column, the invention of which is attributed to Clusius 
and Dickel [96]. After the initial discovery of the thermal diffusion effect, little progress was 
made on the application of a temperature gradient to practical separations of gas mixtures, for 
example rare isotopes, because early workers quickly recognized that a single stage separation 
was very small, even for large temperature differences. Shortly before World War U Clusius 
and Dickel discovered that the thermal diffusion separation could be enhanced tremendously by 
hanging a hot wire in a tall, thin vertical column and using the natural convection currents set up 
to sweep the light component at the hot wire up the column and the heavy component at the cold 
wall down. 

A rigorous mathematical treatment of the hot wire column is a formidable task and 
does not readily yield to a solution unless simplifying assumptions are made. Furry, Jones 
and Onsager [97] first treated mathematically the hydrodynamical problem of convection 
between plane-parallel walls, then Furry and Jones [98] extended the theory to the cylindrical 
case. A review article by Jones and Furry [99] nicely summarized the development of column 
theory immediately following World War U. 

The behavior of the column is based on the hydrodynamic equation representing the 
convection current set up between the hot and cold walls. The gas mixture rises at the hot wall 
and descends along the cold wall approximately as shown in Figure 19. The effect of thermal 
diffusion is to preferentially drive the lighter molecules to the hot region where they enter the 
rising convection current. The lighter molecules are carried upward and the heavier ones are 
carried downward so that a concentration gradient is established in the vertical direction. The 
"unmixing" is opposed by ordinary diffusion and by convection which tend to neutralize any 
separation along the column. The steady state concentration gradient is expressible as a partial 
differential equation in two variables (radial and axial coordinates) whose explicit form results 
from the driving force of thermal diffusion and the remixing effects of ordinary diffusion and 
convection. The FJO theory [97] considerably simplified the computational problems by de­
coupling the transverse and axial parts of the transport by means of an assumption regarding the 
radial composition distribution. FJO assumed the change of composition in the radial direction 
is small so that except when multiplied by the convective flow rate, the composition is a 
constant across the annulus. The FJO theory was developed during World War II and was 
specifically derived to describe column behavior for the separation of heavy isotopes, 
namely 235UF6/238UF6. 
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r c ' *■€ 

Figure 19 ­ The form of the convection currents between 
the hot and cold walls of the separation column. The sym­
metrical form indicated by the arrows is only approximate; 
for large differences in the radii and/or temperature differ­
ence, the curve becomes significantly asymmetric. 

More recently Rutherford [100] has extended the previous theory to light isotopes by 
changing the reference frame of the flux equation to the center­of­ mass system and writing the 
transport equation below in terms of the mass fraction. He reports the transport, xv to be: 

r 1 = HWl[\-W^-{Kc + K^[dwJdz^ ; (111) 

with, respectively, the initial transport coefficient 

H = 2K f "loj-GCTj/T dT 
(112) 

the convective remixing coefficient 
•r, 

K=\2KIQ 
Jr.. 

KGi(T)Dnp dT 
(113) 

and the diffusive remixing coefficient 

K, = \2nlQ\ | KD„Pr* dT 
(114) 

Here Tc and TH are the cold and hot wall temperatures, aT is the thermal diffusion factor, 
2%Q is the radial heat flow per unit length per second, K"is the thermal conductivity, Dn the 
diffusion coefficient, p the density, and r is the radial coordinate. 
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The quantity G(T) is related to the mass circulation rate in the column and is given by 
solution of the fourth order differential equation 

3 d 1 d r\d 1 dG _ _ dp_ , (115) 
dT r2K dT KdT pier* dT dT 

where g is the acceleration of gravity and 77 is the viscosity. The boundary conditions require 
that G and dG/dTare zero at the walls. It should be noted that use has been made of the relation 

lnir/rc)= ~h] KdT (116) 
'Tc 

which transforms the radial coordinate to temperature. 

The theory of the T.D. column is complicated and to extract aTfrom column measurements 
requires a carefully constructed column as well as knowledge of certain physical properties, e.g. 
the thermal conductivity, viscosity, mass diffusion coefficient and gas density of the mixture. 
The early workers recognized these difficulties and generally utilized the column method when 
its large separatory power was required as in the case of isobaric mixtures or isotopes where the 
mass difference was very small. Relative measurements were made by utilizing a thermal 
diffusion factor obtained from some other source and evaluating column performance at the 
maximum of the separation curve. Other mixtures were then introduced into the column and the 
relative separation at the maximum obtained. Two notable examples of this method were the 
work of Schirdewahn et. al. [101] on the hydrogen isotopes and de Vries and Haring [102] on 
isotopically substituted carbon monoxide. The apparatus of Schirdewahn et. al. is shown 
in Figure 20. Both groups used glass columns with hot wires, however de Vries and Haring 
achieved additional separation by connecting three columns in series and swinging them in 
trennschaukel fashion. 

Other groups that have utilized the column method for determining ccT are Raman et. 
al. [103,104], Kirch and Schutte [105] on isotopic UF6, and Saviron and coworkers [106-108] 
who studied unlike and isotopic mixtures of the noble gases. 

Rutherford [109] has constructed a precision thermal diffusion column and developed a 
method for measuring absolute values of aT from the column, a diagram of which is shown in 
Figure 21. He has found that the theory of the thermal diffusion column is much more accurate 
than previously supposed and has suggested that previous discrepancies between experiment 
and theory were due to imprecise knowledge of the column geometry and operating conditions 
and the use of inaccurate values of the gas properties in the theoretical expressions. His method 
is to make static separation measurements (net mass flow = 0) in the column as a function 
of pressure. In an earlier paper [110] he had shown that accurate values of the initial 
transport coefficient could be obtained under static conditions by using the pressure-
independent diffusive remixing coefficient, Kd, calculated from theory. This requires, of 
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Figure 20 - Thermal diffusion column used by Schirdewahn 
et al. [101] for determining aT in hydrogen isotope mixtures. 
The components are: A) tungsten wire; B) vacuum and hydro­
gen; C) vacuum; D) hot wire; E) outer wall of column; F) gas 
inlet; G) ampoule; H) mercury bath; J) convective circuit; 
K) connection to mercury manometer; and L, L') inlet and outlet 
of the cooling water. 

course, that reliable values of Dn are available, or can be calculated from kinetic theory. 
Rutherford writes Equations (112) and (113) in reduced form, e.g., 

H = \2nlp20> 

\ > 

G(T) 
dT = Oj t, (117) 

where £ is defined by 

« = _ 2 

p Q 

rTc 

*> J 
G(T) 

dT . (118) 
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Figure 21 - Precision thermal diffusion column built 
by Rutherford [109] for measuring absolute values of 
aT. The components are: A, A") water inlet and outlet; 
B) electrical leads; C) thermocouple; D) precision dial 
manometer, E) gas supply; F) resistance thermometer; 
G) sample ports; H) to hot wall temperature controller; 
and J) weight. 

In Equation (117) aT is the mean thermal diffusion factor between TH and Tc and 

Kc = \2nlp*Q r 
Jr 

KG*(T)Dl2p dT (119) 

Under static condtions Equation (111) then becomes 

H p2wxw2 - (KcpA + K^\ dwjdz = 0 (120) 

The solution of Equation (120) is 

InqlL 
H/KAp 

Kc/Kd}p* + l 
(121) 
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where L is the length of the column and q is the separation factor defined by 

Q = 
w, 
vv„ z = L 

w, 
Wr 

(122) 
z = 0 

Now the ratios (H'/Kd)e and {K'JKd)e are determined by a nonlinear least squares fit to 
Equation (121) where In q /L has been determined as a function of pressure. Recognizing that 

H = H_ 

op 
Kj theo 

(123) 

the numerical value of aT is obtained from Equation (117) by evaluating | theoretically. 
Rutherford then checks his column performance by comparing the experimental value of K'JKd 
to the corresponding theoretical value. Because both K'c and Kd are independent of aT, this com­
parison should provide a good check of column operation. It should also be noted that in using 
this method, Tc and TH should not be too far apart, so that a reasonably accurate average 
temperature can be assigned to the mean value, otT. Results obtained by this method were 
found to be in excellent agreement with measurements made in a swing separator [85]. The 
separation power of thermal column minimizes the analytical problem, however, one must have 
an accurate knowledge of the other transport properties. Rutherford [100] reports an uncer­
tainty of ± 9% for helium isotopes (properties well known) and expects an accuracy of approxi­
mately 10 to 15% for heavier systems. 

1.2.4 The Dufour Effect 

At the beginning of this report the equivalence of the coefficient of thermal diffusion, DT, to 
that of the Dufour coefficient, D°, was shown through use of the Onsager reciprocal relation, 
Equations (34) and (35). Because of this equivalence it is possible to experimentally determine 
the thermal diffusion factor by measuring the temperature difference produced by the mixing of 
two gases. In a classic piece of work, Waldmann [111] constructed the apparatus shown in 
Figure 22 in which he determined aT for nine pairs of gases. He was even able to observe the 
inverse temperature effect with Ar/C02 in which aT decreases with increasing temperature. 

The cell consisted of a metal cylinder with two holes approximately 0.75 cm diameter bored 
side-by-side down the length of the cylinder. A slide, s, with tightly stretched mesh, N, was 
slipped longitudinally down the cylinder separating the two holes to provide the diffusion path. 
Temperatures were measured by the change in resistance of extremely fine gold wires whose 
resistance was proportional to the gas temperature over the range 20 to 373K. By means of a 
Wheatstone bridge and galvanometer and, after calibration at a number of fixed points, 
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Figure 22 - Cross sections of the Dufour cell constructed by Waldmann [101]. The cross section through a-b is 
shown in the right hand view and that through c-d in the left hand view. The components are: R, n) 0.75 cm dia. 
parallel tabes; Z, n) copper cooling coils for gas entry; A) exit line for the mixed gases; D) temperature sensing gold 
wires; K) clamps holding the gold wires S) slide; N) diffusion grid mounted in S); P) cylinder head mounted on 
flange F); and r̂  n) German silver tubes/electrical pass-throughs for the temperature sensing wires. 

Waldmann was able to measure changes in the gas temperature on the order of 0.002K in each 
of the two gas chambers. 

The experiments were conducted by flowing each gas down a tube and allowing them to 
diffuse together, thereby establishing a slight temperature difference between the two gold 
wires. The stream velocity, v, of the gas was progressively increased until a maximum was 
observed in the temperature in the upper tube and a corresponding minimum in the lower tube, 
e. g. (T - r)max and (T - T)min respectively, where Tg is the initial gas temperature. The 
starting point for derivation of the working equations for the experiment lies in applying 
Enskog's general equation of change to the mass and energy, e. g. 

p ^ - + div J. = 0 (mass) (124) 
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and 

dH dp , ,. 7* n - -^- + div / = 0 {energy) (125) 

where / / is the molar enthalpy. Utilizing the ideal gas law and the transport properties from the 
kinetic theory of dilute gases, Waldmann obtained the time dependent differential equation for 
the change in composition and temperature as a function of the experimental parameters and 
macroscopic properties. These equations are: 

and 

where 

dx1 

if 

dT 

Dn Axx 

dx 
~ = KAT+ 8Ta - i + 8TB. 2Dn g r a d ^ 

(126) 

(127) 

K = K/nC (128) 

5T = aTRTIC 
a l p 

(129) 

8TB = b*RT/VC 
B p 

(130) 

* * * * 
b = Bn-2B12 + B22 

B* = B-T% = YB*x.xt = £ 
uk i,k 

dB. 
ik 9 7 

ik XX, 
i k 

(131) 

(132) 

with the BA being the second virial coefficients for the pure components and their mixture, 
C the heat capacity at constant pressure, R the gas constant, K the thermal conductivity, 
and V the molar volume at p, T. 

Now Waldmann noted that the last term in Equation (127) is due to the heat of mixing and 
can be negligible if the pressure is sufficiently low. Furthermore the gases are introduced into 
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each tube with a velocity v in the + z direction along the axis of the cylinder. Equations (126) 
and (127) transform to 

and 
aT" = D 12 

32r 32r ^ 
+ dx2 dy'A 

(133) 

dT „ 
V 7 T - = K 

dz 

( d2T 
dx2 + 

d2T 
dy2 + 8T_ 

a 

dx1 

W (134) 

Diffusion takes place at the boundary before reaching the wires in the middle of the tubes 
and temperature extremes (maximum above; minimum below) are developed as a function of 
gas flow velocity. Upon transforming to dimensionless variables and applying the boundary 
conditions, Waldmann obtained the following expression relating the thermal diffusion factor to 
the measured temperature extreme and the other experimental parameters. 

T -T 
o extreme 

= T — aT 
o r T 

XXH ~ Xx(-co) e \K/D,-
max\ 12 

(135) 

The function 6max must be determined at various values of (K/D12) by means of a calibration 
gas. This, of course, means that Waldmann's method is a relative method. It is difficult to 
assign an experimental uncertainty to this method as such a determination would depend on the 
absolute accuracy of the properties of the calibration gas. Based on a comparison with 
other Ar/C02 data, it would appear that the method determines a^ within approximately 
± 10%. 
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SYMBOL TABLE 

A cross sectional area of tube (or capillary) (m2) 
A.. kinetic theory determinant element (dimensionless) 
a volume pumped per half cycle (m3) (see context) 
a dimension of diffusion cell (m) 
a' maximum compression in middle table (m3) (see context) 
B second virial coefficient (m3 mol-1) 
B* defined by Eq. (132) (m3 mol"1) 
b* defined by Eq. (131) (m3 mol"1) 
C composition (molar percentage) 
Cz spatial derivative of C (molar percentage irr1) 
C molar heat capacity (J mol-1 K_1) 
c Poiseuille's constant of viscous flow (m3 s'1 Pa-1) (see context) 
c. concentration (mol nr3) 
c specific heat at constant pressure (J kg-1 K_1) 
D diffusion coefficient (m2 s_1) 
DT coefficient of thermal diffusion (m2 K-1 s_1) 
DD Dufour coefficient (m2 K_1 s_1) 
D12 diffusion coefficient (m2 s_1) 
DD Dufour coefficient (m2 K"1 s_1) 
DT coefficient of thermal diffusion (m2 K_1 s_1) 
d diameter of capillary (m) 
E electrode potential (V) 
e' ratio of bellows to tube volume, V'/V (dimensionless) 
f compression factor for the middle tube when effect is maximized (dimensionless) 
G Gibbs free energy (J) 
G(T) function related to mass circulation rate (see Eq. 115) 
g acceleration due to gravity (m s-2) 
g(t) time function defined in Eq. (52) (dimensionless) 
H enthalpy (J) (see context) 
H initial transport coefficient (kg s_1) (see context) 
H. partial molar enthalpy of component i (J mol-1) 
H. defined by Eq. (14) (J mol-1) 
J flux of matter (mol nr2 s_1 or kg nr2 s_1) (see context) 
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J flux of heat (J nr2 s_1) 
Js flux of entropy (J K-1 nr2 s_1) 
K molar composition at time t (dimensionless) 
K constant defined by Eq. (128) 
K. convective remixing coefficient (kg m s_1) 
Kd diffusive remixing coefficient (kg m s_1) 
Kz spatial derivative of K (nr1) 
kj. thermal diffusion ratio (dimensionless) 
kg Boltzmann constant (J K_1) 
L length of connecting tube (m) 
L.. phenomenological coefficient 
/ length of capillary (m) 
M molar mass (kg mol-1) 
m molality (mol kg-1) 
N number of half-lives (dimensionless) 
NL total molecular density in the connecting tube (mol nr3) 
n refractive index (dimensionless) (see context) 
n total number of tubes (dimensionless) (see context) 
n. number density (mol nr3) 
iik hydration number (dimensionless) 
i^ number density of the lighter component in the connecting tube (mol nr3) 
P pressure (Pa) 
Po initial or equilibrium pressure (Pa) 
p pressure (Pa) 
Q radial heat flow (Js-1) (see context) 
Q overall separation factor (dimensionless) (see context) 
Q* heat (enthalpy) of transport (J mol-1) 
q elementary separation factor (dimensionless) 
qv heat content per unit volume (J nr3) 
R resistance (ohm) 
R gas constant (J K-1 mol-1) 
Rs Stokes law radius (m) 
r radial coordinate (m) 
rc radius of hot wall (m) 
S entropy (J K4) 
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S v entropy per unit volume (J n r 3 K"1) 
S* entropy of transport (J mol - 1 K_1) 
s fraction of total tube length in each isothermal zone (dimensionless) 
T temperature (K) 
T o initial gas temperature (K) 
T c cold wall temperature (K) 
T H hot wal l temperature (K) 
t t ime for a complete p u m p cycle (s) 
t time (s) (see context) 
t Celsius temperature (°C) (see context) 
V gas vo lume pe r tube (m3) (see context) 
V vo lume (m3) (see context) 
V molar vo lume (m3 mol - 1) 
V c vo lume of cold bulb (m3) 
V H vo lume of hot bulb (m3) 
V T vo lume of connecting tube (m3) 
v. velocity (m s_1) 
v stream velocity (m s_1) 
W. Washburn number (dimensionless) 
w. mass fraction of component i (dimensionless) 
X thermodynamic driving force 
x c mole fraction of light component in cold bulb (dimensionless) 
Xp mole fraction of light component in feed mixture (dimensionless) 
xH mole fraction of light component in hot bulb (dimensionless) 
x. mole fraction of component i (dimensionless) 
x^ mole fraction of light component in connecting tube (dimensionless) 
V resistance function defined by Eq. (61) (dimensionless) 
Z. ionic va lence (dimensionless) 
z linear variable (m) 
ctj. thermal diffusion factor (dimensionless) 
<Xj. "effective" or average thermal diffusion factor (dimensionless) 
P defined by Eq. (65) 
y column transport 
Ax change in mole fraction per unit area (n r 2 ) 
8 correction factor for approach to equil ibrium (dimensionless) 
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5Ta temperature independent "diffusion thermoeffect", defined by Eq. (129) (K) 
ST. temperature dependent "real" effect, defined by Eq. (130) (K) 
e thermoelectric power (V K-1) (see context) 
e dielectric constant (F nr1) (see context) 
e correction factor for back diffusion in the capillaries (dimensionless) (see context) 
£ correction factor for disturbance due to pumping (dimensionless) 
rjT viscosity of gas at operating temperature (N s nr2) 
@ relaxation time (s) 
K thermal conductivity (W nr1 K-1) 
X. ionic conductivity (S m2 mol-1) 
A molar conductivity (S m2 mol-1) 
H- chemical potential (J mol-1) 
(I. electrochemical potential (J mol-1) 
v. amount of substance (mol) 
p density (kg m-3) 
0 Soret coefficient (K-1) 
x thermal relaxation time (s) 
O entropy source term (J s-1 K-1) 
$ volume fraction (dimesionless) 
u) pumping frequency (s-1) 
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