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THERMODYNAMICS OF THERMAL DIFFUSION

1.0 General

In a mixeure in either the condensed or gaseous phase in which the temperature is steady
but not uniforn, wansport of both matter and heat may be observed. The process is known as
thermal diffusion, and in condensed phases it is also known as the Soret effect, a direct
measure of the degree of separation being the Soret coefficient o [1]). In the gas phese the
degree of separation 15 known as the thermal diffuston factor &0, The separation js 2 molecnlar
migradon of the components due to a temperature gradient. The inverse phenomenon, the
development of a temperatre gradient due to diffusion, is called the Dufour effect [2]. The
mansport of matter and heat are generally coupled. When the driving forces of thermal
diffusion, the gradianes of teraperature and chemical potential, are sufficiently small, and the
observed heat and matter fluxes are linear in the forces, thermal diffusion in either the
condensed or gaseous phase may be described in terms of non-equilibrium thermodynamics,
and the inverse effects related through the Onsager cross phenomenological coefficients for
heat and matter flow {3 - 6].

The thermal diffusion phenomenon may be expressed in terms of a number of transport
propertics whose specific definitions in terms of experimental parameters are derived in the
following through non-equilibium thermodynamics. The typical ones are the previously
mentioned measures of separation (G and o), the coefficients of thermal (D) and ordinary
(D,;) diffusion and the heat (Q°) and entropy (5) of transport. The equivalence of the thermal
diffusion and Dufour (D7) coefficients is given by the Onsager reciprocal relations.

To derive these transport properties and their interactions we consider a system of »
components in mechanical equilibrium at constant pressure and assume that the only processes
oocurring are those of heat and matter transport, which are linear processes. The derivation
follows from the expression for the entopy flux and the entropy balance equation. In general
there is an empirical relationship between a flow or flux, 7,and a driving force, X , of the form

{2 )

Ly = - - LyliX
Ii=1. L] (1)

Lo = Lall®)

where the Lg are scalar quantities similar to a conductance, reciprocal resistance or an affiniry,
The most general set of linear equatons 15

i~ SL% @
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THERMODYNAMICS OF THERMAL DIFFUSION

where the L are known as the phenomenological coefficients. The diagonal coefficients L,
represent the direct effects, and the off-diagonal coefficients L q'.(: # f) represent the cuuplcd
effects. The heat flux is designated J,, and the entropy change is dq divided by the absolute
temperature. For heat and matter u-anspon the entropy flux, 7, , 18

Herz)

with the j1, being the chemical potentials.

Conservation of entrepy requires that the rate of changes of entropy in a unit volume be equal 1o
the flow out plus any internal source of production. Denoting $, s the entropy of the fluid per
unit volume, the local change equations for entropy, heat, and matter are

dS -

D _divi s, @
dt s

M _ gl and )
ai. q

dc. -

4 o _divT . (&)
o J

In Equation (4) & is the source term for entropy production within the unit volume from
irreversible processes and must be zero. The w, in Equation (6) are the mass fractions of the
components. Onsager has chosen the forces in such a way that the product of the internal
entropy source and the absolute temperature is equal to the sum of the flows J; mulkiplied by
the conjugate forces X,

T® = 3 J- X
. )
=L X+ 25X
i

The urits of Equation (7) are Jer?s?. The dissipation function 7d is invariant with respect to
choice of forces and fiuxes and may theretfore be described by different sets of fluxes and their
respective conjugate forces which are related throngh the Onsager phenornenological coefli-
cients, In general a reduced beat flux can be defined as

h=%-2B . ®)
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Substituting Equation (8) inte Equation (7) produces

ro =%+ LI+ T %
J i

. )]
= Jp X+ 13- (B %+ X).
i
In Equation (9) the partial molar enthalpy of the j* component is H;. A suitable choice of

forces comresponding to fluxes of heat and matter, respsctively, is given by Equations
{10} and {11):

X, = god (1/T) (10)
and
%, - gmd(—ujfT) Coan
The heat and material flux equations then become, respectively,
,}; = Lw gmcl{l‘f-'r)-i-z Lﬂ.r' g::aj[—[.ljffl'"] (12}
j
and
i = L, gmd(l;'T)d-ZI.,j g:rad(—uj.-'l“). (13)
J

The matrix of phenomenological coefficients is symmetric, i.e., L, = L, according to the
Onsager reciprocity relatdon. They are the generalized transpont coefficients and are the
subjects of experimental determination. To show this we define H, such that

T a8
and substmte Equadon {14) into Equations (12} and {13) to vield

I = (Lw—zi,gngE)grad{lﬁT)+§,ﬁjJ; (15)

and
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Ii= 3L {?j grad(i /T )+ gra:l[—pjﬂ")}. (16)
F .
Under isothermal conditions, i.e. the temperature gradient is zero, Equation (15) becomes
F m ™y . i7
7, JZH'.J;. (i7)

Equation (17) suggests that Ini? is the mansporied eathalpy of species / under isothermal condi-
tions. The reduced heat of mangport, O, when grad T =0, is

To= 2B - L7 18)
J
so that
2075 = X85 - X A, (19)
j i j
o
o =3 gl'ﬂdl-l
=H -H = -—
0} = T -F; = oty - @
It then follows that
I = ZQJ;J} + (21)
¥

The reduced (or “corrected”) heat of mansport, 077, is the enthalpy of transport less the partial
enthalpy carried by species j, or in other words, the heat supplied to or absorbed by the
thermostat to maintain the system in an isothermal condition, When al fluxes are independent,
H, may be measured at the steady state (ss). Sexing all J; =0, Equation (16) yields

H, = [grgd[ujf?*}fgrad(ur)]; Lo /Ly - (22)
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This may not be cbvious from Equation {16} unless this equation is expanded in matrix
form:

(jlwl ( Ly -+ L ) rfﬁmf:
= . . (23)
T/ VLm0 Lm G+ EE
The first expansion ®rm is
J, = L“(J'E'1+H', f'q)+Lm (J-{;+szq)+... (24)

from which it follows thata]]}l- must be set equal to zero in order for ach lerm[f} + F?;fq}
10 be equal to zero. Equivalently, if every element of the Lh.s. mawrix is zero, every clement of
the {X_i. + H_; Xq} column vector must also be zero, since the L-matrix has no zero elements.

The ab__yve analysis may also be carried out in terms of the enwropy fluxes }; and J'; .
Denoting S, as the transported entropy, §; = §; + 57, one obtains:

=253 @s
L =Ys875-357 (26)
i i
At the limiting isothermal state S? may be measured at the steady state and is given by

TST = [grad p/ grad &~ In T, - (27)

From the Gibb's free energy, G = H - TS, and the definition of the chemical potential at
constant temperature and pressure, J, = (3G / dn)y , ., One armives at

|
]

TS, +p, - (28)
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Combining Equations {20) and (27} leads o

TSy = Q7. (29)
The implication of Equations (28) and (29) is interesting, Particles taking part in linear
transport processes carry with them a non-zero heat {enthalpy) and entropy of transport.
However the chemical potential of transport, i.e. for a moving j, is zero. This follows
because of the principle of local equilibrium [7].

The heat and entropy of transport must obey a conservation relason. This may be dednced
from Equation (27) which requires at the steady state that

~grad ;= 5 grad T (30)
Multiplying the above equation by 2 X, yields
j
— L]
—g,xf gm:iuj-?:cjsj grad T = ;.:J.Sj : (31)

whers Ihe.x'. are the mole fractions.

Now the Gibbs-Duhem equation can be wsed to define partial molar quantities in terms of any
extensive state function. In terms of the chernical potential and partial molar entropies at
constant pressure

(307 ) = -5 (32)
and Equation (31) reduces 1o

2557 =0. ' (33)

f

1t should also be noted that 57 and Q7] are independent of the frame of reference of the
diffusion fluxes. This is because the dissipation function is invariant with respect to the frame
of reference.

For a binary system the phenomenalogical coefficients appearing in the flux equations can
be defined in a slightly different form which defines the macroscopic quantities to be measured

6
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by the experiments discussed later. These quantities are the thermal diffusion {(or Soret),
Dufour, mass diffusion, and thermal conductivity coefficients. They are, respectively:

DT =1L, H!(pxlxzfz) (34)
Db = Lqiﬂ_ﬁ(pxlxz'rz] (35)
D,=L M [ﬁljnﬂg(pxz r] (36)
k=L, /T (37}

where M = x M, +x M, and the M, are the molecular weights.

From the equivalence of L,_and L, it follows that D™ = D®; the existence of a thermal gradient
gives Tise 10 A concentration gradient and vice versa.
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1.1 Thermal Diffusion in Liquids

Thermal diffusion is a well recognized tool for the study of molecular interactions in the gas
phase. The phenomenon is strongly influenced by the form of the intermwolecular potential
energy reiationship, and data derived from thenmal diffusion experiments with gas phase
mixtares provide a sensitive test of proposed models for the potential ¢nergy function.

Thermal diffusion in liquids, or the Soret effect [1], can also yield useful information abowt
liquid phase systems. In recent years the study of the Soret effect has taken on a new signifi-
cance and has yielded new and interesting information about the nawre of solutions. Thermal
diffusion data are expected to be useful in the investigaton of the nature of interacton m
solutions and perhaps especially in those areas whers dynamics and the struciure are involved.
Soret data, for example, have been found to be particularly helpful in understanding ionic
hydration structure in electrolyte solutions [8].

The Soret effect in liquids can be investigated through the measurements of a number of
transport properties. The typical ones are the thenmal diffusion coefficient D, the Soret
coefficient &, and the heat Q" and entropy S of transpott. In preparation for the discussion of
experimental techniques it is worthwhile 10 consider the effect of the frame of refersnce on these
quantities.

L1.I Frames of Reference
87 and £} are independent of the frame of reference of the diffusion fluxes. This is because
the d:smpauun functior: is an fnyariant with respect to the frame of reference. To show this we

transfmm fluxes J’ to fluxes .I in the frame F. Denoting i "as the velocity of the new frame,
I is given by

JF=T-cu” (38)
The dissipation function in terms of 7 EF is

T® = J -gad - T)+ 2, J;- gadr -u)

Pl

"

s (-T)+ BT g (- o7 (-] 9

]
St}

+

g T+ T - ety (- )

8
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Thus, by defining (¥ as the heat of transport associated with the fluxes ..f , it can shown that,

-l-r - ] -'«F
=Xl =7 a"
{4

= Z'FiFQ;"' ;FZCEQ; = ETEFQ;

by naun%that e = 0. Tt follows from Equation (40) that, 077 = 7, provided that the
fluxes J. are all independent.

Although the heat of wansport is independent of the frame of reference, diffusion fluxes in
different frames may not gnrc l'lS‘E ta the same expenmcntal heat of oansport. Three frequently
adopted fluxes are; the mass _r . volume 7 7. ¥ and Hittorf _,F ¥ frames of reference. The fluxes in
each frame are mutually dependcnt and the relationship can be expressed by the equation

AT @)

where 77 = 1, 17 = F_., the partial molar volume of ¢ and r¥f = & . By substitting
Equation (41) into Equation (40), one obtaing

- -I-F --H *
‘Iq = Z‘Ii Q: - Z“ri Qi
iz
(42}

-2Ir(g-0) - 2 (o)

ier i#r
where r indicates the reference component chosen.

Equation (42) implies that for two component (i = 0 and 1) mixtures, when t]a_ﬂ J’ is
adopted, the heat of wransport that is measwed is @), On the other hand if J': or J, is u&ed
the refative heat of ransport, (0, — Q) or {Q] - Q ; Vl! Vo) is obtained, Since the differences
are a likely source of ermor when COmpAring thermal diffugion data among different experi-
ments, it is usefuld to ascertain the uncertainties. For a binary mixture and from Equation (33),

0;-0; = 0; +¢,20/c, = 0; (¢, +¢, fe, @3
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- i
Thus @7 — . measured with /, differs from Q] measured with J; by a factor, (¢, + ¢}/ ¢,
For dilute splutions this factor approaches unity and the results in two experiments are identical.
This same analysis can be applied to experiments based on the volume-fixed frame of reference.

In electrotyte solutions iondic fluxes are mutually dependent becanse of the elecroneatrality
reguirement. For a simple elecirolyis solution containing solvent {{?), and one species each of
the cation (+) and anion (=), the electronewtrality condition v, Z, + v_Z_ = 0 requires that

g =T 0o, =T fu. (44)

Here Z, is the ionic valence, and v, measures the number of moles of ion { produced from one
mole of the salt. The expression for the reduced heat flux is

Iy 27,0474 (0.0, +00’)
(43)

_ 7 " T [
—JGQﬂ-i-J'mQ

L salt

Equation {45) shows that a simple electrolyie solution is a binary system, and only the molar
heat of transport, 3° = v, @, + v_0", can be measured experimentally using JY ., Itis @7
and not O that is independent of the frame of reference in a simple electrolyte solution.

Other thermal diffusion properties such as the thermal diffusion coefficients and the Soret
coefficients can also be expressed in terms of the fluxes. A convenient frame of reference for
this discussion is the Hitiorf frame of reference. For a binary solution the phenomonological
equations are,

J, = Lgmd (- T+ L, gady (- 1y) (46)

Jy = Lyygrd (CInTY+Ly, gy (- ) @)

where in the case of a simple ¢lecrolyte solution denoting 'ﬁ? as the electrochemical potental
of the ion i,

B = b = U M F U = 0, VL (48)

10
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The i diffusion coefficient D1 and the thermal diffusion coefficient D‘]’ are defined in
terms of :r'l as

7' = - D, grade, ~ ¢, DT gradl (49)
Comparing Equations (48) and (49), one arrives a¢ the resulis,
T _
Dy = Ly, {0, /3¢, )5, /T mnd DY = L /T, (50)

D, is commonly defined in terms the molarity ¢, However, the Sorer coefficient and hear of
transport are more conveniently defined in terms of the molality rm,. Thus, torelate D and D7
w o, and (), a conversion factor, f = (9m, /dc,) isrequired [9). In cases where solytions are
very dilute, f = 1 and one obtains

¢ =DI/D = Q;;[apifalnml)m.fr (51)

It should be pointed out also that in Equation {49) the isothermal diffusion cosfficient is
defined in the Hictorf (solvent-fixed) frame, which is not the same as the experimental diffusion
coefficient measured in the volume frame of reference. Transformations exist, however, for
passing from one frame to another.  Although both solvent-fixed and volume-fixed diffusion
coefficients are identical ar infinite dilution, they diverge significantly in concentrated so-
lution [10).

1.1.2 Experimental Methods

Methods of stadying the Soret effect and the calculation of the Soret coefficient and other
thermal diffusion properties in liquids up to 1961 have been summarized in a monograph by
Tyrrell [11]. Our 1ask here will, therzfore, be devoted to providing a brief account of more
recent work in this field. The investigation, in liquids, of the Dufour effect (the heat flow
associated with a concentraton gradient) is relatively new. This is perhaps because of the
relatively high thermal conductivitiss of liquids, which makes experimental measurements
difficalt. (In contrast, both theory and experiment for the study of the Dufour effect in gases
have been well developed).

1
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1.1.2.1. The Soret Effect

In the study of the Soret effect most measurements start by applying a constant temperature
gradient ¢o an isothermal homogeneous solution. As the concentration of the solution becomes
non-uniform due to thermal diffusion, an opposing process of ordinary ditffusion develops
which evenmaliy exactly batances the thermal diffusion process, thereby leading the system to
a Soret sieady-state. The Soret coefficient and the heat of transport are then denved from the
steady-state concentration gradient. Although it is the steady-state property that we measure,
the approach to the steady-state needs to be followed in order 10 verify the phenomenology of
the thermal diffosion process.

In & typicai pure thermal diffusion experiment, the solution is placed in a flat cell and a one-
dimensional temperature gradient (usually of the order less than 10° cmv* and in the direction
opposite 1o the gravitational field) is applied by bringing the flat end-plates of the cell into
comtact with heat reservoirs maintained ac temperatare T and 7. For a binary solotion the rate
of change of concentaton during the establishment of the Soret steady-seate can be
written as [12],

Am, = am, [1-g(7)]

= Am,, { 1-(3!1:1J b (lfnz) exp -nz(r- :')!'B]} (52)

n=13..

where Am = m"—m’ attime 7 (measured from the instant the temperature gradient is applied)
and m” and m’ are the molalities at emperanes 7 and 77, respectively. The thermal diffusion
relaxation time is & = a*/ a*D where a is the distance between the end-plates, and D is the
effective diffusion coefficient. When | T"—T'| is small, D is, to a good approximation, the
isothermal diffusion coefficient at the mean temperamre 7" = /2 (T +T"). The wanming-up
correction is accounted for by £, Assuming that the end-plates warm up exponentially with 2
characteristic ime 1,

f o — (a’flzﬁ) (53)

where X is the thermal diffusivity of the liquid. When K i3 infinitely large the end-plates warm
up instantaneously, resuitingin T = 0 and ¢ = 0.

12
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Equation (53} is due to Agar{13]. The warming-up correction ¢ can be positive or negative
in sign, and there is a plausible qualitative rationale. During the warming-up period the tem-
perature gradient (and hence the local rate of thermal diffusion) exceeds that of the steady-state
value near the end of the cell, but lags behind i the central regions; the net balance of these
effects in time and space, while the thermal transients decay, govemns the sense of the correction.
When ¢t < 0, the warming-up correction acts in the gained-time sense. The warming-up
correction has also been discussed by Home and Anderson [14]. Their analysis results in
tequiring that the warming-up correction always act in the losi-time sense. This seems an
unrealisiic prediction. A discussion of this can be found in Lin, Bierlein and Becsay [15].

Equation (52) gives rise to the changes in other solution propertics such as the thermal
e.m.f., condoctance, the refractive index, eic. Thus the Soret effect can be investigated by the
polentiometric, conductimetric and opical methods. There are also methods based on direct
measurement of the concentration gradient at the steady state, One example of the latter is the
flow cell methed.

Thermal diffusion properties have also ofien been investgated using the thernogravita-
tional column. We shall, however, not discuss the latter method since the separation is
facilitated by the convection, and the method is not a direct method designed for the study of the
pure Soret effect. ,

(a) The Potentiometric Method. [16]

This method is limited to electrolyte systems for which stable elecrodes can be found. The
electrolyte is confined in a cell (thermoceil) which has electrically insulating sidewalls between
end-plates, which also serve as elecrodes. The simplest thermocell employs two identical
electrodes kept at different temperatures, such as;

Termoinal(T ) E Elecrode(T ) / Electrolytels) / Electrode(T)) ;{ Terminal(T )

The sign convention is such that a positive thermal e.m.f. E of the thermocell causes the current
to flow from hot to cold in metallic conductor(s} M. Consider the thermocell with electrode

reaciion

TAA+I A +te=0 (54)

in which jonic and molecular constituents of the solution are denoted by 4, and possible sub-
stances existing in phases other than the solution by A . The stoichiometric coefficient is taken
as zero for those substances that do not take part in the electrode reaction, The thermal e.m.f.

13
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dEr at time ¢ after a temperature difference of dT has been applied 1o the two elecirodes is given
by [16,17)

FdE, = FAE + . (1j - w:.) (apj / &mJ prdm
{53}
»
+3y, (lj— H’J §;aT
where F is the Faraday constant, W, is the Washburn number (the transport sumber ¢ divided by
the jonic valence) and dm,, denotes the concentration difference of the species 7 at the surfaces

of the elactrodes at time £ Mote that at ime ¢ = {}, that i5 the instant when the temperatre
gradient is applied, the solution is homogeneous. Thus, tﬁﬂj‘p =0 and

F (Ey—dE,) = 3, (wj - 9.1-] §; 4T (56)

Fles—€) = 3, (wj-:u,-J s | | (57)

where £ = dE /dT is the thermoelectric power. For a simple electrolyte solution, assuming that
the eiectrode is reversible to ion 1 of the two ionic species A, = Z7, 4, = 0 and

S;z = 1.:'15“1t + ﬂzS;
(58)
= F (e —8) 2302/ Tz
where the electroneutrality condition v,Z, +v,Z, = 0 has been used. In a formal sense, neither
E mor E_can be measured directly, and they must be obtained from nnswcady-state experi-

ments. This requires E as a furkction of £ Combining Equations (52), (55}, and (36), it can be
shown veadily that E varies with f according to

E,—E, = (Eﬂ-Eﬂ) £ () (59)

where the function £(¢) has been defined in Equation (52).

14
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Figures [-3 illustrate results of an unsteady-state experiment for 0.03m CsCl at an average
temperatore of 20 $0.003°C. The silver, silver chlotide thermocell used is shown in Figure 4. It
is a sandwich cell in which the plexiglass containing the solution i3 sandwiched berween two
pure copper disks. The temperamre of the electrode is measured by two single-junction copper-
constantan thermocouples dirough the holes closely placed near the slectrodes in the Cu discs.
The cell length is 0.29 cm. The cell is lefi t0 equilibrate at the average emperaiure of 20°C for
background calitration before the temperature gradient is applied. The isothermal residual
e.m.f. (ideally zero) is of the order of 100 uV ar the most. {In this particular example
it is 34 W¥Y). This is recorded and corrected from the thermal e.m.f, After the calibration, a
temperature difference of approximately 2 to 3 degrees is applied by switching the circulating
water on the water Jackets to hot and cold water. This is taken astime ¢ = 0, The mperaturs
difference apBiied is relatively small. This is because the stability of the thermal diffusion cell is
governed by a set of Rayleigh numbers which are proportional to (cell length)® x {(ternperature
difference), and the smailer this product, the better is the stability of the cell, Measurements of
the e.m.f. are made with a HP3456A digital voltmeter together with a 3497 A data acquisition
unit interfaced to a HPBS computer. Each measurenment requires less than 0.01 second and the
thermal ¢.mf, 33 measored 1o 0.1 microvolt.

Figure 1 records the actwal warming-up of the thermocell. Here the mmperatire differences
of the two elactrodes taken every six seconds (points) were plotted against ¢ and are fitted to an
exponential function 10 obtain the thermal relaxation time 7. The thermal yelaxation time 1

.8

1.5

L0

AT O

0.5

i (ze5)

Figure 1 - Determination of the warming-up timeof a Soret cell The measured emperanre difference AT is fined
t0 an exponential functicn to obtain the refaxadon tirme.

15
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depends on the ¢ell length ¢ and ranges from 20 sec for a cell with ¢ = lcm 10 60
sec when ¢ = 0.3 cm. For a cell with a relatively large length the warming-up correction is,

therefore, always in the gain-time sense, and vice versa. For the example shown here ¢ = §1 sec
and ¢ = 56 sec.

After the warming-up, thermal e.m.{.’s were recorded at an inserval of 60 to 90 sec for at
Jeast 4 times ©. This is shown in Figure 2. For most experimental set-ups, £, can be obtained
rather accurately independent of the initial conditions. Thus E_is first ¢stimated by applying a
standard non-linear fit of E, to Equation (59) . The value of E_ obtained is then used to con-
struct 2 In(E_ — E) plot vs. time to obtain the E, value and the thermal diffusion characteristic
time 8. This logarithmic plot is shown in Figure 3. It indicates a lincar éelatinnship for
¢ >g/2. This is because only the 1 = 1 term makes a significant contribution to the summation
in Equation (39) when ¢> g /2.

P30

e fimv)
&
T
L Nm T,

=

ta

1
AU UL THOO00

=

=
=2
B

Figure 2 — Thermal ¢mf agains time during an experiment o measure the Soret coefficient of a 0.05 M CzCl
golution by the potentiometric method.

The experiment described above began by applying a constant temperaure gradient to the
cell at an isothermal state. One may perform the reverse experiment by following changes in E,
from the Soret steady-state back o the isothermal state. The results obtained in both experi-

ments are essentially identical [16).

16
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Figure 3 In(E_- E)aga function of time for the thermal diffusion experiment with .05 M CsClL

T + AT
Themmocouple
Sohion Chamber
] I
illi —J 1 awPurc Dtk
Filling Hele — b he Guw:m
Potentiometer _ )
Connechions E .
AgfApCIACI™ Elecirode
T

Figure 4 — The silver-siiver chioride cell for determination of Socet coefficients by the potentiomate method.
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Accurate values for £ can be obtained in a static experiment using the N-type cell shown in
Figure 5. Here the clectrodes are separated far encugh lo insure that the solutior remaing
homogeneous during the measurements of E . Values of E, obtained in this type of experiment
agree well with unsteady-state experiments [16].

/

. __...:__ . Y. "\h@ e Circulating

—  Water

rm
L v

—_—
Jem

Fig:urtﬁ- An N-type ceil for measurement of the initial thenmal emnf.

For thermocelis with stable clecrodes sech as the silver-silver chioride or bromide th-
ermocells, thermoelectric powers can be reproduced to within 15 uV f deg. However, this does
not necessarily imply that a uniform experimental accuracy can be assigned to the measored
heat or eatropy of transport. This is because O and 5 depend on the difference E_ - E as well
as the transport number. For systems such as R NCI salts where the cation transport numbers
are stnall, the uncerwinty in the S value can be as large as £5 JK-*mol? [18).

(b) The Conductimetric Method.

In the conductimetric method, the change in the concentration is followed by the change in
the resistance of the solution, and the Soret coefficient is evalvated directly. The originat cell
vsed by Agar and Turner [9] is depicted in Figure 6. The end plates £ and E” were faced with
platinum foil platinized over the area in contact with the selution, A platinized Pt wire, P,
inserted in the side cornpartment and connected with the main part of the solution through H,
served as a third electrode. By pairing P with either £ ar E”, the average resistance of the
solution iu the lower and upper parts of the cell could be measured. Z~ and Z° were brass
cylinders for circulating water from the thermostat. The cell was insnlated electrically by
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Figure 6 — Tha conductimetric coll zsed by Agar and Tumer [¥ for the detemminadon of Soret coefficients.
ingerting mica sheets, M, lubricateq with mineral oil to ensure good thermal contact. ¥ was the
filling hole for the cell.

Dencting R and R as the resistances respectively of the lower and upper halves of the cell
and for ¢ > (.15 8, the Soret coefficient & can be evaluated from the equation.

¥;-Y.= (YQ-F_)[SEH:ZJ &xp [— rfﬂ] {60)
where

Y = (R’_R‘) f(R'+R') (61)
and

1,-Y, =~ 1ao(dme/dnm)y AT |1 +(ala A2t (6
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and A is the equivalent conductance of the solution. Thus by ploting In (Y ¥ ) vs. 1, (¥,-Y)
can be evaluated by extrapolation to r = 0 (Figure 7). For short times (¢ < (.23 8) ¥, is linear
in z,

Y-V, = 220108TD |y L gi2pppe 8 4 . 63)
at ay (D)

whers

r,-¥, = -[t+(amasamnc), 64)

¥

and I is the diffusion coefficient of the solution. Accordingly, ¢ can be deduced from the
“initial” rate of change of ¥, This is shown in Figure 8.

The conductimetric method appears to be a very accurate method even for a very dilute
solotion. For a (.0lm solution of a simple electolyte, G can be measured to within
#0.01 x 10H degl.

In [10°(Y,- ¥ _)] + const,

£ {min}

Figure 7 =In{Y ~Y_) as a fmciion of ime for some condociimeiric experiments, The apper curve, which hias been
displaced by a constant equal ¢o+1, is for 0,01 M NaCl; tha middle ewrve, not digplaced (const. =00, is foc 0.01 M
CsCL; and the lower curve, displaced by const. = -1, is for 0,01 M REb{L,
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0056

3054

0.052

0.050
0

Figure & — The condoctimetric experiment with 0,01 CeCL Determination of the initial rate of increase of ¥. The
mrcljsﬁtmwlnes of ¥ plotted against imne. The crosses are valoes of ¥ ploded against the function {1 + $ierfc
{fafvD)+ ... ]

(¢) The Flow-Cell Mathod.

Figure 9 illustrates the essential features of the flow cell that was used by Thomaes [19] for
measwement of Soret coefficients. The fluid mixture was passed in laminar flow between two
thermostated horizontal plates. The hot and cold plates were separated by a distance of the order
of 0.1 mm. The liquid, introduced at 4, flowed through the cell ina horizontal direction ata flow
rate such that the sieady state was established before the it reached the knife edge X at the
opposite end. The knife edpe separated the flow into hot and cold sreams, designated by B and
B’, respectively. By analyzing the concenrrations of both sireams, the steady-state concentra-
tion gradient at a given flow-rate could be derived and the Soret coefficient computed by ex-
mapolation of the concentration gradient to zere flow rate,

The experimental parameters for a flow cell experiment can be conveniently expressed in
terms of a variable X defined by the equation

B =D(Lb/a)Q-] (65)
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Heatad Block
o
A —_— T 8l ~0.01 em _E—B' K

Cooled Block

Figure 9 — Cell used by G. J. Thomaes [19] to determane Scret coefficients by the flow method,

Here D is the effecave diffusion coefficient at the mean temperature, L& and a are respectively,
the length, width and depth of the flow duct and Q is the flow rate.

The thermal diffusion equation for the flow cell configurarion is solved by using a vari-
ational calculus approximation [2(7, The difference in the mean concentration between the cold
and hot streams is found o be

F(ﬂ) = BcglAc = 1 1.045¢ ~13.66.+0,026¢ ~1.06B (66)

where &cﬁ is the time-dependent concentration difference and Ac_ is the limit at as [ goes o
infinity. Plotting F(X) vs. Ac, one should thus obtain a swaight line through the origin. By
extrapolating this ling to f = o (@ =0}, Ac_ ¢an be deduced. The Soret coefficient v is then
given by

e,
o = (873c,) == o) (67)
AT

where @ is the volume fraction of the solvent. For dilute solution ® =1 and ¢ can be
computed directly by the measurement of the initial homogeneous concenmation ¢, Ac_and AT,
the iemperature difference applied to the horizontal plates,

The flow-cell method is appliable to both elecuolyte and non-¢lectrolyte solutions, and the
measurement can be catried w very dilute solutions. In a recent report by Hwang, Robinson,
Billp and Lin {21], the Soret coefficient of aqueous Nz, CaEDTA soluations can be determined to
within 20.01 x 10 deg” ac0.10m (¢ = 5.52 £0.01 x 10 deg™) and to within 0.20 x 10~ deg’
(o = 4751020 x 10-* deg™) at 0.01 m.
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(d) The Optical Method

The optical methed follows the concentration change daring thermal diffusion by analyzing
the distortion of a transmitted wave from the gradient of refractive mdex aitending the diffusion
process. The method has been used widely for the measurements of the Soret coefficients of
non-¢lectrolyte mixtures as well as electrolyts solutions. By the use of the wave-front-shearing
interferometry, Becsey, Bierlein and Gustafsson {22] were able to measure ¢ in very dilute
solutions of KBr, KCl and K1 in nonaqueons solvents such as formamide, N-methyi formamide
and N,N dimethy] formamide.

The refractive index » in a binary mixrore during thermal diffusion (ander a constant one
dimensional temperature gradient (AT / Az) develops according o the Equation [23]

niz.n) = nﬂ-ﬁ-(ﬂn f&T}ﬂT(z /a)
(68)

where n ig the initial upiform refractive index. Denotng x as the mole fraction of the
component of the lesser molecalar weight and x as that of x &t the inital homogeneous
state, X, = x {1 -x){on/dx).

The experimentai diffusion cell is usualy mounted vertically, The interferograrn is then taken
by illurninating the cell with collimated monochromane light. All rays are assumed to enter the
sample at normal incidence. The numerical work required for the evaluation of an interiero-
gram and the calculation of the Soret coefficient is substantial. Briefly, one analyzes the finge
shape and relates that 1o the optical path length of any ray leaving the ceil a honizontal plane
measured from the optical axis. The Soret coefficient & can be evaluated because the path
length is a function of the refractive inclex », which is in tum given by ¢ as seen in Equation (68).
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1L12.2 The Dufour Effect (The Diffusion Thermoeffect).

The experimental investigation of the Dufour effect is concerned with the measurement of
the temperature gradient due to diffusion. The temperatre distribution in a Dufour cell is rime
dependent. This is becanse the Dufour effect is gradually diminished along with the mixing
process and eventually becomes negligible when the solution approaches the final homogenous
solodon. Thus, when two liquids at the same temperature are atlowed so diffuse into sach other,
the remperaiure gradient in the system is expected to grow from zero to 2 maximum value and
then gradually decay back 1o zero when the final equilibrivam state is reached. For an ideal
systemn where the heat of mixing of the two liquids is zero, the approximate vatue of the thermal
diffusion coefficient and the heat of transport ¢an be calculated from the observed maximum
temperature gradient {24, 2:5] provided that the concentration gradient in the cell can also be
evaluated. Since concentration changes in a Dufour cell have yet to be measured directly,
thermal wansport properiics can only be ¢stmated based on the measurements of the maximum

remperature gradient alone.

There are two principal difficulties in cthe expertmental investigation of the Dufour effect;
namely, the large thermal conductivity of liquids and the effect of the heat of mixing. Becanse
of the large thermal conductivity, the temperature gradient produced by the diffusion thermoef-
fect can quickly decay. Thus unless the system is well insulated, measurements of the
temperature cffect can be difficutt. The effect of the heat of tixing is obvious. Tt contributes to
the temperatre effect, and thus the conmibution from the heat of mixing to the observed
temperature pradient must be determired. Both probierns have been addressed theoretically by
Ingle and Home [26]. That the heat of mansport can be obtained from the measurements of the
temperature effect in a Dufour cell was first demonstrated by Rowley and Home [27].

Figure 10 shows the experimental arrangements of Rowley and Horne for the investigation
of the Dufour effect in carbon tetrachloride-cyclohexane liquid mixtures. The Dufour cell C-D
is of the withdrawable liquid gate type. The upper container A serves as a container for the less
dense liquid and is connected to the Dufour cell by a stopcock. The Dufour cell is filled by
layering the denser liquid beneath H,O. Since water has a negligible solubility in either carbon
tetrachloride or cyclohexane, it serves as an ideal third liguid which, when withdrawn from
liquid gate F, will permit the two liquids to form a sharp boundary without turbulence and also
at a well-defined initial time. Both the upper and the lower sectons arc thermally equilibrated
with the thermostatdng jackets surrounding them. The experiment begins by slowly withdraw-
ing wager through F. This permits the liquid in the upper reservoir to gradually replace water
and finally, when the water is completely withdeawn, a sharp intetface between the two liquids
is formed. At the instant of formation of the interface the circulating water in the lower jacket
(around the Dufour cetl) is quickly evacuated to create an adiabadc condition during the
measurement of the temperamre effect.

The change in temperature in the Dufour cell is monitored through thermocouple D in the
cell. By measuring the temperature responses as a function of the position amnd time and using

24



THERMODYNAMICS OF THEEMAL DIFFUSION

the temperature data in conjunction with a solution of the encrgy transport equation (in the mass
frarne of reference),

oe, (57) = 7, =~ V-7~ L7 R,

(6%)

L 3 v(m—ﬁ,), Psr

solved subject tp experimental boundary conditions, a best nenlinear, least square estimate of
the Onsager coefficients L, (and hence (%) can be obtained. In Equation (69) p i3 the density
and ¢, is the specific heat capamty of the mixture. For the carbon etrachloride-cyclohexane
s;-,rstcm at 1 atm, p and C, #re known a5 a function of the composition of the mixture. 7, is the
partial specific enthalpy ﬂf component i. For a mixmre with two components 1 and 2, H H,
can be gbtained from the heat of mixing data. Also, in Equation (69) a relanvely small enn'npy
source term for the bulk flow is ignored and the pressure of the System 13 assumed constant.

Figure 10 — Cell psed by Rowley and
Home [27] winvestigate (he Dufour effect &
in liquids.

]k
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Figure 11 shows the temperamre difference between positions z/a = 0.4 andz/a = 0.6
observed by Rowley and Horne for a mixture where the initial mole fractions of CCl, are 0.0179
and (-804, respectively, for the fluids in the upper and lower layers. The ininal incerface is
formedatz/a = 0.5. Here zis the vertical axis and a is the cell length. The data points (dots)
are cornpared with the theoretical predictions from the solution of the energy transport
equationt,

fp@-{—) =V« % + F’@ﬂ{g—] + D[MEQ;HM) [a;i;]

(70

oD RFE [E}IIT oD [HxIT a(Mzg;‘fM)
T.P

]
ax] L £ ax, T.P

sabject to adiabatic (full line) and diathermic (dashed line) boundary conditions. In
Equation (70} € is the molar heat capacity, V is the molar volume, x, is the mole fragtion of
component 1 (taken to be CCL), M, is the molecular weight of i, M = x M, + M, x, is the

.30 T T T T T |

024

0.18

AT/°K

2

.05

Time / 10° Sec

Figure 11 — Temperaturs difference AT a5 2 function of dme for 3 Didfoar experiment with a carbon tezzchloride-
cyclohexane mixmurs.
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weighted molecular weight of the mixture, ¥ is the thermal conductivity and A is the excess
molar cnthalpy. As expected, Figure 11 indicates that AT decays rapidly for a diathermic
boundary condition. The maximun temperature difference observed is approximately 0.24°K,
Ir turns out that when the thermocouples are symmerrically placed with respect to the initiaj
interface, the heat of reaction contributes rather insignificantly to the observed temperaiure
difference. This is because of the symmetric nature of the heat of mixing arising due to the fact
that the mass frame of reference is used for the diffusion fluxes and thus the two fluxes are
muruaily against each other (7, = —JF, ). The data reported according to the authors arc the
values of an. which prnvldcs the best ﬁt for Equation (70) and the exparimental AT. Since the
data are evaluated mlh.r it seems that the data reported are really the values of O, - Qqn.;

Rowley and coworkers {28, 29] investigated the diffusion thernoeffect in ternary liquid
mixtures. They extended the theoretical work of Ingle and Horne to obtain an analytical
expression for AT when the thermocouples are placed symmetrically with respect to the initial
interface. For a sysiem with reasonably constant thermophysical properties, the temperature
difference AT(z") betweeti two points at an equal distance 2’ from the initial interface is

AT (z) (411:;":111’: ) 2 (QlDh+Q;D2JﬁwEI[BITEI—1'1)]

iml

(71)

- Y, Fy sin[@i-1)nz'/a
i=1

where D is the mutual diffusion coefficient, Aw, is the initial difference in the mass fraction of
cumpunent above and below the interface and , is the thermal diffusion characterisdc
time, 9, = 4*/®*D,. Alsodenoting x as the thmnal conductiviry

T=pc,a 2% (72)

Fy= {exp [— 21-1)’/0,| -exp [- @I- 1)*:;*:]}; 27-1) 73)

In Equation (71), @] and Q) can be treated as two simultaneously adjustable parameters, Two
experiments at different initial conditions must be performed at each mean compaosition to
decouple the parameters. Again, because of the mass frame of reference used, G and Q) are
strictly the relative heats of transport &) — Q) and 0, - {7, respectively.
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1,1.3 Experimnental Data and Discussion

Thermal diffusion and the diffusion thermoeffect are the results of the coupling of matter
and heat transport. Eastman argued that the exatier iransport due 1o the relative motion of par-
ticies may result in a change in the (focal) intensity of intermolecular forces and the adjustaeent
occasioned by such changes may result in 2 finite heat effect. Therefore, in a thermal diffusion
experiment when a solute patticle is mansported between regions of differential temperature
difference in a stationary solvent, a quantty of heat is absorbed from the hear reservoir hehind
and given out ahead of the moving particle. This beat is the heat of transport 7 of the particle.
This picture clearly suggests that thermal diffusion data will be useful in the investigation of the
nature of interaction in solutions and perhaps especially in those areas where dynamics and the
structiure are involved.

Experimental data before 1963 have been reviewed by Agar {17] and Tymrell {11]. The data
surveyed here are recent gnes. The survey will not be exhanstive, and only those data which will
help to illustrate interesting aspects of the study of the Saret and Dufour effects will be
discussad.

There is a stmple picture for the heat of transport and the diffusion thermoeffect. The wem-
perature surrounding a moving particle is generally not uniform. One way to sée this is to
recognize the possibility that the molecules in front of a moving particle are “pressured” by the
approaching particle and therefore compressed. Conversely, the fluid molecules behind a
moving particle are expanded. Since compression of fluids usually results in heating and vice
versa, the temperature ahead of a2 moving particle is mgher than the remperature behind it
Consequently, if an isothermal condition is applied, heat is evolved ahead and absorbed behind
the moving particle. In a stationary siate a heat flux is observed in the same direction as the
diffuston flux. This is the diffusion thermoeffect. The heat flux in the diffusion thermoeffect is
opposite to the conduction heat current that flows from a region of high temperature to a region

of low temperatune.

When positive heat is evolved ahead, and absorbed behind, a moving particle, convention
assigns a positive sign to the heat of ransport of the particie. In the same way, when entropy is
evolved ahead and absorbed behind, the entropy of transport 57 is positive. When entropy is
absorbed behind the particle to keep the iemperature constant, the particle is obviously a net
“smocture-maker”. However, if entropy is evolved behind the moving particle, the particle is a
“structure-breaker”. Thermal diffusion data are therefore expected to reflect structural effects
induced by the moving particle.

In an effort o provide a theoretical interpretation for @ and 5°, Agar [17] proposed a hydre-
dynamic theory for the heat of transpeat, The similarity between the heat sink and source
surrounding a moving particle and the existence of the elecirical charge sink and sowce in a
dipolar molecule led Agar to suggest that the moving particles are surrounded by “theral
dipole momenis"”. Agar, Mou apd Lin [5] have calculated the thermal dipole moment and show
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that, indeed, the heat of transport can be given in terms of the thermal polarization. The
hydrodynamic expression for the standard single-particle heat of transport at infinite dilution is

oy = (4x713) j ) syroar a9

where § = S{r) is the entropy density at a distance » from the particle of interest, and f (r) is a
functon describing the velocity field of the solvent induced by the motion of the particle
(f(r) = 1 at r = e, andf(r) = 0 atthe surface of the ion). The expression of 3° given in
Equation (74) is obtained by immersing a single particle in its solvent, which is regarded as a
hydrodynamic continuum, The significance of the result lies in the fact that the relationships
between the heat of transport and the stuceme (through dS /dr) and dynamics [through the fune-
tony ()] are clearly stated. It indicates that if thene are no polarizable sructures surrounding the
particle, Le., incase (65/8r) = ¢, Q7 will be zero.

Systematic measurarpents of the heats of mansport of dilute aqueous elecmrolyte selutons
have been reporied asing the silver-silver halids electrodes at 23°C. For 1:1 electrolytes, data
gvailable include alkali chlorides [3(] and brornides [31], ammonivim and tetraalkylammonium
chlarides [32), and hydrochloric acid [15]. For 2:1 electrolytes there are data for nickel and
alkaline earth chlorides [33], and for 3:1 electrolytes, data are available for rare earth chlorides
[34]. The limiting law for the concentration dependence of the molar heat of wansport is [35].

0. =v.0 +v g’

— z
= Q:-a - I'.'I'.-(fi;_]l—'l s ;%BT[U_FZE + U_ZE)].- (75)

+ [u+u_fu+ + 1}_) (Rj - Rf) (I-Tf ~ Ff)l"

where T’ = ¥ (4ne? L6, Z?/ k,T€) is the reciprocal Debye length and R*is the Stokes law radins
of i. The second term in the right-hand sicle of the second equality o (H ) is the limiting slope
for the partial molar heat content. The third term is due 10 the direct jon-ion electrostaric
interaction, and the last term is due to the electrophoretic effect. Becanse the ion-ion temn
describes the effect due to the ionic atmosphere and can be obtained from the Debye-Hiickel
equilibrivm pair-distribution function, this term, together with the enthalpy term, bave been
referred to as the thermodynamic conribution to the lemiting law of the molar heat of transpost.

The electrophoretic contribution to the limiting slope rmust be estimated becanse absolute
ionic values for H, are not available. For most systems, however, it is small. This is because this
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contibution is proportional o the product of the differences in the Stokes law radii and the
transported enthalpy. In fact, for electrolytes such as KCl wheve RE = R, . the electrophoretic
effect is negligible. Figure 12 describes the concentration dependence of 5_ - at 20°C [36]. The
line gives the least mean square fit of the experimental dat (excluding the results of two most
dilute solutions), The slope of the line is —34.2 (in J mol'K-'m™*?). The theoretical ion-ion
electrostatic limiting slope is —35.2,

|
Eal -2 { sl
L
Z [,

Figure 12 - The effect of concentration on the entropy of ransport of CsCl a1 20°C.

In comparing experimental data with the result given in Equation (74) 0™ and 57 must be
estimated from the molar guentities °° and 5°¢ , respectively. There are a number of ways that
this can be accomplished. One approach proposed by Takeyama and Nakashima [37] is based
on exploiting the consequences resulting from decomposing the experimental molar heat of
transport into the ionic heats of wansport in the laboratory frame. (As discussed earlier,
although the molar heats of ransport are independent of the frame of reference, the same is not
true for the ionic heats of wansport). Their method (known as the reduction rule} yields
Oc = 0.53 kJ/mol which is close to §°2 = 0.37 kJ/mol based on the Gurney scale [38).
Table 1 lists standard single-ion heats of transport at infinite dilution according to the reduction
rule of Takeyama and Nakashima, The experimental data are taken from references [30-34]
and also from Takeyama and Makashima [37).

We shall use data given in Table 1 to infer stuctural effects of the ions. Since structure-
makings and structare-breakings in aqueous electrolyte solutions refer commonly te those
effects that are added to the simple ion-dipolar interaction, we shall take a spherical Born ion
with a slipping surface as a structurally neutral reference jon. For a Bomn reference ton with a
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slipping surface, the entropy density around the ion is given by the Born theory of hydration and
Equation {74) can be integrated [5] to give,

Qo /ZID; = 2201012 ] sec/molm? (76)

where D, is the self-diffusion coefficient, which is related to the hydrodynamic radii R, in
Equaticm (75} through the Stokes-Einstein relationship and which can also be deduced from the
jonic equivalent conductance according to the Nernst equation [39]. The result given in
Equation (76) can now be compared with the values of Q. /22D listed in Table 1, Take the
alkali metal ions for example. Na is a weak structure-maker, becanse Q12 /D, = 2.60-10%,

— Table 1 — The Single Ion Heat of Transport at Infipite Dijution —
Ton D1 p o =/zip,
(mifaec) (H0TFmad) () secfmol m®)
Hr 931 123 143
Lit 103 053 051
g 133 144 260
K* 195 2.59 1.52
Rb* 207 ig 189
Ca* 08 4 193
NH,* 195 1.73 0.89
Ma N* 120 10.00 3.33
Ei N 0.87 1429 16.43
-Pr N* 052 18.36 19.51
1By N+ 0.51 20.79 40.76
Agt 1.65 537 3.36
T1* 1.99 433 2.1%
Mg+ 0.71 9.04 3.20
Ca%® 0.7% 9.8 310
S 079 11.1 352
Ba# 0.85 124 3.66
Ni* 0.7 93 3.30
La* 062 19.5 349
Sm* 51 1%.6 35T
b .58 18.3 351
. 3.32 17.2 314
F- 147 393 267
Cl 2.03 0.53 0.26
Br 2.08 .60 0.2%
r 2.4 =155 .76
NG 1.9¢ ~0.63 033
CHo; 1.81 =031 =017
10; 1.45 2.00 1.38
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which is slightly larger than the value for the reference ion. In comparison, all other alkalk metal
ions carry smaller values and are structure-breakers, Foliowing the sarme analysis, tetraatkylam-
monipm jons are soong struciure-makers as the resndt of the hydrophobic interactions. The
structure promoting effect of the lanthanide ions has led Frank and Evans [40] to postulate the
existence of a super-lattice structure around the lanthanide ions, generally referred to as the
iceberg effect. Here, the heat of tmnsport data also indicate that they are structure-makers. The
halide ions show an expected oend, that is the T ion, the smallest ion in the group, is a stucture-
maker, and [, the largest halide ion listed, is a smucmre-breaker. However, it is somewhat
surprising to find that the smallest afkali metal ion Li* is a structure-breaker. Acconding o
Chairoborty and Lin [41], the reasoa that Li* is a soucture-breaker is the exchange effect. The
strong ion-dipolar interaction is likely to give Li* an extended hydration cosphere resulting in a
large hydrased ion for Li*. Thus water melecules in the outer hydration cosphere may undergo
exchanges with the molecules in the bulk when the Li* ion diffuses. Exchanges create disorder
and Li*, therefote, is a structore-breaker,

The heat of transport generally measures effects taking place not in the close vicirity of the
particle, but those that are occurring at a distance from the particle, This is clearly indicated in
Equation (74). Since f(r=R) = 0 and (5/0r) = 0 at =<, the integrand grows from zero
at ¥ =R, t0 a maximum, andmnmaﬂy mnst decay to zero at r = <o For a slipping Bom ion,
the MAXIMBT OCCUTS &1 F = 1.5R.. For an ordinary ion with R, = 2A, the predominant contribu-
tions to the integral are from regions around 4~3A.

Investigation of the temperature dependence of the thetmal diffusion properties may also
give interesting insights into the nature of interaction in solutions. For 0.01m alkali chlorides in
H,0 and D,0, both & and do /4T have been measured by Wood and Hawksworth {42] using
the conductimetric method. Their resalts in FLO have been summarized below, assuming that
& varies linearly with termperature.

GQLICY = 99 - 10%(-25.1) )
6 (NaCl) = 0.091 - 10° (¢-2.8) (78)
G (RC) = 0.107 - 10° (+-11.6) (79)
o (RbC) = 0.111 - 107 (4.1) (80)
6 (CsC) = 0.111 - 10 (+-4.1) (81)

where tis temperagure in °C, Itis seen that da/ 4T for LiCl is unusually small and may indicate
the struciural effect discussed above. That is, if the exchange of water molecules between the
hydration cosphers and the bulk is the principal reason for the small heat of ransport observed,
then the temperature data indicate that the exchange is not sensitive 1 change in the tempera-
ture. Values of @G /dT for the ather salts are comparable. ' What is significant here, however,
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is the “transition temperature™ that is predicted. For NaCl, &, and consequently Q) .. changes
sign from positive to negative at 2.8°C. Similarly, 0%, changes sign at 11.6°C and 07, at
4.1°C. The resuits are remarkable in view of the fact that the maximum density of H,O occurs
at 4°C and at this temperature (0P /97T), changes sign from positive to negative, Compression
of the fluid ahead of, and ¢xpansion behind, the moving particle will generally cause the
ternperature 1o be higher ahead and lower behind resulting in a positive heat of ransport for the
particle. The situation is just the opposite for H,O below 4°C where (dP /aT), < 0. Conse-
quently, the heat of rransport is expected to reverse its sign arcund 4°C if indeed the compres-
sion and expansion contmnbute significantly to the heat of transport. For DO, where the
ternperature for the maximum density is at 11.2°C, Woodward and Hawksworth’s data predict
& “transition temperature™ for Q. at 16,4°C, 7  at 18.1°C, and Q7 at 18.3°C,

Since (0P /0T), = (05 /dV)., the heat of transport can be viewsd from yet another angle
by inference from the entropy changes due to changes in volume induced by diffusion. Tymell
[43] first noticed this and argued that when an ion is displaced, the void volume left behind must
be reoccupizd by the sclvent molecuiss nearby, Further, when the Hittorf flux is adopted, the
number of solvent molecules reoccupying the void volume must be ¢xactly identical to the
namber of solvent molecules carried away by the ion, 1.¢., the hydration number £, in agueons
solution. The entropy change associated with this is AS,

AS = (g%)r [n,.t?ﬁ,o - (n,,vm + vim)] (82)

which will contribute to the entropy of transport. In Equation (82) Vo and Vo are, respec-
tively the molar volume of H,O in the bulk and in the hydration cosphere, and V,__ is that of the
bare ion. A group of ions that is particalarly suitable for testing the present hypothesis is the
tetraalkylammonium ions. Because of the hydrophobic interacnon, x, 15 very small or nearly
zero. Thus if AS should make a significant contribution to the heat of ransport, a correlation
between ' and R?__ is expected. Table 2 gives a summary of O listed in Tabie 1 and the ionic
radii R, taken from Stokes and Robinson [39] for ammonium and temraalkylammoniurm ions.
The correlation found in this table, though not quantitative, i3 striking.

Tabe 2 = The Siandard Ionic Heats of Transport and the jonic radii X, =
R{A) & AL AP R, o
(kJfined)

HN® 148 1.73 0.17 0.08
Me,N° 347 10.00 1 1

B N* 4.00 1423 1.42 1.53
=P, N 4.52 18.36 1.34 2.21
1-BuN* . 494 20.79 2.08 2.89
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Equation (74} is derived based on the consideration of heat sink and source around a moving
particle. It is, therefore, a general expression which should be applicable also to non-electre-
Iytes. Although the same level of discussion for non-electrelyte solutions is not quite ready
primarily because large volumes of systernatic data are yei t0 be accumulated, there are several
interesting non-clectrolyte systems which have been investigated for some specific purposes,
Two examples are discussed below.

Thermal diffusion factors (T) for binary mixtures of alcohols and aromatic hydrocarbons
with carbon tetrachiaride were measured, using the optical method, by Belton and Tyrrell [44],
Farsang and Tytrell [45] and Anderson and Homne [46] and by Story and Tumer [47] using the
flow-cell method. Beyerlein and coworkers, using the thermogravimtional thermal diffizsion
column, extended the investigations 10 other compounds [48-51). These inclnded chlorcform
with acetone and aromatic hydrocarbons, and also the 2H thermal diffusion isotope effect in
benzene and methanol. More recently, Rutherford used the thermal diffusion column to
determine tiermal diffusion effects for isotopic substitutions in benzene, substituted benzenes
and carbon disulfide [52-54). (We have not discussed the thermal gravitational thermal diffa-
sion method because in this methed the separation observed is enhaaced by the bulk flow and
not by pure thenmal diffusion alone. When thermal diffusion column measwrements are done
with great care and precision, good results can be obtained. However, in many studies there
arise questions regarding conformance of the experiments 1o the ideal conditions assumed in the
derivation of the theory of the thermogravitatioral process. In such circumstances, results are
frequently produced that can not be confirmed by other independent methods [35].

Thermal diffesion factors are sensitive 1o the composition of solutions and are vseful in
studying the molecular association reaction and complex formation. For the methanol-benzene
and ethanol-toluene mixnrss, the thermal diffusion factor is found o increase from negative
values at high alcohol concentrations 1o positive values when the alcohol concentration is
decreased. It approaches a maximum and then gradually decreases at lower alcohol concentra-
tions. This concentration behavior is due 1o the self-association of the alcehel component and
can be interpreted with the molecular association theory of Baranowskd, deVries, Haring and
Paul [56] or with the modified form of this thepry due to Johnson and Beyerlein {48]. For some
chloroform mixtures, where the molecular attraction between chloroform 2nd the other compo-
rent is much swonger than the two chioroforrn molecules, complez formarions have been
observed. For example, in the chloroform-acetone system, the mixtares contain 1:1 chloro-
form-acetone compiex as well as a small amooni of 2:1 complex. The intenmolecular atraction
between chioroform and benzene is found to be very strong and a 2:1 chloroform-benzene
complex has been observed. The molecular inttraction energy between chloroform and a
benzene molecule estimated from the eemperaturs dependence of the thermal difusion factor is
4,60 k1, which is in good agreement with the other independent estimate [57).

That thermal diffusion smdies can be sensitive to molecular association reacttons was
pointed out many years ago by Wagner [58]. Wagner developed a2 simple theory of diffusion for
dilute solutions in which the solute A consists of two isomeric species A “and 4™ in equilibrium
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with one another. When the equilibrinzn A" = A™ is attained rapidly (in comparison with the
time scale of the diffusion), Wagner showed that the application of a temperature gradient will
cause A (0 migrate, thereby increasing the concentration A = 4 +A" at one end of the cell and
decreasing it at the other (thermal diffusion) and that diffusion undsr isothermal conditions will
cause enthalpy flow, in addition to that associated with the partial moiar enthalpy of A, i.e., the
heat of ransport  An exact thermodynamic treanment of the “Wagner effect” has been given by
Agar and Lin [7]. They showed that the heat of ransport derived from the Dufour and Soret
effects are identical. Accordingly, the reciprocity relation is confirmed for the Onsager
phenomenoclogical coefficient for heat-matter coupling. Agar and Lin’s treatment can be
extended readily to equilibria such as AX = A*+ X, and it suggests that the existence of such
an equilibrium will give rise to an additional contributon to the heat of transport of 2 weak
electrolyte when the rate of dissociation is around 50%. However, the additional heat of
transport is proportional to the enthalpy of dissoctation, and in a typical example such as a weak
acid, the enthalpy of dissocistion is small so that this additional heat of wansport may be o
small to be observed,

The heats of mansport from the diffusion thermoeffect in ternary mixmres of toluene-
chlorpform-bromobenzens reportad by Plan, Vongvanich, Fowler, and Rowley [28, 29], were
re-investigated as binary mixtures by Rowley and Hall [59]. They show that the ternary data can
be estimated from the binary results. We pointed out that the heats of ransport measured in the
diffusion thermoeffect experiments arc the relative heats of transport. Consequendy, compm?f~
sons of the diffusion thermoaffect results with rasalts obtained by other methods based on 7.
require caution. However, at the infinite dilution Emit, the heat of mansport of the solvent
companent approaches zero so that the “pure component™ heat of transport obtained at this limit
is independent on the solvent component. Yi and Rowley [60] reported the molar heat of
transport of carbon tetrachloride in benzene, towlene, 2-propanone, n-hexane and n-octane at
298.15 and 308.15°K at ambient pressure. At298.15°K, values of O, found are within 1.46
10 2.16 kJ/mol. and at 308.15°K, within 1.54—1.86 kl/mol.

Yi and Rowiey [61] tested the existing theorics of thermal diffusion nsing results obtained
from diffusion thermoeffect measurements. The theories tested were the Brownian motion
theory of Bearman, Kirkwood and Fixman [62], the thermodynarnic theory of Guy [63), the
transition state theory of Mortimer and Evting [64]. the revised Enskog thecry of Barajas,
Garcia-Collin and Pina [65] and the kinetic theory using the square-well model potendal of
McLaughlin and Davis [66]. Although none of the theories tested were able to provide even
qualitative agreement with experiment, the square-well Enskog theory seems capable of
providing approximate agreement with experitnental data by adjusting the potental parameters
for the mixtures. Yiand Rowley demonsmated the validity of the frequently expressed view that
thermal diffusion properties are sensitive 10 the interaction potentials. Theory with a realistic
powential energy mode] will be required for the discussion of thermal diffusion properties at the
molecular [evel.
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1.2 Thermal Diffusion in Gases

The phenomenon of thermal diffusion is a second orter effect which did rot appear in the
kinetic theory of gases developed by workers in the nineteenth century. I was first recognized
by David Enskog [67] ar the University of Uppsalain 1911 when he presented the kinetic theory
for the special case of a Lorentzian gas, observing that a mass motion, or flux, of particles could
be caused by a thermal gradient as well as a concentration gradient. In his doctoral dissertation,
Enszkng {68] propounded the theory for the general case and gave an explicit expression for the
coefficient of thermai diffusion. Working independently, and at about the same titmne, Sidney
Chapman [69] obtained a simnilar result and then proceeded to verify it experimentally {70]. The
fact that the ninsteenth century workers overlooked this is pricnanly due to its being a non-
squilibriurn effect and furthermore the coeffictent is identically zero for the Maxwellian
molecule, which was the popular molecular model of that era. In reality the molecuniar
interaction is much mwore complicated and a “unique and correct”™ analytical form is sull not
known. The method of Chapman and Enskog proceeds through soiving the Boltzmann
Equation with a perurbed Maxwelliam velocity distribution (the non-¢quilibrium case} and
expresses the phenomenclogical coefficients in terms of “coilision integrals™, These collision
integrals are expressed in terms Of the intermolecular forces and molecular weights, The
mathematical and numerical procedures are very complicated and difficult to execute.

While the initial discovery of thermal diffusion in gases evolved through the development of
the rigorous kinetic theory, the derivation of the phenomenological coefficients from non-
equilibrium thermodynamics is a very itlustrative approach. This method has the advantage of
formulating the eansport coefficients directly in terms of the experimentai parameters and
produces the defining equations for the trangport coefficients, several of which have been given
explicitly in the introductory section of this report. Equation (11) in that section states that the
fundamental driving force for diffusion is the negative gradient of chemical potential divided by
T. For gases the composition scale usually chosen is the molar concentration, ¢, or equivalendy
the mole fraction, X The variation of chemical potential at constant pressure and given
Iemperanme is

(duj)ﬂr = (auj;acj)mdcj (83)

(¢4)nzr = (31,137, )pres, - (84)

The mass fractions, w,=p,/p, are related to the molar concentration or mole fractions,
¢, %, =N/ N, through the expression for the mass density

o =MN,. - 85)
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For a binary system, the definitions of the thermal diffusion ratio, &, and the thermal
diffusion factor, ¢, that quantity which is to be measured by the follnmng experimental
methods, are defined by the condition J' = —J’ = () , the steady state, where the mass flox
is zero but the heat flow is not zero. Thus

D, gedx, + DTx x, gradT = 0 (86)
yieids the ratio

pr _ __ gy @7

th X, X, grad T

kyown as the Soret coefficient, from which follow by definition the dimensioniess quantities

_ DT _ gr'au:lx1
kT = IIIID—HT IR T {33}
and
O = E_T 1 gdx {89)
D x %, gradinT

This equation may be readily integrated if e, is assumed independent of composition and
iemperature, an assuenption which is reasonably justifiable for the former but may not be very
good for the lanter

grad x,
J o)

which, after integrating by parts, yieid

TE
- _%J‘ gadin T (90)
T

o = mq/tnT,/T,] o

= /(1-5)|r, s (1-2)]r, ©2)

The quantity ¢ is known as the separation factor.

where
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Equations (91} and (92) are the working equations for detenmining the thermal diffusion
factor from the experimental conditions,

In each of the four experimental methods described in the following, the apparatus
configwration is different and additional theory pextinent to the dynamics or material balance of
the components in the device is necessary to exiract the desired result.

Ome final and rather complicated expression remaits o be presented hers, That is the
theoretical expression obtained from the rigerous kinetic theory which expresses the thermal
diffusion factor in terms of the two-particle interactions, or intermolecular potential. This is
most readily expressed in Chapman’s determinant notation,

- ) i i
Gy = lim (xlxzﬁm) xlam [M1 +M2JIZM1

L B

172
+ x,A = [(Ml * Mi);mz] : 93)

The quandties A*;" are determinants obtained from a master determinant A“? of order
2m + 1 by soiking out colurnns f and j. As usual, the subscript 1 refers to the heavier component,
X is the mole fraction, and M is the respective molecular weight. The order of approxima-
tion to ¢, is m and the first three approximations, which are those usually encountered, are
designated (o], [@,),. and [c.],. The ¢lements of A™, which have been obtained for up to
third order by Mason [71], are complicated functions of the collision integrals, molecular
diameters, and molecular weights. The explicit expressions are too lengthy to be presented
here,

Tt is this expression that would be used to test a pamticuiar intermolecular potential agaiast
experimental measurements.

12.1 The Two-Bulb Method

The first experimental confirmation of thermal diffusion in gases was obtined using the
wo-bulb methed by Chapman and Dootson [70), as mentioned previously. They simply
connected two bulbs together with a tube, filled the apparatus with an approximately equimolar
mixture of H /CQ, or H,/50, and heated one bulb. They found the hydrogen to be slightly
enriched in the hot bulb by about 2 to 3% over that in the cold bulb. The concept of the two-bulb
experiment is shown in Figure 13 using as an example the apparams of Ibbs [72]. The method
is very sraightforward but one must crient the apparams vertically with the hot bulb on top 1o
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Figure 13 — Two-bulb apparatus used by Tbbs [72] for meas-
uring binary gas sepamtions “in situ” at average emperatures
above amivent. A} Glass vessel surrounded by a heating jacket
and held ot eemperaduee, T, . B) water bath held at temperature,
T.: C) kaheromeder for measuring gas composition in cold
bulb; D) reference gas for kaherometer; and E) thermometer
for measuring T,

avoid convection in the connecting tube. Also the bulbs and connecting tube must be sized in
such a fashion that the equilibriunr ime is not excessively long. Because the separations are
very small for a single stage separation, the method of anal ysis becomes an importani considera-
tion in the experiment. Early workers [70, 72] used akatharometer mounted in one of the bulbs
which measured the change in composition of the mixture through the thermal conductivity
variation which is a function of composition. The change in composition in the bulb comaining
the katharometer can be enhanced by making its volume smalier than the other bulb. A modem
variation is to use a small solid state sensor called a thermistor to measure the mixore
composition [73]. The thermistor is particulardy vseful at low to intermediate temperatures
beccause various types arc available with large negative coefficients of resistance for a given
temperature cange.

A second method of analysis which is inherently extremely sensitive, is counting disintegra-
tons from a radivactive macer. Several workers [74, 75), have used this technique but the
method is generally restricted to trace amounts of the radioactive component for practical
reasons. A third popular method is to remove a sample from the experiment and analyze jtin a
mass spectrometer. This method has the advantage, or at least potential, for excellent absoluie
accuracy for most gases and isotopic mixtres, but it is “invasive” in the sense that taking the
necessary sampies may disrupt the process substantially so that sampling is normally done ac the
end of the experiment. The first two methods are non-destructive in that they do not disrupt the
course of the experiment.
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In the case of the two-bulb apparaws, one region is held at a fixed temperature and the
temperature of the other region is varied. From a series of experiments, o, is obtained from the
slope of the logarithmic plot of T, /T, vs. the separation factor. The drawback of this method is
that the numerical value of o, is very seasitive to the derivative of the curve of unspecified
functional form which must be fined to the experimental points, each of which in turn has
uncerigintics in {n g and in (7, /T ) associated with it. The problem is particularly severe at the
end points of the curve. The apparatus shown in Figure 13 depicts the case where the lower
temperature, T, is held constant by the water bath B and gas in the upper bulb A is raised to
various higher temperatures by the heating mantle around A.

Conversely the apparames may be constructed in such 2 manner that the upper reservoir
is held at a constant temperature and the lower reservoir is vaned to successively lower
temperatures. An example of such an apparatus is that of Ghozlan and Los [75] shown
in Figure 14 which was used for the determination of ¢, for the hydrogen isotopes (inchuding
tritinm). The upper chamber contained an logization chamber to determine the concentration of
tritinm in the mixture,

The apparatus constructed by Weissman [76] and extensively modified by Taylor [77]
for use down 10 very low temperatures (~2K)} on the helium isotopes, is shown in Figure 13
Because it is generally impractical 1o have a valve in the low temperature region which
isolates the cold reservoir, it is necessary to obtain the composition at T from the feed and hiot
reservoir composidons. A rgorous theory for the two-bulb experiment was derived by
Lonsdale and Mason (74, 78] for the case of one component present only in trace quantities
based on a mass balance in the hot and cold reservoirs and the connecting tube. Taylor {77)
extended the theory w the general binary mixiure case. Now let X represent either one of the
compusitions C, or C, of the binary mixture, expressed as mole fraction. When the feed
composition, x, = x,(0) = x,(0), and the steady state hot bulb composition, x,, (=), are
known, the compositon in the cold bulb at the end of the experiment with a connecting tube of
length L is

dnL

c
.- X (u)] - {94)
e |5 - W) - 3

oo} = xp +

C

where An, is the change in the number density of the light componrent in the connecting tube
during the experiment and N, is the total molecular density in the cold bulb which remains
constant during the course of the experiment,
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Figure 18 = Schematic of the two-bulb device used
by Tayle [77} to measurs thermal diffosion factors
on heltivn isotopes down to 2K, The components
are: A) lower chamber contining three different
temperaturs $ensors, one P registor mounted in the
gas, another embedded in the copper basc along with
an Allen-Bradley carhoo resistor; BY vacunmfex-
change gas region; C) vacuum jacket aronmd con-
necting wbe; D) connecting tube; E} inner Dewar for
LIe; F) outer Dewar for LN.; G) supporting flange;
H) vacuum pass through for sensocs. I) manifold for
four sample bottkes; ) water bath controfled by Haske
cirnlator; and K) isolation valve,

Figure 14 - Two-bulb appasatus weed by Cihozian
and Laos [75] for determining o, & low lempera-
twres, A} Lower reservoir held a1 iemperature,
T.; B} Dewar vessel containing cryogenic Buid;
C} whe for inoodocing coolant; DY coolant vapor
vent, 1) vacuum line for pumping on <oolant;
E) manometric device for coarse conuel of cool-
ant vaper pressure; FY manometric dsvice (o fine
control of vapor pressure; G) upper reservelr held
atteqapecatuee, T, ;. and H) gas inlet line

w
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The term An, /N, is the correction for the finite volume of the connecting tube and is
determined by the following:

L
dnL = nL(m} = I dnL{u,z}—NL.tF
]

L L
- I xL{m,z}dNL(zJ——xFJ‘ 4N, (z) (95}
o 0

The differential da, (=, z ) represents the composition gradient at the steady state due to the
temperature gradient along the connecting tube. The variable z stands for any point on the
connecting tube. Since Adz = dv, the quantity N, can be evaluated in terms of the ideal
zas law for an incremental volume.

L L
x(w, 2} PN, A I PN A
z Xe

- el Skl 96
L RT(z) , KT dz G

An

In order io integrate this equation, expressions must be assumed for the temperature and
composition distributions. A reasonable approximation for the temperature distribution is

T,-T
T(z) = T, - [LL—E} CH)

and, from Equations (91) and (52) by letting X, (s=, 2) = X (==, z), for the composidon
dismibution

" ]
X, @0,2) = | 1 + | e — 1 E"- T : (98)
L X469 T(z)

The assumption is made here that &, is an “effective” thermal diffusion factor which must
be obtained iteratively. Substitution of Equations {97) and (98) into {56) yields an expression
which can be analytically integrated by making the change of variable x= a4 b2, The second
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term can be integrated directly. After integration and simplificatioe, and roting thatAL=V_,
the correction term is

An V. T -z
L rTe ,
s in [rﬂf'rc) X ()
Ve(Tu - 7c) |
- -t/a,

Fy

The cold reservoir composition, x.{«=), can sow be calculated from the experimental
conditions and apparatus dimensions. The separation factor, g, and the thermal diffusion factor,
e, for the experiment may be calculated from Equations (91) and (92) respectively. The value
of ¢, obtained must, of course, agree with the “effective” valve of &, used in evaluating the
correction factor, If it does not, the caleulation must be iterated until a consistent valuz s
obtained.

Taylor [77] has compared the “slope” method to the iterative procedire above for the
determination of ¢, for the helivm isotopes, The problem in the second method is that a specific
value of the temperatare cannot be assigned to o, whereas in the “slope” method it can. Taylor
found, however, that where most of the gas in the experiment was at a temperature at or near T
and e, did not vary too rapidly with ternperature in the region of interest, the iterative procedure
gave more reasonable results, Apparently the inaccuracy introduced by differentiating the
logarithmic plot of T, /T, vs. g, atong with the inherent experimental uncertainty in the dara,
introduced a sornewhat spurious temperature dependence in &, which was not exhibited by the
iterated value of &, (T ).

Quite a few investigators have built and operated two-bulb experiments in addition to those
already mentioned. An incomplete list would include, but not be limited to, the group at Exeter,
UK., ungter Grew [79], de Vries and coworkers at FOM-Institute in Amsterdam [80] and, more
recently, Duntop’s group [81, 82] in Adelaide, Australia. These citations show the experimental
apparatus and discuss operating procedures. The accuracy of the two-bulb will depend strongly
on the analytical technique used to measure the composition because the separation is usually
very small with this method. In addition, differsntiation of the separation curve magnifies
scatter and may introduce an undetectable bias. Bamring this, one tight reasonably expect
accuracies of approximately + 5 to 8%, depending on the binary mixhmwe. Dunlop’s group
repoIts an accuracy of approximately 2 w 3%, but in a very limited temperanre range.
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1,22 The Trennschaukel (Swing Separator)

A device which has proven quite useful in the experimental determination of the thermal
diffusion factor was developed by Clusius and Huber [83]. In principle, the wennschaukel, or
swing separator, is a numbet, #, of two-bulb experiments connected in series as shown
in Figure 16. The top ard bottom ends of the tubes (approximately 1/3) are ¢mbredded in
isothermal regions held at temperatures 7, and T, respectively. The temperatre gradient, AT,
i5 established in the mididle porton of the tubes. By connecting each successive mbe top to
bottom with a capillary and pently moving the gas to and fro by means of a pump, the
concentrations of the compeonents of the gas mixture in the top of one mbe are made essentially
identical with those at the botiom of the next wbe. Since the temperature gradient is applied in
the vertical direction with the hot end at the top, the effect of convection is eliminated. The
separation factors of the individual tabes are multiplicative, 5o an a-fold increase in the
separation is realized. Because # may be ten or twenty, an order of magnitude increass is quite
feasible, resuling in a considerable analytical advantage over the two-bulb method. As simple
as the apparaius in Figure 16 appears, it is still subject to certain restrictions which, if viplated,
will invalidate the results. For example, one must operate sufficientdy long so that steady state
concentrations in the regions under and gver the pump are approached. The frequency of
purnping lies within certain Hmits. If one pumps very slowly, backward diffusion in the
capillaries sets in, but if pumping is too rapid, the motion of the gas disturbs the thermal
diffusion balance in the sebes. The theory of material transport in the device was derived by van
der Waerden (84] and wields explicit expressions involving the physical characteristcs and
gperating parameters which must be considered in order to ensure successful cperation,

NN «— VA7

Figure 16 - Principle of the mennschauckel or “swing separasor”. A given number of mbe/capiltary pairs are
connectad top-to-botiom and the contained gas giixture is switng 10-and-fro by  pump. A tempesature difference,
ar=T_-T,.,isiinpased acTuss the A wbes by embedding the top approximately 1/3 of the wbes in an isothermal
region at T, and the boitom 173 in anodher isothenmal region at T,
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A practical limit will be encountered in the number of tube/capillary pairs employed by
virtue of viscous flow reswrictions encountered in the capillaries {Poisenille’s Law). A pressure
gradient will be established in the capillaries due 10 pumping and this will in twn decrease the
quantity of gas that is iransported forward from fuzbe o tabe. The effect will be greatest in the
middle tubes and will not only limit the total number of stages but will also resirict the operating
conditions, Utilizing Poisenilte’s Law, the pressure drop in the capillaries is equated to the
volumetric rate of tranisport 10 yield a set of » dme-dependent differental equations whose
solutions are complex exponentials having both an amplitude and phase component. If the
amplitude, g, represents the pumped volume per half eyele, then the maximum compression is
realized in the middle mbe with

2
¢ =af = a 1_J_[£2ﬂ.J {100

where V is the be volume, P, is the gas pressure, and 7 is the pump period. The quantity ¢
derives from the Poiseuille equation, ¢.g.,

x (.13332 x 10* (101)

= 1\l

with the capillary diameter, d, and length, {, in centimeters and the viscosity, 1., in poise at
temperature T, If the volume oo each side of the pump were exactly equal 1o the mibe volume,
then # couldd be replaced by » + 2 and an exact solution would result. ' Where the pump holdup
is a fraction, ¢, between 0 and 1 of the tube volume, a good approximation is just to replace a in
Eq. (28) with n + 2"

It is of course possible to design a trennschankel and/or operate itin such a manner that the
multiplicative factor, f, approaches zero and no transpert at all takes place in the middle tubes,
or a phase reversal results. van der Waerden has suggested that condinions be such that £ ~0.95
s0 that the diminution in the amplimde can be neglected.

The following three corrections for trennschaukel operations are applied to the measured
composition difference at the end of the experiment. Equation (92} must therefore be rewritten
in terms of this difference, e.g.,

r

1 + | Ax, (corr) ,.-‘xl(Tc)]

1+ :d x, (corr) fx, (Tc]]

(102)
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whare ( is the separation factor for the trennschaukel across » mbes and

34 (Tu) = (T [ /| (1 + €) 02 - (103)

A similiar expression holds for Ax, (corr) where x, = 1 - x,. The ¢lementary separation
factor is g = O/ n.

Azx, {corr) =

i) Approach to equilibrium, &:

The equations for the approach to equilibrium are derived from a concentration balance in
the n tubes and the pump volumes. The solution of the # + 2 differential equations is an
exponential with a superimposed sine wave due o pumping. Since equilibrium is approached
exponentially, itis reasonable to define an operating half-life for the experiment and operate for
2 sufficient number of half-lives so that equilibrium is closely approached. The expression for
the half-life is

2 2
tyy = (;sza ) mu] [+ Dix]) 2 (104)
where L is the tebe length and D, is the binary mixture diffusion coefficient at the pressure and

average temperamre of the experiment.

The equilibrinm half-life is calculated from the operating conditions and the correction
factor

5= (1 1 fzj”J (105)

{where N is the number of half-lives) is applied to the measured concentration difference.
ii} Back diffusion in the capillaries, £:

The major transport of either species due to thermal diffusion takes place in the tubes,
whaose cross section is large compared 10 that of the capillaries. There is, however, a finite
amount of material transported back throngh the capillaries which tends o decrease the
measured separation. A general transport equation for material shrough either the tubes or
capillaries is obtained by setting the rate of change of the composition over the volumne of a be
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or capillary equal to the sum of the molecular flax from Equation (86) plus the material
transported by the pump, Thus

H
d . z
AEJ‘K:& = a@ sih ot [K:[zo"‘q'Du[C:_K:]u (106)
0

where A is either the cross section of a tube or capillary, @ is the pumping frequency, a is the
pumped volume, K is the composition at time 7, € is the equilibrivm composition and £, K are
the spattal derivatves of € and K.

Solution of this wansport equation for the capillaries yields the correction factor
e=1- (m.;,nufsa:) (107)
with the variables as defined previously.
i1} Disturbance due 1o pumping, £
The final correction term is unusual in that it leads to an increase in the value of o, and was
first predicted theoretically rather than first being observed experimentally. It is obtained by
solving the general transpott equation in the wbes with simultancous thermal diffusion and

transport due to pumping, The solution of the equation is quite lengthy and leads to a correction
term, &, which is conveniently expressed in wrms of hyperbolic functions,

_an [_ sinh ¥ (1 -231} (108
v (1 - 25) sinh y
with
2 172 .
y= 142 (I mIZDm) (1 +i) {109)

and s the fraction of the total mbe length in each of the isothermal zones,

The experimental thermal diffusion factor is obtained from Equation (91) using the overall
separation factor, @, divided by the number of stages in the rennschaukel. Note that all of the
apparatus dimensions and operating paramaters appear only in the correction terms 8, £, { which
are applied to the measured composition difference at each end of the device. Equanion (91) is

oW
I
& = %_L 10
IH(THITC)

where n is the number of mebe/capillary stages in the experimental device.
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One example of a trennschaukel system, which was consttucted by Tayvlor et. al, [85], is
shown in Figure 17 and has been in operation for quite a few years. The device contains twenty
Inconel tabe/capillary pairs welded into two massive toroidal nickel blocks, The gas is swing
to-and-fro by a welded metal bellows pump mounted on the 1op block and the entire apparatus
is mounted in an environmental chamber. The bottom block, which is heavily insulated,
contains passages through which either compressed air or cold LN, vapors are circulated by
means of a swrrounding manifold. The system can be operated in a temperature rangs from
approximately 200 to 1000K. Samples are analyzed by mass spectromerric analysis.

A trennschaunkel designed for low temperature operation is shown in Figure 18 [86]. This
particular device has t#n wbes in a circular configuration and is placed inside a cryostat. Both
top and bottom blocks are wound with heater wire and instrumented with platinom and carbon
reststors for temperature measurement and control. The support for the entire apparatus inside
the cryostat is a Cryotip®@ refrigerator passing through the toroidal top block and attached to the
lower biock. The temperatiure differential may thea be established in either of two ways: 1}a
cryogenic fluid (LHe, LNe, LN,, etc.) is filled well up the botiom block and it’s temperature is

fa )

Figore 17 - High iemperaturs nickelfincone! rennschankel used by Taylor et, al. [B5] 1o measare e for numeroas
Zas mixtumes in the tempersmre ange 200 o 1000K, A} 20-ube device with massive nickel blocks conpecied by
inconel mbes and capillaries; B) drive shafi w pump mechanisin; C) bellows pump; D} lower block cooling
manifcld; E) sampling paris; F) vacuum system; and G) feed gas supply.
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Figure 18 = Low temperature 10-tube trennschaukel [86] in-
strumented with thermistors for “in-sim™ measuremeant of the
separation, The components are: A} sensor for unknown com-
position at T,,; B) seasor in reference gasak 7 C} sensor for
unknown compesition at T D) sensor in reference gasat T
and E) bellows pamp that swings gas.

regulated by tineans of the vapor pressure of the liquid, or 2) the bottom block is cooled by Soule-
Thomson expansion in the Cryotip® refrigerator. In either case AT is established by heating the
top block. The compositions in this device may be sampled “in sitn” by strategicalty placed
thermistors ot by samples withdrawn for mass specographic analysis. The temperature range
accessible is approxtmately 2 10 250K,

As was the case with the rwo-bulb method, the accuracy with which a, may be determined
is affected by the binary gas mixiare being investigated and, consequently, the analytical
method utilized 10 determine the separation, The number of tubes employed helps this and
under most circumstances an accuracy of approximately + 5 10 7% should be artainable. Excep-
tion 10 this would be measurements made at extreme temperature where temperature control and
uniformity is difficult, or when the mass difference of the components is quite small.

A number of other groups have employed “swing separatows™ in thermal diffugion
research, Among these are Watson and coworkers {87-89] at Yale University, Kistemnaker's
group [90-93] at FOM-Institute, and researchers at the Gulbenkian Institute in Lisbor [94].
Qost and Haring [951 proposed an interesting variation of the weanschaukel which utilizes the
thermo-syphon effect to transport material from one tube to the next instead of pumping to and
fro. The method eliminates some of the transport corrections discussed zbove but apparently
complicates the experimental apparatus considerably. usoations of the experimental equip-
ment are given in the references.
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L.2.3 The Thermal Diffasion Column

A third experimental method which may be emnployed to measure thermal diffusion factors
is the “mennrohr™ or therma! diffusion column, the invention of which is atribwied to Clusing
and Dickel [96). Afier the initial discovery of the thermal diffusion effect, little progress was
made on the application of a temperature gradient to practical separations of gas mixrres, for
example rare isotopes, because eatly workers quickly recognized that a single stage separation
was very smalt, even for large temperature differences. Shontly before World War IT Closivs
and Dickel discovered that the thermal diffusion separation could be enhanced wremendously by
hanging a hot wire in: a tall, thin vertical column and using the natoral convection currents st up
to sweep the light component at the hot wire up the column and the beavy component at the cold
wall down,

A rigorous mathematical treatment of the hot wire colwnn i3 a formidable task and
does not readily yield 10 a solution unless simplifying assumptions are made. Fumry, Jones
and Onsager [97] first weated meathematically the hydrodynamical problem of convection
between plane-paraile]l walls, then Furry and Jones [98] extended the theory to the cylimdrical
case. A review article by Jones and Furry [99] nicely summarized the development of column
theory immediately following World War I1.

The behavior of the column is based on the hydrodynamic equation representing the
convection curreni sct up berween the hot and cold walls. The gas mixture rises at the hot wall
and descends along the cold wall approximately as shown in Figure 19. The efiect of thermal
diffusion is to preferentially drive the lighter molecules to the hot region where they enter the
rising convection curent. The lighter molecules are carried upward and the heavier ones are
carried downward so that a concentration gradicnt is established in the vertical direction, The
“unmixing” is opposed by ordinary diffusion and by convection which tend 1o neutralize any
s¢paration along the column. The steady state concengration gradient is expressible as a parsial
differential equation in two variables (radial and axial coordinates) whose explicit form results
from the driving force of thermal diffusion and the remixing effects of ordinary diffusion and
convection. The FIO theory [97] considerably simplified the computational problems by de-
coupling the ansverse and axial parts of the transport by means of an assumption regarding the
radial compositon distribution. FJO assumed the change of composition in the radial direction
is small so that except when multiplied by the convective flow rate, the composition is a
constant across the annulus. The FIO theory was developed during World War IT and was
specifically derived to describe column behavior for the separaton of heavy isotopes,
namely ”’U‘Fﬁ /#*UF,.
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Fignre 19 — The form of the convection carrenis berween
the baot and cold walls of the separagdon ¢olumn, The sym-
memicat foon indicated by the arrows s only appeosimans;
for large differences in the radii and/cr vemperature differ-
ence, the curve begounas significantly asymmetric.

Hot Wall

Cold Wall

) _

T

More recently Rutherford [100] has extended the previous theory to light isotopes by
changing the reference frame of the flux equation to the center-of+- mass system and writing the
transport equation below in terms of the mass fraction. He reports the transport, T, 10 be:

T, = Hw} (1 - wl)— (Kc-t- K‘)(dwlfdz) : {111)

with, respectively, the initial transport coefficient

TH
H =2z [ .G ;r] dT
_[ ;. [%9O ; (112)

the convective remixing coefficient

K= (2::;*;2) r

N
TE

rGi(T)Dmp]dT , 13)

and the diffusive remixing coefficient
TH

- 2
Kd-(znfﬂ) -L kD pr dT+ (114)

C

Here T, and T, are the cold and hot wall temperatures, o, is the thermal diffusion factor,
2@ is the radial heat flow per onit length per second, x'is the thermal conductivity, D, the
diffusion coefficient, p the density, and r is the radial coordinate.
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The quantity G(T) is related to the mass circulation rate in the column and is given by
solution of the fourth onder differential equation

24 1 d nd 1 dG _ _ _dp (115)

-8
dT rix dT xdT prrl 4T dT

where g is the acceleranion of gravity and 17 is the viscosity. The boundary condinons require
that 7 and dG / dT are zero at the walls, It should be noted that use kas been made of the relauon

T
1
in [rfch = - E IT K'dT (l 16)

19

which transforms the mdiai coordinate to temperature.

The theory of the T.D. column is complicated and to extract o, from column measurements
requires a carefully constructed column as well as knowledge of certain physical properties, e.g.
the thermal conductivity, viscosity, mass diffusion coefficient and gas density of the mixture.
The cardy workers recognized these difficulties and generally utilized the column methed when
its large separziory power was required as in the case of isobaric mixmres or isotopes where the
mass difference was very smeall. Relative measurements were made by wilizing a thermal
diffusion factor obtained from some other source and ¢valuating column performance at the
maximum of the separation curve. Other mixtures were then introduced into the column and the
relative separation at the maximum obtained. Two notable examples of this method were the
waork of Schirdewahn et. al. [101] on the hydrogen isotopes and de Vries and Haring [102] on
isotopicaily substimted carbon monoxide. The apparatus of Schirdewahn et. al. is shown
in Figure 20. Both groups used glass columns with hot wires, however de Vries and Hanng
achieved additional separation by connecting thwee columns in series and swinging them in
trennschaukel fashion.

Other groups that have utilized the column method for determining ¢, are Raman et.
al. [103, 104], Kirch and Schiitte [105] on isotopic UF,, and Savirén and cowarkers [106-108]
who stadied unlike and isotopic mixtures of the noble gases.

Rutherford [109] has constructed a precision thermal diffusion column and developed 2
method for measuring absolute values of o, from the column, a diagram of which is shown in
Figure 21. He has foond that the theory of the thermal diffusion column is much more accurate
than previously supposed and has suggested that previous discrepancies berween experiment
and theory were due to imprecise knowledge of the column geomstry and operating conditions
and the use of inaccurate values of the gas properties in the theoretical expressions. His method
is 10 maks static separation measurements {net mass flow = Q) in the column as a function
of pressure. In an earlier paper [110] he had shown that accurate values of the initial
mansport coefficient could be obtained under static conditons by using the pressure-
independent diffusive remixing coefficient, K, calculated from theory. This requires, of
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Figure 20 = Thermal diffusion column used by Schirdewahn
et al. [10I] for determining &, in hydrogen issope mixiwres.
The components ars: A) wngsica wire; B} vacunm and hydro-
gen; C) vacuum; D) hot wirg; E) outer wall of column; F) gas
inler; &) ampouls; H) mercury bath; I) convective circuil;
K) connection to mersury manometer; and L, L7) inlel and ontley
of the cooting water.

course, that reliable values of D, are available, or can be calculated from kinetic theory.
Rutherford writes Equations (112) and {113) in reduced form, e.g.,

H = (zmngi"] _L{T) dT = &, ¢ am
TH
where £ is defined by
§- 25 TEG(TndT- (118)
4 2’

53



THERMODYNAMICS OF THERMAL DIFFUSION

Figure 21 = Precision thermal diffusion colomn baalt
by Rauherford [109] for measuring sbsolute values of
... The components are: A, A7) water ilet and oulet;
B) electrical leads; C) thenmoconpks; D) precision dial
manometer, E) gas supply; F) resistance thermometer;
) sample ports; H} to hot wall iemperamre controller;
and I) weight,

In Equation (117} a. is the mean thermal diffusion factor between T, and T, and

K.= (nfp**g) j

TH
Under static condtions Equation {111) then becomes

TC
[ "GimﬂuPJ dT (119)

Jr'-.!",t:‘zwvlivv2 - (K;:p‘l + Eﬂ) dw fdz = 0 (120)
The solution of Equation (120) is
(H'm'd) P’
Ing/L = (121)

(xo/k)p® v

W



THERM ODYNAMICS OF THERMAL DIFFUSION

where L i5 the length of the column and g is the separation factor defined by

", ¥
1 il — . {122)
Wale=t | W2 |e=0

Now the ratios (H7K)__and (K /K ) __ are determined by a nonlinear least squares fit to

o«

Equation (121) where ing ﬁ has been derrmined as a function of pressure. Recognizing that

0 =

H =

H
Kd

/[ (123)
op

the numerical value of &_ is obtained from Equation (117) by evaluating & theoreticaily.
Rutherford then checks his column performance by comparing the experimental value of X /X,
to the corresponding theoretical value. Because both K and K, are independent of ., this com-
parison should provide a good check of colurnn operation. It should also be noted that in using
this method, T, and T, shouid not be too far apan, so that a reasonably accurate average
temperature can be assigned to the mean value, &_. Results obtained by this method were
found 10 be in excellent agreement with measurements made in a swing separator [83]. The
separation power of thermal column minirnizes the analytical problem, however, one roust have
an accurate knowledge of the other manspont properties. Rutherford [100] reports an uncer-
tainty of £ 9% for helium isotopes (propetties weil known) and expects an accuracy of approxi-
mately 10 t0 15% for heavier systems.

1.2.4 The Dufour Effect

At the beginning of this report the equivaience of the coefficient of thermal diffusion, D7, 1o
that of the Dufour coefficient, D°, was shown through use of the Onsager reciprocal relation,
Equations (34) and (35). Because of this equivalence it is possible to experimentally determine
the thermal diffusion factor by measuring the temperature difference produced by the mixing of
two gases. In a classic piece of work, Waldmann [111] constructed the apparams shown in
Figure 22 in which he determined o for nine pairs of gases. He was even abie to observe the
inverse temperamre effect with Ar/CO, in which e, decreases with increasing temperature,

The cell consisted of a metal cylinder with two holes approximately 0.75 cm diameater bored
side-by-side down the length of the cylinder. A slide, s, with tightly stretched mesh, N, was
slipped longitudinally down the cylinder separating the two holes to provide the diffusion path.
Temperatures were measuresd by the change in resistance of extremely fine gold wires whose
Tesistance was proportionat 1o the gas temperature over the range 20 to 373K, By means of a
Wheatstone Widge and galvanometer and, afier calibration at a number of fixed points,
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Figure 22 — Cross sectiong of the Dufour cell constructed by Wakimann [101]. The cross section through a~b is
shown in the right hand view and that through c—d in the Yeft hand view. The componenis ars: Rm}ﬂ.'?ﬁ cm dis.
parallel tbes; Z, ) copper cooling coils for gas entry; A) exit ling for ihe mixed gases: IV} temperature sersing gold
wires; K) clamps bolding the gold wires S) slide; N} diffusion grid mountad in $); F) cylinder head mounied on
flange FY; and r, .} German silver mibes/electrical pass-throughs for the temperature sensing wires.

Waldmann was able to measure changes in the gas iemperature on the order of 0.002K in each
of the two gas chambers.

The experiments were conducted by flowing each gas down a tube and allowing them to
diffuse together, thereby establishing a slight temperature difference between the two gold
wires. The siream velocity, v, of the gas was progressively increased untl a maximum was
observed in the temperature in the upper mbe and a correspording minimurm in the lower tube,
¢ g (T —T)max and (T - T)min respectively, where T 15 the initial gas temperature. The
starting point for derivation of the working equanons for the experiment lies in applying
Enskog's general equation of change 1o the mass and energy, ¢. 2.

&t- -
Py +divy = 0 (nasy (124)
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pj—?-%+d&v3:=ﬂ (energy) (125)

where H is the molar enthalpy. Utilizing the ideal gas law and the transport properties from the
kinetic theory of dilate gases, Waldmanr obtained the tirne dependent differential equation for
the change in composition and semperature as a function of the experimental parameters and
MAcroscopic properties. These equahions are:

dx
1 _ {126)
F = DE z].rl
and
T dx
77 = KAT + 8T T 8T,- 2D, grad?x, (137)
whaere
K = x/n Ep (128)
67, = a, RTIC, _ {129)
8T, = bRTIVT, (130}
] ] ] ]
b = B, -28,+8, (131}
- ol » aB.L.E
8% =5-T = = E, B oxx, = § [‘Bik— TBT—] XX, (132)
with the B, being the second virial coefficients for the pure components and their mixuure,
C tl;: heat capacity at constant pressure, R the gas constant, & the thermal conductivity,

and V the molar volume atp, 7.

Mow Waldmann noted that the last term in Equation (127} is due to the heat of mixing and
can be negligible if the pressure is sufficiently low. Furthermore the gases are introduced into
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gach mbe with 2 velocity v in the + z direction along the axis of the ¢cylinder. Equations (126)
and (127) ransform 1o

a.rl ale ale (133)
Ve " Pulim e

aT T RnT 9x,

gl _ o et 2 i 1
v 3z K [312 + 8}12] + ETa vaz (134}

Diffugion takes place at the boundary before reaching the wires in the middle of the wbes
and temperatire extremes (maximum above; minimum below) are developed as a function of
gas flow velocity. Upon transforming to dimensionless variables and applying the boundary
conditions, Waldmann obtained the following expression relating the thermal diffusion factor 1o
the measured emperature extreme and the ather experimental parameters.

(T T -1 Lo [xl{w} - .rl{-w}J Em[ﬁ'wu) (135)
P .

The function 8__ must be determined at various values of (X / D,,) by means of a calibration
gas, This, of course, means that Waldmann’s method is a relative method. 1t is diffienlt o
assign an experimental uncertainty to this method as such a determination would depend on the
absolute accuracy of the properties of the calibration gas. Based on 2 comparison with
other Ar/CO, data, it would appear that the method determines or within approximately
£ 10%.
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SYMBOL TABLE
A cross sectional area of mbe (or capillary) (m®)
A, kineti¢ theory determinant element (dimensionless)
a volume pumped per half cycle (m*) (see context)
a dimension of diffusion cell {m)
a maximum compression in middle table (m?) {ses context)
B second virial coefficient (m? mol) '
B’ defined by Eq. (132) (m® mol™)
b* defined by Eq. (131) (m® mol)

composition (molar percentage)

spatial derivative of C {molar percentage m™)

molar heat capacity (Jmel™ K

Poisenille’s constant of viscous flow (m?* 57 Pa™') (see conext)
concentration {mol m)

specific heat at constant pressure (J kg K)

diffusion coefficient (tm? s™)

coefficient of thermal diffusion (m? K- ¢7)

Dufour coefficient (m? K s7)

diffusion coefficient (m?s)

Dufour coefficient (m? K 574

cocfficient of thermal diffusion (m? K- s71)

diameter of capillary (m)

electrode potential (V)

ratio of bellows 1o tube volume, V7V (dimenstonless)
compression factor for the middle tube when effect 15 maximized (dimensionless)

Qe megygyygyus e e 6o

Gibbs free energy (I}
G(T)  function related to mass circulation rate (see Eq. 113)
g acceleration due to graviry (m s~)
2(1) time function defined in Eq. (52) {dimensionless)
be ! enthalpy (I} (see context}
H initial transport coefficient (kg ') (see context)
ITII partial molar enthalpy of component i (J mol™)
Hj defined by Eq. {14) {J mol™)
I

flux of matter {rnol m2 57" or kg m? s71) {see context)
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flux of heat {J o2 3°77)

flux of entropy (T K™ m2s™)

molar composition at time t (dimensionless)
constant defined by Eq, (128)

convective remixing coefficient (kg m 57}
diffusive remixing coefficient (kg m s™)

spatial derivative of K (m™)

thermal diffusion ratio {(dimensionlass)

Boltzmann constant (J K-')

length of connecting tube {m)

phenomenclogical coefficient

length of capillary (m)

molar mass (kg mol™)

molality (mol kg™)

number of half-lives (dimenzionless)

total molecular density in the connecting wbe (mol m™)
refractive index (dimensionless) (see context)

total number of mwbes {dimensionless) (see context)
runtber density (mol m™)

hydration number {dimensionless)

number density of the lighter component in the connecting tube (mol m™)

pressure (Pa)

initial or equilibrinm pressure (Pa)

pressure (Pa)

radial heat flow (Js°7) (see context)

overall separation factor {dimensionless) (see coneext)
heat (enthalpy) of ransport (J mol™)
elementary separation factor {dimensionless)
heat content per unit volume {J m)
resistance {ohm)

gas constant (J K mol ™)

Stokes law radius {m)

radial coordinate (m)

radius of hot wall {m)

entropy (J K-
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enwopy per unit voiume (¥ m= K1)

entropy of transport (J mol™ K1)

fraction of total tube length in each isothermal zone {dimensionless)
temperaturs (K)

initial gas remperature (K)

cold wall temmperature (K)

hot wall temperamre (K)

time for a complete pump ¢ycle (s)

time {s) (see context)

Celsius temnperature {°C) (see context)

gas volume per trbe {m?} {see context)

volume (i) (see context)

molar volome (n® mol ')

volume of cold bulb (m*)

volume of hot bulb (m¥)

voilume of connecting mbe (m?)

velocity (m s%)

stream velocity (m s™)

Washburn number (dimensionless)

mass fraction of component i (dimensioniess)

thermodynamic driving force

mole fraction of light component in cold bulb (dimensionless)
mole fraction of light component in feed mixture {dimmensionless)
mole fraction of light component in hot bulb (dimensionless)
mole fraction of component i (dimensionkess)

mole fraction of light component in conneciing tube (dimensionless)
resistance function defined by Eq. (61) (dimensionless)

ionic valence (dimensionless)

linear varizble {m)

thermal diffusion factor (dimensionless)

“effective” or average thermal diffusion factor (dimensionless)
defined by Eq. (65)

column fransport

change in mole fraction per umit area (nr?)

cortection factor for appreach to equilibrium (dimensionless)
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terperatire independent “diffusion thermoeffect™, defined by Eq. {129) (K)
ternperature dependent “real” effect, defined by Eq. (130} (K)
thermoelectric power (¥ K1) (see context)

dielectric constant (F m™) {see context)

correction factor for back diffusion in the capillaries (dimensionless) {(see context)
correction facior for disturbance due to pumping (dimensionless)

viscosity of gas at operating temperatore (N s m™®)

relaxation time (s)

thermal conductivity {W m™' K™')

ionic conductivity (S m? mol-)

molar conductivity (8 m? mol™)

chemical potential (T mol-}

electrochemical potential (J mol-)

amount of substance (mnol)

density (kg m)

Soret coefhicient (K1)

thermal relaxation time (s)

entropy source term (J 5 K-

volume fraction (dimesionless)

pumping frequency (s™)
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