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SUBJECT : Time Behavior of a Critical Reactor Pulsed with a Large Square

Wave Source.

Reference: NAM No. 3 by J. Hadley, "Reactor Vulnerability to Neutron Flux".

In the referenced memo a discussion is given of what happens to
the power level of a reactor when an instantaneous very large neutron source
is introduced. The motivation for the problem ariées from the question of what
happens, #hen e nuelear bomb is detonated near 2 reactor powered missile. ..

The present note looks at the same problem as thatvﬁhich ié
discussed in NAM No. 3 but in slightly more detail. The results obtained are
essentially the same as thoge of NAM No. 3; somewhat more attention 1s given to
the nature of the assumptions made.

The kinetics model used is the space-time separable, one dJdelayed
group model. Space-time separability is almost certainly a poor assumption in
this case. When a very large neutron wavefront impinges on a reactor, the
subsequent short time behavior ean hardly be that predicted by this simple

model. One would expect very large local power densities in one part of the

core before another part would see anything unusual. The other assumption,
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one delayed group, is not necessary buts~makes the mathematics simpler, and

in view of the first assumption is probably quitem éccep‘ba’ble. In spite bf

these simplifications the model gives ﬁesults which should have qualitative

physical relevance.

The problem to be solved is:
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total reactor neutron population at time t
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the one delayed group decay constant
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The forcing function is assumed to be a square wave beginning at time t = O

and ending at time t = ¢
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To solve Eq. 1 and 2 employ the Laplace transform technique.

The transformed equations are:
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Where S = independent varia’ble in transform space
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Carrying out the integration indicated in (5) yields
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Equations (5‘) and (4) are simultaneous linear equations in 72 andC—iSolving
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which with manipulation and the definition
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Before taking the inverse transform of (6) it is convenient to assume K .= 1.

~This isn't necessary as far as finding the inverse transform is concerned, but
it does make the result simpler, and this assumption will have to be made sooner
or later anyway in order to eliminate Co from the solution. That is, it will

i1 be mecessary to.assume that the resctor has been exactly c¥itical for a long

enough time prior to the pulse to insure that precursor population is saturated.
In that case Co is simply related to ng, and can be eliminated from the result.
With the assumption K = 1 the denominator common to each of the three terms in

(6) becomes
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and with the definition A = - ((é‘/' ,J\) plus more manipulation, {6) teakes

a form which is convenient for finding the inverse transform
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From tables of Laplace transforms, one finds the inverse transform of (7)
to be
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where u(t-t, ) = unit step function shifted t, units to the right of the
origin, i.e.‘
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Now invoke the assumption that k was exactly one for some time prior to

the arrival of the source pulse. In that case at time t = Q.
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Substitution of (9) into (8) and further manipulation yields the following
two equations for the neutron population as a function of time. The first

is valid during the source pulse time interval the second is valid after
the pulse is removed.
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the reactor time behavior.
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That Eq. 10 is a solution to the system (1) and (2) with the
added assumption of steady state prior to t = O can be verified by
substitution into (1) and (2). This method of checking requires first
finding the solutlon for C(t), however. This won’t be done here. It is

s

sufficient to check the behavior of 10.1 and 10.2 in some 11miting cases.

I

1. At t=0 72/0] P20

70.7

2. Att=1t, g i.e. at the end of the pulse, both 10.1 and

10.2 give the same result for n(t).
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After the disturbance has passed; the steady state neutron population has an added
increment of
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Page 7.

Notice that a hypothetical reactor with no delayed fraction (}efvcﬁ
would have an increase in neutron population equal to the totsal
number of neutrons contained in the pulse. Notice also that

the added increment in population increases with an increase

in }2*' . Evidently a longer prompt lifetime reactor

"remembers” its past history better than a short lifetime

reactor does.

L, 1f Z 2 the highest neutron population attained
T

is 7z (7:’,)]= Vo + Ao T, . That is, if the pulse width

70,/
is small compared to the reasctor characteristic time, the peak

power is independent of the prompt lifetime and delayed group

chaiacteristics.

As far as damage to the reactor is concerned an important quantity
is the total amount of energy generated during the transient resulting from
the source pulse. The assumption that power is proportional to neutron
populatlon allows calculatlon of this quantlty. It is convenient, first,

" to put equations 10.1 and 10.2 into a dimensionless form. Define the & i i i
following:
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With these definitions and a little more manipulation, 10.1 and 10.2

become
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The left haend sides of these équations are dimensionless and are proportional
to the incremental increase in power level. Preliminary to determining the
energy generated by the pulse, consider the rough sketch below of Eq. 11.
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The energy generated during the transient is proportional to the area under
the curve shown in the figure. In computing the contribution due to the
decay after the source is removed it is convenient to subtract out the small
residual which persists. as 6. —2 oo , This allows the upper limit of
integration to extend to oo and yields & closed form result. Hence, the
area computed in the following calculation is the one shaded in the sketch -
the long time contribution is subtracted out.
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The contribution that was subtracted out to make the integration convenient
can be added back in at this point. In order to do this it is necessary
to define a time & after which the disturbance is assumed to be non-
existent. If @ = &, + 5 , ‘the tail of the disturbance is essentially
gone ( & ° = 0oo7). So if the disturbance is over at D= &, +5 ,

the contribution to be added to Eg. 12 is 5 A 7 . Then the total
extra energy generated:by the disturbance is proportional to

& =6, +5
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Changing the form of (13) back to familiar reactor parameters yields
2
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The term within the parentheses in Eg. 14 is a function of pulse width,
reactor prompt lifetime and reactor delsyed group characteristics. In fact,
however, for any reasonable values which these parameters may assume the
term in parenthesis isn't a function of any of them. The only term of
significance is the first. TFor example, assume the same values for reactor
parameters as those used in NAM No. 3 (,Z*: ;0”7  sec, ﬁ:o.oo-;) AzO. foee ) o

Then the parenthesis term becomes
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Notice that the duration of the pulse would have to be a few seconds before
a significant contribution would arise. This is much longer than any pulse
to be expected from a nuclear explosion.

Finally, the total extra energy generated due to the large pulse of

neutrons is

AE = (7 /40{/)

i
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Where C is the proportionality factor between total reactor neutron population
and reactor power. This result, except for the appearance of P, which is

small compared to _ji is identical to the result obtained in NAM No. 3.
W ' |
Discussion

The resulis arrived at sbove were based upon the assumption of a
square wave forcing function. However, they suggest that for any sensible
pulse widths to be expected the total energy generated is probsbly quite
insensitive to the shape of the pulse. The peak power attained is somewhat

more sensitive to pulse width which suggests that peak power in the general
case would be sensitive to pulse shape.
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