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COMPARISON OF u23502, 023302 ARD Pu?Py

FUELED CORES FOR FAST COMPACT REACTORS

By
R. M, Hiatt

ABSTRACT

A comparison of U23:'02, U23502, and Pu239H molybdenum cermet
fnelings in lithium cocled fast compact reactors operating at compareble
fuel temperatures, cocolent pumping powers, and reactor poser levels ig
pregsented. A 0 th reactor power level served as the basis for the
study end graphical representation of the results effecting reactor
core size, volume, and weight are shown for two models, The first model
consisted of coolaut tubes arranged in & triangular lattice and imbedded
in a fuel matrix, and the second, coatained fueled rods arranged in a
triangular erray. A computer code INCOMP, s steady state heat transfer

code written in Fortren IV for the IBM 7090, was used to generate data
for the analysis.
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compARTSON oF 1?30, u233o2 D Pu3%

FUELED CORES FOR FAST COMPACT REACTORS

R. M, Hiatt

1.0 INTRODUCTION

Beceause of the importance of savings in size and weight of nuclear
power systems for space missions, there has been some interest in using

11233 or plutonium as the fissile material in fast reactors for this ap=-

Plication. Although either of these fuels will msake possible s fast

reactor design with lower critical masss then a 11235 fueled reactor, the
totel savings in size and weight will be mitigated by other design con-
siderations, chiefly heat removal or fuel endurance. A previous study(l)
compared core design for a gas-cooled fast reactor based on nuclear,
thermal, and aerodynamic considerations. The reactor used as a basis
for the study was the GE-NMPO 710 Reactor. The study reported here
extends the investigation to _}iquid metul~cooled reactors with tﬁo fuel

geometries., The work was performed during 1966,

2.0 SCOPE OF STUDY

A 10 Wt fast compact reactor cooled with lithium and fueled with
50 vol% UO,-molybdenum cermet was used as the model. Although the study

is a comparison of U233 end 0235 fuels, data on plutonium fueled cores

are also presented,
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Identification of eritical cores is determined for two fuel
geometries, pins and internally-cooled hexagons, and comparison is made
between the fuels and gecmetries at conditions of three maximum fuel
temperatures and several coolant pumping powers., The data for the study
vere obtained from "INCOMP", a computer code written primarily for liquid
coolents. Study obJectives were:

o Compare the effect of fissile material choice on size and

weight of eritical liquid metal-cooled cores.

¢ Compare two core geometries, internally-cwoled and fuel pin

models.

o To identify useful cores sufficiently so that a subsequent

compariscn of transient behavior of 0233, 0235 fueled reactors

may be accomplished.

The following core characteristics were selected as representative
of advanced high temperature liguid metal-cooled reactors and hence
appropriate to this study.

TABLE 2.0-1

CORE CHARACTERISTICS FOR STUDY DESIGN POIRTS

ke o 1.0
Power 10 th
Coolant Lithium
Q
Inlet Temperature 97 ¢ (1700 °1;)
Exit Temperature 1093 C (2000 F)
Total Pressure Ratio* 1.0 to .T5
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TABLE 2.0-1 {contd.)

Fuel 50 vol% UOa-Mo CERMET

Q -]
Average Maximum Fuel Temperature 1149-1649 C (2100-3000 F)

® Total pressure ratio is defined as the exit coolant

stagnation pressure divided by the inlet stagnation
pressure.

The 10 th reactor size was selected since it is large enough

that the reactor size is significantly aeffected by thermal and hydr.uulic

degign factors, The fuel material and designs were chosen only on these

bases, and not on consideration of fuel endurance. It is recognized

that in a reactor of this asize, the fuel element composition and design
required for satisfactory endurance can have an important effect on the

relative size of the cores considered in this study. However, since

fuel performance under irradiation is not well characterizedq these were
therefore considered beyond the scope of this study. When adequate data

on fuel performance become avalilable, they should be incorporated into a

reagsesament of these results.,

2.1 DESCRIPTION OF THE MODELS

A general description of internally-cooled cores is given in

a previous report( ‘1)., The £gllowing definitions are made for

convenience and to differentiate between the two core geametries

used in this study.
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The fuel pin model consists of a hexagnal core arrangement
with hexagonal subassemblies containing fuel _pins in eguilateral
trianguler arrsy and with pin spacing maintained by wire-wrapping
about each »in es showr in Figures C-1.1 snd C-1.3.% The flats
dimension in this model is comnsidered to be approximately twice
the size of its equivalent component (fuel element) in the internal-~
ly-cooled core.

The internally-cooled core has the same general description
as the fuel pin model. It consists of & hexagonal core arrangement
containing hexegonal subassemvlies defined as fuel elements. The
fuel elements contain coolant tubes in equilateral triangular array
embedded in a fuel matrix thus differing from the fuel pin subas-

sembly. Figures C-1l.1 and C-1.2% ghow typical internally-cooled

cores,

2:2 BASIS OF. COMPARISON

Core design parameters forming a base for fuel comparigon

were meximum fuel temperature, coolant pumping power, and reactor

power. These parameters describe reactor performance requirements
or limits sufficiently to determine core diameter, volume, and

weight for the purpose of this study.

# See Appendix C
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2,3 STUDY METHOD

BNWL=605

Data for a comparative study of internmally-cooled 0235, 3233,
and Pu239 fuels in a fast compact gas-cooled reactor were ca.lculated(l)
using a computer code, "SWISSCEIEESE“(E), written primarily for a
Eydraulic and heat transfer analysis of ges-cooled reactors. SWISS-
CHEESE was modified to facilitate liquid cooclants and used in this
study. This modified version, callsd INCOMP, was used to calculate
data based on an axial power profile and critical core sizes previously
defined.(l)

Interpretation of Gata obtained from INCOMP was made by‘ plotting
the various parameters of interest versus a common paremeter, (l-cermet

fraction).* This made possible a ecrogs-reference index relaiing the

parameters.

2.4 ASSUMPTIONS

For expediency, it was desired to use the results of the nuclear
calculations previously made for the gas-cooled reactor study if these
would not introduce serious error into the comparative results, Since

the previous nuclear calculations were based on tungsten diluent fuels

in internelly gas-cooled cores, several assumptions were necessary to

* (cermet fraction) is defined to be the volumetric core fraction
conteining 100% theoretical dense fuel.
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use the critical core sizes cbtained in that study. Selection of
molybdenum over tungsten as the fuel diluent, because of its lower
density, is considered to have a negligible effect on the nuclear
conditions in the core. However, substitution of lithium for the
gas coclant and conversion of the internally-cooled fuel geometries
to an equivalent fuel pin model made it necessary to check .Lhe
assumption that there would be no serious effect on core criticality.
Table 2.L-1 shows the variation in k g Obtained for three 50 vol%
tungsten cermets in a previously defined internally gas-cooled
core compared to keff (adjusted to 1.0) for a similar pin model
fueled with a 50 vol% molybdenum cermet which was lithium cooled.
A fundamental mode crode, FCC(3), developed at BNW was used to generate
the data. The results show the change in keff to be slightly greater
for the U235 fueled core with values of 1.0 to 0.967 being indicated for
the two models. This represents a 10% error in critical mass but was
considered to be an acceptable upper limit of error for the purpose
of this study commensurate with the graphical presentation of t'.e
results.

Values of 1.0 to 0.991, and 1.0 to 0.995 were experierced for

U233 and Pu239 fueled cores respectively and represent only e 1%

error in critical mass. Since the variestions are within the accuracy

of the graphs and have little effect on critical core sizing, the
hydraulic and thermal analyses are considered to be appropriste for the

two core geametries and complete nuclear sizing calculations were not

JECLASSIFIED
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Ancther necessary assumption resulted fram the method used to
analytically define the subelements in the two core geometries. The
internally-cocled core maintained a constant value of 1,5 inches for
the flats dimension, thus allowing the number of fuel elements to vary
with chan; es in (J=cermet fraction). However, subassemblies in the
pin core can be larger, appiroximately twice the size of its equivalent
fuel element in the internally-cooled core, and thug there is 2 decrease
in the space area requirement for thermal expansion between the sub-
elements. The selection of a constant number of subassemblies was
considered to best represent the pin model and the flats dimension
was allowed to very. The assumption was mede that this would not
appreciably change the value of (l-cermet fraction) which is en im-
portant parameter relating the two fuel geometries and that a compa-
rable basis for core comparison between the two models is maintained.

Since the axial power distribution curve previously reported( 2)
was available end shows its maximum power peaking to occur downstream
from the core center, it was used in this study with the assumption
that its use would cause oly slightly higher maximum fuel temperatures
and that the effect on core size and weight considerations would be

negligible. The following core gecmetries end conditions (Table 2, 4-2)

vere selected as being reasonable model representations,
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TABIE 2,4=2
COMPARISON OF CORE PARAMETERS USED AS A BASIS
w R

FOR INVESTIGATING INTERNALLY-COOLED AND FUEL PIN CORE GEOMETRIES
IN A FAST COMPACT LITHIUM-COOLED FEACTOR
“m

Flats Dimension

Rumber Fuel Elements of Subsassemblies
Fueling

Cermet Density (% of Theoretical)
Coolant Tube Wall Thickness (in.)
Fuel Rod Clad Thickness (in.)
Sube lement Spacing

Pin Spacing Meintenence by
Length /Diameter Ratio

Coolant Inlet Pressure Drop

Coolant Exit Pressure Drop

Intemsnle-Cooled

1.5 inches
Varied

50 vol% fissile
compcound

95

15 nils

L% Flats Dimension

J.

1.5 inlet velocity
heads

1.0 exit velocity
heads

BNWL-605

Pin Model
Varied

19

50 vol¥ fissile
compound

95

15 mils
U7 Flats Dimension
Wire Spacers

1

1.5 inlet velocity
heads

1.0 exit velocity
heads

The high specific heat, low vapor pressure, snd light weight of

lithium meke its usage, as a reactor coolant, most desiraeble, The

dependence of heat removal from the fuels considered in this study was found

to be a weak function of the convective film coefficient and therefore a con-

]
stant value of 32,000 Btu/hr/ft F(M was selected as appropriate, The values
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of the friction factors used were those found in the literature for
smooth pipes(s)a The additional pressure drop atuributed to the wire

wrap spacers in the fuel pin «eometry was calculated according to

experimental results reported in HW-65173 Rev(6)

SULTS
3.1 SUMMARY OF MAJOR RESULTS

3.1.1 Critical Core Parameters

Critical core parameters considered to be of major
importence are diameter, volume, weight, and the guantity
of fissile matter present. A basis for interpretation is
formed by plotting these parameters vs. (l-cermet fraction)
for the three fuels, Figures I-1 through I-3 and P-1 through
P-3* show these results for the two models at maximum fuel
temperatures of 2100, 2500, and 3000 °F. Plotted on these
curves are _ .es of constant pressure ratio and exit veloeity.

Conaltions for eriticality ere assumed with no consideretion

for endurance limits.

3.1.2 Fueling Comparison
A general observation of Figures I-1 through I-3; and

P-1 through P-=3, shows that as the maximum fuel temperatures

# ( (1) refers to internally cooled cores and (P) the fuel

pin models in all P and I figures.)
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increase (l-cermet fracticn) decreases with a consequent reduction
in core diameter, volume, and weight, for any given fuel. The 0235
fueled core shows greater chenge with temperature variations than
the elternate more fissile material, as indicated by the slope of
the lines,

Tables 3.,1-1 and 3,1-2 surmarize compariscns between these fuels
at a common pumping power of 650 watts corresponding to a .97 total

pressure ratio (3 psi pressure drop) and several fuel temperatures.

TABLE 3,1-1

A

REDUCTION IN CRITICAL CORE DIAMETER, VOLUME, AND WEIGHT
M

SUPPORTED BY U235 AND Pu®>’ FUELS OPERATING

AT 2100 F MAXIMUM FUEL TEMPERATURES L/D = 1

% of U235 Cores

Critical Core Critical Core Critical Core
Diameter — Volume - Weight
Intermally Fuel  Internally Fuel Internally Fuel
Cooled Pin Cooled Pin Cooled Pii.
?33 73.3 75.0 38,7 b1.9 35.6 37.9
Pu® 3y 65,1 66.4 26.8 27.6 27.8 28.L

It is evident from Figures I-1 through I-3 end P-1 through
P-3 end from Tebles 3.1-1 and 3,1-2 that the more fissile fuels
markedly reduce eriticel core diameters, volume, and weight

compared to 0235 fueled cores, This savings is not at the expense
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of additional pumping power or fuel temperatures since comparison
is made at similar values for all the fuels, Additionally,
operation at higher maximum fuel temperaturevs reduce eritical
core size and weight,

Values for Ll‘e‘?'5 fuel pin cores do not appear at temperatures
of 2500 and 3000 o1!" for the pumping power selected since the core
volume required for 0235 eriticelity is not heat transfer limited,
Total pressure ratics of 0.98 (2 psi pressure drop) and 0,99
fecilitate maximum fuel temperatures of 2500 c’l‘-‘ and 3000 oF ’
respectively, for a 50-50 vol% 023502-1\40 core, but the change in
core size would be small, This means that en optimum value in
core size has been attained in which the removel of heat from
the core is no longer a restricting influence, This ney be an

important consideration in evalueting endursnce limits for the
three fuels. |

3.1.3 Comparison of Models

Figures I.l through I-3 with P-1 through P-3 indicate
that to maintain similar critical core size and weight necessitates
maximum fuel temperature increases for the pin model. Observe from
Table 3.1-2 that internally-cooled cores operating at fuel temp-~
eratures of 2500 F and fueled with 50-50 vof P25 e cermet
welgh 210 1b while Pin models must operate at maximum fuel temp~

o
eratures of 3000 F for the same weight. This suggests that
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minimum values possible for (l-cermet fraction) in the pin core are

larger as is illustrated in the figures and Table 3.1-3., The absolute

minimum core size is substantially greater for pin cores at the lower
temperatures, with the variation between the two models decreasing
with increase in temperature. Conversely, for similar fuels, fuel
temperatures coolant pumping power and reactor povwer, the internally-
cooled core allows substantial reductions in eritical core diameter,

volume, and weight at the lower temperatures.

3.2 OTHER RESULTS

3.2,1 Use of Figures

Figures I-l4 end P-4 relate coolent pumping power and maximum fuel
temperatures to a common parameter (l-cermet fraction) for 10 MW ¢ lauid
metel-cooled cores fueled with U23502, 023302, and Pu239N embedded in a

50-50 volZ molybdenum matrix. Figure 5 gives pumping power values for

various pressure ratios. Pumping power varies between 0-5 KW and the temp~
erature from 2100-3000 t,13‘,, Various combinations of the two parameters
(maximum fuel temperature and coolant pumping power) are possible to
form & new base for comparisons, but values other than pressure ratior
of 0.75, 0,85, 0,95, or 0.97 and meximum fuel temperature values of

°

2100, 2500, or 3000 F require interpolation. Selection of these two

rarameters sufficiently defines (l-cermet fraction) for the three fuels
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considered from which 11 cther paremeters may be defined. Figures 1-6,
I-9, I-10, I-11, I-12 and I-13 and P-6 through P-13 correspond eritical
1 core values of hydraulic diameter, fuel diameter, wire diameter, exit
velocity, average Reynolds number, equivalent number of coolant passages,
and coolent and clad fraction for the various fuels end the two fuel
geometries studied. For example, selection of a coolant pumping power
of 650 watts and a meximum fuel temperature of 2100 c’F with a reactor
power specified at 10 Mi, defines (l-cermet fraction) to be 0.35, 0.259,
and 0,384 for U23302, 023502, and Pu239N, respectively in Figure I-kh,
Figure 5 shows the total pressure ratio to be 0.97 and associated with
the sbove values of (l-cermet fraction), Figure I-6 gives hydraulic
diameters of 0,104, 0,123, and 0,117 in. for the three fuels, Teable
3.2-]1 summarizes resu'is for other parameters at 2100 oF fuel temp-

erature and a pumping power of 650 watts (3 psi pressure drop).

3,2,2 Other Perametric Effects on Reactor Size and Weiﬂt

The hrdraulic diameter, being fundamental to heat transfer
was most useful in escertaining tube® spacing and subsequently
the quentity of fuel associated with each coolant channel, Changes
in this fuel to coolant-chennel retio affects changes in fuel temp~

eratures since the heat flux is also influenced by this ratio.

* Tubes refer to either coclant tubes for the internally-cooled core
or fuel pins for the fuel pin core.
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VALUES OF EIGHT DESIGN PARAMETERS FOR A FAST COMPACT

Lo~

LITHIUM-COOLED SPACE REACTOR FUELED WITH U23%0,, 233

BRWI~605

AND Pu239% EMBEDDED IN A 50 VOLS MOLYEDENUM MATRIX AND AT A

MAXIMUM FUEL TEMPERATURE OF 2100 °F. A COOLANT PUMPING

POWER OF 650 WATTS, AND A REACTOR POWER OF 10 MW,

"~
U235oo U=33 Pu239
PARAMETER I * p_#F 1 ~ P I P

Tube Inside

Diameter (ino ) 0123 Bhg .lol" v262 0117 .25
Wire Diameter

(in.) e .0025 - 0135 - 018
Exit Velocity

(£t/sec) 13,2 8.2 13,0 8.3 1k4,2 10.3
Reynolds Number 23,000 7,100 22,000 T,900 24,500 9,500
Number Coolant

Passages 490 1,830 1,480 2,692 1,110 2,355
Coolant Volume

Fraction .07 .087 128 .153 .154 .17
Tube Clad

Fraction .039 .09 .0782 .136 .087 .1uls
1l = Cermet

Fraction .259 . 307 .35 418 384 oBls5

* (I) refers to an internally-cooled fuel geometry.

** (P) refers to & fuel pin core.

Therefore, to maintain a particular fuel temperature or heat flux «t

higher fuel ratios necessitates appropriate increases in hydraulie

diameter,
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Figure I-6, P-6, I-1ll, P-11 and P=7. I-6 snd P-6 show the hydremlic

diameter incressing with (l-cermet fraction); P-T shows a similar
behavior for the fuel diameter* in the fuel pin core, and I-11 and

P~1l show the number of coolant channels to decrease with increases

in (l-cermet fraction). These conditions satisfy the thermic equations

and suggesy that maintenence of a specific fuel temperature necegsitates
additional reactor size, weight, and space requirements when design

pumping power limits 4o not influence optimal values for theize paream-

eters. Design pumping power also eppesrs to be partially respcmsible

for the additional size and weight of the fuel pin cores compared

to the intemally-cooled cors., However, the pPrimary reesson for this

add’tional size and weight is the thermal consideratiocns influenced by

the amount of heat to be remcved end the equivalent distance it must

travel in the two fuel geometries, Figure 1k illustrates the following

geometrical relationship between the two models for a cermet fractiocn

of 0.65:
® Al to l cermet ratio
¢ Alto l clad ratio
@ Al to 1l coolant ratio%*
® Al o 1l number of coolant channels per core ratio
These conditions were satisfied in the analyiical conversion of the

internally-cooled core at a given (cermet fraction) to the fuel pin model,

%  Fuel diameter is defined to be the distance across the fuel in & fuel
pin

*% Valid cnly when wire wrap is excluded,
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A slight change in the hydraulic diameter occurs due to the

thickness of the tube clad since ocne model uses the outer tube
periphery for its caleulation while the internally-cooled core uses
the inner tube periphery to obtain its value, This would likely

have an insignificant effect on the pressure drop and the maximum

fuel temperatures between the two models. However, the smaller

equivalent thermal conductance for the fuel pin was found to explain
the higher fuel temperature for this model. To meke the fuel tenp-
eratures equal in the two models requires reductions in the fuel
diameter with a subsequent increase in the number of cc-lant channels,
and hence pressure drop; or, to hold the pressure drop constant,

an increase in (l-cermet fraction) with a subsequent increase in
reactor size, weight, and space requirements. Add the additional
pressure drop and fuel temperature resulting from wire wrep spacer
considerations and the reason for higher fuel temperature in the pin

core become evident., Values from I-11 compared to P-11 show the pin

core to have more coolant channels at a similar maximum fuel temp~
erature pressure ratio, reactor power and {l-cermet fraction) sub-
stantisting the above snalysis.

Figure P-8 illustrates the effect of (l-cermet fraction) on

the diameter of the wire spacer for the three fuels at several

maximum fuel temperatures. As (l-cermet fraction) increases, the wire

diameter increases which would effect en increase in coolant punmping
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power should the hydraulic diameter remsin constant. ﬁowever, as
shown ebove, there are also increases in both the pin dismeter and
the hydraulic diameter and tierefore a net decrease in pressure
drop accompanies en increase in (l-cermet frection), This is
illustrated in Figure P-4 and Figure 5, Since the wire diameter
does increamse with (l-cermet fraction), a larger change in this

fraction is necessary to maintain a consteant value for the coolant

pumping power. Thus, additional core size end weight is influenced
for this fuel gecmetry.

3.2.3 Effect of Coolant Velocities and Reynoids Number on Reactor Size
Figures I-9 and P-9 illustrete the effect of (l-cermet fraction)

on coolant exit velocity for several molybdenum cermets and at three
maximum fuel temperatures. Similar veloeities for the fuels indicate

a requirement of greater values for (l-cerme: fraction) in the alternate
more fissile fuels. Inspection of the figures also illustrates that
exit velocities are very nearly the same for similar coolant pumping
power, maximum fuel temperature, and reactor power for a particular
fuel geometry. For this condition to exist, the total core crosse
rsection area containing coolant for the three fuels must be similar.
Bubstentiation of this can be demonstrated from the continuity equation
since the coolant flow rate (&) and the exit coolant density are the

same for all the fuels at similar inlet conditions, fuel temperatures

and reactor power. Also, the condition imposed by a similar coolant
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pumping power, is that the frictional surfaces (total wetted perimeter)
be the same for all the fuels at similar coclent velocities, Further,
the higher power density of the alternate more fissile fuels requires

& higher coolent to fuel ratio to maintain similer meximum fuel temp=

erature. Therefore, the nucessity for greater values of (l-cermet

fraction), for U320, and Pu’’N fuels is evident, and eimilarity in

exit velocity would be an expected result.,

Variation in the exit velocity does exist between the two models

as is illustrated in Figures I-9 and P-9. The internally-cooled core

requires higher velocities than the pin model, which suggests the pin
model has a larger core cross-section containing coolant for a constant

flow rate than the internally-cooled core. The explanation for this

condition is found in the thermal analysis of the two cores described

in Bection 3.2.2 and Figure 14. The pin core reguires larger (1l-cermet

fraction) values under the conditions imposed for fuel and fuel-
geometry comperisous and therefore a larger core area is devoted to
coolent vhich results in a lower exit velocity. Figure I-12 and
P-12 illustrate the coolant void fraction of the core as a function
of (1-cermet fraction) and results indicate larger ccolant voids
accompany increasses in the freetion.

The exit velocity is also a measurement of the Reynolds number.
Figure I-10 and P-10 illustrste the effect of (l-cermet fractica)

on the average Reynolds number. The figure shows the validity of
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the assumption that turbulent flow exists through the core and

hence verifies the applicability of the equations used describing
(1)

heat removal, The pin core evidences large reductions in

Reynolds number at similar pressure ratios and maximum fuel
temperatures compared to the internally-cooled model.
Coincident to the coolant velocity end Reynolds number,
the number of uoolant channels also experiences increases in
number with decreeses in (l-cermet fraction). This is illustreted
in Figure I-11, P-11 and I-12 for the two models. This is an
expected result besed on the analysis made in Section 3.2.2 with
respect to the fuel per coolent channel ratic and thermic ccn-
siderations. It also follows that as the velocity increases,

the core cross-section area containing coolant also decreases

to maintain a eonstant flow rate, fuel temperature, and coolent

pumping power.

4,0  Conclusions

@ Use of the more fissile fuels allows a substantial reduction

in core size, space and weight requirements with no additional

expense in pumping power or maximum fuel temperature.

Increase in meximum fuel tempersture allows reduction in core
digneter, volume, and weight. Uzssoa-fueled cores show greater

change than the alternate more fissile fuels and require large
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0
core volumes at temperstures above 2100 F which are not heat

transfer limited. This may be en important factor in evaluating

the three fuels when endurance limits are considered,

® Internally-cooled cores allow reductions in reactor core size,
space, and weight requirements at similer cooclant pumping

power, maximum fuel temperature, and reactor povwer due to geometry

effacts.

¢ Sufficient identification is made of lithium-cooled fast compact

reactor critical cores fueled with U23502, 023302, and Pu239N

embedded in a 50 vol% molybdenuws mat -ix to facilitate the planned

transient analysis.
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APPENDIX A

THERMAL AND HYDRAULIC PARAMETERS

A-1  COOLANT PROMERTIES

The coolant selected for this study is liquid lithium. Its low
density, high specific heat end vapor pressure qualities make it
especlially attractive to heat transfer spplications, A highly corrosive
nature presents problems of containment, However, l=columbium 0,l=zirconium—
alloy has safely resisted corrosion for 10 ,000(8) experimental operating
hours at conditions typical of those in nuclear reactors.

Lithium properties versus temperature are not so readily available as
properties of sodium and potassium. Weatherford snd Tyler(g) F. J. Tebo( 10)
Pratt and Whitney(a), and the Liquid Metals Handbook,(ll) give values for
the metal. The experimental effort of Pratt and Whitney suggests that
confidence can be place in these data and consequently the coolant properties
are based thereon., However, when these data were lacking, Weatherford snd
Tyler data are used. Figure A-1 through A-5 show values of vapor pressure,
viscosity, thermal -onductivity, density, and specific heat versus temp~-
erature, The solid lines represent I'ratt and Whitney data, the dotted lines
Weatherford and Tyler. Table A-l shows coolant conditions selected for the

study,

TABLY, A=l
Inlet Outlet
Temperature 1,700 2,000
Pressure psia 100 Varied
Coolant flow rate lb/sec 31.94 31.94
Film coefficient 32,000 32,000
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The film coefficient (32,000) is considered reasonable and is g
constant value. An exit pressure of 2 psia assures saturation conditions
]
at the 2000 T exit temperature and therefore an inlet pressure of 100 psia

is sufficient to maintain liquid phase ccolant conditions for pressure drops

of interest.

B~-2 PRESSURE DROP

Pressure drop calculations for the internally-coocled core pi'esents
no problem since conventionsl equatiims are applicable. The addition of
wire spacers in the pin model, though highly desireble as coolant mixing
promoters, substantially increase the pressure drop in the coolant stream.

Some experimental work is available in determining the loss (References 6,

12, 13, 14, 15). E. D, Wa.ter(s) suggests a pressure drop ratioc equation

which closely approaches experimental valuee. This relationship is:

ap 2
ﬁ,l=N+Nn
n

where

APw = stetic pressure drup in channels containing wire spacers,

an = sgtatic pressure drop in cheannels containing no wire spacers
but with the same pin spacing.

N & ratic of the static pressure drop in channel with a wire
Placed axially along the pin (no wrapping) and APn.,

M = 2,153 times the wire diameter,

n = number of wire revolutions per unit length of rod.
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Since the quantities APn, ¥, M, and n are celculable, an expression for APw

BNW1~605

is obtained. Two limitations are:
(1) n should not be less than 6 wraps per foot.
(2) wvalid for wire sizes between 88 and 138 mils.
Limitetion #2 could possibly be less restrictive since the range of experimental

deta available were braclcted by these values and therefore the validity of the

expression outside this limit is not known. For purposes of this report, the

assumption is made that this limitation does not apply.

B-3 FRICTION FACTOR

The friction factor used is that found in the litersture for smcoth

pipes.(s) The pin model required edditicmal effort since pressure drop

calculations made are with and without wire spacers. Since the presence of wire

reduces the avelilsble coolant channel erea, the velocities increase to accommodste

the same flow rate and affect the friction factor. APn and N are evaluated using

a friction factor pertaining to its unique condition., The code as written for

the internally-cooled core facilitates calculation of that portion of N which
perteined to the pressure drop in a channel with wire placed axially along the

prin but modification was necesaary for APn., The following equations are added

for this achievement, The subscript u signifies conditions without the presence

of wire, 2
Dhc D
W

A = e e

wooy 8

#(D_ + 2tc)
c = %
u 2
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G =
Y ma
cu
Gu
v = —
1u 3600 91
G
V,, = L
u 3600 pl

where:

A = cross section area of coolant passage

C = wvetted perimeter

Dh = hydraulic diameter
G

mass flow rate

<
[}

1 inlet velocity

\J’2 = exit velocity
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FUEL PROPERTIES

B-1 FUELING

The three fuels considered consist of U23502, U23302. and Pu239N
embedded in a 50 vol% molybdenum matrix. Selection of molybdenum as the
fuel diluent was made in an effort to lower fuel temperatures and
density. Since the criticality curves were those of a tungsten matrix,
assumption was made that chenging to molybdenum will not invalidate these
curves.

The heat transfer calculations were based on a model containing
cermet fuel st 100% theoretical density. BSince the real model contains
5% void space in the fuel matrix, a corrected thermal conductivity for
the heat transfer model was necessary. Properties for the cermets

were not readily aveilsble and hence corrected thermel conductivity velues

were calculated from the Maxwell equatim:(lf’)

K
1-(1-a i%)b
1+{ a~1)b

41
]

where

ka = apparent thermel conductivity in the mixture

kp = thermal conductivity of particulate matter (fissile material).

ks = thermel conductivity of the fuel diluent.

= 2k
2ks + kp

-—VLVS T Vp (volume fraction of particulate matter)
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The thermal conductivities for fuel constituents is taken from
References 17, 18 snd 19 and for convenience are reproduced in Figure B-3.
B-h and B-5, Resulting cermet thermal conductivities are shown in Figure
B~l and B-2. Discretion should be used wvhen applying these values to

cermets with greater fuel void than defined herein.
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APPENDIX C

GEOMETRIC PARAMETERS
_‘“—*

C-1 CORE MODEL DESCRIPTIONS
M

Two hexagon models, internally-cooled and fuel pin models, were
reduced {5 right circular ceylinders to simplify the neutrenic, hydraulie,
and heat transfer investigition, The reutronic model, referred to as
the physics model in Figure C~1 contains the Same tube, and fuel arrange-
ment as the hexagon coves, Eqrivalent areas were devoted to the core

components and thus the cross-section area remained the same,

However, the nuat transfer model eliminated portions of the core

not pertinent to the aydraulic and heat removel considerations, Aress

eliminated were those occupied by:
. Subassembly_ support cladding
® Thermal spacing between subassemblies
® Void space within the cermet fue)

Both the physics and heat transfer models contained the following
components in equal quantities:

® 100% theoretical dense cermet
¢ Tube cladding

¢ Coolant

Flgures C-1, C-2 ang C-3 show the models and the two fuel geometries
investigated in the study.
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Elimination of t'c sbove specified areas neceggitated re-eva.luatlon

and normalization of the (cermet fraction) to a value appropriate to the

heat transfer model, 'The importance of this parameter results from its

usege as ar index relating parameters for deta interpretation., It is

defined to be the core fraction occupied by 100% theoretical dense cermet;

fuel. To differentiate values between the two cores, a prime is used

to designete the normalized hesat transfer quantity thus, (cermet fraction)

or (l-cermet fra.ction) .

C.2 INTERNALLY-COOLED CORE MODEL
-—'_—"-I'-mm

A deteiled geometric description of the internally-ccooled core

model is given in BNWL-lhT,(a) The fuel elements are defined in this

study as hexagonal shaped subelements and consist of finely divided

fissile material embedded in a continuous molybdenun matrix. Cilreular

coolant passages are arranged in equilateral triangular arrey through-

out the fuel as illustrated in Figure C-2, The necessity of adapting

the computer code to include investigation of pin core resulted in
the development of equations defining the heat transfer model radius
and void fraction independent of geometry, The equations facilitate

eomputer calculations reduci:?g input work requirements. Therefore,

2 less detailed, but sufficient, anelytical model description will
be included.

Figure C-2 shows typical elements of an internally-cooled core.
A single fuel element is selected to simplify calculations since it

is representative of the entire core. The element consists of cermet,

L
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cermet voids, tube clad, coolant, fuel element support clad, and space
between fuel elements. The cross-sectional areas per fuel element thus
occupied can be calculated as follows:
The area of the fuel element excluding space between
elements is -Abo A’b ic a function of the triangular segment
shown in Figure C-2 and can be expressed as:
A = 6(1/2 base x height)

where
base = T3 ~ SCos 30
height = £/2

Substituting these values into the above equation gives:

2

) 3
& * 3 (530 7= Tomm

A = .866 2° (1-1)

Now, define Aoc to be the cross~secticnal area containing fuel element
support clad and

toc = fl (2/2)

where
fl is some equality coustent

A=A - 6(1/2 base x height)

[



UECLASIFIEL

BNW1-60%
where .
height = L/2 - toc =2/2 (1 - fl}
L/2 (1-f) E(l-f)
base = == 30"" 2 (. BKE}
(1-1¢ )
A, = .866 2 -3 (22 —-ggg—] (e/2 (1 - £)]
- 2 2 2
A, = 866 “ﬂ%ﬁﬁ)’ = (1- 1)
_ 2 2 2
A= 866 L = 866 2° (1 - fl)
_ ' 2 2
A= 86627 [1-(1- fl) ]
2 2
A= 2866 £° [1 - (1 - fl) ] (1-2)

Area taken by space between fuel elements becomes:

A = 6 [1/2 base x height] - A
where the base and height are now defined by

l+P

base = ( cos 30

=0 2 =il e

height = (1 + P) &/2
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-
[}

1+ P n 2
. 6/2 ["_.'8'6'6') /2 (1 + P) 2/2] - .866 ¢

b
H

[3/4 (3t - .866) z"'_

b
i

.866 22 [(1 +P)% - 1] (1-3)

The physics model is based on & right circular cylinder with a total

core area of Ap.

A = (A5+A°) Nb

P
where
Nb = the number of fuel elements per core,
Thus,
2 2
A = ,866 N 2° [{(L+P)° =1+ 1]
P b
2 2
Ap .866 2 L (1 + P)
or
2 _ 2 2
TTeq = .866 & N, (1+P) (I-b)
where
re‘1 is defined es the equivelent core radius.
The heat transfer model is based on a right circular cylinder but
with a core area of:
v o2
A = (A - A - AN, == r eq (9a)
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where

Af = the cross section area occupled by voids in the fuel cermet.

r eq = the equivalent heat transfer model radius.

The cross-sectional area of a fuel element taken by coolant = A

(]
2
1'IDh Nt.

A = =% (1-5)

where

Nt = the number of coolent t1bes per fuel element.

Let Atc represent the area occupied by the coolant tube clad. Then,
from Figure A-2

Q h
Atc = 4

~here

D° = (Dh + 2tc)

A, = n/b L(D, + 2te)? - nh2]Nt

Atc = wte (Dh + tc)Nt (1-6)

The area occupied by 100% theoretical density fuel is Ape Defining

o, to be the value (l-cermet fraction), the following relaticnship is
valid.

AF = (1 - up) (A.p + As)

Ap=(1-a) [.866 22 (1 + P)?) (1-7)

DECLASSIFIED
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Now define p to be the fuel density and p 4 the 100% theoretica;

density. The area of the fuel void is:

elo, (mF *A,) = Ay

Py
A, *(T - l)A'F
or, substitution for AF gives:

Ap = (o, /p = 1) (1~ a) [.866 22 ( 1+ P)2) (1-8)
&

And, finally, the heat transfer model area becomes:

A, =N, [.866 2% - 866 22 [3 - (1-f1)2] - (pt/p-l)(l-up)

[.866 2° (1+P)2]]

or

" r'eq? = ,866 22 Nb [(l—fl)2 - (pt/p - l)(l—up)(1+p)2] (1-9)

The core component fractions can now be calculated:

2 2
N A ) Nb .866 2 [1—(J-f1) ]

{=1] Ap Nb o % 1+P

1-( 1-::1)2
a - S E—————

ce (1-'-P)2

(1-10)
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NA N .86 82 [(147) 1]

P N, .86 % (14p)?

o =em? 1
8 2
(1+p) {I-11)
.2
a = NhAc - “Dh Nc
p 4 (xr 9)
2
. LY
R 2 (1-22)
eq
ut B-At—c.=1rtc (Dh+t ) Nc
¢ Ap Tr e
eq
a = te (thf"' tc) Nc
te N 2
eq . (1-13)
. A, N .866 2 [(pt/p—l) (l-up) (1+P)2]
£ A N, .866 22 (1+p)2
o, = (p_/lo=1) (1-a_)
t t P (I-14)
& (le-a )
% p (I-15)
Where

uoc = the vold fraction occupied by fuel element support clad

o, = the void fraction occupied by space between fuel elements

DECLASSIFIED



I EEEEQMQE%S EHEEB ~78- BIL-605

a, = void fraction occupied by coolant

a .= void fraction occupied by tube ciad

a, void fraction occupied by space within the cermet

dp the void fraction occupied by 100% theoretical density cermet

o =g +a +oa +oa +a
P 8 oc e te -

The heaet transfer model equivalent radius can now be evaluated,

Dividing Equation (9) by (4) gives a relationship between the two redii:

tp 2 2 2
L ) .866 2 N, [(lufﬁ -(pt/p-l) (1-4(:2) (1+P)°)
2 2
", .866 zanb (1+P)
' 2 2 2
r, ) (1-1‘;_) - (pt/p-l) (1-05?) (1+P)
2 (1+P)2
eq
L) 2 2
r (1-f.)
eq 1
= - (p, /p=1) (1-a )
2 (1+P)2 t P
eq
But
e
(1-1’1) i 1 )
(14p)2 (1L+p)° oc From Eq, I-10
—-_1_2-. .—_" l -
(l + P) 8 From Fg, I-11

DECLASSIFIEL




bBNW1-605

From Eq., I-1h

eq (1-16)

end the heat transfer model equivalent redius is:

[ ]
Teq - z'qul" %% = % " %

1
Note that the expression r

(I-17)

eq is independent of geonmetry and there-
fore is valid for both the internally-cooled and rin core.

| ]
The necessary condition for the value (l-cermet fraction) for the heat

trensfer model is:

2

= (1 - h) nr eq (I-la)

This expression requires the same guantity of cermet to exist in both

| ]
cores. Divising through by (1 - « h) and reqa glves:

2
r.e l-n
+2= 4
req l-mh

(1-19)
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Replacing the radius ratio with its equivalent from Equetion I-16:

y 2
—eq
. 2 =l-o, -0, -0
eq (I-=16)
[ §
finally defines a p 8%
' le=a
a. =1 )
h l-0,-08 "% (I-20)

This equation relates the internally-cooled snd pin model such that

the same input data is utilized for both cores. However, modification for

“Ioc in the pin model is necessary, as will be indicated in that section.
C.3 PIN CORE

Thie model consists of hexagonal subassemblies containing fuel pins in

equilateral triangular errey with pin spacing meintiined by wire wrapping

sbout each pin. Figure C-3 shows a typical subassembly indicating the

similarity to the internally-cooled fuel element of Figure C-2, The major
differences are changes in fuel and coolesnt location within the cor~, and
for the pin model, addition of wire wrap, and a substantial increase in

the flat dimension., Assumptions made were:

(1) Pin spacer is l=columbium O.l=zirconium=alloy wire with 6 wraps
per foot,

(2) The hydrasulic diameter is the same for both cores.
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(3)
(L)
(5)

(6)

(M

{8)

Other input data is to be the same,

An average of one wire spacer per pin exists in the cross secticnm,
The geometiric arrangement is such that an average number of
fuel pins and wire spacers per coolant channel is 1 to 2.

This assumption pertains to the void and area considerations
only.

The pin core subassembly can be larger than the internally-
cooled ful element with nineteen subassemblies per core as
reasonable,

The wire spacers contribute to heat trensfer considerations and
are included in the heat transfer model (l-cermet fraction)

The tube claddin~ can be considered as part of the fuel

for meximum fuel temperature calculations. This appears

conservative since the clad thermal conductivity is higher

than the cermet,

The development of equations relating the two cores can be as

follows,

The heat tramsfer pin model containing coolant, tube clad wire

spacer and cermet {excluding subassenbly support clad, spacing between

subassenblies and area of fuel voids) is defined in the core cross

section by:

2
1
(Ac + At.c + Aw) Nb =a, wr eq (P=1)

.
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where

Ac = coolant ares per Subassembly

Atc = tube clad area per subas semb ly

Aw = wire spacer area per subassembly

Nb = total number of subassemblies per core

“lh = the total void fraction in the neat transfer core model

r‘eq = equivalent heat transfer model radius,

Rearrangement of the bydreulic dismeter equation gives the following
relationship:

- N, Dh c N,

bre L (P~2)
vhere

Nt = total coolant passages per subassembly

Dh = the hydraulic diameter

C = the wetted rerimeter per coolant Passage

Nt Nb = Nc the total coolant bassages per core.
Now define

DP = inside pin diameter

Dw = wire diameter

1l = distance between pins

o
i

outside pin perimeter
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Then from Figure (-3 the following expressions are obtained,
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=1 = (D + 2te)
DW 1Y (P

P =x (D_+ 2te)
P P

also

Pp =2C = 'an

Equating the two Pin perimeter equations and solving for the pin diameter:

2C - 1D
D = —-—-_!.’. - 2tc
D 1r
2C
Dp - - DW - 2te (P=3)
. or
| 2
D, ===~ D, - 2te (P=bk)

Comperison oo Equation 4 with the initial equation defining D, indicates
the following relationship for J.P

= 2C
lp T (P=5)

Equations P-3 and P-4 are not independent and hence, there exist

6 unknowns, namely (Nt' Nb’ C, Dp and Dw)' and only 4 equations (Bq. 1

2y 3 or 4, and 5). Development of other equetions may proceed ag follows,

The total heat transfer model ares is:

by
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From Figure C-3 the following is also true:

Ah = 1/2 lp {lp cos30) Nc

2
1l " cos30
=N

vhere

¥, =N, N (the total number of coolant passages).

but Equation 5 defines:
ac
T

l] =
P

equating the two expressions defining Ah and substitution for 1P gives:

o2 28 P cos 30

Tr eq " :

solving for the total number of coolant passages per core:
r2
"3 r
N = A
¢ 2 02 cos3C (P~5)

The total cross section area equations for the tube elad, wire

spacer and fuel can be calculated from Figure C-3 also., These relationships

are:
Nc1r 2
By Ase = 3 (D te + tc7) (P-7)
and
Ncw 2
Uy A, = < b (p-8)
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Two other conditions are:

D2 Nc
N, Ap -(—EL} =

' ¢ 2
N, Ap = (l-ah) wreq
thus
Nr_!D2 R y 2
A summary of equations to be used are:
' v 2
(Ac + ﬁ‘tc + Aw) N, = n T eq (P=1)
Nc C Dh
Ny, A = =1 (P-2)
_2¢
D, =5 -D, -~ 2te (P=3)
3y 2
n
N = -——EL
¢ pf cos30 (P-6)
Nc'n
N‘bAt.c = - tc (Dp + te) (P=T)
Nc" 2
N‘bAw 5 Dw (p-8)
be 2
(=B-) w_=(1- a'h) r'e
8 9 (p-9)

Thus T equations define 7 unknowns, The unknowns are (NbAc), (NbAtc)'

(NbAw)’ DP, C, N,» and D_. A process of "unknown elimination" from these

equations result in an expressior for the wetted perimeter (C).
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First eliminating the total coolent passages (Nc) gives:

BNWL=-605

. hNb A,
c CDh
L

B3 r 2

N =A

¢ 202 cos30

From Eg, P=2

28, A
N = el S

c "t ZD 'l-t.cj
“*

From Egq. PaT

From Eq. P=8

N =
c D 2
P From Eq, Pu9
The 6 reduced equaticns are:
v v 2
(Ac + Atc + Aw) Nb = we n T eq (P-1)
.2
Dw - m -D, - 2tc (P-3)
' 2
NA, = E_._rﬂ_
¢ 8 C cos30 (P=10) (From P-2, 6)
mh te {D_ + te) r' 2
p eq
Fphte =
h ¢® cos30 (P-11) (From P-6, T)
D .\[ N A
Dy = ri w (1 - u'hs (P-12) (From P-8, 9)
eq

|
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(P-13) (From P-6, 9)

Next the wire diameter (Dw) is eliminated by equating equations 3 and 12.

The resulting reduced equations are:

2
| ]
(A +A +A)E =ma. T
c t: w' b h " eq (P-1)
K 2,
0 A = n Dh T e
be 8C cos30 ' (P-10)
4 v 2
7 te {D +te) r
N'bA't = 21’ —=d_, (P=11)
¢ 4CT cos30
] [s
i 2 (Laa ) \;2-5-3 - 2tc)®
N A = 1 E (P-12)
W D 2
b
[]
(1=« h) cos30

n

Substitution of equatjons P-10, 11 and 1% into P-1 resuits in an

expression for the total arees NbAc' Nbﬂtc' and NbAw es a function of the
pin dlameter and wetted perimeter.

The two reduced equations are

V(l - u'h) cos30
P a3

(P-13)
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2nte (D +te) 8¢c cosBO(l-a } (-—- D - 2tc)2 8 a'

C
D 5 . - h cos30 (P-15)
h c 2 2 2
n DP T

Substitution of Equation P-13 into P-15 and simplifying results ir the

expression for the wetted perimeter.

' l - ) 30
[(2a', - 1) -Q-SEEE— =2, aWV[_ o y) cos 1 2+

{1- u ) cos30
- 13 ﬂtcf h ]C-hﬂtca

f4te - Dh 3 =0
v
Row define the following constants
(1 - cc ) cos30
t
x=(2uh-1) 832530 - ‘\j
n {P-16)
'\/(l - a h) cos30
Y = bte - Dh - lb6mte 3
n (P-17)
2
Z =k mte (p-18)
then
O = —Y -Y- 2 2
C=-3x * Vi) % (P-19)

Thus it is evident that the wetted perimeter is a function of the heat

L
trensfer vold fraction o h® The other parameter values are constant since

they ars the same for both the internally-cooled and pin cnre, For complete

]
conversion to the pin core, inspection of « n is necessary. The equation is:
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up, L and a, are found to be the same in .oth cores (compare I-11 and 1L
with P=-20 end 21). Howevar LI is dependent on the flats dimension (%)
and consequently changes in the pin core since £ can be larger for this

model {compare I-10 with P-22), The defining equation is:
2
1- (1- 1)
a -
oe

(1 + p)2

where

. 2 toc
f ==

Thus LR is the same for both cores culy when fl = f2. A method of

induction indicated that

Ll .
a9 * (35 + 01) o ; when %, varied within the following limits;

!'p < th

Error introduced by this expression is negligible., However, modification
of the code permitted a__ to be calculated for the pin core with & defined

in Equation I-k4 and N, an input item (19 subassemblies per core) :zompleting

the code conversion,

Voia Fractions

The pin core void fractions were found to be

2
o =41*+p)° -1

s (1+p)° (P-20 Compere (I-11)
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(P-21 Compare I-14}

2
1-(1 -fz)
aoc = 2
(1+ p) (P-22 Compare I-10)
N_ te (D_ + te)
o, = =5 £
te or 2
eq (pP-2h Compare I-13)
§D2
[v] B emeshe——
W er o 2
1 (P-24)
= NcD! c '
4 "Teq (P-25 Compare I-12)
oy = (1~ up) (P-26 Compare 1-15)

ap is the same for the internelly-cooled core thus requiring the same

cermet volume in both models for a given o . This requirement tends towards

complience with the criticality curves assumed., However, results indicate a

shift to higher void fractions to accommodate similar maximum fuel core temp-

eratures in the pin core,
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NOMENCLATURE

sectional area of core subassembly excluding space between

subasserblies,

Crocs
Cross
dense
Cross
Total
Total
Cross
clad.
Total

Cross

sectional area of core subassembly occupied by coolant.

sectional area of core subassembly occupied by theoretical

cermet,

sectionul arez of core subassembly occupied by fuel voids,
ecross sectisnal area of core occupied by coolant.,

core cross sectional area of heat transfer model,

sectionel area of nore subassembly occupied by subassembly

core cross sectional area of physice model.

sectional area of core subassembly occupied by spacing

between subassemblies,

Cross

section area of core subassembly occupied by coolant and

wire spacers.

Cross

sectional area of core subassembly occupied by fuel pin clad,

Cross sectional area of core subassembly occupied by wire spacer.
Total cross sectional area of core occupied by 100% dense cermet,
3Ks /(2Ks+Kp)

Volume fraction of particulate matter.
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wetted perimeter per coolant passage.

wetted perimeter calculated excluding wire-spacer surfaces.

Pressure drop

Pressure drop for channels containing wire spacers.

Pressure drop calculated for a channel conteining wire-spacers but
excluding the effect of the spacers on pressure drop.

(2toc/s) the dimensicnless subassembly clad thickneas for internally-

cooled cores,

(2toc/s) the dimensionless subassembly clad thickness for pin cores,
Hydraulic diameter,

Hydraulic dianeter calculated for a g:ha.nnel containing wire-spacers
but excluding the spacer surfaces from the calculations.

The outside pin-diameter,

Fuel diameter

Spacer wire diameter

Mass velocity

Mass velocity for channels conteining wire spacers but including the
spacer as part of the coolant.

Apparent thermal conductivity of a fuel mixture,

Thermal conductivity of particulate matter (fissile material),
Dimension across the flats of the subassembly.

Flats dimension for internally-cooled cores.

Pin pitch (center to center spacing between pins)
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M = 2,153 times the wire diameter,

BW1~-605

Retio of the pressure drop in a channel containing a wire spacer
placed parallel to the fuel pin (no wrapping) and AP .

Nb = HNunmber of fuel subassemblies per core.

Nc = Total nurber of coolant pussages per core.

% Number of coolant peassages per subassembly.

n = Number of wire revolutions per unit length of rod.

ct
i

Tube clad thickness.
toc = Outer clad thickness of subasseubly.
vlu = Inlet velocity without wire spacer,

V2u = Exit velocity without wire spacer.

=]
L]

c Coolant vold i1raction - physics model.

ap = Fuel (cermet) fraction - physies ‘aodel 100% dense

2
1}

£ Fuel void fraction - physics model,
@, = Void fraction - heat transfer mcdel.
aoc = Void fraction of subassembly outer clad.

up = Total void fraction of physics model,

@
]

s Void fraction of space between subassemblies - physics model.
Gy o ™ Void fraction of tube clad - physics model.

P = Apparent fuel density

py = Fuel density et 100% fuel (no voids)
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(1)

(2)

(3)

(b)

(5)

(6)

(1)

(8}

(9)

(10)

(11)

(12)
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