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ABSTRACT

A method is given for predicting the threshold distances at which minimal retinal
burns will be produced by nuciear detonations. This method relates calculated retinal
exposure to experimentally determined burn threshold data. Predicted threshold
distances are determined for the human eye exposed to sea-level, air-burst detonations
from 0.01 to 10 kt. yield. '

The pupil diameter of the human eye is taken to be 2.5 mm. and 6.0 mm., respec-
tively, for day and night conditions, and the effective focal length of the eye is taken
to be 17 mm. The average fireball diameter is assumed to be 9.33 X 103WO0 ¢ ¢cm, and
the effective exposure time is assumed to be 0.064W0.5 gec. The threshold distance
for a bright daylight exposure with clear air (80 km.) visibility varies from about
1.3 to 11 km. as the detonation yield varies from 0.01 to 10 kt. Comparable distances
for night exposures vary from 3.8 to 26 km.

Calculations indicate that the use of a fixed filter with 29 transmission will resuit
in retinal exposures more than an order of magnitude below the threshold exposure
for these small daylight detonations. For nighttime conditions the retinal exposure
18 a factor of about 2.5 below the threshold exposure.
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THRESHOLD DISTANCES FOR RETINAL BURNS FROM LOW-YIELD NUCLEAR DETONATIONS

. INTRODUCTION

The thermal energy released in a nuclear
detonation is sufficient to cause loss of vision
in humans who view such detonations without
eye protection. This loss of vision may be
temporary, as in flashblindness, or permanent,
as in retinal burns. The extent and duration
of this loss of vision depend on the conditions
of exposure.

The basic physical problem in the prediction
of retinal burns is the determination of the
increase of temperature in the retinal region
in which the fireball is imaged. Areas in which
the temperature, or time at some critical tem-
perature, exceeds a certain value may be pre-
sumed to be irreversibly damaged. However,
the nature of the problems and the difficulties

in measuring and relating temperature profiles
to functional effects have led to an approach
by which observed retinal effects are associ-
ated with calculated retinal exposures. This
approach is based on laboratory investigations
which have established the dependence of
ophthalmoscopically observable effects on total
retinal exposure, exposure time, and image size
(fig. 1). The curves in figure 1 are based on
the latest and most complete laboratory data
available at this time (1).

The use of this method requires the calcula-
tion, from known source characteristics, of the
retinal exposure, exposure time, and image

" diameter associated with exposure to a nuclear

detonation. The calculations are greatly sim-
plified by using approximations of nuclear
detonation characteristics (2, 3, 4).
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FIGURE 1 N

Threshold retinal exposure, Q,!, versus time for the production
of manimal burns in the retina of pigmented rabbits. (Dash lines
are interpolated or extrapolated.)



II. CALCULATION OF RETINAL
EXPOSURE

The retinal exposure resulting from view-
ing a nuclear detonation can be calculated if
the exposure conditions are known. The effec-
tive radiant exposure, Q,, of the retina may be
expressed as

1012apkWT,T, T,
= ———— (cal./cm.?) (1)
4rf? Dgy?

The exposure time, t, is

t = 2 t,,, = 0.064W03 (sec.) (2)

m

and the image diameter, D,, is given by

FD,

D = (mm.) (3)

D
where

a = 0.8 = Fraction of the thermal energy radi-
ated which is located in the spectral
region effective in producing retinal
damage (350 mu < Ex <1500 mgu
assuming a 5,800° K. black-body radi-
ator)

p = 1/; = Fraction of total weapon yield con-
verted to thermal energy (low-altitude
detonations)

k = Fraction of thermal energy released
during time t

W = Yield of the weapon in kilotons

T, = 0.8 = Average transmission of clear media
of the eye (assumed 5,800° black-body
spectrum)

T, = Average transmission of the atmos-
phere

T, = Average transmission of any material
between the eye and the detonation
(1.e., aircraft canopy, sunglasses,
filters)

F Ratio of the effective focal length of
f = — = the eye-lens system to the diameter
of the pupil

D, = Average fireball diameter in centi-
meters durning exposure time t

D = Distance to fireball in centimeters

Retinal exposures have been calculated, uti-
lizing this method, for human eyes exposed to
sea-level, air-burst detonations from 0.01 kt.
to 10 kt., under both day and night conditions.
In these calculations the effective focal length,
F, and the bright daylight pupil diameter, Dp,
of the human eye are taken to be 17 mm. and
2.5 mm., respectively, resulting in a value of
f — 6.8. The nighttime pupil diameter 1s taken
to be 6 mm., resulting in a value of f = 2.83,
based on a recent investigation by Alder (§)

"in which he reports the average pupil diameter

under dim cockpit conditions to be 5.9 mm.

The radiant power of a nuclear detonation
is less than 45% of the maximum radiant
power after an elapsed time of 2t,.., and, along
with the apparent surface temperature of the
fireball, continues to decrease rapidly. Thus,
the energy effective in producing eye hazards
is assumed to be radiated in a time t = 2ty =
0.064W?-3 sec. This is assumed to be less than
the blink reflex time for the yields considered
here. During this period of time the fireball
emits approximately 47% of the total energy
radiated ; thus, we have k = 0.47. The assumed
average fireball diameter is that corresponding
t0 tmax OF D = 9.33 X 103W°+ cm. (Nuclear
detonation characteristics are all from ref-
erence 6.)

Substituting the values above in equations
1, 2, and 3 gives the exposure times and other
quantities listed in table I, which require only
appropriate values for D, T,, and T, for the
determination of D, and Q..

Atmospheric transmission was calculated
using the equation T, = exp (—«D), where D
is the distance in km. and « is an average ex-
tinction coefficient dependent on visibility.
Transmission values were determined for three
different conditions of visibility: 20 km. (« =
0.20 km.—!); 40 km. (« = 0.10 km.~!'); and
80 km. (x = 0.03 km.~') (6).

II1. DISCUSSION

Image diameter, retinal exposure, and expo-
sure time were calculated for both day and
night exposure conditions for each of the yields




TABLE 1

Ezxposure time, image diameter, and retinal exposure as

functions of yield, distance,

atmosphertc transmission, and

filter transmission (human eye exposed to sea-level atr bursts)

Bright
w t D, daylight Dim cockpit
(kt.) (sec.) (mm.) Q, Q.
. (cal./cm.2) (cal./cm.?)
0.01 .0064 2.50 x 104 .188T, T, 4.54T,T,
D
0.03 . 0111 3.91 x 10¢ .982T, T, 5.65T,T,
. D
0.1 .0202 6.31 x 104 1.25T,T, 7.19T, T,
D
0.3 .0351 9.81 x 104 1.56T,T, 8.96T,T,
D
1.0 064 1.59 x 108 1.98T, T, 11.47T,T,
D
3.0 JA11 2.46 X 108 2.48T7,T, 14.2T, T,
D
10.0 .202 3.98 x 108 3.13T,T, 18.0T, T,
D

listed in table I, for each of the assumed visi-
bilities, and for values of T, = 1 (no inter-
vening filters) and T,=0.02 (2% transmission
fixed filter).

Figure 2 is a plot of retinal exposure and
image diameter versus distance for daytime
exposure to a 0.01 kt. detonation for visibilities
of 20, 40, and 80 km. with no filter and with a
2% fixed filter. Also shown in figure 2 is a
plot of the threshold retinal exposure, Q.t,
required to produce a minimal retinal burn.
Q' for each distance was determined by using
the exposure time and image diameter in con-
junction with the threshold curves in figure 1.
The distance at which Q,* exceeds the retinal
exposure, Q,, is the predicted threshold dis-
tance for minimal retinal burns. Figure 3 is a
plot of the same information for nighttime
exposure to a 0.01 kt. detonation and figures 4
through 15 are similar plots for the other
detonation yields listed in table 1.

This method was used to determine the
threshold distance under both day and night
exposure conditions and each assumed visibility
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FIGURE 2

Image diameter, D, retinal exposure, Q, and

threshold exposure, Q., as functions of distance from

a 0.01 kt. detonation for the human eye in bright
daylight. Ezxposure time 138 0.0064 sec.
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FIGURE 3

Image diameter, D, retinal exposure, Q, and
threshold exposure, Q,!, as functions of distance from a
0.01 kt. detonation for the human eye at night. Ezpo-
sure time 18 0.0064 sec.
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FIGURE 4

lmage diameter, D, retmnal exposure, Q, and
threshold exposure, Q,', as functions of distance from a

0.03 kt detonation for the human eye in bright day-
hght. Exposure time 18 0.0111 sec.
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FIGURE 5

Image diameter, D, retinal exposure, Q,, and
threshold exposure, Q !, as functions of distance from a
0.08 kt. detonation for the human eye at night. Ezxpo-
sure time 18 0.0111 sec.
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Image dameter, D, retinal exposure, Q, and
threshold exposure, Q,!, as functions ot distance from a
0.1 kt. detonation for the human eye wn bright day-
light. Exposure time s 0.020? sec.
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FIGURE 7
Image diameter, D, retinal exposure, Q, and

threshold exposure, Q*, as functions of distance from a

0.1 kt. detonation for the human eye at night. Ezpo-
sure time 18 0.0202 sec.
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FIGURE 8

Image diameter, D, retinal exposure, Q, and
threshold exposure, Q,!, as functions of distance from a
0.3 kt. detonation for the human eye in bright daylight.
Exposure time 18 0.0351 sec.
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FIGURE 9

Image diameter, D, retinal exposure, Q. and
threshold exposure, Q.!, as functions of distance from o
0.3 kt. detonation for the human eye at night. Ezpo-
sure time i3 0.0851 sec.
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FIGURE 10

Image diameter, D, retinal exposure, Q. and
threshold exposure, Q.f, as functions of distance from a
1.0 kt. detonation for the human eye in bright daylight.
Exposure time is 0.064 sec.
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Image diameter, D, retinal exposure, Q, and
threshold exposure, Q,', as runctions of distance from a
1.0 kt. detonation ror the human eye at night. Exzpo-
sure time 18 0:064 scc.
10 0
P [
L] -
g r
3t 3
LS L
s | -1
e
9L 4.
[ Qe 2% FuTER :
.0l s 0
A 100
SLANT RANGE (hm)
FIGURE 12
Image diameter, D, retinal exposure, Q, and
threshold exposure, Q,', as runctions of distance from a

30 kt. detonation for the human eye m bright daylight.
Exposure time 18 0.111 sec.
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3.0 kt. detonation for the human eye at night. Ezxpo-
sure time 18 0.111 sec.
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10 kt. detonation tor the human eye in bright daylight.
Exposure time 1s 0.202 sec.
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FIGURE 15

Image diameter, D, retinal exposure, Q, and
threshold exposure, Q,!, ag functions of distance from a
10 kt. detonation for the human eye at night. Ezpo-
sure time is 0202 sec.

for each yield listed in table I. Figure 16 is a
plot of the threshold distance versus yield for
the day exposures and figure 17 is a similar
plot for the night exposures.

The threshold distance for a bright day-
light exposure with clear air (80 km. visibility)
varies from about 1.3 to 11 km. as the detona-
tion yield varies from 0.01 to 10 kt. However,
when the visibility is limited (20 km.), the
threshold varies from about 1.1 to 4.6 km. for
the same range of yields. Comparable dis-
tances for night exposures vary from 3.8 to
26 km. for clear air and 3.0 to 10.5 km. with
limited visibility.

The use of a fixed filter with 2% trans-
mission results in retinal exposures well below
burn threshold values for each of the yields
considered, as shown in figures 2 through 15.
During daylight hours such a filter reduces the
retinal exposure more than an order of magni-
tude below the threshold exposure. For night-
time conditions the retinal exposure is reduced
by a factor of approximately 2.5 below the
threshold exposure.
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FIGURE 16

Threshold distance for mimimal burn versus yield
for human eye in bright daylight with no protection.

The threshold distances reported here are
based on the assumption that the absorption
properties of the human retina are essentially
the same as those for a rabbit—as suggested
by the absorption measurements of Geeraets
et al. (7). There may be some question con-
cerning this, however, and care must be
exercised in using existing animal threshold
data to predict retinal damage in humans (8).
In addition, the curves in figure 1 show the
thermal exposure which will produce a minimal
burn, defined as a very slight coagulation of
the retinal tissue which becomes ophthal-
moscopically visible between 3 and 5 minutes
after exposure (1, 9). The exposure required
to produce permanent damage is undoubtedly
less than that required to produce burns defined
in this way. However, there is as vet no satis-
factory definition of minimum acceptable
damage.

The energy spectrum of the source used in
obtaining the threshold exposure curves in
figure 1 was deficient in the infrared relative
to a 5,800° K. black-body radiation (1) (fig. 18).
Since the retina does not appear to absorb
energy in the infrared as effectively as energy

7




in the visible region of the spectrum (7), the
threshold curves of figure 1 are somewhat con-
servative for a 5,800° K. black-body source—a
source that in some respects resembles some
nuclear detonations. The peak temperature of
a low-altitude nuclear detonation, however, is
probably between 7,000° and 10,000° K. (6),
and the spectral distribution of the energy
would more nearly resemble that of the experi-
mental source used.
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FIGURE 17

Threshold distance for mimimal burns versus yield
for human eye at night with no protection.

The predicted distances for minimal burns
shown in figures 16 and 17 obviously cannot be
interpreted as the distances at which humans
may safely view nuclear detonations without
eye protection. A safety factor needs to be
introduced. However, the amount of this
factor and how it should be introduced have not
yet been arbitrated. One possibility is simply
to lower the threshold curves for minimal
burns by some arbitrary factor generally sug-
gested to be between 5 and 10. Once this
factor is selected, it is only necessary to shift
the ordinate scale of figure 1 to determine
“safe’” separation distances.

An increase in detonation altitude with the
consequent increase in fireball diameter, energy
emission rate, and atmospheric transmission
(3, 6, 10) results in threshold distances greater
than those shown here. The reader is cautioned
against using these curves for other than sea-
level, air-burst conditions and for yields beyond
the range spanned by these calculations. The
basic method of calculation can be used for dif-
ferent detonation altitudes and other yields,
but it may be necessary to consider different
detonation characteristics for these conditions.

IV. CONCLUSIONS AND
RECOMMENDATIONS

The threshold distances for minimal retinal
burns reported here are recommended for use
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Relative spectral distrbution of the exposure source used in obtaining
the threshold curves in figure 1 compared to the relative spectral
distribution of a 5,800° K. black-body radiator (nm = nono-meters =
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as a guide in establishing interim eye safety
criteria. They are believed to be a reasonable
and realistic assessment of the eyeburn hazard
from small nuclear detonations. The method
and technic used here have been used success-
fully in the past to predict experimentally veri-
fied threshold distances for animals, although
not for the range of yields covered here (3, 4,

10, 11). Additional work is needed, however,
to (1) extend the threshold curves for minimal
burns to primates to allow extrapolation to man
with more confidence, (2) establish a realistic
safety factor and a method of introducing
it into the prediction technic used here,
and (3) establish a definition of minimum
acceptable damage.
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