Attachment 2

NEPA Advisory Committee on Radiation Tolerance of Military Personnel. Proceedings. Report No. NEPA-1011-1ER-16. -April 3, 1949. Washington, D.C. 104p.

SEPA ADVISORI CONCTYEE ON BADIANION TOTERANCE

COLECTION RG $\frac{326-68 \text { A1096 }}{\text { OR Rescorch } 5 \text { ins }}$
Box No. 28 - OReRe Reantisher Bldgs \&Lard:
CarIton Eotel.
Masharaton, D. C.

Finance NEPA-?
CRUER OF EUSINESS
Morning

1: Discossion :
2. Recomeadations
10:45 L.M. : Probable Results to Bumans:

1. Discassion
2. Recommendations

17:20 A. M. Report of Committee on Human Radiation PioblemDr. Stone

12:00 A.M. . Inach

TAfternoon
2:00 P.M. Report an Surgested Problems for Researeh
.3:00 P.M. Recamendationa to NBPA relative to its Biology
Prog=am
Adjourament

CEATHMAN DONDI: If the meeting will came to order, I think we will get ahead with our program. Te are fost a littie lata now.

I am enanging the order of the program fast a littile. One of the first things is opentag remacks by Lur. Mand, Xr. Sims, and lo. Sinmocs, and Dr. Shields Harren. Eowever, I thinix we will defer those remariks until fiat before closing thes aftarnoon.

I moaid like to call an Mr. Fard, however, to introduce some guests that he hias with him. Kr. Fard.

1R. WARD: Dr. Dowdy, we have some members of the insurance fraternity Wht us this morning, as most of you may lonow. I world like to call on ifr. Earbison, who is a member of the Legal Departmeat of the Tratalers Insarance Company, to introduce his associates.

Thia is Lr. Harbison.
in. HARBISON: : We are: very glad to be here. Iravelers has been very mach interested in this whole subject. Some jears ago we vere asked to insure a project out in Fashington built by Dupont. Me insured it, and we had no knowledge whatever of what we nere insuring. I can asenre fou that is a type of activity on the part of insurance companies which was umbown, and is onknown today. They generally want to kow.very mach as to what they are incringe.

He were very happy to go into that, and we have had a very great intierest in this whole matter ever since. Fie feel very greatiy indebted to Mr. Ward for making it possible for as to sit in and be here today.
16. Stratton of Travelers is on my immediate lefic; and Dr. Whiting of Travelers is next to him. They ara very mech interested in this whole subject of radíology. Kr. Stratton has had a great deal to do with it for a anber of years past; and Dr. Whiting follows it verg closely, too.

CEATPMAN DOFDY: Thank you, Kr. Harbison. He are very glad to have - For and yonr associates, Lr. Stratton and Dr. Maiting, with us this moraing.

I would like to introduce Dr. Filtager. I think most of you know him. He is with the Naval Research group at Bethesda.

Dr. Selle, will you read the minutes of our meeting that we had in Caicago on June 23.

DR. SEIIE: (Beading)

The firgt meeting of the NEPA Adfisory Comittee on Radiation Toler-
 Cufeago. Dr. Shields Harren served as temparary chairman and Dr. Charles B. Perry as temporary secretary."

- 15. Chat-an, I tract I wil not have to read the Inst of the indiFidnais who atteaded that meeting. This is similar to the one which most of you have before you at thens time.

The Chaizan ealled upon 1r. I. A. Sims and Mr. J. Carlton Hard to briel the group relative to the objectives of the NEPA Project and to indicate some of the medical problems involved.

My. Sims discussed the limitation of performance of chemically froled aireraft in consequenca of the incompatibility of speed and Fange. Ee presemted certain fandamental aspects of aerodynamies and comented briefly on advantages to be gatned from the application of atomic energy to airewalt propulsion. Kr.. Mard somarized pertinent discossions of the Congressional Air Policy Board and of the Hoover Comatitee, and also comented briefly on the projected. pse of atomic enerfy for military purposes.

Mcting Chainam Shields Farren charged the Acvisory Comittee with the responsibility of deciding what can and should be done in order to insure protection to the persomel operating the hypothatical type of plane sach as Kr. Sims and Kr. Ward described.

EAn election of permanent offlcers of the Committee was then held. Dr. Aadrew E. Dowdy was elected Chairman, and Dr. . Secretary.

Mr. Sinmons spoke of the radiation problen as it will apply to military personnel comprising the Cren of a melear adreratt. Ee pointed out that uader operating conditions, it is not desirable to accept the present radiation standards established for existing groand installations, such as the stationary pile and the usual hot fadiation laborato:g.

Mru. Sinmons indicated certain subjects of interest to NapA about which further information was rec̣ested. Among those subjects mentioned were:

1. Actuarial statistics relatieg to haman sumival at various Ievels of radiation.
2. Variations in haman sensitivity to mired sadiation such as would prevail in the vicinftj of a reactor of the tjpe conterplated.
3. Methods detemaning the der:ee of physiological sensitivity to radiations.
4. Additional study and Fefinement of the ren and rep concerts, - and the azntal at a better correlation between varinoua ifpes of radiation and associated conversion lactors.
5. Methods of incroasiag resistance to the physiological afects of radiaticn.:

Mif. Simons spoke at some leagth on the problem of reactor sheieldiag; partieularly in relation to shield weight and to persomel protection and afplane porformanes. He mectioned that irereasine the speed of the atplane by decreasing the weight of the sheeld worid expose the erew to a higher radiation level, bat world redace the duration of exposure and world favor sardival from enemy action. The comifaration, deaign and weight of the shield, as well as the position of the roactor in the plane, world all Fitally affect the detailed desizn of the power plant and the natwre and oxtent of the radiation hazard.

Mr. Sinmons indicated that as a starting point for the design of the shileld, an arbitrary exposare valne of 1 rep per hour for 25 hours might be uaed as a besis of discussion. This figure represents an frerease over present Iaboratory atandards by a factor of 100 as based on the so-called pernissible exposure of 0.1 f per working das, or

- approximately . 01 r per hour.

MCansiderable general discussion ensued concerning the probable time recos-ed to trafn the cren of a nuclear powered plane and to complete a specipic milltary assignment.
N. Kalftinaiky discussed farther shfeld design from the viewpoint of barards from enen actizn and indicated that such hamards are inversely dependent apon the degree of radiaition protection afforded the eren.

Nr. Shields Warren comented brienty on phases of woris in the A.S.C. and on data available Irom the Manhattan District Operations whieh have inmediate bearing upon the radiation protection problem under consideration.
nDr. Calkins discussed a prepared mimeographed report whach be distributed among the members present. This report concerned certati well-known physiological effects of mhole body radiation and offered proposals for biochenical research ained at increasing the physioFogical tolerance to ionizing radiations.
"Among the chemicals sugested by Dr. Calkins for stady were:

1. For preventing the hemorchagic syadrane: toluidine blue, protamine sulphate, antiocidants, to be used with or without Fatin and Vitemin C.
2. For fortirfing against the non-descript tope pinenamenon: ethylene disulphonate, theophorin, antiocidants.
3. For combattins bacterial infection: penicilys and sulfa compounds.
mr. Calkias' comments were followed by renarks by Drs. Dowdy, Smelds Marren, Braes and \#ewell an anti-histaminics, ratin and Vitamin P, and antibioties.

There ensued an involved open discresion on radiation data 5 om buman sonrees, and on methods and procedures necessant for obtaiaing additional radiation data or man. Dr. Newell and Dr. Dowdy farther atressed the obvious aeed for syotenatic colloction of all arailable data an fadiation effecta and the exploration of methods of ameliorating damage and increasing the body tolerance to ionizies radiations.
mprior to the noon recesa, ly. Mand injected the wish that there be civen no immediate statement or comment relative to the allowable or pernisibila radiation exposure of personel. Dr. Dowty indieated that the present meeting is preliminary and that available information is fiadequate to scpport any statement of permissible exposure at this time, and that long-range planning seem necessary to obtain the eraction information needed for the Project.

Mon reconvening yolloring the nocn recess, Dr. Dowdy appointed an Erecutive Comuittee to assist the Chatrman and Secretary in condueting the affairs of the. Advisory Cormittee. He appointed to this subcoumittee Drs. Robert S. Stone; Robley Evan; Stafford I. Farren; and C. E. Perry.

MThe Chainan also appointed a subcomitttee on Available Data to assist in the collection of pertinent foformation being obtained at various Atomic Eneray Installations and Universities comdecting biological javestigations a radiation. Ee named ui thrs committee: Dr. G. Failla and Dr. Ititus C. Erans for Columbia Uaiversity; Dr. Anstin M. Braes and Dr. Raymond E. Zirkle for the University of Cuicago and Argome National Iaboratory; Dr. Alexander Eollaender and Dr. Raymond B. 2izkle for Oair Bidere National Laboratory; Dr. Robert S. Stone for Califormia; Dr. Tright Langham for Los Angeles; and Dr. Eurpert Anderson Erom South Dakota, who is especially requested to obtain data on the biologieal aspects of radiation.

Mr. Dowdy charged each member of the Subcarnitiee on Arailable Data With the responsibilltis of sumarizing, or having sumarized, for NEPAthe pertinent information on radiotiologe coming from his onn area of activitu; and presentang the material to the Executive Comittee within six months, so that the latter cormiṫee might have ample time to edit the material for presentation to the Adrisory Comittee at its Eext meeting.

Thais sumary is to serve as a basis for reconendations relative to additional research which will be recuired to answer specific questions arising from the radiaticn protection problem.

The Chat man requested that in sumanizing the available incomation, the members.keep in mind the following items:

1. Kethods of detiectiac slight biological chaces, partienariy those baviap a practical cifnical application.
2. Recovery rates.
3. Varfation in biological offects with intemsity and rate of admonistration.
4. Sumation of miltiple doses of the same type of radfation or combinations of different types of radiation.
5. The biological effective ratio of n_{n} " to ${ }^{n}$ r."

MDr. Perry atated that Dr. Dowdy would also serve as Chatrman of the Subcomadtee an Available Data and that 11 sumaries fram committes members shorid be seat to D5. Dowdy.

The Chair then appointed a Subcommittee on Euman Radiation Problens, which included-Dris. Robert S. Stone, Chajnan; Simeon I. Cantril; H. I. Friedell; Shields Harren; and R. R. Neneli.

Mrembers of thifs subcomittee were also admonished to keep in mind:

1. Dosage rate.
2. The 5 to n ratio.
3. : Effects of combined radiation.
4. Recovery rates.
5. The smallest detectable biological reactiom:
"Doring the latter part of the afternoon discnssion mas directed to:
6. Clearance of technical information.
7. Raciation exposure levels between 25 and 100 5.
8. Engineertng problems conceraing the reactor, shielding, and ship design.
9. The anticipated nertron to gama ray ratio of af-eraft reactor radiationa.
10. Specifîc payiiological effećts of ion_zing radiations and possible methods of preventing radiatien effects by chenical and pharmacological means.

MFolloring a few renarks from Mr. Ward in appreciation of the efiorts of the Comaittee in their deliberations, the meeting was adjourned at 5:00 orclock. Respect fully submitted; M. A. Sella, who nas nerm replaced Dr. Peryy as Secretary of the NEPA Advisory Cominttee on Padiation ToIerance of Kildtarg Personnei."

CRATPMAN DONDI: Thank you, Dr. Selle. Are there any eorrectians to the minutes as read?

IR. ROBLEI EVANS: DY゙. Langham was read as Mos Angeles" instead of Los Alamos.
 If not, the minntes will stand approved as read.

This Conmittoe in jume was asaigned two tasks. The first was to give information to MEA rolative to the probabie results an mans of various dosage levels of acnte total body fadiation. The sacond was to make recomendations to NEPA relative to. a research propram which worid further clarify or 1111 in any gaps in the informatiour we now have relative to human expesure under the conditions pertaining to the NEPA Project.

The availeble data was sent in. Dr. Perry; Dr. Sella; Dr. Nadersan, and I edited this material. We presented it to the Frecutive Comittee an December 10 in San Francisco, at which time the infornation was gone over very, very carefully; corrections made; and also the probable results to o hamans from various dosage levels which had been presented to the Elecraive.Comatttee was thoroughly discussed, not only as to the resolts but to the exact wording.

Corrections were made on this. We'retarned to Los kngeles and corrected the report and the probable resolts in line with the recomendations of thie Execative Comittee.

The probable results an humans was then seat out to the Brecutive Committee members folloming this revision for their further correction; following which it was thea pat out in mimeographed form to all members of this Committee.

I might tell you the reason for the classification which we have an here as mestricted.n This information as it is contained in this Iftile biue, legal-size, ve:y convenient package has nothing in it that any ditulfence would be detrimental to our country's secinity. . It does, however, have information from one report on hanan acetdents, so it is classified in this respect from a personal relaticnship or fron a medical legal problem aspect. Some of these cases are stin7 peadine, and the Atomic Berey Comaission felt that the report as such cannot be put out for publie consumption.

So, if any discnssion relative to these particular cases should ensue this morning, we might have to ask some of our visitors to leave the roon while this is being discussed. Fowever, I hope that a detaiied discussion of the data as compiled will not be necessary, because it has been in the hacds of each menber for at least appradeately a week. I notice it was issued on 'Febracty 15.

DR. NEXEIT: Two or three weeks.

GFATBYAN DOKII: So I hope we will noi have to go into detail on it. We probably wil have to 50 into some detailed discassion an Section IF of it relative to the various dosage lovels and probable results a bumans.

However, agatn I wourd Ifke to empharize that this has been verg careIully stadied by the Executive Committee and has been issuod to each of you; and if there are any particolar coments on it, I thinik they woald probably have been made.

I received a latter from Dr. Cantril expressiag regrets in not being able to be bere, but he did in general aceept Artifeie II of this report. So, at. this time, if there is any discossiom on the available data as such, it is open for discassion.

DR. NBNEII: Fou'don't want discussion on Article IX at the monent?
CHADRMAN DONDY: Not Fight now. That is coming up later. Fe realize that this information is not all the information in the country on this subject. It is information, however, that was sent to as by the various members, and information mich I and Dr. Selle and Dr. Anderson were able to cleari from the various reports, both classified and no classilied:'. It contains Dr. Stone's personal experiments. It incindes a group of cases from Chicago. It is put in tabilar form.

DR. FOLLAENDER: I have a statement that is more up-to-date.
CFAPBMAN DONDI: Fould you give us the page?
DR. HOLIAENDER: I can give you the page.
CIADEMAN DONDY: Why not give it to me and we mili pat it in the minutes and make those corrections where they are necessary.

Dr. Hollaender has handed in a sheet of minor corrections which he would like for us to make and inciude in the revised edition. Is that coreect, Dr. Hollaender?

DR. ROLIAENDER: That is sight.
DR. FAIIA: Section II is included in this?
CRADPUAN DOHDP: I put that under two different headtegs.
RR. FAIIIA: Fie will accept this, with the execption of Section IF.
CRAPMIN DOHDP: Then we wily go on to Section IX.
If there are no further corrections, the Chair will entertain a motion that we aceept the available data as presented and recomend it to HEPA.

DR. FATILA: I so move.

CHATBMAS DOIIII: Do you second the motion?
UR. SIONE: I don't know. whether we can discuss it here, but these is otitis a question of the interpretation of some of the data fran Los Alamo.

CEATPMA DCNUY: Yes. Te will have to take that for its lace value here, I think.

IR. FAIIIA: I world suggest that a note be added to the affect that the doses are subject to revision. The doses as stated io terns of roentreas are subject to revision in those cases. That is being done et the present time, is it not?

ER. STONE: I es. I think with that, we can accept then. Wig jor pat that fin Fear motion, that we accept this with the understanding DR. FATIIA: Yes.
Di. SIONE: Mich may is the revision going to be? Do you have any Idea?

DR. FATIIA: . I bavea't the sifghest idea. I_dor't kew what they took as to the biological effects of nentrons and gan an fays.

GRAPRMAN DONDY: A note rill be added that the doses on those cases mil be subject to revision?

DR. FATITA: Les.

CRATEMAN DONDI: Do For want to give me that notion aces?
DR. FATITA: I move that the report be accepted, with the addition of 2 note referring to the los lames cases, to the effect that the doses as expressed in the report are subject to revision.

CRAIPMAN DOMDY: Dr. Faille removes that the resort be accepted with the addition of a note $=$ efferinc to dosage of the Los flames cases are subject to revision.

UR. ROBIEI EVANS: I wifI second that.
CIAIRMAN DONDY: The motion has been made and seconded. Is these any discussion?
(There was no response.)
CHAIFMAN DOWDI: If not, those in favor min say "aye."
(General response: life.)
CRAITMAN DOHDI: Comsat, the same.

CRADTMAN DOWDI: The motion is carried.

- The second order of basiness is on Articie IE, which is an Pags 34, eatitled, "Acnte Exposare. Estimated Resclits to Human Eaposed to Filtered, $200-1000$ KVP X-Rays, Measured in Atr."

It was theonht by the Executive Comanttee that in this particular part of our recomendations that we should recomend various dosage levels and probable results, feeling that we as cifilians could not state what the risks should be, that the risk of any partienlar mission is the fesponsibillty of the milistars; and the best that we could do world be to give then what we feel, in lipht of owr present information, would be the relative risks that they wonld facar at these dosage levels.

So that accounts for the way we have expressed these various dosages. Dr. Friedell.

DR. FRIFDEI工: The onif recommendation I might have ia regard to this 1s; we have not given any indication as to any division of response in a group of personel. In other words, for example, "C, 100 F ; at the level, nansea and fatigue may be a problem."

I think there is enough individnal.response so that some individuals may have no nansea and faticue. Some may have considerable. Some may have a moderate amount.

I think we ought to see if we can decide apon what percentage might be affected by those particular levels.

Other than that, I agree in general with the character of this report.
DR. FAIIJA: The wording is intended to take care of that, Dr. Friedell. When you say "may be a problem," it means that some may get namsea and some may not.

If you start to put com percentages, we will never agree to anything, because we don't koow what perceatages they are.

DR. FRIEDEII: If, for example, You have a ceew of ten people, it is possible that some of them may not be aflected at all; and if the duties car be interchanged, it means that you can go to a pretis higi level, becanse some of them can take over the imeetions of others.

DR. FAIIIA: That is right. We will agree to that. Eut. to pro down in elpures fust mat percentage would show that at 100 5 , I den't think anybody knows.

CHATPMAN DOTII: I wouldn't hazard a gress as to what percentage. Then we say "may," we think it is possible, but not particrlarly hichiy probable. I thenk it aepends somewhat on the psychological makeup of fous crew, waich is the problem winich $\mathbb{N E P A}$ rill bave to go into.

IR. FRTEDEII: Let me change ms sugzestion then. Perbaps we ought to frist add a note stating that there is indifidnal variation, and you can copect that some will have no reaction; some will have severe reaction;

 you like to add a general note?

IR. FRIADEIL: I think it ought to be a geaeral note stating that thás ia what ocears ion the average, but yoil can expect variations.

CRARMAN DORII: Fould you like to pat that in words?
DR. FRIMEII: Let me wite something, and then I ean give it a little 1ater.
ni. HiN: I think also a general note can be added that some of these effectos, sanetic effects, are dependert upou age.

DR. FATINA: Fhat effects?
in. NINS: A man of 45, the effects are practically nil. I think a ceneral statemeat of the delayed effects should be pat in. Te took it for granted that this meant the child-bearing period.

DR. STONE: Forty-five or ap?
DR. NTVS: There is no reason why we couldn't. Some of our best cifilian pilots are in the age range of 45 to 50.

CHAPruA DONDI: There would be very little danger there, of course.
DR. STONE: 1 civilian prilot stamds the gaff for about three or forr hours, doesn't he; and here you are going to get somebody. who will have to stand the gaff for up to twenty-four hours, let's say. It would be a difficult problen. You would need somebody who can take it.

CHAPMAN DOWDI: Is it felt this second suggestion should be in there, or is that covered in ous report? He discussed this matter quite thoroughly in San Francisco, and our feeline was that we were specifically speaking in regards to this, the people in the yorager periods of life.

DR. FAIFIA: I thiak it is implied.
DR. HOLIAENDER: I am not discussing this as a geneticist, but I have a feeling that not enougi attention has been paid to the small eflects we may have on the populatios. I thiak we should include some statenent in here that we do not know enough about these to be conscious of these, and we have to wait umtil we get results from experimentation. It might help to keep this in mind, at least.

CIATRUAN DONDI: That is the reason why I put Dr. Charies' notes in here verbatin. I might say then, that so far as Kirpa is coneeraed, while we did pat a fair amount in here on genetics, so far as KEPA is concerned it is a minitary problem, and genetice is of very lettie importance.
'In the case of war, if an objective is to be gatned of sufincient importance, one is not going to stop and consider mach what is gotar to happen to the second and third generation in a relatively amall percentage, as compared to the people who are exdating, living, at the time.

So; even though the genetic hazards were, we wil say, ten or Inctieen times as great as we believe them to be, I still don't belifere it would hold up the military operation; becanse if you didn't save the present generation, yon certainify wouldn't have to wory about the future.

IR. HOLIAENDER: Corlda't it be stated that we are conscious of the problem?

- IR. NPTEII: I think you are Fight. I thrali it is the wrong decision, but I thiak you are right that that mill be the decision.

CRATHITAN DONDI: Ies, I think it will. Fe pat genetic possibility under each one of these dosage levels, and then I added Dr. Charles' notes verbatim. So I believe we are very woll anare of that possibility.

ER. ROTLADNDER: Oar feeling is that Dr. Charies represents a sehool who doesn't believe in the seriousness of the recessive charges that mifht appear.

CRATEMYAN DONDI: I thiak he doees.
DR. FAIIIA: I think be does.
GAIPMAN DCHDY: I think he does. Perhaps Dr. Matren andiI may have stretched him a little on that. Iou talked to him and got his results. fe is verg mach aware of that.

IR. STONE: I think, Mr. Chaiman, we have got to come back to the idea it is harid for us to get to, that we are dealing here with a relatively small group of people and not with the population as a whole; and we are dealtag with a few people that are going to be exposed to areater hazares by a thousandfold or a millionfold than the genetic exposure.

So, in any of these conclusions it is inherent that we are thinking about people that are involved in this particular problen, not about the popiriation as a whole; and this mast aever be taken out and used as a separate thing for consideration of the pocalation as a whole. It is entifely limited to this group of people that $\begin{aligned} & \text { nill } \\ & \text { be involred }\end{aligned}$ in Irfing these parcicalar planes, wich will be infinitesimally smati compared to the popsiaticn as a whole.

To lay any great weight on genetic changes for this group, it is unimportant. It should not be taken into consideration. But, as we stated before, we don't want these data to over get out as ans reconmentation that is made for anything else than this particular problem, or a similar problem.

IR. ROBLEY EVANS: There ism't any recommendation here, though, Dr. Stone; just facts.

DR. STOME: He wants to change the facts a little bit to state that we may be underestimating the genetic effects.
[口R. ROBLEI EVANS: With all these genetic effects pat in terms of spontaneous rates, I feel that the recessives would be taken care of. DR. HOTLAENDER: Charles takes care more of the sex changes than he does of the small physiological changes or the mental changes.

DR. BOBLEY EVANS: But if you do take the recessives into detail, you get the same result.

CHATRMAN DOWII: Maybe we can cover what Dr. Hollander has in mind by adding a note that it is to be strictly understood that these recomb mendations are for one specific purpose, namely, to NEPA, and do not apply for domestic or commercial use.

IR. NEWELI: Kay I paint out these are not recommendations. These are .-. estimates. ha I mistaken about that? There is no purpose stated in this that I can recollect.
=CEATENAN DCRDI: Te would like a recommendation that we recommend these to NEPA for their consideration.

IR. FATIIA: That is Fight.
DR. ROBLET EDANS: That will be the subject of a motion later.
DR. NETEII: We furnish NEPA with these as the best data we can get.
CRAIRMAN DCNDY: As a gride; that is Fight.
.DR. NBNGI: But these are not recommendations.
CHATPMAN DCTIDI: We don't make a recommendation on what dosage level they mill take.

DR. FAIIIA: What is said here about genetic effects is in terms of the naturally occurring rate, so that I think it is perfectly fair. Do you object to those statements?

DR. NOYEIT: That is the real point. Are these estimates mong in that respect?

DR. HOTLAENDR: We don't know. There is so Iftile inforatidan avaliable on recessive ehanges; and the statement made that 100 y means an increase of 1 percent in the hamard, this increase of 1 percent is not really a tine expression.

DR. FAIIIA: It doesn't say 1 percent. Fhere is that?
UR. STANE: At the bottom of Page 34.
표. FATILA: Oh, yes.
 radiation.

DR. ROBTEI EVANS: I think you have a valid objection. Oase nord might be added in the last phrase, if I get it here, objecting to the therd line from the bottom on Page 34 , rbich sags that "delayed effects ** not more than I percent from all causes" and so.forth. Then you go ${ }^{\circ}$. over to the bottom of Page 35:

> "The expression, 'delayed effects,' as used here, refers to any hatmful effects attributable to radiation, manifested at any time subsequent to the period when acute reactions may occur."

The subcommittee deffaitely had in mind the affects of radiation on the rectipient of the radiation. This is not stated mader the asterisk, but it is what you are really after. That certafily is what me meart.

CEATENAN DOHDI: Ies, that is what we meant.
DR. ROBLIT EVANS: If that will satisity everjbody, I would move•such an amendment. It refers to any harifol effects on the recipient of the radiation.

CHATRICN DCNDY: Is there a second to that?
DR. HOLIAENDER: I second it.
CHATPMAN DOWDY: The motion has been made and seconded. Do yor want. to read that?

DR. ROBLEI EVANS: Δt the bottom of Page 35, three lines from the bottom, to insert after the word "elfects" the words, "an the Fecipient of the radiation."

CRAPIMAN DONDI: Which page are you talking about? Page 34 or Page 352 DR. ROBLEY EVANS: The bottom of Page 35. This is jost a definition of delayed effects. Delayed effects do not include two thonsand jears. They incluce the remainine life of the pilot.
 be added or inserted.

요. FAIITA: Lay I.make another suggeation? We could say that nat amy time sabseqreat to the period when acnte reaction may oceru in the lifetine of the fadifidnal." That might make it a lattle clearer; I dor't lonow.

DR. FRTEDEI: I have samething written ap bers.
CEAIRMAN DOFIDI: . Do you mean on this, or the ane fou were referain to? DR. FRIENETI: The one I was refercing to.

CRATMCAN DCNDI: Me .will be back to that in a minate. Let ins get this cae cleared.

IR. ROBLEI EVANS: dfter the word "effects," if yod pat in man the rectipient of the radiation, and attribatable to radiation" -

IR. SEIIE: DT. Robley Evans then has moved that we insert the pbrase "on the recipient of the radiation, and attributable * *" and so forth. GHAPMUAN DCHDI: That was seconded by?

DR. SEITE: Seconded by Dr. Failia.
CRAIEMAS DONDI: Is there an disenssion?
(There was no response.)
GEATBIAN DONDI: Those in favor of this will asy "aye.".
(General response: tye.)
CGimpiran Dondy: Contrary, the same.
(There was no opposition.)
CRAPMYAN DOKDI: The motion is carried.
DR. NOKEII: Mr. Chairnan, I move that. paragraph 2 be pat before paracraph 1 and renumbered to 1 It. I thank this difficolty arose because you bave been talkeng about effects on the recipient of the radiation, then you begin talking about genetic abnormalities; then you retura to the recipient. I mant to change the order of paragraph 1 and 2 under D.

CHATBuAN DCNTI: You would have to change the orier of evers one of them, then. Those are 211 put in the same order all the way through. I don't believe that that is what cansed the troable. I den't thiek that caused the trocble, Dr. Newell.

DR. NENEI: Fou don't thera so? O. K.

DR. FRTMDEN: I just had ancther idea.
CRACTMAN DOWDI: Fhile Dr. Finedell is cogitating, are there any additional correcticns?

DR. IITUS EVANS: I am frst wondering if this correction is really foolproof. Even if the damage occurs in the second or third generation, it can be traced back to damafe taking place doring the lifetime of this indiridual.

CHADPMAN DOHDI: Fe are talking aboct this particilar individual, thorgh, when we say delayed effects.

DR. TITUS EVANS: Back to the recipieat of the radiation. Fell, you can trace thats abnormality back to the infary that took place. That 1s, when the indifidual's infury took place.

DR. STONE: Is it harmiul to that indivicalal?
DR. HOILAENDER: It depends mhether he is interested in his children . or crandehildren:. If he isn't, then there is nothfag barmiul.

DR. ROBLEI ENANS: I think you are all right because that is in separate pararraphs. The entire meaniag of delayed effects in the minds of the subcomittee was not genetic.

DR. TIIUS ENANS: If You restrict this injory to the time of the individual, I want something about ballway between-which would bríg in both ideas.
[R. HOBLEI EVANS: Dan't you have it, for example, under C-1?' That paragraph is ecclusively about genetic abnormalities; and uncer C-2, on Page 34, the delayed effects are eitirely separate.

DR. TIIUS EVANS: Ies.
CBAIRMAN DCHIF: We are speaking about entirely different things.
DR. ROBLEI EVANS: They are very cieariy kept apart.
"CHATRMAN DOTUII: Is there angthing further? Dr. Friedell.
DR. FRIEDEII: I thank I have something here, a littie verbose peniaps; but I think it includes the general idea:

The following is an indicatice of the general biolocical effects to be anticipated at various levels: At each level, except at the highest, there may be comsiderable individual variatians so that no demonstrable clinical changes may be observed in a certain proportion, this proportion being rapidiy smaller as the dosage is increased.
aCorversely, biological effects may appear at the lowest levels in a small proportion, this proportion becoming rapidly larger as the dosage level is increased."

That would conver this idea of indifidual variations.
표.. FAITIA: Phers do you accept the lasgest dose?
[if. Fifindill: Of course, I mas really thinking of doses even larger tham 400.

Giflun Donty: It wort be poasible for this particular project.
DR. PATITA: I will have to disapprove of forr statement.
DR. FRTEDETL: I am willing to deleta that and stop at 200.
CRALPMAN DCWDY: • And your suggesition is that this go in under the caption we have at the top of Page 34, before we start -

DR. FRIEDEII: That is Fight; so that there will be an indication that there will be individual variations, so that the total individual may not show mach; if anything, oven though in general this is what you expect.

I will read it again. It is a little worty.

> The followiag is an indication of the general bialogical effects. to be anticipated at various dosage levels. At each level there may be considerable indivicual variations so that no demonatrable clinical changes may be observed in a small proportion, this proportion becaniag rapidly simaller as the dosage is increased.
> "Conversely, biological effects may appear at the lowest level in a small proportion, this proportion becomina rapidly larger as the dosage level is increased."

DR. STONE: If you pat in "smaller," I think fou get down to 25 = winch we have included here, and you are not going to get any effects on anyTbody, detectible effects, I mean.

DR. FRIDDEII: I woulda't say anybody. I than if you did a thousand peopie, you would find one or two people that would stow some effects. I thiak there would be some swall proportian.

I have not indicated here what it is, to avoid this kind of argunent; but if Dr. Cantrill were here, he would sav that 25 I -

CRALPLCAN DCNDI: I will read you Dr. Cantoil's remaris. I wily read you the second parastaph. This is from Simon P. Cantoin, dated 1earch 23:
＂In Fiew of my absence at the meeting，I would like to
state，however，that in general I world agree Fith Section
II entitiled，＇Acrte Boposrre．＇如 oniy coments conce：n－
ing tinis are：one，I would judge that the problem of
namsea at 100 r level will be kown，and woild belfeve
that some amount of fatigue would be more prevalent than
nausea．I would not anticfpate that the nansea would be
suffiefently prevalent to interfere with the coordination．

Mro，I rould anticipata that there woild be some more sensitive indifidual who would suceumb to a total aente ecoposure of 200 y penetrated radiatioc．＂

DR．FRTEDEIL：So he does agree with the idea that there－
CEAITACAN DORDI：I minht say，in answerfor that，that I agreed with him，and said that it would be assumed that there would be some super－ sensitive individual who might succumb at 200 I ，and there might be some considerably nanseated at 100 ．

IR：FRIDDEIS：I think you might find one individual in 100 or some－ thing in that orde＇，a small proportion，who would have nansea at 25 I．

DR．TITUS EVANS：We have leukemia－
IR．STONE：He are not talking about leukenia．Fie are talking about healthy nomal individuals． 1

IR．FRIENETI：We are talking about normal healthy individnals．I thrak you heve 1 in 100．I don＇t know what the proportion is．

CZAIRMAN DORDI：I think there will be a poychological persomalifty in whin，if you lead the member up to a machine and say，＂You are coinc to get radiation，＂they will be nauseated before you give it．Those are probably the ones who fail in your eroup．

That is a problem that NEFA will have to consider，psyctological evalu－ ation of personmel with respect to this type of danger．

DR．FRIEDEIL：I would even leave those out．I thiak with any nocious －acts you find in a very small proportion extreme degrees of sensitivity that we don＇t understand．Even morphine，for exampie；verf oceasion－ مصر

DR．FAIIIA：Do you have any such thing in fadiation？Iou have no． idfosyncrasies in radiation．

貯．FRIJDEI：I don＇t know whether it is ideosyncrasy，is that is what you call it，if there is one individual in a greater percentage that reacts that way．I am taking the symptom that is the least biologically important such as，say，nansea．

I think that in a ve：f small proportion some one individual will show uncral sensitivity．The reason for it，I don＇t kecow．

I agree in general with this, and I agree also that you have to exande ace arfill lot of people at 25 roentgens to find ane of them; but I think ane would exit.

CEATRNAN DOWDI: How do you feel, so far as this particular project is concerned; that that is an imporeant lactor?
18. FRTMDII: No, I doz't. But I am merely defending a statement wheh should begin fiom the rery bogiondrg of 25 I . I am only statane that there winl be a proportion that will be affected, the proportion increasiag as the. dosage increases.

What the proporkion at 25 f is, I frankiy don't know. But if I have tio bet, I will bat that if jou just examine anongh people, you will sand one.

DR. HOBLEI EVANS: D_{0} yon mean the fractional standard deviation changes as you co up in dosage, and that you can prove that? That is what you said.

DR. FRIEDEIL: Ies, that is what I an saying. I think it narrows down as you go bigher. I thiak if you give 2,000 roentgens, you will kili evergbody. Aut there will be ons indirianal who will survive. That means that the standard -

DR. ROBLEI EVANS: That is still all raght. That doesa't prove the standard deviation is changed.

표. FRINDEİ: Ies, I thiak that if yon 50 bigh; the standard deviation, the coefficient of variability goes down. Eere yoc have a very broad group, and here I think you have a verg natrow group.

DR. ROBLET EVANS: Fould You be happy if the finst line an Page 34 had ome more word in it: nEstimated Results to Average Eumans Exposed?"

That is mhat you reaily want, isn't it?
DR. FRIEDETI: That is what I am doing, except the word naveragen needs explanation because you talk about the total indiricual.

The only point I want to make is that with inciridual urits, some of them may not be. affected. That is the only point I want to make, becanse it may be important in calcilatine what happens with a crew of ten or tweaty. Then you get mubers in there, then obviousiy to make it effective, you might, to affect the whole gromp, have to c_{0} to hafher levels.

DR. ROBLIFI EVANS: Of ecarse, that is in item 1 of the proposed research schedrle for this afterneon. That is the very first thing under consideration.

DR. FRIEDEII: If the comentee doesn't feel that it is nesessary, I Will be perfectis baتpry to mithdram it.

DR. BCEITI EVANS: I thrik You have a good point in getting the mord "averagea in here.

ChAPMAN DOWDI: Would that satisfy you, "average"?
DR. FRIEDEII: If it satisfies the committee; that is important. K only point is, we ought to recogaize there will be individual varan tions, and it will take on the forill of some kind of proportion.

DR. FATITAA: I have a statement that I thiok is equitralent to Dr. Friedell's, if you would like to hear it:

MThe estimates given below apply to the average indifidual. It should be borne in mind that there is considerable variation fa indiridals' susceptibility to radiation."

DR. ROBLEI EVANS: I second it.
IR. FRIEDMI: I think that would do it. I still would like to hold oot for this proportion idea.

CEAMPUAN DONDI: . There is no way to arrive at that proportion. It is a Ifctiticus. proporticn.

DR. FRTEDEIT: Thether we know it or not, I thiak it exists. That is the point.

CEAPPMAN DOFIN: Doesn't this innly that.we have taken. that into com sideration?

DR. FRTBDELI: Ies. AII Fight, I am willing to accept it.
마. FAIITA: The estimates riven bolow apply to the average normal individual. It should be borae in mind that thers is considerable variation in individuals' susceptibicity to radiation."

CHALSURN DOHDY: Will you put that in the form of a motion?
DR. FATITA: Yes.
IR. ROBLEI EVANS: I will second it.
CHATPMAN DONJY: The motion has been made and seconded. Is there ado discussica?
(There was no response.)
CHATEMAN DCHET: If not, those in favor say "aye."
(General respanse: Aye.)
CRALELAN DORLI: Contrary, the same.
(There was no opposititen.)

CRAIEMCAN DCHDI: The motion is carried.
Is there any inather discassion?
De. NETEIT: 15. Chairman, I theik there is too gmall a spread betreen statements in rogard to fataltties at 200 F and 400 F , because when I ceme to chart. then, I fornd thes IeII in the same groap.

I an talkig abort Page 35:
ID. 200 F ; at this level, latalities, $2-6$ weeks after exporares, mipht occur fo a small proportion of the ir radiated indifidaals."

How, We will pass to the last two lines of E
WE. 400 I; it would be expected that vintalily everyone worid be imediately incapacitated by sueh an anomt of radiation, and many vould never recover completely. Some deaths worid ocemr in 3 to 6 reeks."

The stateneats are very nearly the same, and yet the doses are 100 percent apart.

CHATEMAN DOHDI: I worlda't agree that the statemeats are the same.

DR. NENEN: No, I say they are very mearif the same, becanse I discovered whea I tried to chart them, I dida't heve ay intemediate croup to pat them in. They had to go in the same group.

CEATRKAN DONDI: Doesin't the ffyst one say that there will be a high proportion of nauses, vomiting, and faticue -

पR. NEMET: FO, I an talking abort Iatalities.
CBAIPMAN DCHDI: AII right - ard a small number of fatalities? And thea E, we imply that there will be a large armer of fatalities.

DR. NDVEI: Iou said some deaths Nould oces.
GHAIRMAN DOHDY: At Ieast incapacitation so far as the total croup is concermed. Now, NEPA could mot afford to rse a dosage which would ireapacitate 90 perceat of their persomael.

DR. NEMETI: Flease, ir. Chainnan, I an talking oniy about the statement fa Fegard to fatalities.

DR. TIIUS EVANS: "I thak the disitactioc is, it says noight ocear" in the upper ane.

DR. NaHTN: That is Figit.

- I․ TITUS EVANS: And in the bottom one it says "rouid oceur." The time of death would normally be about two weeks. I mean, that is the eracial time, two to sir weaks, regardless of the dose. The difference is in the frequency of occarrence.

Ion might make that a luttle stronger.
 eases.

IR. TIIUS EVANS: In a smail proportion might ocem.
DR. NEMEII: Statistically I was mable to pat D amd E la regard to fatalities in any except the 10 percent death croup. As tine as I was able to greap them nonid be 50 perceat dead, 90 perceat dead, 10 parcent dead; and I had to pat both 200 I and 400 I in the 10 perceat dead gronp, which was too elose together, I thought, for the difference in the dose.

Now, I think that this remark in regard to nmight oceur in a smay proportion at $2005^{\prime \prime}$ came. from the Los Alamos experiments.

CRATRMAT DORIT: I don't think so.
IR. FATHA: I think your point is well taken. Instead of saying some mider E at the end of the paragraph there, that indicates that very few would die. Actually, 400 is very cioce to the in-50. So there worid be more than some.

LR. WBNEIL: He ean 50 lato this estimate afterrards. It is that I would like to spread oat the statements more widely.

Iet me make a motion then to say that mader D, 200 y, instead of sayfac "fatalities in 2 to 6 weeks after exposures might occur in a small proportion of the irgadiated indifiduals," say "death from this dose woule rarely oceur."

DR. FATHA: That is essentially the same thing.
DR. NENEIL: No, I think there is a dieference between farely and same; but there isn't unch difference between might and some.

DR. FAIITA: I think if you change amythig, jou would have to change the "same."

DR. NENEII: I would prefer to change the LOO.
DR. FATHA: Ies, I thich that is misleading.
GAAIPMAN DOWII: Iou thenk the 400 has been a little low on that? I agree with you on the 400 part of it.

IR. NEVEII: Then let's raise the 400 r . What word would you suegest?

DR. FAIITA: Dr. Nims suggested we leave out the word "some," but leave "deaths" plural.

CEALBMAN DCRTIY: "Deaths would occur."
IR. EOBLEI EVANS: That implies everybody. Fould you say an important iraction of the irradiated indiridnals?

Re. EAIIIA: Ies, I mould say a considerable Iraction.

- R. BOBLII EVAN: 1 conaiderable fraction of irradiated individuais.

IR. STONE: I suegest, KT. Chaiman, these two words were pat in here after el aborate discussions before; and the minnte you get to chanciec then around mach, you get inta the whole problem of what would canse death.

I rouldn't acree to "considerable." So I suggested when I wrote back that 700 underline "miecht" in the first one, becanse I thiak it is very doubtful that any deaths would occers at 200 F. So, if yeu emphasized the "might"by underlining it, and onderiine "would" down belon it -

GEATRUAN DOWDI: I don't want to change the opinion of our group, but I know I was and still am of the opinion that 400 I is very close to the ID-50.
[R. FRIEDETI: In. What aaimal?
CEATEMAN DONDI: IL man.
UR. FRTEDEII: Ion have come to that optaion fram the study of other armant

CAATRMAN DCNDI: I certainiy haven't studied it on man, but we have some data on men. It im't eatirely that.

묭. FRIEDEHL: I brought along a curve. Fe have been I-raying some rats that coincide with some other work we did. Of course, the mamer of arimals we have done at the lower levels wouldn.'t be enough to

- determane statistically whether 1 percent or 2 percent ars kifled; but here is the character of the corre.

Te have done about 20 antmals at various points, and it doesn't begin to break until we get to about 425 roentges.

Of course, this is a rat in which the LD-50 in this particular g:cup is about $550 \mathrm{~F}, 525 \mathrm{~F}$; and it seems as ir the cirre, as you can see, starts down pretiy rapidly.

That is the experience with ali carves. They go along and then they start to go down pretty abraptly. So I thide that 300 or 400 m , if that isn't awfully close to the [D-50, you won't get so many deaths in three to six meeks.

If it is close to the LD-50, then that is another matter.
CRAIPMAN DOKDI: I think it is. Fould it satisity everybody if we underline "تnight" in D under 200, and Mrovild" under Ein 400 ?

IR. ROEIEI EVANS: I so move.
DR. NEMEIT: No.
CRATRMAN DOMII:. I dan't thiak we can give ficures. I don't think you can give percentages.

DR. STONE: That is why we aroited at this expression -
CRATPYAN DOFIDI: That is the reason we ar-ived at this. .
DR. NEMEII: I move that the last line under $B, 400$ roenteren, to read:
"A considerable fraction would die in three to six meeks."
GHATRMAN DOFIV: While I am personally in agreement with you an this; we spent a lot of time, as Dr. Failla said, tringe to get this where we would get. a majority of opiniom.

Personally, I think that 350 to 400 is the ID-50 for the tuman. That is my personal opicion. But I wasn't abie to inject that into the Brecutive Committee.

What we are tryint to get here is not your opinien or mine, but a consensus of this group, becanse yon and I may be wrong, although we doabt it; but we conld be.

DR. NETETI: I don't doubt it. That is where I differ fram youa
DR. STAFFORD TARPRN: It is indefinite enough, but it indieates it is a good possibilitj, and we can't pat a figure on it.

CRAIPMAN DOTDY: Until we can do more mork with the human to cormelate with the lower ranges in the antmal, I don't think we can get any closer 亡o i亡.

DR. STONE: Dr. Newell's suggestion, "a considerable fraction," might leave you just as wide open as this. A considerable fracticn might be one-tenth. Samebody else might consider a considerable fraction to be ter-ninths.

모. NENTHI: Eut you will have to admit that a considerable Eactien means more to acjone than "might occur."

DR. STiIEINS WARED: Isg't the essence of it that we have already stated that vi-tually everjone will be immediately incapacitated? That is the thent that is of importance in the control of an airplane.

So fust how the mumer of deaths is worded soem to me more or less inmaterial. If they can't operate the plane, then from the practical standpoirt, that is all there is to it.

GHAPMAN DOWII: That is written for a specific project, and we alwaye have to keep their objectives in mind in orr ovalnation. I agree with you. I think it is the LD-50, but I thiak that probably Dr. Fatina might be coaced to come along with as. We want this to be the censansns of opfrion, and we spent a ereat deal of time trying to word this to give the most information to NBPA without irrevocably committing onrselves to something.
N. NFMII: I am only tifice to be helpful. I made a suggestion. I do think sometime that there is not a sulficient spread between 200 F and $4 C 0$ I in regard to the statement for fatalities, and I woild ifke to spread it frather. .

Iy first suggestion was that we spread it by making the statement less strong lor 200 5; but nearly evergbody agrees that the statenent was not too otrone in recard to 200 r.

Therefore I tried to find words to strengthen the statenent somentat in regard to. 40 I. I den't know whether anybody seconded momeadmérit.

DR. BOBIEI TFANS: The only amendmeat that has been seconded was mine.
CRATMMAS DOFII: Do you care to pat that in a motion? If so, I will call for a second. Do you care to pot that in a motion?
[R. MBNEII: I move that the last line of E be changed to read:
"A considerable fraction would die in three to six weeks."
GAPDMAN DOND: Is there a second to that motion?
(There was no response.)
CRATPMAN DCHIL: There is no second.
The Chat- would entertain a motion for underiforing these.
DR. ROBLET IVANS: That has been moved and secorded.
OR. SEIE: We didn't get a second an that.
DR. STONE: Dr. Dowdy, for a point of information, is this not a misprint, at the 200 level two to six weeks, and at the 400 ievel, three to sir weeks? Weren't they both supposed to be three to six weeks? The second ane would be two to six weeks rather than the finst one.

CHALEMAN DCNDI: That could be. But wouldn't your deaths be more at 400? According to the way jou think, wouldit they be apt to ocen between three and six weeks?

IR. STONE: Ies, bat why leave two to six weeks in the flrst one, yor see. I think in the second one it might be twio to six wreks.

GAIPRAN DOFDI: Fie could fust cbange these.
DR. STANE: Ior conld leave them both two to sir weoks, but I don't thiak you ought to have one as two to sir weeks, and the other ane theree to etx weeks.

GAAIRMAN DARDI: Let's pit them both two to six weeks.
DR. STWNE: I will move that, if you want a motien.
CRAITMAN DONII: That is on the change bere?
Dif. STOXE: Jes, two to six weeks on E in the last lene.
CHAIBMAN DOHII: The motion has been made and seconded that "three" in the last line of E on Page 35 be changed to "two.".

- 17 those in faror say "aye. "
(General response: Aye.)
CaATPMAN DOHIY: ' Contrary, the same.
(There was no opposition.)
GIATBMAN DONDI: The motion is carried.
We world still entertain a motion if you wart to noderine.
IR. ROBIEI EVANS: I move that on Page 35 in the second line the word nmight" be umeriined and an Page 35 in the last live the word "would" be underined.

CRALRAN DOHTV: AY second?
DR. STONE: Ies, I. second it.
C CRAIEMAN DONDY: The motion has been made and seconded that "minht" in the.second line on Page 35 be underlined; and that. "moud". in the last line under E, Page 35, be underlined.

Alר those in favor say "aye."
(General response: Aye.)
CAATPMN DOWIV: Contrary, the same.
(There was no opposition.)
CRADPMAN DORDI: The motion is carried.

DR. STOrE: There is ane other question I would like to brieg ap bere. I don't think it is academic. Jader D in the last sectence it 3 ays:
"Yemporary sterintity in some cases and possibly pesmanert sterility in rare instances."

How, I dea't know who it was that wanted to get that in under suek reatifcted materials, but I think that if angone agrees that perrament starnitiv is likely to occur mith that dose, that it oagiat to be incinded. Eut if it isn't Ifkels to ocens, I thank it oureht to be left out, because it has a deffaite infunence an a person. If they ever are laced with the thing pat up in that way, possibly permanent in rere ingtances, it is hedging it verf minch. I would like to see that part deleted.

To get it on the board, I would say let's delete all after namd" and say - the sentence isn't complete - bat says:
"Temporary aterility in same ceases may be produced."
CEAJRICR DOKII: Kay be produced?
DR. STONE: Iës.
CHATBYAN DONDY: Is there a second to that motion?
DR. $\operatorname{MEMETI}: I$ secand it.
CEAIRLYAN DORIN: The motion has been made and seconded that next to the last line of paragraph 1 , lage 35, be corrected to read:
"Temporary sterility in some casea might enscie."
UR. FATIJA: I think the addition of the verb is unnecessary uniess re do that on all these other statements. In other words, it is implied.

DR. STONE: The have got "will probably oceur."
DR. FAIIIA: Fie have to re-mord all of these thangs, you see.
DR. STCNE: Just temporary sterinit.jin some cases, ouftilng everfthing after that.

DR. SEIEIDS MARREN: I wonder if there are not enough instances of olfgospermia in the peaeral popolation so there might well be a chance for permanent sterility in some individual?

I would agree that in the nomal indificual rith a normal spere count, it would probably be only a temporary sterility. On the other hand, we have a very appreciable proportion of the poprlation that subnormal or a low count a good share of the time.

Have we any knowledge as to what is going to happen with that group?

IR. STCNE: No, but reasoming by analogy with the blood count, I dan't thinik the heirit of the coumt when you start has minch bearong on the depression that oceurs as a person with a 4000 total count doesn't necessarilly drop out the bottom of the picture any more than -

CFATPLCAN DORDI: I if you have a low count to start with, and you drop 50 percent, they are sterile; whereas otherwise they woulda't be, a 50 percent drop in the normal wouldn't mean sterility.
[ige STONE: 'I dan't think that group would drop 50 percent.
CHADRMA DONDI: Iou would bave to assume that there wouldn't be any more resistance than in the normal individual. Therefors, if you got the same persentage of rechetion, you would reach a point of sterility fran lack of maber sooner than you would in the normi.

I think the point is well taken.
DR. NBYMLI: It is awfully close to a quibble. However, you can escape it if you want to say:
"Some nornal men will be rendered sterile temporarily."
UR. STONE: - Say. "tenporary sterility in same cases."
Din. FRIRDEIL: I would like to sound a little different note. I would trugest we change this as littile as possible, becanse the wording is such to indicate that this is what we are thinking about; and I don't think that any of us here have actrally defiaite specific information cood enough to propose changes in here that ought to stay.

Therefore, I would thiak that we ought to accept this if it in principle agreed with what we are thinkiag about; rather than making minar . changes here.

DR. STCNE: I doujot that this is a minor change. That is misy I suecested it, because putiing in the possibility of pemanent stezility charges the infunce of thes statement.

For instance, if you or I asked for volunteers to do this work and you put in here that there is possible pernanent sterility over and above the other, fou are likely to مinto more psychological resiatance than if you left it out.

So, u iess we feel that it should be 5 , I think it ought to be left out.

WR. FRIEDII: OF course, yeu haven't fixed again the maber of people out of a thousand that will be pezmaneatly sterile, and I think it is conceivable that same one individual out of a great many mintit prove to be sterile, just enough to do this.

So you =ace the same sort of arguments over again; ard since possthly it doesn't have ay particular mamer attached to it, it is probabiy Ficht. It is possibis Fickt.

CHATRYAN DONII: The cam dispose of this. We had a motion that has beed seconded. We cam pat it to a vote.

197 those in iavor say "aje."
(Respanse: Aje.)
CHATRYCAS DONDI: Opposed?
(Respanse: lyz.)
CHAPMCA DOHIL: I guess we will have to take a count.
1R. SMarars: Fould you restate the motion?
CRAIPICAN DCRIT: Bead the $\operatorname{motion~agatn.~}$
RR. SETIE: Dr. Stone moved that the last sentence in D read:
"Temporary sterility in some cases."
This was seconded by Dr. Newell.
Candmich Dorvis: Now then, those in favor please hoid their right hands ap. (Cometig) Te have four.

Opposed, please Faise jour Fight hand. (Coumtin)
The motion does not carry.
IR. TITUS SVANS: The thing that worries me is protracticn. Fe baven't mentioned how this dose is to be giver. . If sterinity in the male might

DR. STONE: This is acute dosage. An acute dosace is three to six hours, or three to twentj-ficur hours.

DR. TIIUS EVANS: I thought it was, kut I didn't read it. in here.
DR. STCNE: This is for people operating an aipplane.
1R. SINNCNS: This disenssion about the Ifut of applicability of this scale of exposure risk has mornied me a lit末tle bit, acd it has been stated that this is onis applicable to people nfing airplanes.

It was $=\mathrm{y}$ understanding that this was in a sense an attempt to defire some act: 2 ial data which would state the risk associated with various exporure levels for man, and that the ampicability to aircraft operation came in the selection of the numer of 5 that we would permit the crew to take, wheh would be selected by looking at the Fisks that you would encounter fram this Article F:

For example, assume that it is accepted includtar the statement of risks associated with each dose. It would seem:to me that we should know what the objective will be without considering whether the man was going to get the dose in an airplane or in a laboratory. This is what will probably tappen to auybody who gets such exposire.

CHADPLAN DCRII: The feel that there is no particular inmanty becanse he flies an airplace.

1R. SINTANS: Because of the fimportance of the missien and the natire of the group that is carryig it out, you micht select a bigher dose for that group out of thes table than for another croop.

CEATRYN DCHITY: The thing I was trying to emphasive was, we are cbarged With the particalar problem as far as we were concerned; and if we got off on too many of these equivocal points, we would dissipate our emergies and not accomplish our objectives.

If there are no further corrections, the Chair mould entertajn a motion to the effect that this section on Acate Exposure be recommended to NEPA for their use."

DR. STONE: . Pollowing along the sugeestion fust made, should we have a littie more definition of nacute exposure," say, exposure withtn tweatyfour hours, because we defiaitely don't mean that this could be 25 F once a week built up to 100 F .

DR. TITUS ENANS: But it could be ofer a two-day finght or a three-day finght. I mean, it is continnous exposwre.

DR. STONE: That is what I am saying. Under Acnte Exposare, do we want to say:
"Acute exposure within a twenty-four hour period"
or something of that nature?
DR. TITUS EJANS: I think we shculd.
CHATPMAN DOMDY: Forty-eight hour. I am afraid that we migit pin them down too close if we say twenty-four.

DR. SIDNE: Angthing over twenty-four mould be still better.
CHATRMAN DOWDI: Then, if we reason fram that, if this were given in tbree hours, then anything given longer than that would be better.

DR. STONE: I thinik so. dente exposure, three hours or more.
CHATPICAN DOWDI: FeIn, I am mondering if we really have to prot that in now?

DR. STONE: Acute exposure might mean in terms of a lot of people's interpretation tes minutes. Do we mean ten minutes?

GRALEMCAN DOHDI: Fing not "inatantarecus"?

DR. NETBII: May I read the definfition of acute exposere which our Conmittee of Consiltants arrived at in December, which was efrinlariaed?

Thie definition of acute exponfe was "within a few hours (ane to six), excindinc instantaneous expostre."

CahTPusan DOWDI: I don't think we really have to even excinde instantaneous. That is acute. There couldn't be amthing more acute. -

RR. STONE: Iou might 7 .ne into a lot of discussion about instantaneors ехроsure.

DR. NB KinI: We excluded instantaneons exposare an the propositicu that then instantaneors exposire would be sconthing that the comander could not do amything about, so we werea't collecting any ideas about it at 17.

ㅁR. FAIIA: In Fiew of Dr. Newell's statement, irith that definition, I think you have to define what jou mean by acate here. Otherwise, in the absence of the definition, it may be assumed to be the same as for the other. . Six hours is too short a time for this project.

DR. STAFFOBD HABEEN: Fhat is the langest period you would agree to it being acate that would be less than a week?

GZATBYCAN DOMDI: Mhy not say "contimous exposare, excinding instantaneous exposure, up to seveaty-two hours"?

DR. BOALEI EVANS: I think we all were Ifgaring under tweaty-four hoors - on this.

DR. STAFFORD MABBEN: What is the likely trip? Trenty-fora hours?
DR. STONE: If it holds good for twenty-four, it cemainly nould be better for forty-eight.

CHALRISAN DOHDY: Just excluding "instantaneous" mculd be satisfactory? Or do you want to define it more specifically?

MR. KALIIINSKY: Isn't that something like sayige substantially ncantinuous single exposure"?

DR. ROBLET EVANS: In four to tweaty-forr hours. Wasn't this wiftea for four to twenty-four hours?

CHATBLCAN DONDY: I think our feeling was within twenty-four hours.
DR. STONE: I think maybe payt of this monid be covered if the acate exposure were to be taken away from the left-hand side of IF and put in here "Estimated results of exposure of 2000 to 4000 KVP I-rays measured in air within twenty-four hours,n sometheig like that.
Iour acate exposurg is on the wrag side there. It modieies the thing before Fou get started.
CRATRIAN DONDI: If we Just put an asterisk np there at "Acater and then a deffoition of acate, that mold save editing.
18. SMMONS: Easn't overyone been thfodiag more or lesa in terms of twenty-forar bours?
DR. STONE: Ies.
CHATRMAN DONDI: I worid say "comtimors acate" as deflaed bere means comefanons irradiation for a perfod of twenty-fors hours, exindtay instantameors radiation.
Dif. FITITA: For a period up to twenty-four hours.
CRAIRMAN DOHDY: Up to twenty-four hoars, exelndfac instantaneous İdiation.
 there be two or three interrapted slngs during. the tweaty-four hoars that would .be jrist as.Fough as a continuous twerty-four hours?
CHATPMAN DOWDI: I think it Probably would.
DR. FATIIA:. I wouldo't limit it to instantaneors. It may be an emer-. gency and a man has to go in and get a shot.
CHATRYAN DOHDI: Accumelated dose? Fithin twenty-four hoors?
DR. SEIFITS HARPDN: Tes. .
CHATMRAN DORDI: Accumlated dose withia treaty-four hours.
DR. FAIIJA: That is understood. I think all Te have to define is acute. Ey "acute" we mean during the period of twenty-Iour howrs that radiation has been received.
CHAPMrAN DCNDI: By putting parentheses alter "acute," tweaty-four hour?
DR. FAIIIA: Say up to twenty-ion hows.
CAAIRMAN DCilf: Dor't Foa have to exclude instantaneous?
DR. FAIIIA: I woulda't say angtting about it.
IR. ROELSI EVANS: Do we krow enough about it to excinde it?
CHATRYAN DCHIII: Then Fhy are we worying about all this?
DR. RCBIE: EV Ans: I don't kow. I Tas wondezing ryseif.
\therefore.- DR. STAFFCIBD MARRBN: Thy not say mapprocimately twenty-four hown," becanse it might be twenty-迅ve.

DR. FATITA: We are not exactis quibbling becanse of the other deffrition received. That is coming ont in a report, and then in the absenee of any definition of acate here, it may be assumed that -

CRATmian Doridy: We are eonformang.
IR. NBrinis: ls'a matter of fact, you compatred that we don't keow anything about continncas exposure. That is the very reason for saying we are not talking about it. That is the very reasoc for ruliac it out as a dafinition if yon don't know anythiag about it, becanse you do thenk you kow something aboat the other.

DR. FATIJA: May don't me jrst pot an asterisk bere and say, Nrithen approdeately twenty-four hours"?

DR. STAFFORD TARPBN: Couldn't we say fust' "approsimately twenty-four hours "?

GEATPMAN DCHUY: . Put that in the form of a motion.
IR. PAITIA: I move that after the word "acate" in the very first line of Pafe 34, we pat an asterisk for a footmote saying:
"rifithin twenty-four hours" or "received within about twenty-four hoars."

DR. ROBLEI EVANS: I scecad it.
CiATRMAN DOTID: The motion has been made and seconded than we put an asterisik after "acute" in the first line on Page 34 with a footnote, mithin approximately tweaty-four hours."

DR. STCNE: The IX over on the left-band aide of the acate.
DR. NETEAI: I move an amendment, Kr. Chairnan, to add in parentheses "excluding instantaneous exposure."

CEATRMAN DCNII: You nould have to have a second for that?
囱. NEMEII: I would bave to have a secmd.
CHAIPMAN DOWII: Does amybody second the amendment?
(There was no response.)
GEATETAN DOKDY: NO secomd.
Would you read the inotion?
표. SEITE: It has been moved by Dr. Failia, on Page 34, Iollowing the first line, we put an asterisk after the tesm -.

망. FATMA: The very first word you see on that is "acute." Pat a footmote for that.

표. SEIIE: The term "acate," we put an asterisk for a footnote [R. FATIIA: "Received Within twemty-four hours."

CIATRMAN DONDY: All those in favor say naye."
(Geineral respanse: Aye.)
CHATRICAN DORDY: Contraty, the same.
(There was no opposition.)
GBAITMAN DOHDI: The motion is carfied. Dr. Stone, that is a typo graphical errar, that etatement of yours. Me car change that.

Are there any further coments before we proceed?
(Thére 下as no response.)
CHiARMAN DORDY: The Chair worid entertain a motion, then, for acceptance of thris.

DR. FAITIA: I move that Section IF be acopted.
DR. POBLIEI EVANS: I second it.
CGATBMAN DONDI: Is there my discossion?
LR. EOLLARNDER: I would Itke to emphasize again, that couln't same statement be pat in that this is specifically for NBPA and shorid be not considered if it is applied to a larger number exposed? Otherrise, this may be quoted as a recomendation.

CiALEMAN DCHDY: The facts are the same.
DR. ROBLEI EVANS: Ad there is no recommendation here. It is a statement of fact.

CHATEMAN DORII: So it wouldn't make any difference whether it was by accideat or design.

DR. HOLIAENDER: If it means an exposure of a ve: large number of men, I think more emphasis mould have to be put on possible geaetic efiects..

Mr. SINMCNS: Isn't it true that if a large nomber of men or a very smail number of men are exposed, that the results are comparable? The assumptions ars correct.

CRATRMAN DONDI: It doesn't make ant difference winether it is ten or a thousand. Fie still think this would happen, whoever is usiag thas.

UR. STMONS: Iou are not reconneading any of those exposures -
CBATBYAN DOFIDI: They mould have to pick their basard at a differeat level. That is up to them. Taat is not up to us.

AII those in favor say "aye."
(Geacral response: Aye.)
CHATRMAN DORDY: Contrary, the same.
UR. SHouns: That ace we voting on?
CBATPMAN DORIIE: The motion has been made and seconded. that we adopt Section $\mathbb{I K}_{\text {, }}$, as corrected. It has been made and seconded.

197 those in favor say Maye."
(General response: Aye.).
CRAIPLAN DOMDI: Contrary, the same.
(There was no opposition.)
CRAIRMAN DONDI: Cerried. Thank you, geztlemen.
This brings us to the next part of our programai: : .
I would like to call on Dr. Stome, who is Chainman of and who will report on the Comitter of Euman Iadiation Toleramee.

Dr. Stome.
DR. STONE: The problem of radiating bumans has been discussed at different times, quite heavily discussed 'at the meetiac of the Erecutive Comittee.

There are two very pertinent articles that heve been in the literature recentir on this problem, winich I will not take your time to go into, unless you wanted to do so.

- On February 14, 1948, an article appeared an the "Sthics Goveratic the Service of Prisorers as Subjects in Medical Experiments," by a cammittee appointed by Govemor Green of IIlfnois in connection with the buman experimentation on Fisoners at the prisons of Ilinois.

More recently, in July of 1948, Dr. Ivy pablished an article in SCIPNCB on "The History and Ehics of the Use of 荷man Subjects in Yedical Experiments." Both of these articies were taken into consideraticn in bringing forth a general motion or general report that we would like to bring here.

Our coumittee has not had a separate meeting, but they ara in essential agFeement, as I have coctacted them indiridualif; and I bave this statement to read; whieh we world like to propose for adoption as a general atatement, without going into detail of what might be done.

MThe use of homan beings as experimental subjects has been conntenanced in the past when information was needed that could not be obtained in any other way. The danger of the experiments mast be previcusly investigated by animal experimentation.

TThe NEPA Medical AdTisory Commitioe an the Radiatim Toleramce of ugidtary Persomel is atterpting to establish what woud happen to hmans when necessarily exposed at infrequent times to certain amounts of radiation that are high relative to the dose set up as the madem permissible daily or weekly dose for workers constantly workeng where radiation exposare is possible. .
"The doses are, however, relatively low with relation to lethal doses. A review of animal experiments has shows that not only do animals of various species differ in their response to given amounts of radiation, but also that animals of different strains within a given apecies differ.
"It is therefore impossible to predict with sufeicient accuracy what will bappen to buans.
"The exposure of sick bumans to radiations to the total body with therapy as the objective has provided some indication of how sick people respond, but such therapeatic trials have shown also that the response varies greatly with the clinical condition of the patieat.
"A few accidental exposures bave provided a little information as to how relatively healthy people respond, but the aumber of.individuals so exposed has been too few to provide statistically sigaificant resuits and the couditions of exposure are not sufficiently well known.
"The information desired is sufficiently impordart to the safets of the U.S.A. that we believe the use of humans is justified. It is understood that any such experimentation would be carried or in accordance with the principles laid down by the Judicial Ccuncil of the A.l.A. A 1946 as follows.

Winst, the voluntary consent of the person on when the experfant is to be performed must be obtatred."

I added in brackets here what is not in the Judicial Council's report, that volunteering exists whea a person is able to say Ies or No without fear of being purished or of being deprived of privileges due him in the ordinazy course of events.

Mro, the darge: of each experinent must have been proviously investicated by animal experinextation.
 thon and macagement.

In Fiew of the above we, the members of the MEPA Yodical Advisory Committee on Radiatien Tolerance of Mittary Personal, hereby express our belief that bumar expermmatation is necessary and request the Armed Services to aramge for it."

GEATEUKAN DONDI: Nould you inefude these two refereaces that you gave, Dr. Stene, in yoar repart?

DB. ROBLNI ETANS: Also the Feference to the 1946 judicial Comattee.
Dis: STOME: Then we conid incinde in the footaotes the refereace to the Feport of the Comittee of Goveraor Green, the reference to the Judicial Comattee's report, and the refereace to Dr. Iry's aticle in SCDENCE.
15. Chafman, I move that the Comittee as a Nhole accept this as a seaeral statemeat:

CRATRMAN DONDI: Thank You, Dr. Stone. As Dr. Stone said, in any discussion of this we world like to stay away Irom ang details or any specific experiments: The çaestion opea for discassion is the adoptan of this as a geaeral priachple.

Is there any discussion?
DR. STANE: Dr. Wareen, who is a member of the cernittee, but who was not contacted before this was read, has asiced that we add in here a request of the fraed Services to arrange for it, and that the experimeats be umelassified.

DR. FATIIA: I think it ought to be more definita than that, since classifincation doesn't mean verf much to the average tindividual, that the friforantice be made available or be urast=inted.

UR. STONE: The iafarmation obtained be uncetileted?
 the erperfments as well. I thiak it veZf important in something of this sort that there be no suspicion that arything is being hidden or covered up, that it is all beiag done openIJ and stradghtionmarely.
D. STONE: I thiak unclassified.

DR. FATETA: That is the nord, Jes.
埌. SICNE: And that the experiments be melassisied.
CHAIPYAN DCHOI: Experimeats and Fesults.

DR. NENETL: The techaical teran is classified data? Is that Finit?
CHATMNAS DOFID: If you pat that as data, I mean the data then woild be open for distribution, but aot necessarily the motocol..

DR. FRTMUNI: Fould it be better to asy classified? Classification, as I understand it, is a military term. Is that correct?

CRAITMAN DORII: Not necessarily.
DR. SHIEISS MARBDN: We are asking that this be undertaken by the minetary, so we have to use that phaseolopy.

DR. FBITDEII: One other point I would like to make in this regard. I an fust mondering whether sameone else ought not to bold the bay ilong with us with regard to making such a recomendation.

Proviously in medical experiments the physicians and doctors heve made ouch reconmendations because the problem was primarily a medical oneI think this is something larger than that. It is really not a medical problem alone. It has to do with how critical this is with regard to salety to the nation.

Therefore, it would seen to me that the recommendation ought to come not only from this comittee but fram some other larger organization that has studied and recogatred the enitieal nature of this.

CEALENCAN DONII: If we accept this and pass it on to NEPPA, they would have to get recomendations, too, probably from the militang personnel.

We have no other body to call on that I know of for this particular prarpose.

四. NRS: Shouldn't there be a recomendation in there along with this that some other asencs -

DR. STCNE: I don't think that is necessam. I think re are gathered together for the purpose of deciding what we want to do, what. we think should be done. If anybody rants to do it, to get other amthority or other adrice, they can do it.

YR. WARD: I think, to ansrer that question, NEPA will ce:*ainly take that up through the chamels of The Surgeon General's Oifice, so it would be an official Surgeon's recomendation.

DR. FAIIIA: The thing that bothers me is this is linked with the safetj of the countrf. I don't think this inforaztien shoild be safecrarded.

DR. STONE: I din't say safeguerd. Sufficient informaticn for the safety of the 0.S.A.

CBAPBINAN DORDI: In a way I think we do, Dr. Eailia.
IR. FAfils: The foformation we really wact we don't get for four or ifve years.
[R. NEMETI: He can't start any sooner.
OR. TIIUS EVANS: I sort of feel if it is Fital to oor comery it shoulda ${ }^{3} t$ be laid open to newspaper pablictity, like for the Societs for the Prevention of Craelty to Animals, or something.

Kaybe we should go a little slow about bringing it too mon out in the open if it is that Vital.

DR. ROBLTI EVANS: We den't have to advertise it, but at the same time it doesn't wart to be concealed, as Dr. Sbields Harren has seid.

DR. STONE: That particelar problem rould be a problem for the people actrally doing the experiments mhen it pets there. Our recomendation wonld be that it be made availeble.

DR. FAIIIA: I think if you said "highly desirable" fastead of "necessarys" I would be more inclined to go along with it.

LR. STONE: "Sufficiently important for the safety of the U.S.A." is the mording. It doesn't say' absolntely necessary.
[R. FATIIA: At the end there you have "necessary."
DR. STONE: The buman experimentation is necessary.
표. FATHIA: Yes. I am not sure it is, for the safety of the country, aOW.

DR. STONE: I di土n't put that thers.
DR. FAII工A: . But it is in the same staterent.
DR. STONE: If you dan't' thrak it is necessary for the safety of the roumity, what do Jou think it is necessary for?

UR. FATIJA: I don't think it is even necessam. I thiak it is bughly desirable.

CRADRMAN DOHDY: Fell, from the origin of Facifology or radiation, humans have beer used for evergthing on testing and various things. Fe thought it was necessary then.

DR. STAFFORD TARPDN: One of the troubles with orw deìiberations is we don't have data to give fin recomerdations to NPPA, and we are in the same bind as you are in the therapy clinac.

Unless fou know what your dose is and where you can expect damage and what you can do to avoid it, your can't conduct a logical sequence of treatmeats. Hers you ean't comiuct a logical military program unless you know.

I think that we are all aware of the difineulty in establishrag points. I doubt whether anyocts here would want to subject angbody to 400 r , but we ought to know what the symptoms are iram swall doses. Isn't that in a way necessary for the safoty of the country?

We are not only concerned here with NBPA. We are gotig to bave pretty som a large ciril deferse program where these same dosage levels will be batted around. Are ve gotag to agree that 25, maybe 50, 5 exposure is worih doing someting for a civilian installation?
R. FATIUA: I agree that it would perhaps bave psychological value, and you could then say, whe did expose 100 people to 200 roentgens, and we found that within two or three years it didn't make ang dif--ference." Eut you know that now.

CHiABLCAN DOWIT: Do we?
DR. FAIILA:' : Ies, I think we know that now. But then, the question is, what is the period of observation? If the period of observation is que year, I think we knem now that there isn't going to be and appreciable effect.

DR. STONE: We had a discassion here this moring -
DR. FATHIA: But the eifect in twenty-ifive jears, we don't know. Maybe some of these people will develop symptoms.

ChADPMAN DOWDY: I don't think we know what will happen to a buman at 200 I total body radiation within an hour's time, or a halr hour's time. I think it is very vital, when it comes to civilian defense, in knowing how to take care of the casualties.

If 90 percent of the people die at 300 r , or 200 r - we will use that then it is not wortowhile to spend your medical efforts on that group, and you pat your efforts on the ones that you know are going to have a bigh percentage of ther living.

IR. FATHA: I took 200 I because that would be on the borderline. But, according to the resolution, it says there, for exposures, "small in comparison to the lethal dose."

Well, 200 = would not be a small dose in comparison with the lethal dose. So this work would apply to something like 100 or 150 I. I think we know now what we might expect frem such an exposure.

CEAPICAN DOHDY: What we might expect is an extrapolation partially, and partially on siar people.
R. FATlina: Dr. Stcce has a Fadiation of 300 roeritgens.

UR. STONE: That is in a macth's tine. This is acute exposure, 200 5. I may say that we specifically excloded from thens report a discussion of frst what experdments were necessaring done in the perfod of observation, to get if we could, an agreement on the idea that haman experimentation should goon.

Then, if the greap decides that they want to, thels atternoon, in discossinc apecific recomendations, discuss what should be done, that is up to the comaittee as a whole.

Gafrican many: Dr. Stone, would it weaken your statement there to alter it so that Dr. Faitha -

IR. FATITA: Say thatgly desirable n?
CHAIRMAN DONIT: Bishly desirable. That worldn't weaken our proposal any, would it?

DR. STONE: They have got to be pretty nearly mecessary before you go to giving people -

마. FRTEDEII: Inn't that necessary there with regard to detemining the dosage levels?. Iso't that where the nnecessary" comes in? You say it is necessary to do buman experiments in order. to fix these levels, and it is sufficiently important to do man experimentation. Isn't that the wording at present?

FR. STONE: Fiell, the mording that Dr. Fainla is objecting to is in one paracraph here. It says:

The infornation desired is sufficiently important for the safety of the U.S.A. that we believe the use of hamans is justifiė."

Io other words, fou have got to justify may Fou think this is mecessary. I think it is necessary for the safety of the U.S.A. If the Comattee doesn!t agree with that, we can amend that out of there.

DR. STAFFORD YARPEN: That is a pretty conservative statement. Why don't fou read it and see?. If this is so important, it would be a good idea to have it umanimous, if we colld.

DR.. TITUS DNANS: 时 saying it is nnecessary," do you mean afI the animal experiments and what we have fram patients is not any good at a71?

DR. STONE: O_{n}, no, that isn't stated here. It is stated that we need to get some human experimentation to take us ove: the gap, is what it amonnts to. He cave found that mimals vary.

DR. TITTS EViNS: Eut Fou wouldn't gat al7 the emphasis on that. You woulda't set the =esults you got irom these human cases alone, would you?

- DR. STGNE: Iou would use all your animal axperimentations as your basis for doing this work.

IR. TIIUS EVANS: But you nould take these results, these data, as the standard, and you would put emphasis an that; and aren't jou afraid that you might overemphasize that? I mean, we can't measure these thtags in the field very carefully. There is a possibility of overemphastring the details of soch data.

IR. STONE: ARata $_{\text {R }}$ Iet's look at what we are lookeng at here. I agree that you won't be able to stady genetic effects on these people at all. So far as that is concerzed, that is roled out.

But for the purposes that we want here, to expose some individuals, You whil assme that genetic effects are gotag to take place. What you want to know is, what is going to happen to these people.

We can't get any agrement here on what is going to hampen. Same people want to put in that 200 r will kill some people, and others say we know what will happen at 200 F . That is evidence to me that if we mant to be able to talk intelligently about this at ail, and if this project to MEPA is to gO° ahiead and they are to ask people to co°, you want to be - able to say to these people, "He have exposed 100 men to 25 I , and we did it five. years ago. They are perfectly all right now. Fe can't detect anything."

DR. IITUS EVANS: I just have the feeling that we will come to regard that as another experfinent, and we will say, "That was the results they got over there, but if we had dane it at IIve places, we would feel better about it."

DR. STONE: Let them do.it at five places if they want. .
DR. FAIIIA: That is fmaterial to the question under discussion.
ChaIraxan DOivI: We are getting into detail. That is a different problea.

MR. WARD: N. Cnainan, could we bave that read again so that we are sure we ail understand what we are discassion?

CCAMPMAN DOHDI: .Would you read your note agatn?
DR. STONE: The use of human beings as experdmental subjects bas been countenanced in the past wher information was aeeded that could not be obtained in any other way. The danger of the experdments mist be previousiy investigated by animal experimentation."

That is poor Englisi, but I think that is the idea.
MThe NIPA Yedical Adfisory Canmittee on the Raciation Tolerance of uflitary Persamel is attenpting to establish mhat would happer. to hamans when necessariog exposed at infrequent times to certain amounts

01 Fadiaticn that are herg relative to the dese set $u p$ as the macerem permissible daily or weekif dese for workars constantiry workere where padiation exposere is possible.

The doses are, however, relatively low with relation to lethal doses. A review of animal experiments has shown that not only do andmals of varicus species differ in their response to given amounts of radiation, but also that ansmals of different stradis, within a given species differ.

- It is therefora impossible to prediet with sufficient accuracy what rill bappen to homans.

The exposire of siek hamans to radiations to the total body with therapy as the objective has provided some indication of how sick people respond, but such therapertic trials have show also that the response varies greatly with the clinical condition of the patient.

Mh Iew accidental exposures have provided a little information as to how relatively healthy people respond, but the mmber of individuals so exposed has been too Iem to provide statistically sigrificaint reanlts and the condfitions of exposure are not sufficieatly well known.

Whe information desired is sufficfently inmortant to the safety of the U.S.A. that we believe the use of bumans is fustified. It is understood that any such experimentation roold be carried on in accordance with the principles laid down by the Judicial Cowneil of the A.M.A. in 1946 as follows:
mifirst, the volmatary consent of the person on whon the experiment is to be performed mast be obtained."

I misht do well to leave that oother sentence out that I read in there becange it isn't part of the Judicial Council's.rulig. So, if we leave that out:

WThe roluatam censent of the perscn on mhem the experiment is to be performed mist be obtained.
uSecond, the danger of each experiment mast have been previously investigated by aninal experimeatation.
nThatre, the experiment mest be" perfomed under proper medical protection and menagenent.
"In Fiew of the above we, the members of the NEPA Kedical Advisory Connittee on Radiation Tolerance of Miliftary Personnel, hereby express our belief that human experinentation is necessam and reçuest the Areed Services to arrange for it, and recuest that the experiments be anclassifiec."

We could mayive word that last sentence and recomend that the exeriments be unclassified. Me wor't have any control over that, but we can recsmend it.

CHATEICAN DCTIII: Dr. Stoce has moved that this Comitttee adopt the report of the Comintiee on Buman Radiation Problems.

DR. BOETEI EVANS: I second 块.
GRATRIAN DONDI: The motion bas been mored and seconded. Is there and sarther discussion?

DR. HEMETIL: Dr. Failia, you don't want to move an amendment to ratae .the level of expefmentation to above that at which it is amall cempared to the lathel dose?

CIIATpuAN DCNVI: Thet is something that is speciefic datails, wheh has notbing to do -

모. NDicul: Ion would put it in this report, that the doses be small in relation to the lethal dose; and both Dr. Failia and I feel it would be too bad if you are not permitted to Fwn the experiment up finto the level of 200 or 300 roentgens.

DR. FRIEDETI: Phat was the eoisensus of opiaion of the members of the sabcomatitee as to how hich you would ge, Dr. Stene?
DR. STOUE: II only had two deffatte statements that came back, that were mailed to me. Dr. Friedell stated he thought it ought to no up to 150. Dr. Cantril thought 50 was the lifit. So that is miy I left out anything except the general statenent.

IR. STAFFORD FAREDN: I think that conld be left to a committee that condd discuss and argue this out.

CRATBMAN DCNIDY: I think if we get into the details of it and the dosage -

DR. NTPFIIS: I don't think that is a detail. I think that that is an unforan:ate linitation, if jou feel thet jou bave to gut it in:

CHALPIEAN DOWDI: It isc't in there.
DR. FATIIA: It is in there. "Small in comparison to the lethal
dose."
DR. STCNE: "In attempting to establish what wculd bappea to humans when necessaring exposed at infrequent times to certain amomnts of radiation that are hich relative to the dose set up ky the mavimum permissible dailj or weekly cose for workers constantily exposed. The

Now, we can leave that sentence out rather easily, if you want to.
DR. NPTEIL: I move an amendment that we leave that sentence out.
DR. FATHiAA: I secend that. I agree rith jou.

GRAIPMAN DORDI: 107 those in iavor of the amendiment say "aye."
(General respanse: Ave.)
CRATEMAN DONTI: Contracy, the same.
(There was no opposition.)
CRADPICAN DONDI: The amendment is carried.
良. HOTIAENDER: Could ne get the statement and read it over jadivichally so that we are sura -

DR. SHTMTDS MAFBETN: I think that is a very good suggestion. It is a pretts important recomendation, and I thrik that it is important that we not hamotrige the actual exparimenters thenselves.

We ought to leave the statement as broad as possible and in the details of the protocol. I thrik if we could each see this indivicually, it would be helpful.

There is one other sugrestion I would like to make in relation to the mount of experience which is cited. That is, we bave a considerable unmber of individuals among the Elroshima amd Nagasaki survivors; but the difificuity of estimating what the dose levels they received were is very great. I think that, unless some meaticn is made of that, it might not make our case es strong as otherrise..

GHATRHAN DONDI: We are getting along. pretty well on schedule. Why den't we 'adjourn now -

CEATMLAN DOHDI: He are going to have that typed and bring that up for action. .

Also, Dr. Failla brougitt along some proposals which he had written out anc didn't get to ee, but brought them with tim tociay. We will pass these around. I don't know whether there are enough to go arourd or not. Till you also read those duriag the noon hour.

IR. NETENI: Do fou want to offer this, too?
CRATPMAN DCRIY: I don't think so. I don't want to get into that.
DR. NENEII: I wondered if you wanted me to distribute these to those who haves't received them.

CIAIPMAN CONDY: You can do that if you want, for information. The first thang we will do is take up Dr. Stone's recameadation and then carry on with the research problems whink I have already ciranlated.
 document which you stated received the classification because of the ineinsion of the Los Alamos data, the valne of Pages 34 and 35 to etadents in traiodng in =adiobiology, I thank, is very great.

I would like to move that Pages 34 and 35 , when retjped with the amendments, be issued unclassieled.

CHATRMAN DOWIY: We had alraady discussed that, and there are several referred to on Page 3. What we have planned to do is to go through and take out all that information and get a completely deciassified docnmeat for publication. Then you wil have, each one of you, the ciassifled docoment mhich is complete.

DR. ROBLEI EVANS: How long will that take? We are in the middle of the tern Fight aow, you kow. If we could use it once. -

CEAIFICAN DONDI: We will have it ready for your class next year.
DR. RCBLEI EVANS: I want it tomorrow. I have twenty-three students. who want it tomoriow.
\therefore CZATRMAN DOFDI: Do we have a motion for adjournment?
IR. FRIEDEII: I would think that it might be better to save the time at the other ead. If there is something we can spend a hale hour on and adjourn at a quarter after twelve, it might be a lattle better.

CFATRMAN DCRDI: •He are going to have to dismiss some of them; at least, to refise this report of Dr. Stone's.

DR. FRIEDEII: Couldn't they do that daring the lunch hour?
CGAIRLAN DCNIT: Why don't wo say we come back at 1:30?: He wily gatr another fifteen minutes. Can we all make it back at 1:30?. Couldn't we say we report back at $1: 30$ and then we won't intergapt that period for discussicn.

If that is agreeable, we will recenvene at 1:30 rather than 2:00.
(Fhereupon, at 11:45 a.m., the Comittee recessed until 1:30 p.m.)

CAMPMCAN DONDI: I think we bad better come to order and proceed with the buajaess of the afternoon.

I believe you each one have a copy of the report of the Committee on Framan' Ereermentation. I thiak we will have Dr. Stone ro-read that, and you can follow it alomp and we can dispose of this particular piece of busineas.
[R. STONE: It has been silfatly reworded since I faed it this morang, and you all have a copy in your hands.

Whe use of buman beings as experimertal subjects has beien countenaced in the past when information was needed that could not be obtained in ary other way.

THe NRPA Medical Adrisory Comittee on the Radiation Tolerance of Military Personnel is attempting to establish what will happen to houms when necessarily exposed at infrequent times to amounts of radiation that are high relative to the dose set up is the madnm pemissible daily (or meerly) dose for workers constantly morkeng where radiation exposure.is possible."

We have left out the sentence about relation to lethal doses.
"A review of animal experiments has shown that not only do arimals of varions species differ in their response to given amounts of radiation, but also that animals of different atrains within a civen species differ.
"It is therefore impossible to predict with suffleient accaracy.what will happer to bumans.

TThe exposure of some siak bumans to radiation to the total body with therapy as the objective has provided some indication of hom sick people respond; but such therapentic taials have shown also that the response veries greatly with the clinteal conditicn of the patiext."

The next one is slifbtly altered again.
Ph few accidental exposures, and the.mass. exposures at firoshime and Nagasaki, have provided some information as to how relatively healthy people respond; but the condftions of those exposures are not sufZiciently well kmown."

We put brackets around the sentence causiac some question. I don't see much dieference whether. it is in or not, when we coce to the ieformation at the end.
"(The information desired is suffieiently inportant for the safetj of the U.S.A. that we believe the use of humazs is justisied.) ?????"
..I thenk if goi take the last paragraph where me recoman the use of hamang, you can assame that we mist thank it is of sufficient importamee to do it.
"It is essential that any such experinentation be cargied on in accordance with the prineiples laid down by the Judicial Council of the A.M.A. in 1946 as follows:

1. The voluntary conseat of the person on whan the experdment is to be performed mest be obtained.
2. The danger of eack experiment mat have been previously investigated by ancinal experimentation.
3. The experimeat mast be perforired under proper medical protection and manacement.
"In View of the above we, the members of NisPA Yedical Advisory Committee on the Radiation Tolerance of 1 ilitary Personnel, hereby recommend that human experimentation be carried out, and advise NEPA to "request the drued Services to arrange for it; and further recominend that the experiments be anclassified."

You will notice a little change at the end there. We.recomend that they be carried out and advise NEPA to request the Amed Services to arrange for it; and further recomend that the experfinents be unclassified.

If we might withdran the former motion which was on the floor, I move that this report, with the sectence at the top of Page 2, that is, the one in brackets, be taken as the report of the whole devisory Committee.

DR. ROBLEI EVANS: If Yon omit that, you don't get any connection rith the botton of Page 1 and the aext sentence on Page 2.

DR. STAFFCRD WARPZ : If you change that nexi sentence to say that it is essential that any experimentation on bumans be caroied on, that worid make the conrection, wouldn't it?

IR. BOETET EVANS: At the top of Page 2 you courd leave out nfor the saiets of the U.S.A." Foulda't that be all Iight? .. The information desired is sufficiently important that we believe the ase of humacs is justified."

IR. FRTEDEII: There is another point there, too. Down at the bottom ve recomend that it be unclassified. If it is really that important for .the saíety of the Onited States, somebody =ight argue that the publishing of such coritical data ought to be classified.

Therefore, I think I would leave out either the phrase "for the safetf of the United States" or leave the whole sentence out.
 out -

DR. STONE: Hay we get an expression of opirions.fust faformaily about the inclasion "for the safety of the U.S.A."?

DR. FPIEDEII: I would move that it be ondtted.
DR. SEIOTDS TARPEN: I second it.
IR. STONE:. Can we leave it out as a motion and just aiter this aceording to the opiation, and then see if we can get a mantana action en. it, as altered?

Scrateh' out the brackets and scrateh ort "the safaty of the U.S.A.n. Then the top of Page 2 wil9 read:
"The information desired is sufficientiy important that we believe the use of homans is justified.".

Scratch out the brackets and the question marks.
CBALTuM DONDI: : Is that satisfactory?
(General response in the afff_mative.)
 was not seconded. So we can 50 ahead now with the motion. Mould your restate it?

DR. SIONE: I move that this report of the Comititee on Homan Experimentation be accepted as the report and opinion of the entire idvisory Coumittee.

CHADPLAN DOWDI: Is there a second to that motion?
DR. ROBLEI EVANS: I secend fi.
CRAIPMAN CONTI: Is there any discassion?
(There was no response.)
CEATRMAN DOWDY: If not, those in favor say "zye.".
(General response: Aye.)
CHADELCAN DOHDI: Those opposed?
(There was no oppositifa.)
CEATBUAN DCOIDY: . The motion is carried.
Are we ready to move on to our regular afterzoon agenda?

DR. STarE: Dr. Evans brings out the point that we left out of here
 in these references down here about what constitates voluntary, and so 0 .

I thought we were leaving it oat of thats to get this as brief and concuse as we could, and the refarences will give you the discassions on the subject,.if acy of you want to look them up.

CHAIEMAR DOHDI: I thiak that would be sulficient. Iou oach one bave anegested research problens, which are on a.mineographed sheet. If for don't bave one, I have a few extra ones I cam pass around.

There have been some others come in to me locally, and also Dr. Painla banded me his this morning. I have undertaken to fit these into the octifne that I have.

On Pare 1 of that there is a correction to be made. In the pirst statement, myethods for Detecting the Derree of Sensitivity of Inci--Hiduals to Radioactipe Exposures," knock out the bracket there after Dowdy, and insert Failla's name..

DR. FBIEDEIT: . What is thet?
CRATRMAN DOHITY: "Sugrested Research Problems." It is the copy I mailed to you and asked you to bring to the meeting.

DR. SENII: He have one more copy left. Does amone desire that?
CRATBMAN DONII: Onder Item II, pat Failla's neme again.
DR. FAIIIA: Do we have to do that? Kost of these things are obvious to everybody here. Why bother with the names?

CHATEMAN DCNDY: I just thought it would indicate who sent then in,: and I tried to interpose those on the specific sheet.

ER. FATHiA: As far as mane is concerned, we can save time by not coing through this thing.

CEATPMAN DORDY: You wan't ieel slighted, then?
$\%$
[RE: FATIA: No, let it go.
CHAPTYAN DONDY: Before we take these problems up, I would like to call on Mr. Simons to start off this part of the prog=an. Kr. Simons.

1R. STarons: I just have a few remariks here I would like to bing before this group that have not been mentioned jet.

This report wich we are considering today is the answer to the if-st objective that was set at the Gricago meeting, whien was the compilation of amoroximate exposure ranges versus anticipated damage. This was to be based on the best available data we had at this tine.

I thiak the report we have got meets that recairenent, and we have discharged that ifrst objective.

The second big problem that was goirg to be considered by the Committee is recomendation of additional research, which is required to refine the numers that we have estimated in the first report. is we get further into the shielding research, certain problems appear to stand out in importance as we are ccofronted with the problem of predicting the performance requirement for actual sbields in airplanes.

We now have what appears to be a reasonable Ifrst approcination of exposure standards for the time beiag, but these values that we have are ecpressed in equivalent of 200 to 1000 kVP x-rays. Wher we tried to correlate the physical measurements of shield performance with the blological effectiveness of the shields, we ran into a froblem; and a particular example of thes problem oceurs when we are considering the bigh energy neutrois that occur in the tail of the fission spectau.

These neutrons, let's say around the 10 million volt region, may, comprise only about 10^{-8} fraction of the whole spectrum; but in our case it becomes very important for ns to know, let's say, the number of rems that are carried by this energy group of neutrons, because they have very long meai-free paths. They are very difficult to stop, and the amount of attemation that must be provided for these neutrons is a very important item in the overall shield weight.

There is -also a paradodical probability that if we do too meh decradation of energ on these high enery neutrons, there is some possibility that we might increase their biological effectiveness.

In discussing that further, I bave some corves here which I put on the board to show you wiry this minht be a possibility. I don't prove this fact, but there are some indieations that this might be trae.

If we are considering a monochromatic beam of neutrons, it might be reasonable to say that the biological erfectiveness of the beams in.creases with energy up to a cevain point; and that anainu point might be where the mean-izee path of ti:e neutron in the bodj becenes so great that the utilization factor of the body is so small that not many of these neutrons actually release their enerzy in the body.
\sim (At the board) If we plot the utiluzation, which we can call the neutrons absorbed, the fraction of neutrons absorbed to the fraction of neutrons at energy E , and we base this just on the mean-free path of the neutron, in tissue for exmple, we generate a function which looks something like that, this being the energy of the neutrou.

The mean-free path in this case has just beer considered as proportional to the-square root of the enerey of the neutron. For instance, we would consider a body as about 25 centimeters thiek. It isn't solid tissue, but just using that anmer, we get for this fraction that $\mathrm{m}_{\mathrm{mul}} \mathrm{d}$ undergo at least one collision in the body, it comes out i-e $25 / \lambda$. where lambda is the mean-iree path of the neut=en.

This mumber, of sourse, is quite arbitrarf and will heraito be antivy a physiologist to tall ns the equivalent of. taízet tiviceness in zisare of the homan body; brit thiak that kind of information could be luratshed by people qualdfied to "aj" Et:
The lambda is reaily proportional to the square root of the energy in the ranfe of energies we are thinking about. This relation is not true down in thermal energies.

So we can develop that we might call a utinisation factor for neutrons versus the enery of the aertron. If we then rant to convert this into the energy utilination rather than the fraction of natroms utilized, we then have to maltiply this function by oach enorey ordinate. If we do that, we arrive at a function which does something like that, thens being the enerry absorbed to the energy available in the radiation tield.

The next thing we bave to consider is the prodnct of this curre with the neutron spectrum - this first curve is for, let's say, a mono chromatic beam of neutrons assigned the following energies. Actualiy I think if we Just make some rough checks, this peak may fall far outside of the highest enerey group of aeutrons in the fission spectrum, whea you consider it on the basis that we.are considering insst colli-
\therefore sians only..
But if we apply scme of the analytical tools to cary these high anergy neatrons on down through their attentuation in the body, we may find that this winl bring the peak back into the fission spectrum and we get a more accurate malysis of the question.

- So the next consideratim is to apply this enery utilization curve to some neution spectram, which would in practice be the actual spectrum of neatrons that leak through the shield.

As an example, we fust take a fission spectrom - that is, say the fraction of neutrons or energ E to the total number of neutrons and plot it. I won't draw it as a ilission spectran is classified, but it is some function of that general shape.

We miltiply these two arves together. That gives us the energy utilization by a 25 centimeter tissue structure with respect to this pasticular enerzy distribution.
π
When we do that, we get a funcition which is energ absorbed per Nession neutron, acd we then come out with a curve of this mature.

The proposal is made that we can at least consider as a finst aporoximation of biological damage that the hazard or that the risk of an individual is not subject just to the intensity of the radiation field, but is directly procortional to the utilization of that radiation in a body:

Under those condttions, the biological damage ciniteria, or let's sey the biological damage risk, would be related to the erea under this curve.

I have drawn seat entres where I bave used some actual valuation. I don't want to put them on the board because that may throw into securaty.

I would like to propose that this group consider the possibinity of applying some of the amalytical techriques that are now beine used for abielding calculations, namely, the Kante Carlo or ramom process method of actually analyzing the behavior of neutrons in an organte body sucb as a man.

In doing thist, I would like to point out that this canre and this carre are really biolopical in aatire. Cereain basic decisions will have to be made by the physiologists, the M.D.'s, the biologists, regarding the composition of the body, an equiralent target geometry, which would be typical of a body, which cculd actually be put into the calalations.

Once that is done, same work.can be carried out experimentally by actaally measuring mean-free paths of neatrons in a body. I think this could be dane withoat barting the body.
When we have data sufficient to arrive at reasonable values for thesé functions, these two are physical functions which could be carried out by theoretical physicists or mathenaticians.

I would like to say we do have now analytical techoiques that are sufficiectly powerfol that if we feed the Fight probabilities for the various maclear processes involved in this system into the calculations, the accuracy of the method is as accorate as the basic data from which we start.

We can do it Without making assumptions and integrating complex nmetions and thraga like that by this randon process techoique of analysis.

I thrink that is about all I wanted to say, except that it would appear to me that this method rould offer certain actrantages in tring to corfelate the number of =en equivalent of high enerof neutrans or bigh energy gersas with the ec̣uvalent a-ray stendard that we are worting in teras of today.

It boils down to the lact that you are not considerfag the ecerzy potential of the radiation IIeld, but you are considering the utiliration potential of the body as a exiteria rather than the incident radiation on the body.

CAAIPMAN DONDI: Have you tried any of that on animals to see if yom predictions would work?
ur. STarCNS: No, sin. This is absolutely analytical in foundation. It is foreseeable that this type of analysis rir9 lead itself to the calcuiation of actual energy absorbed from any given raciation spectinm in a body or in a shield.

For instance, we are doing work of this neture on complex geometilics of tunpsten, boron, carbon, and hydrogen; and can tell with reasonable acenracy the expeced eaerey released from each kind of radiation in this system.

Thals is a proposal that, instead of having an inorganic shield, that we minto the same calculations, the ecuivalent feometry for bialogical mechanisw. Now, that equivalent gecmetry would have to be arneived at by pertaps physiologiats and biologists to tall us, for emample, a man's body is equivaleat to, let's say, 10 centimeters of water, 2 centimeters of carbon, and give as something that would be equiralent to the elemental cemposition of the body that could be used as a target for these analysis studies.

Or another way to check this would be to actualiy make some measurements of the mean-free path of various energy group neatrons in the body es a urit.

IR. FRTPDII: I would like to keow what those units are, ageng:
1R. SINNONS: Thas is the Iraction of mentrons actually undergoing collisims in the body, divided by the number of neutrons enerey 3 , the unmer of aeatrons available per collision at a speciefic enerat; and these are the ones that are actually utilized. Thet is based on this equation 1 -e to the I over lambda.

This one is the enerey absorbed divided by the total enerey arailable at enercy E, which is merely a milipilication. In other words, if we have one 10 minlion volt aentron absorbed, that is 10 million volts; so we miltipiy the number of neutroas absorbed or the fraction absorbed by the enera, so it is equivalent to matiplying this fanction by a 45 degree line dram on this carve, which then gives us this function.

Now, in order to get sore definitite answers, I think all we have to do is to establish one of the accurate probability curves for the melear processes involved in the bocy, which include proton recoil, any other processes that might be pertinent to the physiological damage; and to set up an eqcivalent target geometry for a bocy anc use that instead of the geometry we are using now in other shields, becanse the problen is identical.

CRAPMAN DOMTY: Theat fou are doing is just substituting organiz material of the body for your shield in thes celeulation.

Mr. SMaONS: Yes, and asing the same calculations that we did in the shield on the body.

DR. FAIFIA: There is one thing You didn't take into aceount, and that is the distribution in the body. This will not give you that, unless you did the work for several different thickesses. That is inportact in what you finally get in the individual.

YR. SINNCNS: There nay be subtle effects. This is not t-fing to deFIne the subtle effects that for instance might be associated with density of ion path, a jooton versus an alpia paticie.

D8. FATIIA: I am talking abort the fact that if the radiation cones Crom that direction, this part of the body (Indicatine rear pare) would gat not as anch as theis part of the body (Indicating frart porHian of body).

1R. STAMONS: Trae, but that depends upon the energy of the radiatian. In otber words, if it were high enough eneray, the back part away from the source might get eore than the front.

DR. FAIITA: That is correct.
18. SIMaNS: But that would be handled in this kednd of a calculation. Remember, what I pat on here was fust a single one colfision analogy.

Mow, if you start carying it on down to second and third collisions and keeping track of where each one of those collisions oceur in the media - we are using I.B.M. equipment in which each card represents a neutron; and whe we get through and the cards are all sorted oat, we know how mang humdred volt aentrons collided in this region, how many thousand volt neutrons collided in this region, and we have a much more complete description of the process from the calculating machine than I can pat on the board.
[R. FAIIIA: The point I want to make is, yor have to make that determination before you can estimate what the biological effect is going to be.

1R. STMONS: That is sight.
Din. FATLIA: If you get. the same dose from one direction or two drections, you doc't get the same biological effect.

MR. STMMONS: Ies, that is right. Cae premise in here that may or may not be acceptable is that the one criteria of damage to a biological organism is the actual quantity of eneres that that mechanism absorbs.

Now, there =ay be subtie effects beyond that; but you say if a =ax absoriss one kilowatt of energy in whole body racíation ard acother zan actually dissipates in his body 10 kilowatis of energy, that this fellow has got ten times the chance of being burt that this one has, not saying what the infury is, but at least the danger to him stould F be some factor above the danger from this exposure.

DR. NDNS: I think another way of sayiac it, both biologically and physically, the body is anisotropic.

1p SDMONS: Correct. That is one point I brought out why the target ceomet-f will have to be set by biologists, pejsiologists, and y.D.'s. This is somethige a physicist cannot hope to set up eccurately.

The basis for, let's say, in this exeression, the value of \bar{I}, wisich is the target thickness - I mean, we migitt have several; $\mathbf{I - 1 , I} X-2, X-3$; we migit bave a whole family of these expmessicns. Tis bumer wily
have to be set up by a group of people such as this in working closely with the theoretical physieist who will actually form the calculations once the basic assumptions are standardized.

I think that is about all I have. If there is any more coment GEAIBMAN DONDI: I might say jou have gane quite a bit over my head here. It would take a physicist to understand this.

As I understand it, you hope to find the probability, by adjusting your shield at a certain thickness, you might be able to arivive at a cartain energy of neutrons which might be less available, even though they pass through the body, than another gronp at a lower energy.

MR. STMMONS: Fie have some calculations here assuming the mean-free path. Let's take a muber here, a mean-free path of a 10 mingion volt neutron in tissue, at approcinately 120 centimeters.

If you say a body, a man's torso or his chest or whatever part, is equivalent to 25 centimeters of tissue, yau come out with the value of this function at E equal 10 mev of,' I think, approximately 20 percent.

In other wards, 20 percent of a 10 million volt group would be utilized by a 25 centineter body of tissue. Then if you multiply this by the IO million volts, you see you would have 2 million volts of eneref per neatron dissipated in the tissue.

At 2 milyion volts this mean-free path comes down to about 23 centimeters. This is the assumption we made here fust as an illnstretion.

DR. ROBIEI EVANS: In this calculation you are using one over E?
MR. STMARNS: In this energy range it is reasocable to use it. Down at lower energies, it would break down. Iou nould have to use the actual cross sections.

DR. RCEITI ZNAS : The principle is all -igit, tiough.
MR. STAONS: So then, under that condftion of 2 milizon volts, you would have something like 40 percent of the energ available utilized, Where your utflization factor would be 40 percent of 2 million volts and 20 percent at 10 miTIion volts.

So, if you had a certain amount of incident enerey on the body, J.et's say you had 100 kilowatts of incident energy, if they were all 10 million volt neutrons, you rould actually dissipate less in the body than if they were all 2 million volt neiutrons, assuming the same totnl energy in both fields.

DR. STONE: I would like to bring up a point some pinysicisi bere migint be able to help me understand.

Fhen we were using so-ceiled 16 mev neutrons to treat patients, we measured the depth of those by ionization measurements and by potentiometers. It decreased way down to about 40 percent of what it is at the surface.

Now, if it has fallen down to 40 percent of that and drops off quite rapidly beyond that, bow can wa have oniy 20 percent of them being utilized in there? If it is 120 centimeter mean-free path, wing didu't we get more than going right on through the boity?

Of course, we don't know kow many went through the body because we dedn't measure what came out the other side.

12R. SINONS: Did you kow the total energ available in the neutron beam that you had?

DR. STONE: No. We knew the maxdmenerey.
10. SINRONS: In other words, a fraction of the available neutrons at a given energy to the ones actually utilized.

So; what we are measuring is the exposure in terms of utilization factor from the total.energy available in the radiation ifeld.

DR. FATITA: Dr. Stone had a measurement on the surface and a meesurement at a deptr of 10 centimeters. So, if you assume the effect on the ionization doesn't change men with energy, it changes:in: a ceriat way. with respect to enerify - then his figares are comparable to mhat -
18. SPNONS: Can You assume that, though, that the ionization chamber does not rary with energy? I thiok that the ioniration chamber would suffer from the same problems as the body.

IB. FAIIIA: It does vary, but it varies essentially in the same way as the neutron beam.

MP. NAPD: From that beam?
DR. FAIITA: That is the point. What you actually use has a very few of the very high energy neutrons. It is, pray below the 10 million neutrons.

DR:. STONE: You would have to work out a whole composition of these curves and Eit them all together according to the composition.

DR. FRTOUNuI: There is also a correction for the inverse sacuare law. He had a finite distance, a short distance.

DR. FAIITM: Not so bad, however.
CEATRMAN DCNDI: I den't wart to spend too much on thrs. It is quite interesting; and es I say, 9\%-99/100 of it is over my kead.

Do I understand you would like to enter this type of anelysis as a proposal to be considered?

MR. STMONS: I want to point out the importance to the profect of having a basis of cormelation better thac the exdsting basis. In other words, we can now know meh more about our shield bebavior than re cac know atout the behavior of the target, which is a human bocy.

This was a suggesticn, at least it wes a preliminary method, by which we might be abla to utilize same knowledge that had been developed in another ifeld, let's say, remored from the ineld of biology and medicine.

With the cooperation of the people who are competent to set up the basis for these reactions, and by combining those two fields of keowledge, we might be able to atteck the problem more effectively in getting better conversion factors for neatrons.

CHATRMAN DOHDY: I think all agree that we need better coaversion factors, and I think this re-emphasizes the need for the close cooperation of the medical group in knowing what your problems are and how you are approaching them.

UR WAR: Kay I ask a question which in a semse tends to ciarify a point bere in my own mind, at least. I think wat this approach brings out is that to merely talk of a neutron beam in terms of total energy, you are going to get. discordant results unless the composition of all those beans are identical with respect to the amonts of neatrons at civen energy values.

I think this is pointing. that up, that unless we make some attempt to find out what the neutron equivalent would be for a given energy value of neutrons, the results will be very hard to correlate and the factors will not be exact.

Is that correct?
 we could go a little more in detain, but I don't think it is really worthweile at this time.

MR. WARD: What I meant to point out mas, its importance to the shield designers now, and may save a large weight of shieldiag mass in ar airplane if they know the correlation, the biological correlation, of the different ecergy values of aeutrans. They have so far beea submerged.

모. FAIIIA: The point I tried to make was that it was true, provided that the distribution in the body is si-ilar to what it is ir the case of ordinary X-rays for which we have this integiation.

2R. WAPD: That is =ight.
. Ffilia: So that sets a linat at the lower enercy and as the nextroas, because the lower eneray neutrans will be absorbed oniy in the same distribution for wtich we have information available today.

1R. TADD: If I understood his question, he stawed off - correct me with some very high enerzy value neutrons are a difficult thing to shield against. If that energy value was not important, it would simplify bis shielding problem.

GHATMAN DONDI: We have not wormied about the low values.
2R. WARD: That is Fight. He was talking about some very difificult bigh eaerey aeutions about which appareatiy he has no biological -

IR. FATITA: That mav.bring us to the other exteme, for which we also have no information; and that is where the distribution in the body is perfectly uniform. The method is all right; I have no objection to it.

硍. SHONONS: This is one method by which you can deternine that distribution, theoretically, if you know the basic. probability of each melear process which you can measure.
표. FATIIA: "I think it can be done, absolutely.
Mer: SInNoNS: Then you can do thas for both neutrons and high energy gamas. Both are amenable to the same amalytical treatment. You can do it with the standard I-rays that you use and set the whole basis of standards on the utilization factor versus energy, or for the standard and for any kind of raciation that you want to consider.

CEATRMAN DOMDY: If I understand it cormectly, it seems to me like it would certajnly be a worthwhile thing to pursue, and we as biologists probably would get a good deal of use for information out of it.

MR. SIRMONS: It is imeossible to do without the collaboration of a group of hieniv competent specialists in ain of the fields represented here, plus the addftion of some very higily cialified theorstieal physicists to actually cary out the computing machine calculations, after the basis for the calculations have been established, on something consistent with the geometry of the body and the elements contained in the body.

CHAIEMAN DCNITY: Could I have a motion to the effect that we can accept this aprroach for recomendations on research.

DR. STONE: I so move.
DR. FATIIA: I wiTI second it.
CIATPYAN COHEY: Is there any discussion?
(There was no response.)

CHATRMAN DOHDI: 401 those in favor say naye."
(General response: Aye.)
CAATPMAN DORDY: Comtrary, the same:
(There was no opposition.)
GRADMCAN DONDI: The motion is carried.
Now then, proceeding to the sumaries here, if any of you have any ideas an this before we start; I had thought that these logically fell into six different categories. I enumerated these categories on a separate sheet with some iittie notes of approach under aach beading.

Again, as with Dr. Stone's proposal, I don't think it is our function here today to go into details, but merely accept or reject these varkous approaches; and at a later time, depending upon NEPA's desires and recuests, we will definitely set our own proposals and various protocols.

So, if we could start with the first page, wich is methods for detecting the degree of sensitivity of individuals to radiation expo sires, there are a number of different approaches that could be made on this: One is the mitotic suppression in homan epidermis; ergthena, the degree of erythema produced by graded exposures near the standard erythema values; and a correlation of the over-ail response of patients undergoing irradiation treatment with their erythema response as determined under the heading Eyythema.

Also, the histogenetic effects upon bone marrow and their correlation with the peripheral blood picture.

Cae which Dr. Failla sugsested is nausea, comparative relationship of the radiation namsea as against standard emetic drags; in other words, get the threshold, see if there is a correlation from indivicual to indzサidual betiveen the threshold for emetic ciags and radiation zacsea.

IR. FAIIIA: Mr. Chainan, may I say a word in connection with this? It seems to me the finst thing to decide in connection with this problem is what effects are we interested in, because the susceptibiרㅂ打 may not be the same; I mean, individuals' susceptibility may not be the same for all effects.

In other words, what effects are we interested in in this situation as far as NEPA is concerned?

CRADIRAN DCNIT: Under I here, if jou can find scme way of pre-selectios pilots -

DR. FATHA: Fith respect to what?
CEADPAN DCHTI: To theiz over-ail damage.

DR. FATHIA: First of aH7, their incepacitation.
CHATRMCAN DORDY: Immediate aausea, fmediate incapacitation, possible short-tern effects. I doubt if you could set up one like this to take in long-time effects.

IR. FRTMONI: I think that mat be the cin of the whole problem. This studying mitotic suppression in homan epidenais or erythena prodaction mast be correlated with wat kind of effects you are concenned with.

CHAPMCAN DCNDI: Correlate the ergthema With their degrees of aansea or the dosage which brings on nausea.

限. FRTEDEIL: That is Fight. Therefore, you have to decide what you are going to correlate with.

CHAIRLAN DCNDY: Centainly namsea would be one thing:
IE: IIIUS EVANS: I have same suggestions of other things that we might correlate with, irritability and maintenance of equilibrium." Put them on a disk and see. how long they can take it - animals - and still walk straight; and then take the amount of food ther take after 50 Eoins or something like that; eating tests, something like that; mating tests - I•don't mean mating tests as a test of sterility, but. I mean mating tests -

CEATEMAN DONDY: FOT desirability?
IR. IIIUS VVANS: Sometiang like that.
IR: FATHAA: The first thing we have to decide is what we are interested 2月.

WR: NENELI: This is an engineering project. This isn't just scientific Fivèstigation. This is an engineering project. Get your feet on the ground, what are you interested iت.

IR. FATITA: That other things are there? Let's list the things that wंe are interested in in this connection. I said nausea is oue of then, certainly.
$\%$
GRATFLSAN DCHDY: Abilety to perforin tasks is agother.
DR. ANDERSCN: AFer't these really a part of Sections III and V, where certain criteria are'believed to be important? This particular. thris, it seems to me, should be done in correlation with the criteria that are censidered to be most imeozant in the list farther down.

ID: FATITA: You have got tinis started with the criteria. The fizst thing for us to deeicie is, what criteria are we goiag to take?

DR. ANDESON: They are Iisted ueder III and ∇ here, as I understand it.

CRAIPUAN DCWII: The reason I left them this way, this seemed to be something you could do an hans without too mek trouble. The anes under III are most apropos, it seems to me, to amimal experimentation, of which we have no information on animals or at least ve:Y Inttle in that category.

RR. SHINTDS WARREN: One practicable and very easicy measmable reaction is the development of diochea. I that that will be about as incapacitating as nausea and vomiting will be.

咋. FAIILA: Does that happen within twenty-four hours?
IR. SHIETIDS WARPEN: In some of the Japanese it appareatis turaed up very early. It is awfuily hard to difierentiate there the poychic effoct of excitement and forr actual direct effect on the g.i. tract.

CHATRMAN DONDY: OI course, the nausea and incapacitation from nausea and romiting certatily cane much earlier than any diorshea. I have seen patients compietely knocked out from nausea after one or two treatmeats without any diorrhea at all.

I think in humans you would have to get up to a higher dosage. Iou could exelnde.the prychic factor.

Dr. Stone.
DR. STONE: I was thinking of two things here. If this is a means of pioking sensitivity of individuals, you cettainly are not going to eipose any of these individuals to fadiation, their sersitivity. It is like a fellow eating a watermelon to see if he can eat a whole watermelon.

If you have already exposed him, you can't expose him again. So, what we have got to look for, which isn't here, are some other tests which I haven!'t any to suggest, that mingt be correlated in a given individual with their sensitivity to radiation; acd pick your pilots by same othe: -

DR. NENEIT: You might imadiate a dime-sized area of the skin to itad out how sensitive he is.

DR. FATIFA: As far as the skin is concerned, jes; but jou have got to find out ir that correlates with anfthing else.

DR. NEMEII: That is what the project is, to fiad. out if sersitivity as shown in the epitheliven correlates with the sensitivity that you were interested in for the gross exposure.

DR. FAIIIA: How are you going to find out the other secsitivity?
CHAPYMAN DOWD: : You can very easily find out if erfthen correlates -

IR. NDNEII: Suppose we do what we were planaing to do in the last motion, use human subjects for total body exposure. If you decide that this is a worthwile project, you wil have a chance to irradiate tiae skin before you tradiate the body and find out if there is a correlation in sensitivity.

IR. FAIIIA: That is very true.
IR. NEKHII: Isn't that what is intended here?
DR. FATITA: Iou can do some of those things on patients without having to get at least a lead.

DRE NENENI: Iou can do tt first in animais.
묘. FAIITA: For instance, you conld correlate skin erjthema with nausea in the treatment of patients, see if they correlate.

CHATRMAN DOHDI: Ion also can correlate with bone marrow on biopsies.
DR."FATITA: "Also see whether nausea obtained by radiation corjelates' with carsiciness or the reaction to an emetic.

DR. NENELI: \because That I am impressed by in this proposition, is we are seeking a correlation. The statistical study would probably be something in the nature of a product of a movement correlation colltsion. Regression equations do not have a high efficiency, unless you have a large standard deviation for the things which are to be correlated.

I think we know samethilg about the standard deviation of these several things, and they do not have a very large standard deviation; so that I'do not think we would get a useful efficiency of a regression equation if we should develop one. I don't think it is a promising project.

CRAPISAN DCHDY: Do we know that? You made a statement there that FCu don't think there is any verj widespread -

DR. NEVELI: These things don't have an enornous standard deviation, do they? Sensitivity of epidenis, erythema? Iou have done it in your shop.

CEALPMAN DCNDY: It is fairly widespread for ergthema in the individual from area to area, on the same patient.

LRO. NENEIS: Of course, on the same area. You have to use the same area. You ars going to talk about the same area here. You are not going to do different areas on different people and tif to correlate those rith total body reaction. You are going to use same standard area, are you not?

CHATPMAN DCRDY: Yes.

DR. NETBII: 1 (y experience in cne standard area is that the scatter among erythena is not great.

CEATRMAN DOHNY: Yy impressicn was that it was pretty great. In lact, I have ovea seen epilation -

DR. FAIIIA: Not more than a factor of 2.
DR. FRIDOEII: I don't thrik it is even a factor of 2
IR. IIIUS EVANS: A fail=-baired, fair-skinned person might give you a bright red one, with the limited experience I have bad. The darisskianed people have a different type of erythema; it goes a different way. And some have hardly any ergthema at all. They fust get pigment. Don't you find a variation in the area?

DR. STONE: Oh, yes, it is a variation according to the skin tfpe. If you could get scme method of detecting the redness other than that we bad, what do you call then? a leukodermic individual. A leukodeimic individual is one that has patches of skin without any piament, whaterer in it.

There the ergthema came up and persisted for very, very long periods of time; and in areas right next to the leukodemic areas where there wasn't any, where you got pigment, the erythema disappeared to your vision within a short period of time becanse the pigment got so great you couldn't see i土.

The erythema persisted for a long, long wile in the leukodernic portions of the skin.

I'an surprised to hear practicing radiologists here think that they can get any correlation between anything in nausea, because it is such a big psychic factor that there is nothing you can correlate with it; and vomiting is the same. I don't know about diorriea. I have never caried aryjody to that extent except with ter-ieif doses.

So I don't tinnk there is anything you car comelate but the tinge things you want to get at bere, I think romiting, diorinea, and fatiguability.

F CHALPMAN DOHDI: Let us restate this another way. This is developing just the way I was afraid it miskt.

Is it a consensus that we need methods for detectian the degree of sensitivity of individuals to radiation exposure?

DR. FAIITA: Ies.
GHADPGAN IDNDY: That is all I want to settle here. The thing that yicu correlate and how you do it ts something not to be decided at a meeting like this. It is samething that somejociy sits dems and works out a good protocol with the adrice of his comferes, and then presents"to a comititee to decide whether that is or is not. These are $20010^{\text {meagely examples. }}$

One of the things which I emphasized in Chicago, and I exphasized, I thrak, every place, is that there is a poschic factor here which JBPA is going to bave to take into consideration, amd somebody is goine to bave to set up something to sule out psychic people.

You may be able to get it, for instance, by saying to a patient, wI am going to give you a dras that will cause you to completels empty your stomach in five minutes," and give him saline. If he does, then you had better not use that patient as a pilot for thes purpose.

Those are things, when you sit down really to get at this thing, an which you can get some correlation, I believe.

DR. NEWEII: You didn't put that down on this list.
CAARMAN DONDY: As I said before, our purpose is not to go into detail of research problems.

DR. NEWEII: Our purpose is to seek out promisiag projects -
CEATRYAN DORID: Not at this time, no.
IR: NEIETL: • What is this except suggested research problems? Mhy are we presented with these if it isn't to use our best fudgment and pick out which research problems are promising for the purposes of this Committee?
Gifbuan DONDI: These were merely ideas that were subuitteed, but not to weigh each one of these ideas as to their individual value.
Our problem as I see it - maybe I am wrong - is to pick out major problems that need further exploration; and then if we can decide on those, then individual problems can be woriked out by the people who -

DR. NENEII: You and I are saying the same thing - warrant further expioration. I say, in ther exploration.

CRAIRMAN DONDY: We had almost a unanimcus agreement amhile ago on statenent No. I. It is desirable to have methods for detecting the degree of sensitivity of individuals to radiation exposure.

IR. NENEI : . I dida't say it wasn't desirable. I said it wasn't promising.

CHAIPMAN DCNUT: As they are listed here.
DR. FAITHA: Let us agree on what is desiraile, then.
IR. NETHI: That is desirabie? Surely, I know what is desirable the obliteration of the atom bam.

CRAPMAN DCWDY: He can't decide that.

DR. HETHII: I am trying to make it obvicus that you can't bave what is desirable. Iour desirables out-run your possibilities. The fractian of this Cocmititee is to help choose the researehes whieh mengt Field something.

Now, there are two ways you can do. You can put down everytheng you can think of and then set a team to work on everything you thatk of. That was Edisca's idea, and it worked. It is very expensive, but I am sure that we are so inventive that we coulda't possibly ifind - we couldn't get enough contracts to cover all the projects that we could invent.

It seems to me the thing to do is to pick out the things that have some hope of giving you what you need.

모. FAIIIA: Let us agree on the desirable things, then.
DR. NENELL: Desirability mast be linked with possibility.
Din. FAIIIA: Not until you come to actually setting up some projects. a
CHATRMAN DOPDI: : I fust mentioned one where fou can get some idea on a patient's nausea factor correlated with psychic reaction.

Now, that ism't listed here.
DR. NEMELI: I think that might be promisiag.
CEATBMAN DORIT: I thrik if we can accept in principle that we would IHke to have somebody ty present protocols attempting to give us a method, then we could decide on those protocols.

I wooldn't even aqree that all of these that we have listed here are beyond the possibilities of giving some information. That is fust a personal opiaion.

But then, if we decide it here that these are fundamental problems that should be investigated, then we can decide mether somebody at a later time has presented a protocol mich is reasonable of giving us any information.

ETD. NEMEIL: AII Fight. Thank You.
CHAIPMAN DCHDY: That is my personal impression. So I think we cem more an.

OR. STCNE: With regard to this first one, methods of detecting degree of sensitivity of individuals to radioactive exposure, I tikion we cane back to what sensitivity are you talking about. If it is just in general, well, of course, it is a nice thing to know; but I don't know that it is cornected to NEPA.

The method of detecting degree of sersitivity of individuals to nausea, to fatipue, yes; and what you are going to correlate that with, I dan't know. I am thinking largely in terins of the amont of exposmre we are thinking of; or I am thinctac of bere, let's say, 100 Imadmun, 25 I probable.

What we want to know is, what is going to happen to people that get 25 r and can we pick out of a crowd some that might be hopersensitive to 25 r? Let's say the figure we have set to shoot at is 25 r , and to find out whetter you can piek out whether a person is sensitave to $6 C 0$ y or not and will show reactions before they did, would be interesting to know, but probably of no practical signtricance.

IR. FATIIA: I think another problem is this. If you can in the becinine pick the people that are most resistant to radiation in respect to the effects that we decide, in the case of an accideat or in case a man has to be over-exposed, he has a much better chamee of getting out than if he didn't heve that resistance.

So it is important to develop, if possible, ineans of weeding out those who would be incapacitated if they should be exposed to a liarger dose than was planned for that mission.

CRATRMA DONDI: We don't know but what jou may have to go up to 100 or 150 =.

DR. FAIIIA: You may have to go to 500 I . It depends on what happens in that mission.

CHALTMAN DOKDY: But I to know that you can expose the same tippe of Individual havige the same type of a carcinoma, and one of them will develop a very profound leukopenia and the other one won't.. I mean that is pretty well bown.

DR. NETELI: It just happens that I have been through a project like this a Sew years ago, the predicticn of heart size; and the proposition was to prediat the nomal size of the heart ard the measurement of the patient.

We found, and everybody else found, that the efficiency of predictice was about 30 percent; and that you weren't rore than 30 persent better off to take your predicted size of the heart and compare the patient with that than you were to take the average for all people and compare the patient rith that.

The efficiency of prediction was so low it wactically masn't worth having. That is what I anticipate in these things, is that the seres: between the sensitifity of one person and another for your test, wicie? is erjthema or mitosis or something of that sort, won't have sufficient spread from the most sensitive to the least sensitive so that your prediction will prove to be of any practical value.

DR. FAIIAA: Yhat you are seying is that you dea't think it is workhwhile to do a lot of these things.

DR. Noitil: That is what I mean, jes. If it is not a procising jroject.

DR. FaTHiA: Eat in the first place we have to decide what we jike to bave.

DR. NGimJ: That is Heght.
ㅁR. FAIIIA: Aed then if it is possible to accemplisk it.
樶. Nownil: I think we would all agree that this would be desirabla.
DR. FAIIIA: I think we bave to do that; and then attempt to Nand something. Laybe there is something worthwile; I don't know. If it doesn't cost too mach in the way of money anc time, particularly in persomel, I think it ought to be tried.

DR. NDEBTI: I think Fou have said it very well, if you can find something that is premising.

DR. FAIILA: That is Fight. Then I would do it. But I think somie pFo-- jects can be set np which will cost very little money.

For instance, the one I suggested about namsea can be done very easily in a hospital, ir you can get scme radiologist interested in it, because it is also a service to him. Ee can cary out this investigation at very littile extra cost. I think it is rowtinkile.

Under those condftions, I think it is worthmbile investigating, even though we don't think it is going to find angthing that will mean anything.

DR: FRIEDEII: These statements are not hard to reconeile. I think the point Dr. Newell makes is a pretty good one; that is, that the spread we have oiserved Ircm biological effect, and I don't care mant. what they are, from =adiaticu doesn't heve a Jerj wide dispersion; and if they don't have a wide disperston, the results are not likely to be ve:f userul $f=\pi n$ the point of view of corselatim of these thins.

IR. BOBIEI EVANS: Just the opposite.
 deesde that you want to knem to within one in a thousand, then I recognize that. But if you take some reasomable figure ane cormect far that -

DR. FATifa: Ten percent who might be byeesensitive, I think you hare a promisizg lot.
 will be =cn-medical?

I this tive Ser-iees will be very interested if, after a proper examinaticn. Fcu tole then that ther= were no tests. I think they would
like an opinioc. So I think the investigation of this matter wil bring forth useful inifis, irrespective of the answer.

CHATEMAN DOKDI: FOT instance, there is a wide spread in mortalaty. That is a very gross thing. There is a. wide spread of the hematopoietic system of a different indifidual. We know that those are widespread, that there are things that are micespread.

Now then, if we cern aceept this, then the anes who are interested can sit down and conscientionsly mork out an approseh to this, which can be considered.

So I think we rill accept this, as a group. . Te baven't ruled out any. Rlfht aow the consensus of opinion is, these are worth scme further elfort.

DR. STONE: I think You $\operatorname{mif}_{\text {ght }}$ add to this list you have here, though, the problem of detecting a degree of sensitivity of indifiduals to radioactive exposures wherein the test does not involve aiy exposure to radiation, even to a piece of the shin, if you could get it.

CEATRMAN DOMUY: . There is ane of those in the NEPA Project on testing amimals. That can be cone on animals; and if it correlates there, then we might carry it over on some of the others.

DR. ROIIAENDPR: It might be that you would have to have correlated a whole bunch of these tests an these men, like men suited for the submarine duty or airplane duty. It is usually not a single test that tells the whole story.

Kaybe you can find sensitivity whik mould tell you something.with =egard to radiation, too.

IR: NNTS: I think in all these things we are leading towards the selection of a test. What we gain from them is not nith respect to indivicuals, but statistical ability. We :mow more about broup perComance. सher fou are living with 100,000 men, a 10 pereent increase is sometines wortwwile stooting for.

So there is something then to be said for the number of people you expect to be exposed and worthwhile developing any seiection of tests.

DR. BIING표: I would like to say this. I am not quite as pessimistic about using the skin, because I have used over 2,000 human beings to study a similar project in ultraviolet. We were able to separate certain groups of healthy incividuals, to a point that we could group them at three times the average of the men. .

The interesting point is that what I found firteen years ago correlating to Ult-aviolet e:ythema has been carmied over to I-ray skin reactions, and very recently also to total mortality under similar conditions.

Referrang to one example, thyroid bas been found definately to fncrease ultraviolet skin sensitivity, that is recognized to rays considerably; and I-rays reaction has also recentiy been established to raise the mortallty percentage of a given dose and total body radiation.

Based on this exper-1ence, I think - and as a matter of fact, we have already some joint project at the Javal Hospital and Naval Kedtcal Research mader way - you can, by correlating sicin to two or three other factors, find certain croups of indifiduals who are more inclined to show leukopenia, roaiting, acd other effects.

I worked an about 3,000 buman beings, as far as ultraviolet is cencerned, and on a considerable member of experimental animals.

CHADPMAN DOWDI: Thank Jou, Dr. Elinger. Fe are delighted to have one more supporter here.

The second group was the study of pharmacological studies of radiation reactions. Kainly we are concerned with methods of redacing the percentage and amount of injury from a giten dose of radiation; or once. . they had received radiation, see if we could stop a chain of reactiona which is initiated by the radiation. Under this comes the proposal presented by NEPA last June; in fact, June 23.

Studies on those are being done, but I think wherever good proposals come in, they should be supported and recomendations for a continiation of these studies should be made.

I have no real proof or. anything that is pat down here as of protocol.
IR- NENEI: There are a few peopie that have been working in this field.

CRATEUAN DCFIX: There are a lot of people that have been worktng in this ifeld. I knew of a lot of people working in the field; and I think some interesting thsags have come out in the last jear.

You mentioned, D_{r}. Ellinger, about thyroid, which is being worked on by severel people. Dr. Evans did same, which I think points in that direction on temperature and limitatior of blood supply. I think there are large possibilities in this ileld.

Dr. Elinger has a published paper on desorycortiosterone. I thick this topic should be incinded in our recomendation for NEPA for further consideration.

UR. FAIIIA: UK. Chaiman, I would like to point out again that we have to decide what deal NEPA is poing. to operate, fi-st as to the effects that I ritnessed; then as to the projects that should be undertaken by. NEPA, because there is an anful lot of this woric coing on and everything that has some connection to the biologieal effects of radiation wich is of interest to NEPA.

Wow the cuestion is some difision of the fiald, so there will be no cmplication; and what the Atome Daerey Comarssion should do and miat MEPA should do. Those are things I thiak nill have to be decided.

It seems to me that the investigation on fundamental problems does not come mader NEPA. Thas is more of an engineering problen rather than a basic research program.

10R. WARD: Kay I =emark on that, Kr. Chaiman? NEPA doesn't desire to do any work that is beine done elsewhere. That is one of its fundaimental principles, and it has observed that very largely in all of the fields in which it is interested.

It has found, on the ocher hand, that becanse of the urgency attached to this project, and becanse of the peculiar limitations of the progect - the two factors - that certatn problems which are being left to a low order of priority because of the requirements of other projects become a high order of priority to NEPA.

If KEPA can get someone else to do it, it intends to do so. If it can't, then it. will try to do it for itself. I. thiak that. is the philosophy.

DR. FAIIIA: • I agree with that completely, but it seems to me that this group here should more or less decide as soon as possible, so they won!t maste an awful lot of time, fast what are the things that, NEPA wants, and how best to get the information.

If we go through a list of all the effects that we have been studyicg thiat would contribate samething, so on and so forth, we are going to have a termific program. Nothing will be done in a short time.

ChAIEMAN DCNDY: I don't think that is quite the way I understand it. NEPA expects us to inform them: one, of programs which as engineers we as biologists should tell them are important to their project, and they should watch out for. When we designate something where they get this intomation, whether they do it themselves or whether they find out it is being done some place else, is a problem winch we are not concerned with at the moment. I don't know winether they have a budget to do this with or not. I don't know whether they expect to have a budget to do it or not, but that will be left ap to them.

The other thing is, I think it is perfectly obvious from the meetings that we have had that it is important to them to have a close relationship with a biological group for a tie-in with their work.

If we concede that to be important, then they must have - thes is :F own opinion again - some sort of people on thei- project who are interested in biological programs in order to form a close liaison. If that is trae, then they $w i l l$ of necessity, to get the type of men they wart, probably partieipate in some program themselves.

As I understand it, aiter our deliberations today, then they mill have something to go on to make their decisions and sake thei- recmuecda.tions.

An I right or am I wrong on that?
DR. FAIIIA: We are all Fight.
MR. WARD: I think evergone is Fight.
1r. STNONS: This may be a little out of the nomal procedure and off the subject, but I see the point. I thrik what we are groping for is an order of importance, practieal importance to the NEPA objectives or programs: Te could discoss that a little bit.

I think at Chicago we set the nomber one prowity job, which was this. I think the aumber one priority job is information which will permit the application of this to practical problems that we are confronted with today.

That is, how many roentgens is represented by a thousand 10 mev nen-troins which we are going to have to let escape through the shield, so that we can correlate the field resalts an the outside of our shield with at least the data presented in this dociment.

Right now we say; "Sure, if we give a man 200 r of Z-rays, this does to the best of our knowledge the following tuings." He are not going to have any 200,000 volt I-rays in this airplane.

I think that is probabl: the amber two prority, the questions we now have, the information to let as use this in practical design considerations.

DR. NETEII: Could I say something that I think is pertinent to this decision, because you do have to make a dectsion as to what projects you will go after and whet projects you will support.

I would like to daw a distinction betaeen Eundaneñal scientifie =e search and what we could call testing or develoment, engineering projects. Now, there is no cuuestion that engineering projects can be given to a research laboratory oftentimes rith magaificent results.

In regard to fundamental research, however, I would like to quote Mr. Jackley of about fifteen years ago. He said, in French, "If you Let the scientist choose the problens he wil. work on, be might be wrong a quatter or a half of the time. If you let the director of the laboratory decide what problem he mill moris on, he rill probabij be Fight about 10 persent of the time. Eut if you let the bored of directors decide, he will aimays be wrong."

That is in regard to the fundamertal scientific projects. I thonk that this board of directors can direct only in regard to what we can call testing or engineering projects.

DR. FAIIIA: Assign certain priordties to this; otherwse, there is so moh to be done that nothiag will be done.

DR. STAFFORD 7 APREN: It seems to me one of the most difificilt problems We have pot before us is the one that is handicapped by time, and that is the long-tern effect of these doses that we have signed our names to in this report: That is probably a ter or iffteen jear job, and that is a project job that nobody mants to take.

I think that is one that should have first priority in order to get it started, No. I. Those of us in Manhattan tiried to start it at the begiaming of the war and couldn't becanse there was a shortage of men and materials. Fe tried to start it femediately after the war, and it has bung fust becasse nobody would come forth and say MIhts has got a mist."

This projéct, it seems, has got a must in that direction. We are not coing to be able to come up with information from that end very soon. That one ought to be started.

Then I think it divides itself down to Iour other categories which we can get answers on a Ifttle more quickly. Some of this shorid be done by NEPA and some is already being done by other agencies, chiefIy A.E.C.

Cae very important one is the repair of injury after it occurs. That, I think, has got to be Irom other organizations. But these next two are the ones we have been hargling around, the identification of sensitivity and the possible reduction of sensitivity.

Those two are being worked on actively by A.E.C. and probably by several other agencies, too. Ent I thtrk we ougit to concentrate scme effort in that direction, if lor no other reason than to offer competition to other groups that are working in this ileld.

Aoother thipg I rould like to say while I have got the Noor, and rhat is on this long-tern effect. At least two large installations ought to take that one on and periaps small pariss done by others with small animals, because of the hazard that Jou a=e always faced with in the long-tern piogram oi having jour colony xiped out by a car=ent iniection or some other accidental reason.

Since we would have a stake of ten or iliteen jears of observations in Ffast ane experinent, it ought to be safeguarded by being duplicated. It is going to be difficult to find a group that will take this an.

I would Ilke to ask Dr. Fafila a question. That about the measurement of neutrons of current experimentation? Isn't that one of the difficulties that we face, too, in this kind of experimentation?

DR. FAIITA: Mell, the measureneat of neutroes in teras of energy atsorbed per gram of tissue is at least a solution, and that is arailabie today. Now, the detemination of the pereentage of the ionization procheed by fast aeutrens by gama rays will have to be done. Also the correlation of biolopical effects when the energy is absorbed form neutrons of difierent energies has not been made.

So there is a big field there for funther study. We bave got to have in addition to that the composition of tist tissue, what percertage is due to gama rays; what percentage is dae to neutrons and what energy. Those lactors come into this biological effectiveness of that tissue in teras of grams.

So there is a bic field thers. That must be explored before we can predict what is going to happen to the buman being exposed in the field of radiation suct as exdsts here.

CEATRMAN DOHIX: That comes under IV, "Conversion Factors, N to =." ㅁ. FATILA: Yes.

DR. FRIEDEIL: In your original proposal you said you needed to know certair things before NEPA decided bow to correlate the biological program.

I remember the discussion that ensued a year ago in Cbicago in which we said there might be two conditions under which you wouldn't need a committee at all, any biological research; and that is, for example, You could build an adrplane that would fly with a total exposure of, sày, one roentgen; or if it would 1 Iy with 100,000 roentgens. There it is perfectiy clear that the committee wouldn't be very useful.

We hope that it will fly somewhere in between that range, and if we had some idea as to where we would be, we could maybe decide hon important and how critical same of these biological problens become.

CGEAPMCAN DCNDY: I admfi I an just a little bit corfused at this point.它宛
 "unajoe we fast shouldn't do anything from a biological point of view intil' the engineers could tell us what the mixtures world be. Then we would set some arimals up and get some empirical data. If we wait for theoretical calculations -

DR. STCNE: TEey are fust asking us minat trpe of mixture we would like.
DR: FAIIIA: The design rould depend on what importance they had to assign to neutrons and what importance they had to assign to gama rays.

1r. SDMONS: That is Haght. The don't know at this time the spectram that will energe from aircraft shields, but we want to be in a position that when we do know the emergence effect, we can evaluate the damage potential of that spectinu and decide whether we have to put another foot of tungsten around the thing, or whether we can take off an inch of boron or something like that.

DR. STAFFORD WARRN: Eut anticipate certain things, and from a biom logieal standpoint we ought to know enough by now to anticipate what you are going to need, evidence over this dosage range we discussed this moming.

1R. STMAONS: In other words, a refinement of this data morld be bringing these effects dow to a mait which woold be amenable to the interpretation in aeutron \ln ares versus energy and high energy ganma radiation.

DR. STAFFORD THRREN: The ougit not to be in the position we were dantis the war, where we had te set up this tolerance dose, and we arbitrarily accepted a certain dose; and at the end of two years of experjementation we find that if we had exposed a large number of our persconel to that toleramce every working day, we might have assumed that we would have fourd a lot of. injuries.

Fortunately, the hypothesis that was ased was that we would have no : exposnre exeept where it would be necessary. Therefore, we did not have that injury.

Fe have told you, at least in the Chicago meeting, that it might be likely that 100 roentgens is somethige to shoot at, and we ought to come up in a couple of jears with something about the time you are ready to go rith something definite; that 100 is pretty safe or it isn't.

UR. SNMONS: Iou are going to tell us what 100 roentgens is.
DR. FRIBDEAH: I don't think that is the critical problem.
MR: STMMONS: In other words, if you tell as 100 rems, then we have got to know how many rens is 100 -

IR: FRIBIEII: What is more critical is what if you are going to be woricing in levels at 50 or 100 rems or 1000 rems.

DR: $\operatorname{ENITNGGR:~Iou~mest~start~experimentation~somewhere~and~this~is~}$ really what NEPA would like to have done. Couldn't we now begin a set of' experiments where sourees are available, to start to get some more basic data? Fer are available, or very little.

DR. FATIAA: First of all, I go back agein to fou have got to decide what effects jou are going to stucy, becanse this ratio varies with the effect of study. What are we interested in trying to find out?

CHALPUSAN DCTIDI: Aren't we interested in the physical fitness of these epeople to 100 r? Are they going to be latigued? Are they going to be dall and full of apprehension, lact alerness?

DR. FATITA: Then You have to plan your experinents to give jou that answer.

CRAIPMAN DONDI: That can be done.
IR. STAFFORD TARPEN: Iou are also going to have to consider the iltimate fate of the indivicual, too. There is a Veterans Administration insurance gentleman over here interested in that. So are the parents and the individuals.

CEATPMAN DOTDI: I thiak the discussion is heading up that we have Fun into a littie dieficuity on the pharmalogical material there. Finy dac't we just pass over that for a moment and leave it and go to the ovaluation of the physical pituess of andrals to these various dosages, which can be determined by very good scientific methods such as treadwfils; swiming tests; Hardy-7folf pain stimilator; activity cages; volnatary milltngness to exert; and mental alertapess.

Dr. Donaldsan fust told me before lunch that he, with his NLsh, has been able to rather accurately correlate dosage with terperature and jadigestion of food relative to namsea and vomitiag, and got a veny cood correlation.

Now, it seens to me that me can accept the evalnation of physical fitness as one of the things that they certainly need. Now, how the experiment is set up will be determined later.

DR. FAIIIA: Physical fitness within twenty-four or forty-eight hours or a week, or sorsething like that?

CRAIRMAN DOTII: Yes.
IR. NENEI: . It looks highly practical.
解 FATITA: Ies.
IR. IIIUS EVANS: In fact, I think they all do. I think they all are practical.

UR:- NETEIN: These they put down here are mostly in the direction of seeing the effect of irradiation an the abilities. One might also consider the correlation of the imediate symptoms with survival if we are going to do these buman experiments. That is in the reverse direction, but comes under the same heading.

CHAPMAN DOHDY: Whoever does human experinents might use sone of these. I dor't know.

Now, I don't think we are going to need ameh discission on IV. That is one of the ansts.
(服. ROBIET EVANS: There is one important point. Maybe you have the answer on IV, K. Simmons. Jising an ordinary ganden variety type of shield winch you could set together right now without a whole lot more research; suppose you need this machine six months from now and you have got to start building it tomorrow morning.

Roughiy, what is going to be your gama ray flux in comparison with your neutren Ilux? In other words, if you take a RBE of 10 pins a minas 8 , say, fust to be ricialous, does this really handicap you in the desien of the shield. Is the major external radiation going to be ganma rans anyhow, or is the major extemal radiation going to be neutrens?

Thas Feally tells us the inportance of No. IV.
18. SINONS: I think that we are going to be somewhere bound to an even break as far as total enerfy arainable in the field is concerned, but that we can say this. The shield performs two functions. First, it absorbs the enery and reduces the total energy avainable. The second thing it does is harder the spectring that any spect=m you start with on the inside of the shield is going to be hardened as it energes. Therefore, we intend to raise whatever total energy we are left with after the shield bas performed its function; we bave raised that into hicher energies, so we are particulariy interested in the .equivalence at the higher energy ranges.

Let's say we decide we have to have an overall attenaation, say 10^{-8} on the fritial radiation emercing fram the reactor; and we ifind that 10-8. Iraction of the radiation is at 10 mililon rolts or above. So this means we efther have to take out evezything below 10 milifon voits, which of course is an impossibilitf; and then let that go without effect.

That is an overemphasis just to point out the problem, but we baon me can not remove all. of the Iow energr radiation; but we can remove a Figher percentace of the low quantum radiation than we can of the initial high eaergy.

Fhat we are actually strivigg for is the minimun necessary atterantion of the high energ componeats. This is based on the argament, WWell, if they have such mear-free paths that they penetrate the shield, they are in the same statms as far as the cargo is concerned."

We believe that there is a theoretical macismen of effectiveness for a given energy of deutrons. If you plotted the curve out far enough, you would have a maximuruntron effectiveness. This is irespective of spectrin, jost monochromatically. Say the same energy mould be less effective at 4 than at 2 million.

DR. SCETEY E\#ANS: iet me 2sk Fou, of course in a diziseret way and not quite the way Dr. Newell has writteen beinied jou, maici he $\leq s$ reacj to spaing on $\bar{y} 0$ the pilot, the gama rays or the neutrons?

ARR. KAIITINSAI: I thinik we can answer that. I think that in anj well-desfgned shield they wil be zbout eçal. Iou cen see very easily wify that is so, because to Feally bring radiation dom to practically zero, you have to use a ve:y large mass, whether it is gammas or whether it is autrons.

So that if ycu tried, for instance, to kiT9 al7 the gamas and not bother about the neutrons, Fou would bave to have an exorbitant amount of material to stop the pamas. The same is trae of the neutroas.

So, cinite obriously, the lisht-as-possible shield will be one that will attenuate the ganmas and the neutrons.

隹．ROBLEI EVANS：That is not the point．
IR．SDMONS：Which will kill the pilot？
ER．VIIIER：That is what we want to know．
UR．STMONS：Whaich is the most effective？
IR．ROELEI UTANS：You don＇t bave to kron the RBE．If it is the gama ray that kfils the pilot，you don＇t have to know the RyE．

IR．SIMMOS5：How are we going tio ilnd oct which kilis him？
DR．ROELET ENANS：I am asking Fou．
MR．STMNONS：It is not a biologieal problem．
UR．KALITINSKI：He are giving you back the answer．
MR．STARONS：Let us assume they are equal．
DR．ROELEY ETANS：．When You say You are assuming they are equal，what RBE have you assumed in your calcilation？

VR．TALITINSKI：Me have assumed there is about an equal quantity， becanse if jour flux is 104 gamas，it will also be 104 neatrons．

DR．ROBLET SVANS：You have certainly made calculations of the exter－ nal radiation and rems．When You did it，what portion of the rems were due to gama rays and what portion to neutrons？

DR．FATIIA：According to that，perhaps 80 percent．
MR．＂SIAMCNS：We haven＇t such a calculation．We have not made one． He have no basis for making one．Nell，we could use this factor of 2．5，but we don＇t believe that．

DR．Finfid：that is the 2．5？
DR．ROBIEI EVANS：Take any other reactor，then，which you have studied． Take any of the going reactors with their present shields．Which is The most hazardous radiation that energes from the shield：．the germa rays or the neutrons？

DR．STAFFORD TARPEN：They are both hazardous．
MR．STMONS：I don＇t think anybecj baows the answer to that question．
DR：FATITA：Neutrons are ten tines more effective than gana rays，and the neutron beem or the neutron eienent－

YR．SDarons：Correct．Bat we den＇t kow that the neutrons are ten times zore effective，do we？

DR. FAITIA: The know that they are meh more effective than gama.rays.
CRADPMAN DONDI: Me doc't kow what they will be at that energy.
DR. FATIAA: In terms of iondration.
的. NENEIL: I am not umeh of a matheraticsac, but isn't it true that if the relationsinip of emergent flax to cost of shield was the power ralationship for both gamas and neutrons, and they were independent, then your economy would be to tave eçul effects coming out, and jowr economy would only be to have minch more of one than the other, if the ralationsifip of one was a considerable power compared to a first power relationship with the other.

Am I wrong about that?
MR. SIMACNS: I don't think that is mrong. The'only assumption that we have been making - we may be wrong on this, and this is where we need correction from this group, if it is wrong - we are working under the assumption that the damage potiential - we are not saying what that damage is; it might be. Ieukemia or raning lits - but the damege potential from a given radiation field is some function of the amount of energy that the body absorbs from that ifeld, the integral of the utflized energy.

DR. ROBLEI EVANS: It is for the gama rays, but it certainly isn't for the neatrons.

1R. STMKONS: OF course, the ridienlous case in here wonld be neutrinos. Let's say the Hanford pfle puts out a fer thonsand kilowatts of neutrinos, and you have a fairly intease fadiation fleld. It fen't intilized. As you increase the enerify of a nentron, it approaches the neatrino in its utilization lactor.

So we are qoing on the rongh premise that we can calculate - I haven't got the figures hers - the enersf potential of any given field of monocinomatic germas or monochramatic neutrons, and we can interpet that fnto a distribution of these groups and say, mfell, so much enerey $w i n$ be absorbed by a mack of meat."

DR: ROBIEY IVANS: All right, if you jast use a concrete shield or something of that crude sort, and then in a side of beef there is just as men genma ray energy absorbed as nention energ?

UR. SMARONS: It depends on the spectam. I would thrik that in a mank of beef that there would be more neutrons absorbed than gamas.

DR. ROBIEY JNANS: Do you mean more enerey or more particles?
UR. SDMONS: I don't know. I don't have a numerical answer to that question, but I say it can be calculated.

DR. ROBLIT BVANS: It cam be calcalated, and it is pure physies, and you don't have to ask a biological question if the gama jays are the important radiation.
18. STHKONS: What we are asidng is, is this a reasonable assumption, that the biological hazard is a very close relaticn to the energy ntinized?

DR. ROELEI EVANS: I think not, becanse of the REE.
[R. STCNE: Again it depends, if you are up high enough in enerey so that the eneres absorption through the body is fairly evenly distributed, then jou are getting up where it is; but if you are in an area where it is distributed all near the surface, then it isn't.

IR. FAIIIA: On one occasion it is protons; on another occasion it is electrons.
. DR. STONE: If you get up to the point where your neutrons and your gamma rays are both going relatively far into the body, then we already know the REE for a great many factors.

DR. FAIILA: .I see what you mean; yes.
DR. STONE: Therefore, if we know that they will all be aeatrons of, let's say; 5 mev or above, the variation from 5 to 10 isc't going to be too great.

But if you get dom mech below that, below, say, to 2 or below, thec the variation begins to aet greater; but the depth to which they g_{0} gets liess so that you will have to work on that factor as well. They won't be evenly distributed in the body, and you have got a balance of two lactors, whether they are evenly distributed or whether they are absorbed near the particular surface that happens. to be exposed.

CRAIPIRAN DCHDY: I thiak this is a question that the physicists rill have to si亡 dom and -

DR. ROBLEY ENANS: I thint there is a great deal that can be done by the colculations that Kr . Simons is aireacy using. For example, in our first meetine in Chicago, you gave us the results in drafit form To the large number of calculations on whether the aireraft could fy in terms of the veight of the shield.

Now, a similar set of congutations can be given as to whether or not accurate knorledge of REE is important. You can make a series of assamptions that it is 2 , it is 5 , it is 10 , or it is 40 . and it may be that yoar dosages to the pilot will almost be independent of.RE becanse you made your radiation to gema rays.

On the other hand, it may be the reverse. If it is the reverse, then you are absolutely right. Number IV is your important project of top priority. If it is gamma rays, then No. IV is not the project of top priority.
14. SDNONS: I don't think there are any indications to show that we world have any reason.to say it is gama rays.

DR. ROELET EVANS: X_{y} point is, from the stamepoint of physics you can calcalate -

1R. SINMONS: Well, you can calculate how mah energy is absorbed, and You can say where it is absorbed in the tariet. I mean you can have your cards keep track of actually where each reaction takes place in the body.

Ent then, to interpret this as to damage potential is a probler for the biological people.

硍. ROBLEI BANS: You can ran your Monte Carlo calcnlation through several times with different REE's for the high energy neutrons, and you can see whether there is any difference in that overall effectiveness, if you mant to measure your rems, at 30 feet or so, an arbitrary thing.

It may turn out that this is all primarily gama raciation and neutron captore gema radiation originating in your shield. If that turas out to be trae, then Project IV is not'numer one priority.

You'have got to know whether rens depend strongly on REE or not. By rem, I mean the som of your gama ray and neutron effects. Depending on the importance of the ganma radiation enitted from the shield and the captured gama rays produced in the shield, it coald be, frot like your graphs there. It conld be. Ion are going to go through Monte Carlo about three or four times withan REE of several valnaifons, 2, 5,10 , or 40.

吸. SDRFONS: We have no indication to lead either way on the ouestion.
DR: ROBIEI EVANS: Then you get the answer, you will kow whether Number IV is right. You are going to be the one who has to decide Nhether Number IV has top priorits, not us. It depends on how it enters four calculation.

Maybe you don't care about RBE, and any value betreen 2 and 40 gives you the same shield.

KR. S RNKONS: Another thing, in ranning these Yonte Carlo calenlations we need to have intelligent targets. In order to set up a target oi ceometry fr the buman body, we have got to have guicance from somebody who can do that for us.

We are not capable of saying what the density of hyciocgen, oxygen, carkon, sulphur, phosphorous, and all the other ingredients should be in this mass nhere we use the Carlo techaigue.

IR. ROBLEI EVANS: Iou want a standard man -
10. SInrons: A chemical man to ping into the Yonte Carlo.
 decide the priarity on the IV until you have a lot more arithentie done.

1R. SInrars: I thiak this is a part of IV; that this type of woris would come under IV.

IR. ROBLET EVANS: Then that is top. But the detemination biologically of BBE for the lans of the eye and for the base of the fingernail or other things may be unimportant to you.

CEATRUAN DOWDY: If he inciudes that in IV, then we could give No. IV number one.

DR. ROBLET EVANS: That would give IV number one. That is IV-A. Then IV-A is number one. Then $\bar{\nabla}-B$ may never come up.

DR. NEWEII: Are you sure that me are not suffering here from something that we have suffered from a mreat deal, and that is the necessity for security, the necessity for secrecy? Are you sure that you are permitted to be frank'with us here?

I would suegest that the thing to do is to get Dr. Erans and Dr. Simmons together on the cuiet and let Dr. Sinmons tell Dr. Erans all about what he has done in resard to these shields so that Dr. Evans can satisfy bimself whether, in fact, there will not actually in practice be so minch of a positive correlation between aeutron absorption and gama absorption that you do not come out with an even balance. at the best thickness of a shield, that you come out with a balance of -

1R. SIMMONS: Te are still working with these calculations. They have not been completed. AII these things are just tentative opinions at the moment based on the work we bave done so far.

DR. NENTI: To ay mind it would be vezy remarkabie if the nost efficient shield wouit be one which produced even cuantities of neutron flux and gama flux leaking out. It would be an astonishing coincidence because I think that the absorption of neutron flur and ganaa flux do have a correlation.

MR. SDMONS: The final Coiteria on this thing that tells you the effectiveness is the tuman body.. Fie are using ifissicn counters and other mechanical instments now in thjong to interfret what happens to those in te:ms of what this means if the counter mas a man.

DR. N are in teras of enerfy absorption. The radiologists have escaped lots of that difficulif by dealing not with energy absorption but with the significant cuantity minch is capacity for ionization and the unit that they do all their absorptions with and all their protection problem with is the =oentgen, which is not a matter of how much energy was absorbed in going through the protective lactor, but how mach the
danger was decreased in going through the protective factor; and ifcore overgthing about the energ absorption. They have cut tirough it by fruping elear over to the significart quantity.

It might be that you could solve some of your difficulties by fuming over with an empirical absorption law, paying attention to nothing except either the ionization going through or the biological effect.
18. STRMCN: I am rondering whether it is wise to skip over this energy absorption thing, because that is the real field that is operating.

LR. MBNEI: Tou like energ absorption because you can ealarlate it. Hat the radiologist has got Fid of his difficulty in that regard by paying no attention to the energy absorption. Ele is messurine a pirely pragmatic quantity -

1R. SDMCNS: Thich works as well mail you get into neutrons and radiation of that type which just doesn't fit. I mean, that is why we have cases where one man gets 1500 rem and lives twenty years and wears out three wives; and another man gets 150 I and dies in ten days, and they are supposed to be the same units.

CBADMAN DOMDY: The have teatatively here agreed on priority numer one for No. IV.

DR-ROBLEN $\operatorname{ZNANS}:$ Not the biological part; the physical part. The part that is not writien here is the part that has top priority.

CHATPITAN DONDI: Elow about No. IIT? Can we assign that a priority?. That is the evaluation of the physical fitaess.

DR. NINS: I monld reconmend that be the second in order of priority becanse their inmediate problem is military effectiveness under the conditions which the plane has to operate.

CIAPYAN DCHDI: Priority No. 2 on that? Is that agreeable?
DR. TITUS EVANS: How about this compilation of avatlable data? Isn't that verj inportant?

CRAPMAN DOWII: We will come to that.
DR: TIIUS EVANS: We are going to consider all of them together?
CRAPMCAN DOHDI: We are going to consider all of them. No. VI is the continuation of conpilation of available data as initiated by Keed Adrisorj Comittee along the lines of this blue book. I think tiai should be continued.

DR. NRES: Isn't it also being done in comection $\pi i t h$ the others, setting tolerances in general?

Chacman dowit: I doa't krew.

DR. EOTIADNDR: The National Researnh Comeil Comintee is doing sometrize.

CEATEMAN DOFDI: They have beea sendfing out abstracts, bat totally ancorrelated and amrelated.

DR. NDNS: It is not daplication, but there should be some coordination on these comptinge groups: There are quite a number of them.

DR. HOTLAENDER: Dr. Persy, who was the Secretary of this -
CBADPICNN DORDI: That is something else. That is entirely different. DR. FAIIIA: Phat does this mean? Contiming what has been done before? GAATMEAN DCNDI: Kaking this more complete and keeping it up to date. DR. FATIIA: I don't think there is ang question about that. I think it is desirable.

CHATPMAN DOKDY: That is what I thought. If anybody else is doing it; I don't kenow. Had. we knom it, we mould have tried to have gotten that frormation.

DR. NETEIL: I think it should be continued, surely.
CRAIRuAN DOHDI: Fhat sort of a priority mould you give that?
DR. NENETL: The first prionity nould be the haman experiments, would it not?

CHAITMAN DONDI: Iou can have more than one priority momer one, can't yon?

LR. NETHIL: Eunan experiments rould be pronority one; and No. III would be prioritu tro; and No. VI would be priorit̄ three.

DR. TITUS EVANS: By saying ng=iority theee, ${ }^{n}$ you don't mean it shouid be. stopped until the others rere done? inh not make it prionity one, also? We are going to keep that going.

DR. NENEII: I thought you were trying to order them.
CHALPMAN DCTIT: NO.
DR. STAFFOBD WARREN: This whole list.is priorits one, isn't it?
DR. ROBLIF ETANS: If we are going to ty to aramge these, wouldn't it be simpler to have category VII, which is your Monte Cario and has firgt priority? It really isn't the same as IV here, when you put IV in the category of I, II, III, V and VI. Unate Cario is Just as sepa-- rate as this is.

CRAFMAN DOHD: Monte Caデo, prionity one.
. . DR. RCBLEI EVANS: Let's not call it IV-A any more. Cail it VII. GAPRMAN DCNUY: I have got it VII.

DR. FRIEDEII: We have been belaboring these research problens for a long time, and I don't think we have come to a very good solution.

Fould it be appropriate to suggest that a subcomoittee be appointed who will work very closely with the NEPA people and who wili make a report as to how the prifority ought to be arranged and as to what looks to be the critical problems?

CHADPMAN DORII: I suggested that we do thas, and have a meeting of that comuittee prior to this so we could do this first part.

The Comattee at that time dicn't think it woold profit verf mek.
CHAIPLIAN DONDI: What I mould like to do, these topics should be recommended to NEPA to pay attention to; inen we can appoint a subcommittee after they Iook them over and decide whering they feel they. Ift or what they want to do with them; and then set up a subcominittee to. co over these. in detail rith specille recomendations.

DR. FRIEDRI: I think it might even be better to give the subcomittee a Free hand and let them work it out and make a report to this Conmittee.

In that way they would be quite cognizant of all the problems becense of the discussion that has gone on, and we can ask them questions which they conld answer more intelligentily than we can do now.
I fust feel that we are foonderfag 2 little bit and it might be the best solution. I would be willing to make that as a motion because I feel rather strongly about it.

CHADPMAN DCWIY: I think if we are going to consider detailed aporoaches to these iundamental problews, mhich I never intended that we should do, I thath there are six or seven primary croblems here. Me could recommend their inportance, and then ther can decide minether they mant to coutimue the medical comittee or not, or ask us to set up subcomrittees to study particular problems, with recomendations.
Foulde't we get fust as far and fust as fast that way, or not? Is there a second to Dr. Friedell's motion?

DR. FAIIIA: Did he make a motion?
DR. FRIJDITI: I moved that a subcomittee be appointed to stucy the priority of the research program in conjunction rith the NrpA representatives.

DR. STAFFORD TARPET: I will second that.

DR. SEITE: As I maderstand it, Dr. Firiedell, you moved that a subcommittee be appointed to study the priority of the research program in confunction with the NEPA representatives. Is that right?

DR. FRITDII: The character and priority of the specific research problens.

DR. BOBIET EVASS: Biological research problems.
CEATPMAN DOTDI: The motion has been made by Dr. Priedell and seconded by Dr. Farren.

AlI those in favor say "aye."
(General respocse: Aye.)
CHADPMAN DOHDY: Contrary, the same.
(There was no opposition.)
CRATPMAN DOXII: The motion is carried.
DR. STONE: I think we are getting somewhere with this diseussion. There is some adrantage in having a large group like this, even though you don't get very lar, throw in their ideas. That is the idea of having a lot of people in. Fife are here now. Fhy throw this over until another time? I think yoa might go on with a discassion of these things as you have been doing.

CAATBMAN DORII: Becanse this eonmittee monld eventually have been set up anyway, regardless of our discussion. So I am perfectly willing to contime.

The srbcannittee is inevitable, as I see it, and almays have seen it.
DR. STCNE: I would like to ask a question. Un. Sinmons seems to assurue that there is very littie data on the conversion factor of N to 5. I think there is a lot of data on the conversion factor of N to f. but jou have to know what problem jou are dealing with.

Dr. Friedell and Dr. Evans during the wartime project got a lot of information on that. The only thing that we are lacking in is fust what range to work in.

Iou were working rith a maximm of 9 mer?
DR. FAILIA: Eeterogeneous beams.
DR. STONE: Aren't we always going to have to. work with heterogeneous beams? Iou can't get monochromatic beams. You have got work in Berkeley that can be backed cown a lictle bit beiore the war that gives you something on the 16 mev , and some on the 8 mev that they did before the war.

The bmen work that we did before the war, there we have a relation insolar as the small end of the F is concerged; and we know something of the factors now so that you get very elose approdmation. But when you go from ane biological reaction to another, they vary considerably. So you have got to know which particular one you mart.

Ne know they vary, and there is nothing going to.solve the problem. It is there.

The thing that interests me is the range wo want to lonow about, which 1s unexplored. Now, Gray in Eacland has been working an the 3 mer Fane largely; isn't it? He has got a lot of data over there on correlation of enery absorption.

CHARPMAN DONDI: Fe worked with 12 mev. Another thiag is the chranicity of this type radiation.

1R.'SDMONS: Perhaps one of the important thinge, then, is to get this data together.

UR. STONE: I should think Dr. Failla and Dr.. Erans could 'give you they weat over this whole field very thoroughly.

DR. STONE: ì to 5 relationship.
HR: FAIINA: The thing that is beias used by the committee setting up a permissible limit of exposure is a factor of 10,10 reps of cama 5ays equal to I fen of neutrons.

CHATRMAN DOHDI: It coec a17. the way from 4 to 16. Mat is fust an average.

1R. SDMONS: This doesn't give any indication of biological effectiveness.

DP. FATIIA: Ies, that is what it does.
DR. FTIEDEI: In other words, one rep of gama rays is ten rems of neutrons; whereas ten rens of neutrons is one red of cama.

DR. FATLIA: The other way around. Iet's leave oat the rem from this thing. For the same amount of enerey absorbed per gram of tissue, you can use - let's pat it the other way around. For the same biological effect, Foa have to ase ten times more energy absorbed per gram of tissue if the radiation is. gama radiation than if it is last gentroas.

UR. KALITINSKI: There is one point I would like to clarify in some of 0 orinking here. On the shield calculations we have done so far, we have used biological equivaleats; and there mas some guestion about whether 5 amas of neatrons are predominant.

Fe have one specific case if which we simply assumed them to be qaite separate. We tried to figure out how meh do we bave to attenuate the
gamas so that the ganmas alone could use 15 ，rem in this case，per hour．Then we took the fast neatrons and Eigured out how much we have to attemate then to produce 1 rem per hour，because we figared that from then on，if you add．then，you would get twice the tolerance theo－ retically；but it is easy enough to eat both of them in tro fram then on．

DR．FATILA：The biological factor in tbat？
1R．KALTITITSEI：Ies．
DR．FAIIIA：Phat？
1R．KALIITINSKY：Ten．The attenuation for the fast neutrons came out in that partienlar ease 10^{8} ，I think； 1.6 times $10^{8} \mathrm{~F}$ ；and for the gamas came out six point something times 107．So，for all practical purposes，they are the same．

I think that point should be clarified．The neutrons are slightly \cdot more difficult than the gammas．

听．FRIEDEIN：Biologically？
UR KALITINSKI：Ies．But that was made on a gross assumption as lar as the effectiveness of fast neutrons．That is，the Fix predominant is 2 mev neutrons．

What we would like to koow，to be sure，are we making a mistake？Nre we being over－optimistic here by neglecting，let＇s say，the 8 mev neq－ trons，which come through the sinield in a bigher percentage than 2 mev？

DR．FATIIA：I dan＇t think so．I don＇t think there is mach of a dif－ ference．The thing that comes in at higher energies is that the heavier recoils contaibute more energy；say the oxygen recoil．I think we are making ealculations on the basis of the cross－section values that we could get hold of．

At the higher energies some 25 percent of the energy is in the form of a heavy recoi工 and is absorbed，that is，heavy recoil；whereas at the： lower energies it is oniy about 10 percent．

If the biological effectiveness of the heavy recoil is very met greater than the regular one attained，it might be a considerable fac－ tor．

Ma．KALITINSK：Fere is another question．Coule ve get．some opinions as to hor good this factor of 10^{1} is？
DR．FATIIA：That factor of 10^{1} is not very good for the simple reason that there is no equivalence between gama rays and fast neutrons for all effects．

Now，this factor of 10 has been taken as representing ac average condi－ tion．

ER. BOBIEI EDANS: COnservatively.
DR. FAIIIA: Conservatively in some respects, and not in others; and aliso including the fact.that the exposure is over a longer period of time, becanse that factor varies with the time of exposure.

It is lower for the acute exposure than it is for the chrorde exposire. So you see, that factor is an average which pressmably applies to lang exposures rather than short exposures, and you are more interested in the short exposure.

CHATRMAN DOWDY: Mhich would be somewhat lower than the 10.
DR. FAIILA: Ies.
DR. STONE: A factor of 10 applies to N as measured, rather than to rep.

DR. FAIILA: No, it applies to rep.
DR. STONE: Ios are making it 25, then?
DR. FATIIA: • Twenty.
DR. STONE: That is a very conservative factor.
DEF: NEMEI: You were experienced with your last neutron of radiation for -

DR. STONE: No, that wes domn closer between 6 and 10 of n to 5 , and you had to divide that by 2.5. So it came to a factor of 4. We used 2.5
[1R. ROBLEI EVANS: You mean capital min when you say N. Dr. Stone means small n_{n} when be says n.

CHADPGAN DCHII: Isn't that awfully higis?
DR. STONE: I thought n to r was 10.
GR. ROEIAI IVANS: It alrays ras; but Failla is patting in an extra factor of 2, or 2-1/2, for ehrooic effects.

DR. FATITA: No, I am not patting anything in. The confusion has been between calling the thing reps and calling it N. The ratio of I to N as given ordinarily is for the 100 I , and that is a factor of 8 ; but when we have talked about pemissible linits, we are talking in temen of reps; and even in the oid Manhattan District recomendation, it masn't in terns of rep.

At that time the factor mas 1 N equals 5 reps to give 1 rem for each.

Now, then, we doubled that factor for the reason that we found that some of these effects were produced more readily by aeutrons than by I-rays; so we doubled the factor. That made it 1 to 10. If you want to express it to other terms with the Victorine chamber, then it would be in the range of 1 to 20 or 1 to somethirg else, depecding an wideb chamber you use.

NR. STMMONS: Dr. Fatila or DT. Stone, I worid Iike to ask this question. These lactors we are talking about, what correlation with eaerey do we have? It is cercainiy dependent on energ. It is an energy dependent function.

DR. STONE: Ies, but ance you get above, let's say, 2 or 3 mev, the change is not too rreat, deperdent on energy. Now, the distributien in the body changes there because it goes to greater depths and you affect deeper organs.

If you are talking about a specific effect like expthena dose or effect on sare cells that you have outside, or something like that, where it doesn't enter in, it is a question of the absorption at the. point that you are interested in.

We had worked rith the pile down at Oak Ridge, and that was with the fission neutrons; and morked at Chicago mith abont 8 mev; and Dr. Failla's work, and then the moris at Rochester and the work at the other places; and the factors all came out fatily close together, somewhere around the 5 that we talked about, or 10, whichever you want to eall it; 10, if you are comparing it on a straight basis.

There was a littile variation, but there was more variation from reaction to reaction studied than there was energy to energ.

Would you agree from about 3 po to 10 there is a slight fall-of: as you go up and measure -

Me. STMONS: That is where the physical analfsis of the situation indicates inat es ycu go up in energy, zone ard =ore zeutzons are nct utilized.

DR: FAIFIA: I'Il tell you where the trouble is. Tou are basing your reasoning on sonething else. The only thing that is taken into acconnt in this situation is this specific ionization, which is the number of ions produced per centimeter, i.e., path of the ciarged particies.

That does not change much with energy until you get way up; whereas the proters will have a terrific effect. Therefore, thers wouldu't be very much difference in the biological effectiveness of higin energy neutrons with respect to energy because that factor does not change much.

MR. SInHCNS: Ies. Eut from the other point of view, you could say that at 10 million voits, 25 centimeters of water, 8 percent of 10 mi9าion volt neutrons will pass through without ang reaction wiatso eves.

DR. FATINA: Then jor have no enerej absorbed.
1R. SParCNS: Only 60 percent, neutrons. We have got a difference there -

IIR. FATINA: All Figit. Tou have to make jow calculations in term of energy absorbed per gram of water or whatever you choose. Then you can make the comparison, not in tems of the enery that -

DR. STONE: Me don't think in tesm of the enerz of the bean.
DR. FATITA: Enerer absorbed. •
1R. SDMONS: Fe start out with enerey available.
IR. FAIIIA: That is right.
un.: Smarons: Then we bave a utilization factor which gives us the enerey -

DR. FAIIIA: The energ absorbed is a big mass.
MR: SIMKONS: : That is what we are doing, practically. We have just ane centimeter of tissue there as a part. That rould be entirely different than if you had a body, a massive body.

DR. FATIIA: You may be somewhat in error by doing that, because if we consider energies for winich the absorption mould be very irregular, not waiform -

4R. Sparons: Isn't this the difference between local and whole body radiation that we are talking about?

DR:-"STONE: You would be getting somewhat the difierence betmeen the gram roentgen and the roentgen.

DR. FATEA: That is what I gaid in the verg beg-i-ing when they brought up that discussion. You have got to have the conditions so that the distribution of energy absorbed per gram of tissue is similar to whet we are familiar with.

YR. SIRicNs: That isn't uniform, in other rords: If you consider enerzy absorbed per gram, that is a local condition, mhich isn't an index particilariy of the total energy absorbed by the object, which is the thing that is burting.

In other mores, at one point you might heve too much energy per gran, and another point you might have very little.

DR. FAITIA: That is sight.
MR. SIMRONS: Te have got to integrate this thing rith a standard man.

DR. FAITIA: Tou can't be sare that the indtridual body is correlated With the effect. That is the thagg I pointed oat in the verg beginaing.

In SParcis: Eut then, if you start from this basis to analyze the effect of this radiation biologicalny, it was midea that you might have a sounder starting poict.

DR. FAIIIA: That has been shown to be a fat-ly good approdmation.
yR. Sparons: Then you still have to interpret this biologicaily the same way that you now interpret based on the gram roentgen eacrey per ce.

묘. FATIUA: Iet's say that you have made a calculation, that the diss tribution in the body is such that at the surface it is 100 perient, and that the other side of the body is, sey 35 percent -

MR. SnMons: And this is with respect to energy?
DR. FAIIJA: Ies.. And I rill sey those are the conditions essentially under which we have scme information about I-ray effects. Therefore, if you assume a factor of 10 for the biologicel effectiveness of that dose in tezns of energy absorbed per gram, you mon't be very far from. the truth in predfeting what is going to happen to those people.

CRATPIAN DCWDY: Could I get us back here just a momeat?
On this sabcommittee as approved, are they to start fram scrateh on research problems, or should they consider them mader these sever headfags that we have here?

DR. STONE: They. can use this to start from.
DR. FRIENETI: I think this sort of a discussion is one of the things that ought to go on, because they bave been making calculations from the integ=ated dose and information on the different kind of distributions, doses of absorption.

I think jast such things mould develop rbich nould give us an idea of which things ought to be first. So I mould say let's give them a fiee hand and let them start liam the begiming.

DR. FAIIA: I think the sobecomittee shouid report to this main body so that these things can be discussed by a larger group of individuals.

DR. FRIFDMII: Iou mean report back to this comittee?
DR. NIIS: I think there conld be something done bere, and that is, set the purpose of what biologieal research they wemt to do. In ail of these paricinar things, the first thing NEPA is interested in is whether the gission can be accomplished or not. The second thing they are fererested in is the cost of that mission rith respect to short and long-tera effects.

I think we conld aske a recomendation sight now that the thing they should begin worix on very soon is these bigh level ractuation effects that have been proposed here; supposed effects with given dosages where the accuracy is not large or not great.

I think they would be very happy to know that a mission could be accomplished with 200 F. Also, they woold be bappy to know that if the míssion could be accomplished with 100 r , the biological cost would probably be reduced to one-tenth the cost of the 200 I exposure.

If we take it from that point of view on the thing, these problems of selection and the problems of treatinent becone secondary problems.

DR. TITUS EVANS: The r to \mathbb{I} ratio is of secondary priority?
DR. NTVS: The $=$ to \mathbb{N} ratio is important on this because you need that to essay the top.

DR: STONE: I think what we need here on the r to N ratio is for
Dr. Failla and Dr. Erans both to get together with you two and -
MR. SMAONS: I thak that would be very helpful.
DR. STCNE: I think you are aperoaching this from another angle than what we have the information on.

MR. SIMRONS: That is true.
UR: STONE: For instance, we found out that the absorption of energy from a 200 KY beam and from what we thought was 16 mev neutron beam was almost identical as messured both with the fonization chamber and with the incuction of activity in silver, I think it was. I forget the exact material.

But we measured the neutrons getting in there in proportion to the neutrons on the surface. A 200 KV X-ray beam and a 16 mev neutron beam gave about the same effect of iozization as it went down through the body.

Now, that doesn't mean that they produce the same biological effect, because they did not; but the percentage that got to the various pares of the body was the same. That is really what is important, whether a lot is absorbed on one surface or the other surface. ,

It.isn't altogether what goes all the way through the body. If you radiate the bones very heavily, then you get a maximull effect on your bone marmow and that becomes four predominating effect; whereas if you radiate the skin very beavily and the tissues just under the skin, you may have not very much effect on your blood, for instance.

MR. SIMRONS: In these things we have no hope of trying to evaluate these factors that you are mentioning. That is a field that you gentlemen are guiding us in.

1 (1) we were trying to do was to arrive at a basis of emergy level to start interpreting from; in other words, an amendment by which fou would bave a fatrly accarate knowledge of the actual distribntion in the body of these reactions: Then, the physiological results of the reaction is something that can oniy be coped with by the biologists and the physiologists and the M.D.'s.

DR. STONE: $D P$ ccurse, that is why I say if you were to get together With Dr. Failia, he has been attenpting all his life to interpret phyaical data to us and biological data to the physieists, I think you can get mach farther ahead than you can by open discassion.

NR. SIRACNS: It may be that there is a great deal of work that has aready been done in this direction that Dr. Failla can tell us about.

CRATRMAN DONDY: I thank we are getting some place here. I think that Dr. Nims had a very good point. I was hoping that out of this we could have certain categories of problems that were of urgency as far as NEPA was concerned. .

Once they were set in a general discussion like this; tarn then over to the subconmittee for thorough thrashing and crystallization and. bring then back to this comittee.

I think that his point which he made of several different things that should be done are the ones that perhaps the subcomittee should consider. I would like a little more discussion along those lines, ir we could.

IIR. STONE: We perbaps need two subcommittees. Kaybe jou need a subcomittee on this No. IV, the corversion factor, a separate subcommittee from anything else.

CRATPMAN DOWDI: I just scratched out here, while we were talking, one committee on physical relationships and another one on research. I think magie we ought to discuss it with Nझ्sA, whether we need more than tro.

자. FRITDN: Why don't you just combine the two? Pat members an that would $i_{i t}$ in either one of those comemittees. I think they are elosely interswined.

GHAPMCAN DONDY: They mon't be separated entirely, but mill have a cross memberskip.

DR. FRIEDELI: I think it would be much simpler to make one subcammittee. Put on it people like Failla and Dr. Erans who could do these things. It would be mich simpler. They could integrate this thing very easily at their own meetings.

I really feel that the proposal by Dr. Nims as to the broad general over-all approach, what are the levels we are interested in; what are the costs going to be; weighing it against the probability and feasibility of ITFing the aimpane, is a broad general over-all thing, anway.

I don't think you could even instruet anybody to decide about those things unless these people already have rather-concrete data on mat is going to happen with the various kinds of shields.

DR. STAFFORD TARRRN: If you get the work done, you bave got to start with a small group.

DR. FRIDDEII: I feel that these things ought to be presented to this Large comittee by a subconnittee composing the elements which we have discassed, which will outline to us what the caitical problems are and how they are related to these various things, and present then for approval here.

I think that if jou make mora than one comittee or one subconititee, you are going to get into dilficalty.

DR. TIIUS EVANS: Kay I say fust about three sentences in a aumary of a question of this 5 to 11 factor?

CHATRMAN DOTDI: Ies, sir.
DR. TITUS EVANS:. I mould like the whole group to realize the complezity of the problem in a general way, at least. That is, it seems that re have found that the F to N factor will vary with the particular tissue that we are most interested in. We will have to determine which is most ciritical.

It also seems to vary with the duration of the exposure; the time of the exposure, that is, acute or chronic.

Then, apparently, it seems to vary with the energy of the neatron. So that brings up the question of activity.

Can we add a certain dose of neutrons and a certain dose of I-rays? That brings up the problems from the physics side of measuring then accurately and also calcilating then so that re can cenvert ionizatさon measumenents into tems of neut=ons.

When we get to where we can understand each other in those terms, then I think we will be able to collect your data.
"CHATPMAN DOHDI: Is there any futher discussion?
DR. ETIINGER: Are you plarriar discussions with Dr. Gray, who is coming down to Oak Ridge next week?

CHATERAN DONDI: The NEPA people will probably hold discussions with nim.

UR. STONE: If Dr. Gray is going to be down there, Jou certainiy should get hold of him to discuss this problem.

DR. STAFTOBD WAPDEN: How are we going to get ort of the bind of gotting proposals to some point where they can be acted upon, because time is passing pretty rapidly. Te have now been anne menths, and this Iong-ten thing, which I am men interested in of course, that is time during which the projects could have been tooled up and exposures already made. I bate to see another six months go by and another and another.

DR. TIIUS EVANS: Are you suggesting that we empower this comuttee to consult with other groups and try to get something started?

DR. STAFFGRD WARERT: I would like to see proposals tanned in to somebody with authorits to recomend then to NBPA as a start.

CRAIPMAN DONDY: The subcomittee will thrash them over.
DR. STAFFORD TARPEN: That is probably the simplest way, and then have that subcemittee report to this body. We probably can't meet again. within a month or so. Can we come to this comittee with some definite proposals within a month, the subcomittee, alone the lines that are in these seven topies?

CRATRYAN DOFITY: That depends on how quickly the subcoamittee can act. That is a pretty short tine, after. Iooking back over how much trouble it took to get this far.

DR: STAFFORD WARRIN: Some of the group have pretis well ciystallized ideas about programs.

DR. SIONE: You dica't iet what you asked for, did you?
CRAPMAN DONDI: No. As a matter of fact, as mact as re did get hasn't met with very favorable reaction.

DR. NRES: I think in a general sense couldn't we recomend this evaluation of physical fitness following total bods irmadiation at 10 = level be dcre imediatel?

DR. FATIIA: On what man?
DR. NTNS: Monkeys, orangutans, chimpanzees.
DR. IITUS EVANS: I minht say in that connection that this cominitee of the National Research Council was interested in radiation of neutrons; that at least cne of the members of the committee wanted to start work immediately on monkeys and so on.

We migit be able to correlate scme of our efforts mith those, becarse monkeys and apes are expensive and bard to take care of, and there are only a few colonies in the country.

So I think that this cominteee should work with other groups to see if they can't get some data from their work and help them get started
and so 0n. They are interested in the same thing we are, expept the leng-terin effects of perhaps mintiple exposure, but aot daily exposeres, bat aceumiative effects on the eye.

IIR. ROBLEI EVANS: And not necessarily involving whole body. That is the difference between these two Fiewpoints, which is quite a point.

DR. STAFPORD TARPEN: Failla has quite a bit of work or the eye.
CAATFMAN DORII: The long-term program has been batted around all over the country for the last year and a hale, two years, or even further than that; and we have never had any discussion on it at ain.

IR. FAIIIA: I thank you and Dowdy are refercing to the same program. Is that Fight?

DR. STAFFCRD TARREN: That is Fight.
자. FAIILA: I think the thing to do with that program is for some of us to get together and decide rhat are the essentials.

CTATRMAN DOFDI: . The way it is set up is a group should investigate it and carefully. stady the thing.

DR: FAILIA: It is certainly set up in such general terms that you could - it would take a hundred years to really get an answer, and a lot of people morking.

CFATRMAN DOFIV: I thinik you mentioned that program, Dr. Failila. It wäs recommended that it be accepted in principie. Once it was accepted ii principle, then a group be appointed to woris out the details and essentials.

Eut it never even got that far.
DR.-FATITA: I think they are taking it up now, because I just got a copy of it for ar opinion.

CRALPMAN DOTHDY: You read it once before, because you had seen it beFore.
=DR. FAIIIA: I sam it a year ago.
GAAPMIRAN DCWII: I have a copy of it here, and it. was set up to accept in principle. Once it was accepted in principle, then a group be appointed to define its extent and method of carrying out acd what tests would be looked for.

It seers to me we can go no further here until we appoint a subcommittee which nould be representative and winich would meet as quickly and as fast as possible.

If they are gotag to wait for us to ctronlarize this comittee and then send them proposals, I can tell you it won't be very satisfactory because there are only about four of this conmittee who sent in ang proposals at all.

I would assume that any ane of you would be willing to serve on this. subcomittee if you were appointed.

DR. FATIIA: It depends on what is involved.
CHACullif DOMDY: Jnless there is no further discussion, that winds us up.

DR. STONE: There is one other question I mould like to have you discinss. Does this comittee wish to make any further recomendations regarding what should be done in buman experiments, or leave that eatirely to be worked out?

CRAIRMAN DONDY: I think we mould leave that entirely to be worked out. We would get into more trouble with that than we have rith this.

IR: STONE: Iou'can't go up to 600 r exposures there. So that would limit you a.little bit.

CRAIPMAN DONDY: I would like to call on Mr. Ward before we disband today for any coments that he might have.

MR. FARD: It is the end of a long day. It is no time for speeches. But I'certainly want to compliment the Chairman for the way that this meeting has held to schedule. It is oniy a quarter after four now, and. it was a very difficult schedule, and it has been accomplished.

I think it was quite a remaricable exhibition. I think the contribution of the preparatory work has had a lot to do with the speed with which the committee has hac to do today.

I wart to mention one or two broad matters. NEPA, at its earijest conception, in deifning its relative problens and the difficulties of the relative problems, put a No. I on the biological aspects.

It has always been very conscious of the fact that because of the Tiature of its mission, the biological implications and the proper solution were very grave and would involve additicmal emphasis in the fields that are already under way in developing experdmental background data.

It is again a matter of reiteration that NEPA does not wish to do any work that is competently done anywhere. That is a selfish reason, if no other; because, mhereas our funds are in millions, the A.E.C.'s funds are hundreds of militions.

However, we feel, and I don't want to be misinterpreted in this, that perhaps in the A.E.C. itself, as we see it from the outside in, there
has been less done proportionately in these fields than perbaps some of the other fields that A.E.C. is interested in. That is, I am sure, a very amateurish eniticism and it is oniJ Erom the ontside lookiag in.

But if that be the case, and there are some elements of a proper research program that have not been covered, NEPA hopes that it can contribute its funds and its efforts alone those pa-ticular innes withen the Lifitation of its budget.

It also recogaizes, as has been brought out here today, that some of these subjects are so broad that one could see the vista of jears
 and NEPA can't wait for that.

Therefore, there is going to have to be some elenents of judganent and proper assumptions based npon the best ecciting information that will bave to direct NBPA's own activities even though they may tn the later knowledge be changed more or less. NBPA will have to change its work wherever it is based on such assumptions, because, as you have seen here today from the very point brought out by Nr. Simmons, the assumptions that are made by this group are going to actuaily dictate maybe the size of the airplane, which is the fundamental of the project.

What you gave us at your first meeting was a ray of light in a very dark room, and gave us the courage to make some early assumptions, without whici we would have been in greater difficulty than we hive; and we have been in great difficulty from time to time.

Now, one more remaris, and I think I have covered all that I would like to say, except to agatr express aypreciation for everything that has been done and for the fact that so mach talent has been rifling to sit down an these problems, as evidenced by these meetings and the subcöminittee"meetfigs; and that is, that while NEPA's mission so far has been purely that of a power plant, some evidences are beginafrg to acicue that it may. have some other problems thrown in with those which make the emetasis on the biolosical data ever more inecraant than we at first assuned.

So I would like to close mo remarks on the thought that to us this is a number one phase of the proclen.

GEAIRMAN DOND: Thank you veng men, Mr. Mard.
I would like to ask one other ouestion here in refersuce to this conmattee. If thts exentive cumittee did end up by having Dr. Failla and Dr. Titus Evans, would it be apreeable that we have this executive conmittee be the subcomittee and in the meantime have Dr. Robley Erans and Dr. FaiTla and Dr. Titus Evans bole a conference with the NEPA people, however long a curation it seems necessary prior to the meeting of this conmittee, so that they will be fully conversant with their problems; and then convene the executive comritiee?

Hould that seem a reasonable approach to those of you hers?

1R. SHaCNS: Tho rill set the date and the time and the place for thas get-together?

CRAPRMAN DOTHY: I think that would be something for you people to work out with the two Evans and Dr. Failla. Then, as soon as you have done that, we can set a date for the executive committee; and to that will be offtcially added Dr. Failla and Dr. Titus Evans.

IIR. ROBITI EVANS: What is it this first meeting is to do?
CRATRMSAN DOFDI: You and Dr. Fafila and Dr. THEus Evans beve a discassion relative to the physical factors involved with the MEPA people, preferably at their place.

MR: SThaCONS: That is the most. convenieat. I would also like to have Dr. Andersca. He is one of our people at Noph

CHATRMAN DOHDY: Whatever members of your NEPA group that you mant, so that you can agree on the prelfornary factors involved. They are all fust a part of the same committee, but you people are more conversant with this particular phase of it than the rest of us.

Tou could thrash out this physical problem that has been bothering ns; then convene with the executive committee to formlate research plans.

IR. STMMONS: Could I suggest that Dr. FadIla and the two Drs. Evans agree on a convenient time and date and then notify us when thes mould like to meet.

DR. FAJILA: How about joing it right now, this aftemoon?
MR. SINOCNS: ATI FIght.
CHAPNIAN DCHIT: You can decide that. Eat I thought maybe jou might want more time.

KR:. Sparovs: I think we would be a little pressed this arternoon, and I think it is something we ought to be deliberate about.

DR. ROBLET EVANS: He means get together and amange the date.
IIR: FAIIIA: Me might get together this afternoom. Some of you fellows might want to get some more information before we leave here.

CRATPMAN DOHDY: Before we close the general meeting, I mould like to ask Admial Sims if he bas any remariss be mants to make.

MR. SDIS: Nothing, Dr. Dowdy, except to express my respect for this committee and its indiridual members, and to empiasize the words of Kr. Ward, that I thint the camittee has been verj wise in selecting Dr. Dow's as Chaitana.

I hope the next time you select a time and place for a meeting it is not on Sunday.

CHAIFMCAN DOFIV: I personally want to thank each and every one of you
for the cooperation that you have given us, and we will attempt to arrange a meeting for the executive conmittee as soon as possible; following this, call a meeting of the general comitten.

Is there a motion for adjournment?
DR. FATIIA: I so move.
DR. BOBLEI EVANS: I secend it.
CEAIPMEAN DONDY: The motion for adjourament has been made and seconded. The camittee is adjourned.
(Whereinpon, at 4:20 p.m., the comaittee meeting adjourned.)

