.41
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Natural sources—Qur knowledge of the natural sources of radiation to
which man is exposed has increased considerably in recent years. The sec-

*The survey of literature pertaining to this review was concluded in October
1962.
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nostic radiology. However, since the present evidence indicates that all
exposure to radiation may be deleterious, these relatively small additions to
man’s exposure cannot be ignored. Furthermore the possibility of signifi-
cantly higher levels of exposure in the future cannot be excluded. Nonethe-
less, the realization that past doses from fallout have been smaller than
those accepted unknowingly by persons who move from areas of low to higher
natural background, can aid a rational approach to new problems.

Ingested materials are the main sources of exposure from fallout and, of
these, strontium 90, caesium 137 and carbon 14 are the most important.
Carbon 14, though currently delivering relatively small doses, is, because of
its long half life (5570 years), a continuing source of exposure. The total
dose commitment from this nuclide released by past weapons trials should
approximately equal that from all other sources of fallout (2).
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TABLE 1

COMPARISON OF PRINCIPAL DOsE RATES FROM NATURAL BACKGROUND AND
WoRLD-WIDE FALLOUT DOSE RATES IN MREM/YEAR?

World-wide fallout from nuclear
weapons tests up to 1961
Natural fraction of
back- dose rate a‘:{:igf total dose
se a
ground | 1 12 1959| dose rate delir:zoetre d
UK only | 1954-2000 | oo ofter
AD 2000 AD
External radiation to whole body:
Cosmic rays 50 —_ — —
From radioactive substances 50 4.2 0.65 3%
Internal sources:
To whole body (range for differ-
ent tissues):
Potassium 40 15-20 — —_ —
Carbon 14 1.2 0.2 0.16-0.26 90%
Caesium 137 — 1.5 0.24-0.42 Nil
To new bone:
Uranium & thorium series 13 — — —
Strontium 90 — 8.1 1.6 9%,
To bone marrow (blood forming
organs):
Uranium & thorium series 5 — — —_
Strontium 90 — 2.7 0.81 9%
Total dose (range for different
tissues) 120-130 6-14 1.3 _

Notes: Column 1; world average from UN Report (2), p. 21.
Column 2: based on Loutit & al. (4).
Columns 3 & 4: world average based on UN Report (2), p. 27.

Fallout from nuclear weapons is, however, not the only source of en-
vironmental contamination; releases from nuclear reactors may also occur.
In the normal operation of such establishments, iodine 131 is likely to be
the most significant component released into the atmosphere. Dilute radio-
active effluent containing both fission products and induced radioactive sub-
stanices is usually discharged, but at controlled levels which make it an in-
significant source of exposure to the population. Accidents at nuclear re-
actors may give rise to considerably higher levels of local contamination.
Both past experience and theoretical studies indicate that internal and not
external radiation will be the main risk to the population; iodine 131 is



UL
I

FroM NATURAL BACKGROUND AND
RATES IN MREM/YEAR?

World-wide fallout from nuclear
weapons tests up to 1961
fraction of
average total dose
dose rate annual not
July 1959| dose rate delivered
UK only | 1954-2000 until after
AD 2000 AD
4.2 0.65 39,
0.2 0.16-0.26 90%
1.5 0.24-0.42 Nil
8.1 1.6 997,
2.7 0.81 9%
0] 6-14 1.3 —

Report (2), p. 21.

).
d on UN Report (2), p. 27.

however, not the only source of en-
rom nuclear reactors may also occur.
blishments, iodine 131 is likely to be
ed into the atmosphere. Dilute radio-
products and induced radioactive 51:1b-
sontrolled levels which make it an in-
; population. Accidents at nucl.ear.re-
higher levels of local contamination.
studies indicate that internal and nc.xt
risk to the population; iodine 131 is

e e T S ST 8 P — Ay T

ORI —

NS e Tn S e S T S s S s e e s ey = i 2 e e

UPTAKE OF RADIOACTIVE NUCLIDES 275

again likely to be the dominant source of concern, followed probably by
strontium 90 (6, 7).

Characteristics of radioactive substances which cause them to be impor-
tant sources of internal radiation.—The relative importance of individual
radioactive nuclides as sources of internal radiation depends on many fac-
tors apart from the quantities in which they are released into the environ-
ment. Of these the major are: (@) the extent to which they are transferred
through food chains into diet; () the extent to which they are absorbed
from the gastrointestinal tract into the body; (c¢) the extent to which they
are accumulated and retained in tissues; (d) their half-lives; and (e) the
type and energy of the radiation they emit.

In practice the nuclides which are readily absorbed from the gastro-
intestinal tracts of animals are either isotopes of elements important in
metabolism or closely similar to them. Potassium 40 and caesium 137, both
alkali metals, are absorbed and circulate freely throughout the body and,
because of the gamma radiation they emit, irradiate all tissues; they are po-
tential sources of genetic injury. Iodine 131 accompanies stable iodine to the
thyroid gland. Strontium 90 and radium, both alkaline earths like calcium,
pass with it to the bone. By virtue of their long biological retention and long
half-lives (strontium 90, 27 years; radium 226, 1620 years; radium 228, 6.7
years) the bone and the bone marrow are irradiated for long periods.
Carbon 14 becomes distributed throughout all living tissues. Because the
basic nature of metabolic processes in plants and animals is similar, nuclides
which are readily accumulated in animal tissues are usually those which pass
most freely through food chains.

Of the nuclides mentioned in the previous paragraphs, iodine 131 and
potassium 40 can be excluded from the present discussion. The short half
life of iodine 131 (8 days) makes its absorption by plants of little impor-
tance; it enters food chains mainly through the direct contamination of
plants, lodging on them in a manner similar to strontium 90 (8). Although
potassium 40 is the main source of internal radiation to which man has yet
been exposed, the considerable literature on the absorption of this element
makes unnecessary its inclusion in this review. Attention will therefore be
given mainly to strontium 90, caesium 137, radium and other members of
the uranium and thorium series, and carbon 14. Other nuclides, however,
cannot be always ignored; they are considered briefly in the final section.

STRONTIUM 90

This nuclide has received considerably more attention than any other in
food chain studies. Before its behaviour had been studied experimentally it
was natural to speculate on the basis of its chemical similarity to calcium.
From some respects this analogy was misleading. It undoubtedly encouraged
the belief, now disproved, that strontium 90 would always enter man’s diet
mainly, like calcium, from the soil. The comparison of the two elements,
however, led also to the view, since amply vindicated, that the major sources
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alternative routes of entry depends on the growth form of plants. Whereas
foliar absorption can occur in all species, floral absorption is of practical
significance with grain crops only; plant-base absorption is particularly im-
portant in perennial pastures though not necessarily confined to them. It is
often difficult to define sharp boundaries between foliar absorption and
either floral or plant-base entry. During rain the downward washing of con-
tamination over the surfaces on the plant will occur concurrently with absorp-
tion; thus foliar and floral absorption merge into plant-base entry. Likewise,
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tively different relationships must be expected under contrasting conditions
of climate and husbandry. However, as broad similarities between the
pattern of comtamination of pastures in North America and Europe are
suggested by many results of surveys (2, 27), the situation in the United
Kingdom is unlikely to he unique.

Cereals—Enquiry into the mechanism whereby strontium 90 enters cereal
grains from world-wide fallout was first encouraged by the observation that
the ratio of strontium 90 to calcium in flour might be two or more times
higher than that in leaf vegetables or the majority of other foods, while
that in whole grain was larger still, often about three times that in flour
(2). Clear evidence that strontium 90 entered grain largely by direct floral
contamination was provided by a comparison of the ratios of strontium 90
from world-wide fallout to stable strontium in the different tissues of cereal
ears (41). As the soil is the sole source of stable strontium, the ratio of
strontium 90 to stable strontium in all tissues formed at the same time would
be constant if strontium 90 entered only from the soil. Variations in this
ratio thus indicate direct contamination with strontium 90 unaccompanied
by stable strontium. The analysis of the different tissues of grain harvested
in the United Kingdom and in other countries in 1957 showed that the ratio
of strontium 90 to stable strontium in flour was always considerably lower
than that in other tissues, sometimes by a factor exceeding 10 (41). A
minimum estimate of the extent to which strontium 90 had entered by
direct contamination could be made by assuming that all strontium 90 in the
flour came from the soil. On this basis it appeared that at least two-thirds
of the strontium in grain was due to direct contamination; when results
for later years became available the corresponding estimate was about 50
per cent (5). Comparable calculations for different parts of the United
States gave values of 20 and 90 per cent in 1959 (42, 43).

The importance of floral contamination has also been demonstrated in
laboratory experiments. If strontium 89 is applied as a spray after ear
emergence the contamination of the grain at harvest may be some 15 times
greater than if the same application is made shortly before the ears emerge
and the protection of emerged ears with small caps reduces contamination
to the level found when the spray is applied before ear emergence (32).
Floral contamination has been shown to be important also with rice (44).

Other crops—Laboratory experiments have been carried out in which
strontium 89 has been applied in a fine spray to cabbages, potatoes, and
sugar beet at different stages of their growth (32, 45). Since the edible
heart tissues of cabbages are protected by outer leaves and strontium 90
does not move basipetally within plants, the manner in which they are
“directly” contaminated is not altogether obvious. The occurrence of direct
contamination of the heart tissues, though to a much smaller extent than in
pasture grass, is however well established both by experimental studies and
surveys of world-wide fallout (41). It has been suggested that this may be
due to strontium 90 being carried down in rain and lodging in the saucer-
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plants demonstrate the practical utility of this procedure; in contrast,
markedly curvilinear relationships can occur between the ratios of strontium
90 to calcium in plants and those in soil extracts made with 1 N ammonium
acetate (54, 55). Fredriksson et al. (46) found that extraction with am-
monium lactate provides an adequate basis for comparison in an extensive
survey of Swedish soils; the view that this extractant removed appreciable
quantities of both strontium 90 and calcium from surfaces as well from
‘ the solution phase is, however, possible as the ratio of strontium 90 to
| calcium in plant shoots was usually about 80 per cent of that in the soil
o : ' o extract (21).
L o . e The effect of the addition of lime on the absorption of strontium 90 from
pole O soil has been considered in many investigations (2). Appreciable reductions,
' ‘ though seldom by a factor exceeding 3, occur in soils low in calcium. How-
. ever, if soils contain moderate or high levels of calcium the addition of lime
PR does not increase the concentrations of calcium in the soil solution and the
’ absorption of strontium 90 is therefore not depressed. Fredriksson et al.
(56, 57) have shown that liming was of little importance when 50 per cent or
more of the exchange capacity of the soil is satnrated with calcium.
Characteristics of soils other than their calcium content usually have
comparable effects on the absorption of both strontium and calcium; thus
the ratio of the two ions in plants is little changed. There are, however,
indications that some preferential absorption of strontium can occur from
soils low in colloidal minerals or when much organic matter has been
added (2). This may reflect the contrasting distribution of the two ions be-
tween the soil and solution phases. Under field conditions where strontium
90 is usually largely present in the upper soil layers, manurial treatments
which alter distribution may markedly affect uptake.
A The extent to which the availability of strontium 90 to plants may be
i reduced by fixation processes in the soil has also received much attention.
Since fixation is irreversible, or nearly so, its extent will increase with time
until the sites which retain ions are saturated. Experiments in which the
state of strontium 90 has been studied for several years thus provide the
most convincing evidence. Squire (58) compared the extent to which 0.01 M
calcium chloride displaced strontium 89 and strontium 90 from a series of
soils in which the former had been present for one week and the latter for
about 3.5 years. The extent to which strontium could be displaced by cal-
cium chloride decreased in different soils by 3 to 10 per cent during this
interval. These figures would overestimate the extent of fixation if the
recently added tracer had not attained equilibrium throughout the labile
phases. Evidence of a small degree of fixation was, however, provided by
the fact that about 1.5 per cent of the strontium 90 which had been present
for 3.5 years could not be extracted by prolonged treatment with concen-
trated nitric acid. Schulz & Riedel (59) used similar extraction procedures
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of the Northern Hemisphere was a few per cent above the natural leve], but
in 1959 it was enhanced to nearly 30 per cent (2). Further increases are to be
expected. Accordingly, the specific activity of carbon in organic compounds
which have been formed by photosynthesis in the last decade will vary con-

siderably depending on their date of formation. Thus, whereas “carbon-
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in nuclear reactors. The latter is likely to be of particular significance when
large amounts of cooling water are drawn from natural sources and re-
turned to them. Thus at Hanford Works the induced activities of phos-
phorus 32 (half life 14 days) and zinc 65 (half life 245 days) rank next
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to iodine 131 as the most significant releases of radioactivity into the en-
vironment (93). Both phosphorus 32 and zinc 65 have been detected in
grass and milk in pastures irrigated by the Columbia River into which the
Hanford cooling water is returned. Zinc 65, together with the induced
activities, cobalt 59 and 60 and iron 55, has also been found to be the main
source of radioactivity in fish and sea water soon after nuclear explosions
(94). The low concentration of the carrier isotopes in water can cause these
nuclides to be absorbed and concentrated to a spectacular extent in plants
and animals.

Plutonium.—Because of its very long half life and high toxicity to
animals consideration has been given to the entry into plants of the fissile
element plutonium. A very slow rate of absorption is to he expected because
it forms high valency (usually 4 or 6) ions; this has been confirmed in sev-
eral studies and, over 1.5 years, grass grown in pot culture may absorb less
than 10-* per cent of that added to the soil (95, 96).
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