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ABSTRACT (CFRD)

The work by Herrmann to develop a means for predicting the
dynamic responses of initially heated porous materials is extended to
include porous materials that can be described with an exponential
relation between the distention ratio, a, and pressure, P. Examples
are presented that illustrate how Hugoniots can vary with initial heat-
ing. In addition, instantaneous heating is considered, and examples
are shown in which the generated pressure is related to the degree of
heating.
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INITIAL HEATING CONSIDERATIOW; FOR
POROUS MATERIALS DESCRIBABLE VvITP

EXPONENTIAL P-a RELATION

Introduction

Porous, or distended, materials have long been of interest because of their

excellent stress pulse attenuation properties and because of the low s. secs ;Levels

that are generated as a result of rapid increases in internal energy. In keeping

with this interest, considerable effort has been expended in recent years to charac-

terize the dynamic responses of these materials to a variety of different stimuli.

The need for predicting the dynamic behavior of porous materials has been a strong

stimulus to the development of analytical models that can be used in numerical

calculative schemes.

One such model, which is commonly referred to as the P-a model, was

developed by Herrmann 1-3 and has been widely used to obtain numerical solutions

to wave propagation problems. The formulation of the P-a model is essentially

based on the premise that the equation of state of the porous material can be deter-

mined from the equation of state of the corresponding solid material provided the

distention ratio, a, can be specified as a function of pressure, P, and energy, E.

The proceaure that is generally followed is to determine the pressure de-

pendence of a from laboratory shock loading experiments, i.e., from the Hugoniot

behavior. The energy dependence of a is considerably more elusive, primarily

because very few experimental data are presently available to provide guidance in

establishing a quantitatively consistent formulation. Early versions of the P-a

model 
2 did not have provisions for specifying an explicit dependence of a on

energy and thus had their greatest utility in dealing with problems where tempera-

tures were near room temperature, i.e., near the temperature where the Hugoniot

measurements were made. In a number of applications, however, the explicit

dependence of a on E can be an important consideration. For example, the response

of a porous material to rapid increases in internal energy is strongly dependent nn

the explicit relation between a and E, particularly if the energy range of interest is

UNCLASSIFIED
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near the region of melt. In Reference 3, Herrmann presents one method for incorpo-

rating explicit energy dependence into the P-a model. This was accomplished by

considering the dependence of the Hugoniot on initial heating. The formalism developed

in Reference 3, however, is specifically applicable to porous materials with Hugoniots

that can he described with a quadratic relation between a and P. Not all porous ma-

terials fall into this category. For example, the Ilugoniot of porous copper cannot be

adequately described with a quadratic relation but instead is more accurately described

using an exponential relation. 4 A number of other porous materials
5 can also be de-

scribed with an exponential relation.

The purpose of this report, then, is to present a method for introducing explicit

energy dependence into the P-a model for cases where the Hugoniots of the porous

materials can be described with an exponential relation between a and P. This work

is an extension of Herrmann's work. The major difference lies primarily in the

manner of treating the porous material response near the energy region of melt.

A number of examples are shown, all of which are for a porous copper. While

Hugoniot properties of the porous copper have been determined at room temperature, 
4

the behavior of this material at elevated temperatures is completely unknown. Thus,

no claims are made for the quantitative accuracy of the examples. Rather, the work is

intended to illustrate plausible responses of porous materials, with emphasis placed

on the latitude that is possible by varying the functional energy dependence of the vari-

ous parameters that effect the dynamic response and to illustrate the need for experi-

mental data.

Dependence of Porous Material
Hugoniot on Initial Heating

In the P-a model the distention ration, a, is defined as

a = V/V s , 	 (1)

where V is the specific volume of the porous material at a given pressure *, P,

and specific internal energy, E, state and V s is the specific volume of the corres-

ponding solid material at the same pressure and energy state. The underlying as-

sumption in the P-a model is that the equation of state of the porous material can

In this report pressure and stress will be considered to be synonomous.

6
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be expressed with the same functional relation as is used for the solid material pro-

vided one accounts for the variation of a with P and E. That is, if

P 	 f(Vs , E) 	 (2)

represents the equation of state of the solid material, then

P = f(V/a, E) 	 (3)

represents the equation of state of the porous material. In this work, the equation

of state of the solid material is assumed to be the Mie-Grtineisen equation, ex-

pressed as

P PH V= 	 (E - EH )
s

where the Hugoniot of the solid material is used as a reference curve. PH and EH ,

respectively, are the pressure and specific internal energy along the Hugoniot of

the solid (evaluated at V s ) and y is the Grtineisen parameter. The quantity, y/V s,

has been taken to be constant and equal to its zero stress value, y Vs 0 . Assum-

ing a linear relation between shock wave velocity, U s, and particle velocity, u ,

U
s 

= Co + Su ,p

where Co and S are constants characteristic of a material, the Rankine-Hugoniot

equations for conservation of mass and momentum can be combined with Equation

5 to yield

PH =
[Vso - S(Vso - Vs

for the pressure along the Hugoniot. The specific internal energy along the

Hugoniot can be expressed as

EH 	
P
H(so

 - Vs )/ 2 .

UNCTASSIFTED

C 2 (V 	 - V )o so	 s

i2

(4)

(5)

(6)

(7)
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Whon combined, Equations 4, (, and 7 define the function f(V

s
, E) in Equation 2.

To complete the description of the equation of state of the porous material, it is

necessary to specify the functional dependence of a on P and E.

In the simplest formulation, a can he assumed to be a function of P only,

which is what was done in the earliest versions"' 2 of the P-a model. The mathe-

matical formalism developed for this simple case provides a convenient means for

introducing explicit energy dependence. Before proceeding with explicit energy

considerations, a brief summary of commonly used methods for expressing the

variation of a with P will be given.

Generally, when treating porous materials, precursor waves must be con-

sidered so it is convenient to divide the analysis into two stress regions: one

region for stress levels below the precursor amplitude and one for higher stress

levels. Below the precursor amplitude the variation of a with P is usually assumed

to be linear, i. e.,

a = a o - (a o - a 1 )P/ P 1 	 ( 8 )

where a 
o 

and a
l 

are values for a at zero stress and at the precursor amplitude,

respectively, and P
1 

is the precursor amplitude. For stress levels above the

precursor amplitude, several relations have been used. Among the more common

are the quadratic relation,

and the exponential relation,

a = 1 + (a 1 -
P

1 	S 

1 P
s _P 1

(9)

a = 1 + (a l - 1) exp [5.(P - 13 1 )] . 	 (10)

In Equation 9, P G is the stress level where compaction becomes complete (i.e.,

where a = 1 or where V = V s
). In Equation 10, a is a parameter that controls

the rate with which a fully compacted state is reached with increasing stress.

Equation 9 was considered by Herrmann to introduce explicit energy dependence

into the P-a model. Equation 10 will be considered in this work. One of the

UNCLASSIFIED
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main differences between the two equations is that a fully compacted state is never

actually reached with the exponential equation. It is this difference that necessitates

the different approach taken in this work as compared with the approach taken by

Herrmann.

In Herrmann's work, three quantities were assumed to depend on the initial

temperature (or energy) of the porous material, namely VsO , P 1, and IfIf the

material is heated to a temperature, T., above room temperature, T rrre the new

specific volume of the solid at zero stress is,

V (T.) = 	 ) 	 + 13{T. - 	 ,so 	 so rm 	 rm

where 8 is the volumetric thermal expansion coefficient (assumed to be constant).

With no change in the initial distention ratio, the new initial specific volume of the

porous material is V (T.) = a V (T.). Other parameters (like C ' S. and y)o 	 o so 	 o 	 o
related to the response of the solid material were assumed by Hermann to be

independent of temperature. Both parameters related to the compression of the

porous material (P 1 and Ps ) were assumed to decrease with increasing tempera-

ture and vanish at some energy where the strength of the material becomes

negligible.

The same basic procedures followed by Herrmann will be used here except

that the energy dependence of the compression of the porous material above the

precursor amplitude will be introduced through the parameter a, rather than

through Ps . Concepts of the formulation will be discussed through use of specific

mathematical expressions defining the dependence of the quantities of interest on

energy. No loss of generality results from this approach if the mathematical

expressions are understood to be illustrative only. These expressions can be

replaced by more appropriate expressions if future experimental data so dictates.

The initial specific internal energy of a heated specimen will be expressed

as E., with E. = E .(T ) = 0 representing the room temperature energy. Therm
energy level where the strength becomes negligible is taken to be the incipient

melt energy, E im , and the ratio, E i/E im , will be designated as Q.

LJN
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A relation hypothesized to represent the decrease in precursor amplitude

with increasing energy for Q < 1 is

PI 
= P

lo
(1 - Q2 ) , (12)

where P
lo 

is the precursor amplitude at room temperature. For Q 	 I, P
I 

is

zero. The basic equation assumed here to represent the variation a with increas-

ing energy is

a = 5
o
/(1 - Q2 ) , 	 (13)

where ao is the value of 5. at room temperature. When Q 	 1, P 1 vanishes and a
goes to infinity. This implies that a state of complete compaction is reached even

for infinitesimal increases in stress. Possible rate dependent and small residual

strength effects may impose modifications to this description. Mathematically it

is possible to retain some residual strength effects by defining a new relation for

a as the value of Q approaches unity, i.e., for all values of Q greater than some

value, QQ. This relation would have the property that a always remain finite. A

possible form for such a relation is

a	 ao (k i 	 k2Q )
	

(14)

The constants, k
1 

and k2, can be determined by requiring that the functions in

Equations 13 and 14 and their derivatives with respect to Q be continuous at Q = Q .

With these conditions, the constants are

k
1
	 3Q 2 1 Q*2

) 2
(15)

K2 = 2Q - 1(1 - Q-
„,2 	 .„,2 ) 2 	

(16)

Thus, for examples discussed

Equation 14 for Q z Q ' . The

sidering the dependence of the

consequences for cases where

cussed later in the report.

*here, 5 is defined by Equation 13 for Q < Q and by

influence of the quantity Q * is not great when con-

Hugoniot on initial heating but does have important

instantanecr.ls heating occurs. This will be dis-

IT 
Tr T — FT ED
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The reason for choosing the particular form for a given in Equation 13 can be

seen by considering the stress level where the porous oaterial has been compacted to

some arbitrary state near complete compaction, say where (a - 1)/ (a 1 - 1) = 0.01.

This stress level (call it PO. O1) can be determined from Equation 10 to be

-P0.01 	 P
1 = ln(0.01)/a
	

(17)

or

ln(0.011- P = 	 (1 - Q2 ) .0.01 	 1 	 a (18)

This type of behavior is similar to the behavior that would result if (P s - 13 1 ) is

assumed to depend quadratically on Q and (nearly) corresponds to one of the case_,

considered by Herrmann. The quadratic function of Q in Equation 18 (and also in

Equation 12), while intended primarily for illustrative purpos m, is however felt

to be quite reasonable. These relations show that the strength of the material

decreases rather slowly for small increases in internal energy. When the initial

energy approaches the incipient melt energy, however, the loss of strength is more

pronounced.

To illustrate how the above defined initial heating considerations affect a

porous material Hugoniot, a number of calculations were made for a porous

copper. These calculations were performed using the computer program (called

TEMPPL) given in Appendix A of this report. Values for the various constants

required in the calculation are given in Table I. The results of the calculations

are shown on Figure 1. Values of Q equal to 0, 0.5, 0.75, and 0.95 were con-
*

sidered. The assumed value of Q for these calculations was 0.95 so Equation 14

had no effect on the results. Figure 1 is a graph showing stress-specific volume

Hugoniots for the porous copper. As is evident, the initial specific volume of the

porous material increases as the initial energy (or the value of Q) is increased.

The Hugoniot of solid copper is also displaced toward larger specific volumes as

the initial energy is increased, however, this is not shown on the figure. The

important features of Figure 1 are that the precursor amplitude decreases with

increasing initial energy and that essentially fully compacted states are reached

at lower stress levels as the initial energy is increased. It should be again

111'‘,Tri A CI.C'TFTED
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HUGONIOT
OF SOLID
COPPER
AT ROOM
TEMPER-

ATURE

0 • 0 (ROOM TEMPERATURE
HUGONIGTI

0 • 0.5
5

20
II I

DISTENDED COPPER

nO 6.43 glcm3

P10 • 1.35  kbar
Aao 	 • 0.254 kbar 1

Usl • 1 . 93 mmlpsec

I 	 1
II

j
I

15

Q - 0.75

Q: 0.95 	 ----

0
0. 10 0.11 	 0.12 	 0.13 	 0.14 	 0.15

SPECIFIC VOLUME - cm3 Ig

0.16 0.17

(-41- ),Q., TED

emphasized that the behavior depicted on Figure 1 is based on the energy dependence

assumed in Equations 12 and 13.

TABLE I

Values of Constants Used for Porous Copper
in the Calculations

Solid Copper Parameters 	 Porous Copper Paramett

	

= 1/V 	 = 8.93 g/cm 3
• so 	 so
Co = 4.022 mm/psec

S = 1.48

y 	 1.96

= 6.0 x 10 -5 °C -1

Cp = 4.39 x 10 6 ergs/g/ °C

0 0 = 1/V0 = 6.43 dem .'

P10 = 1.35 kbar
*4-

Usl = 1.93 mm; Asec

= 0.254 kbar -1

E
MI 

= 4.7 x 109 erg/g

,,Specific heat.*
Precursor wave velocity (assumed to be independent of temperature).

Figure 1.

Stress-Specific Volume Graph
Showing Effect of Initial Heat-
ing on Hugoniot of Distended
Copper

UCCI AS Iii IED
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Instantaneous Heating Considerations

To consider the effect of instantaneous heating on the response of a porous

material, it is convenient to define a new quantity as cn independent variable in

Equations 2 and 3. This quantity is

77 = 1 - V s /V so ' 	 (19)

which becomes

Va
77 = 1 - aV	 (20)

when expressed in terms of the specific volumes of the porous material. Since the

heating process is instantaneous, no time is available for a volume change.

Thus, V = Vo and

ao
= 1 - - .

a
(21)

When the pressure and energy along the Hugoniot of the solid are expressed in terms

of the quantity 77, Equations 6 and 7 become

C 2
77 

PH =
V

S 0
 ( 1 - S7

and

2EH = PH Vson / .

Substituting Equations 22 and 23 into Equation 4, the relation between pressure

generated in the porous material and the increase in energy becomes

P = V
	

2 (1 - yon/2)
	Y o 	C

2

	so 	
Vso (1 - S77)

E +

UNCLASSIFIED

(22)

(23)

(24)
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A 	

1

a CONSTANT

P1 VARIABLE

la\ CONSTANT
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Since n , through Equation 21, depends on a and hence on both P and E,

Equation 24 must be solved using an iterative procedure. A computer program

(called TDGEFF) to accomplish this is given in Appendix 13 of this report. This

program has been used to obtain plots of generated pressure versus the increase

in specific internal energy for porous copper. The results of the calculations

are shown on Figure 2.

1 	 1 	 11 11 1 i 	 11 	 1 	 111111 	 I	 I 	 I 	 I

DISTENDED COPPER

P0 = 6.43 glcm3

P10 	 '1 35 kbar

Usl = 1 . 93 mm/p sec
A 	 1a 	 = 0.254 kbar

cue
 101

1./1

19

10
12

1 011

1 0

— P1 VARIABLE

aVARIABLE 	

Q• = 0.80

Q* = 0.90

Q• = 0.95 	

7 	I	 1 	 I l l i lil 	
I EIM'

It

108 	 109 	 1010

ESUB

t I Mitt 

1011

SPECIFIC INTERNAL ENERGY - ergslg

Figure 2. Plot of Pressure Generated Versus Increase in Specific Internal
Energy for Case of Instantaneous Heating
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The pressure dependence of a for these curves is that given by Equation 8 and

10. The energy dependence is introduced through Equations 12 through 14, except

for two cases where explicit energy dependence is suppressed or partially suppressed

(the two uppermost curves). All of the curves on Figure 2 depict essentially the

same behavior in the lowest energy region and in the highest energy region. At low

energies, a linear relation between pressure and energy is observed that exists

until the precursor amplitude is exceeded. This region can be interpreted as an

elastic region. Further increases in energy have the effect of causing the fully dense

portions of the i_orous material to flow plastically into the voids. The effect of the

energy dependence of a becomes evident for energy levels above the linear region

and into the melt region.

The uppermost curve on Figure 2 illustrates the behavior that results when

both P 1 and a are considered to be independent of energy. The pressure for this

case increases monatomically with increasing energy, which is probably not physi-

cally realistic.

The effect of allowing only the precursor amplitude to decrease with energy

is depicted by the second curve from the top of Figure 2. Here moderate decreases

in pressure occur as the energy is increased up to the level E lm, where P 1 assumes

a constant value of zero. Further increases in energy produce increases in

pressure.

The effect of allowing the parameter a to increase with energy is illustrated

with the three lowest curves on Figure 2. The effect of the parameter Q* is also

illustrated here. If Q* were equal to unity, a would approach an infinite value as

E approaches EIM and the pressure generated would approach zero. By assigning

various values to Q* which are less than unity, the minimum pressure can be

adjusted. Figure 3 shows values of a as a function of Q for the three values of Q*

considered on Figure 2.

In the highest energy region shown en Figure 2, all of the curves become

coincident. This occurs when the value for a approaches unity, or when the voids

are filled. Thus, the energy dependence assumed for a is no longer of conse-

quence insofar as Equation 24 is concerned and t1 assumes a constant value

UNCLASSIFIED
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0.25 	 0.50 	 0.75
	

1. 00 	 1.25
Q. E/E IM

Figure 3. Values Used For a For Cases Where Q* is Equal
to 0. 80, 0. 90, and 0. 95

of 1 - a o . The rapid increase in pressure with energy occurs at an energy level

just greater than the boiling point of copper E B . This is reasonable since the

vapor can then fill the voids; however, that the model should predict this is con-

sidered to be fortuitous. No provisions are presently incorporated into the model

which relate EB to the energy level where a becomes equal to unity. The energy

level, ESUB' shown on the right of Figure 2, is the sublimation energy of copper.

The equation of state to be used in the higher energy region should properly include

vapor considerations to account for the mixed phase region between E
B 

and E SUB

and the all vapor region above ESUB• Because the equation of state considered

here does not account for vapor, the high energy region shown on Figure 2 does

not represent a truly realistic situation.

It is of interest also to consider an effective Grtineisen parameter for a

porous material. This quantity can be defined as

Y eff = PVoiE •
	 (25)

1 6
	 fasumum UNCT A SSIFIED

<Co



I I HUI 	 I 	 I I

DISTENDED COPPER

P0 	 '6 43 gicm3

P10 1 . 35 kbar

Usl 1 . 93 mm/psec
Aa 	 • 0.254 kbar 1

101

0

P1 CONSTANT

/a‘ CONSTANT

P 1 VARIABLE

/I CONSTANT

10 ' 	

P

a VARIABLEA

1 VARIABLE

- 0.95--

E IM7

1 1111 	 I Aim!104 
108

= 0.80

= 0.90

109 1010

UNCLASSIFIED
Values for yeff as a function of energy are shown on Figure 4 for the cases con-

sidered on Figure 2. At low energy levels (in the elastic region), the value for

y eff is essentially constant. Beyond the elastic region, values for y eff decrease

and the behavior for all cases considered is similar until the energy level ap-

proaches E lM . At that time rather dramatic decreases in the value of y eff are

seen for the cases where both P 1 and a are considered to be functions of energy.

For the cases where P 1 and/or 5. are held constant, the rapid decrease in the

value of yeff does not occur. At the highest energy levels shown on Figure 4,

values for yeff 	rapidly and all cases become equivalent.

SPECIFIC INTERNAL ENERGY - ergslg

Figure 4. Values of y 
"Case

Versus Increase in Specific Internal
Energy for "Case of Instantaneous Heating
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Discussion

The work presented in this report illustrates the general features of the

dynamic behavior of porous materials when subjected to conditions of initial

heating. Explicit energy dependence has been introduced by considering the

dependence of the Hugoniot of the porous material on initial temperature. In so

doing, only the parameters (i. e., P 1 and a) that produce the most significant

effects have been assumed to depend on energy. Other quantities (e.g., the

velocity of the precursor wave in the porous material and the quantities related

to the Hugoniot of the solid material) have been assumed to be independent of

initial temperature, which is justified since reasonable variations of these

quantities with energy do not significantly alter any of the results presented in

this report.

In general, the predicted responses of heat porous materials presented

here are considered to be realistic but not necessarily exact. An exact descrip-

tion of porous material behavior under conditions of initial heating must await

the results of future experimental studies. One of the objectives of this work is

to point out the need for such experiments. Two types of experiments are re-

quired. One is the conventional Hugoniot experiment (probably of the gas gun

impact variety) where the porous specimens are initially heated to various

temperatures between room temperatures and the melting temperature. Such

experiments would yield information about the actual variation of P 1 and a with

energy. The other type of experiment required is that where the porous speci-

men is instantaneously (or very rapidly) heated, as for example with an electron

beam. These latter experiments would verify that the approach taken in this

work to predict pressure levels is in fact valid or would define areas where

improvement is necessary.

18
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Appendix A

This Appendix describes the program TEMPPL which computes the Hugoniot of

a porous material that has been raisea to an initial energy, E.. An exponential rela-

tion between a and P is assumed. The program is written in BASIC language for

Sandia's PDP10 time sharing computer. A listing of the program follows:

r..,r.a.'L

1.1 	 :ULM 	 G,Ir IL ,44I_PALL... 	 1224
e 	 1 	 ‘tr....10 310 Lr- f 	 134=(UL/(2.1.11))

J.) 	 ncml) 	 tx.)•V+1...4J 04.1 LEI 	 ..,42 	 7-0 	 )

rtcAL) 	 t.:9•U9.139•LI8 343 LEi 	 92.v1 *(1 	 )

DJ 	 4b•bc• •IO 'An 40 Len 	 LI •ve./v2

of 	 Lef 	 81=11 -3.3e a2)/(1-wt,11) 300 r, I Ni 	 " 	 a•ft.Fwa..1 r3.1. 	 itf 	 I a." I a •..r

712 	 Lc.i 	 .8 =2 .31,/ (I -Ub a2) , 2 064 1.411,1 	 PJP•c< Ir11 	 m" I.. I :"..33/v"

b0 	 Lc( 	 12.1.I 0.0 310 a-. 1.1 	 "v (su ) 	 ao• P., I ..7••L',.."."

94 	 LEI '	 C•140/10 do cAl.f

.34 	 L}..f 	 J6.1 /Al, 39d vr1NT 	 " 	 /u..tIJo 	 raA 	 ra.IAL ).44.6t..b.ar--.3 Al I"

10 	 Le.f 	 31.3o/10 600 8.111,1 	 " 	 41..0(J /"." 	 J1 -))"." 	 1."

20 	 1.t., 	 •ro/1JJJ 610 !...‘ Ira 	 1 /v / '41.1040 ,ar•b,r4

30 	 LEI" 	 L.J.Joivd 624

PAINI" 	 SULIU 	 MAIrr.1AL 030 r'it	 " 	 ••• (1 )"•" 	 Cl )"•" 	 Cl )"••' 	 ht./1.4111"

3) It11 o4J r•ra I fa 	 3,a,1 /3b•14.31•LI

bJ	 Prt 	 " 	 ra1-IU(4 )"," 	 g(0)"." bAriMA(.4 )" 450 r:I NI

14 MAIM' 4J.JO.00.n,60 66.1 ht 1

82 	 1.-t I NI 617 1.,151 	 " 	 k••"." 	 ALPH.1"

Pn I 	 " 	 CP" 	 tie IA"," 	 11))" 64.1 L.'

ekio 	 Pit INC 	 C9,39,39 o 9.1 L4i 	 A=H•10.;..)

10 	 Prt1141 103 Lr..1 	 1'1 =•1

280 	 PrtIN1 710 itht 	 4•4 	 fU 	 121

52 	 " 	 eunu..ls Ill Lel 	 4,21,1

.1 0.) 	 Pa 'NI .32 1.61

L70 	 PAIN( 	 " 	 rtHu(0 )" ." 	 QC.) )"." 	 CI"," el (2 )"." 	 ALPHA (4 )" .410 Ir 	 THEN 93.3

L00 	 12 61 1 	 rtb 	 'bp 1041 r'04 	 5•1

474 	 Pri IM' 700 Le.. 	 •I 	 •I )04XI( -A•(r" -re>)

2 80 	 Prt I 	 " 	 ( 	 (	 )" 	 81"," 	 Ke" 170 Lr..i 	 :{1.2.3•KA Ir 4

890 	 PraINE 	 48,e1..H2 783 Lea 	 N2.(HI-5ade(H1 , 2•4*,•3))/(2.3.E)

300 PraUsi 192 Ler J2 nv 1 •( 	 -)+tt )

310 	 Pr( Itqf 8130 Ler 	 J9=1.8•52

320 IN IN1 610 LEI 	 F5=C8.0/8-09-1 	 ).?8•(v / -V9))/(41 -Ve -1 AO

224 	 rtr..AL) 614 18 	 4/34( 	 -r-4 	 tH8N 870

343 	 1..ef 	 1, 6=17r.(' -‘4 ,2 ) 130 L..T 	 fts.ru

338 	 18 U>ue 	 1HiiN 380 744 LEI' r4=r D

3ed 	 Lei A=Abil I -u 	 ) 630

310 UU 10 393 b6d Pa /NI "ITErtAiIUN DID 1,01 ev.VErtur."

bd 	 LEI 	 A=Ho.( XI .kb2 r■J ) H/0 1.21 56•41.Vb•S.41 -2((e-88)/(4b-49))

J 90 	 Lit 	 91,41,19 8 84 LEI' 91:5=07.4,4((e-P4)•018-129))

4412 	 Lcl 	 1=.1 490 MA INC 	 I.1. 1 :3•F•V9,10.58.13►Lie•L',I

410 	 L.41 	 21=v0•(1+9si 9.52 iC4'.`"I

440 	 Let' ill ,4 1*L0 910

430 	 LEI n7 =1/v"/ 920 42 2.1

444 	 L.ef 	 J1,3 8/ (at / akS 	 ) 1 2 31 Liu 	 fU 33,1

430 	 1..61 	 V b.9 is(I -41 /b ./ ) 94./ DAi n

460 	 LE1 	 trub0 /( 21.•51 ) 9n. 0,112

410 LEI 	 40=C C;/JI 1.)A 	 A

440 	 LEI 	 133•Pet•(1-6•(V1-128)) 9/0 DATA

490 	 LET 	 DI .b*S•U3.1.(i•Ha1•Q1 9b.) DATA
-? 13)11404 LEI D2 =2*S*04 +KO EN

Input instructions can be made in statement numbers 940 through 980 as follows:

Statement 940: Enter JI, the number of points to be calculated. The first

calculation is made at the precursor amplitude. Subsequent calculations are made

at increments of stress that increase in such a way that 20 calculated points usually

cover the stress range of incomplete compaction quite adequately.

171 	CI' NTTITT-, Th
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Statement 950: Enter solid material parameters for room temperature; °so

(initial density in g/cm 3 ), Co (bulk sound speed in mm/g sec), S (slope of U s - up

line), and .y o (zero stress Griineisen parameter).

Statement 960: Enter the parameters; E rvi (incipient melt energy in ergs/g),

C (specific heat of solid in ergs/g/ oC), 8 (volumetric thermal expansion coeffi-

cient in 
o

C
-1

), and Q* (see Equations 13 and 14 of text).

Statement 970: Enter porous material parameters for room temperature; 0 0

(initial density in g/cm3), Usl (velocity of precursor wave in mm//sec)' P lo
(precursor amplitude in kbar), and ao (parameter in Equations 13 and 14 in kbar -1

).

Statement 980: Enter values for Q = E i/E im to be calculated.

The printed output of the program includes values for most of the important

parameters affecting the solution and values for specific volume (V), shock wave

velocity (US), particle velocity (UP), and a (ALPHA) for various values of pres-

sure (13 ) above the precursor amplitude. The first values printed for US and UP

are not correct since the pressure is at the precursor amplitude and no additional

shock wave exists as yet at that level. A sample calculation is shown in the

following:

22 1.11111NNIMIlli lED
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940 DATA 20 	 UNCLASSIFIED
950 DATA 8.93,4.022,1.48,1.96
960 DATA 4.7E9,.43987,60.8-6,.95
970 DATA 6.43,1.93,1.35,254
980 DATA .5
FUN

TDMPPL
	

13:04
	

27-N0V-70

SOLID MATFIAL FAFAVFTFFS

FHO(P)
	

V(0)
	 c 	 CAVVA(0)

8.93
	

0.111982
	

4.022
	

1. 48
	

1.96

CP
	

DETA
	

F( IM)
4390000
	

6.00000 0-5 	 4.70000 F+9

PCFOUS MATFFIAL PAFAVET01 , 5

FH0(0)
	

V(0)
	

Cl
	

F1(0)
	

ALi ,HA(0)
6.43
	

0.155521
	

1.93
	

1 • 35
	

1.3888

P(STAF)
	 xl 	 Y2

0.95 	 -179.619
	

199.869

FAFAMFTFFS A T i= 555.3 0 FPF0TFFE C
0= 	 = 0.35000 0+90FC:S/0
V(50) AT F = 0.115579CC/C

F140(0)
6.22991

V(1)
0.159016

P

P035 VATFFIAL
V(0)

0.160516

R(1)
6.25721

V

PA5.W.'070T.5 AT
PI

1.0125

IT(1)
8. L2086 F-3

US

T

0.338667

ALPHA(1)
1. 18374

OF
1.0125 0.159816 8. 4 2086 F-3 0.42086 0-3
1.30778 0.155574 0.430096 1.96118 	 F-2
1.89833 0.146265 0.451004 4 .04079 F-2
2.78415 0.139707 0.482791 6.81080 F-2
3.96526 0.131635 0.525727 9.96410 F-2
5.44161 0.125159 0.5797 5 0.132315
7.21329 0.120626 0.64412 4 0.164309
9.28022 0.117806 0.717402 0.194788
11.6424 0.116216 0.797537 0.223703
14.2999 0.115373 0.8E2275 0.251 429
17.255=7 0.114921 0.969626 0.278429
20.5007 0.11L644 1.05E:14 0.305122
PP.prip 0.114422 1.14691 0.231 -,26

27.8826 0.114236 1.23548 0.358380
32.0164 0.114027 1.323611 0.38 5 1 59
36.4pq6 0.11383 1. 4 1127 0.412081
41.17 0.113613 1.49835 0. 429165
46.1897 0.113385 1.58 486 0.46641S
51.50046 0.113147 1.67076 0.493846
57.1149 0.112901 1.75627 0.521456
63.0204 0.112645 1.84076 0.549251

ALPHA
1.38374
1.2•722
1.28428
1.2106
1.14117
1.08562
1.04699
1.02334
1.01049
1.00 426
1.00157
1.00052
1.00016
1.00004
1.00001
1 .
1.
1.
!.
1
1

NOUNIMEMlik IVIED
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Appendix B

This appendix describes the computer program TDGEFF which computes the

pressure generated in a porous material that has been instantaneously heated to an

energy level, E. An exponential relation between a and P is assumed. The program

also computes the value of the effective Grrmeisen parameter, y eff, as a function of

E. Like the program described in Appendix A, TDGEFF is written in BASIC lan-

guage for Sandia's PDP10 time sharing system. A listing of the program follows:

TD0EFE
	

13:36 	 27-NOV-70

10 RE? TDGEFF BOATE 1224

20 PRINT "UNLESS SPECIFIED. !WITS AFE G/CT, MM/USEC, OP }MANGY , 1/KBAP)"
3 0 PRINT

40 PRINT
50 PEAT R0,CO,S,G0
60 READ 08,E1,E2,N1,672
70 FEAT 06,P6,56,A0
80 LET V0.1/R0
90 LET C-C0*1.E5
100 LET V6-1/R6
110 LET P7•P6.1.1.E9
120 LET S7m56*1.E5
130 LET A1mA0m1.E-9
140 LF.T L0mV6/V0
150 LET GmG0/(24 ,V0)
160 LET K0mCmC/V0
170 LET K1m(1-3+08(2)/(1-0812)f2
180 LET H2m2,08/(1-08:2) , 2

190 PRINT " 	 SOLID MATERIAL PAPAMETERS"
200 PRINT " RH0(0)"," CO"," S"," GAMMP(0)"," F(IM)-ERGS/G"
210 POINT RO,CO,S,GO,E2
220 PRINT
230 PRINT
240 PRINT " POROUS MATERIAL PAFAMETERS"
250 PAINT " RHO(0)"," P1(0)"," US(1)"," ALPHAC0)"," A(0)"
260 PRINT R6,P6.56,L0,40
270 POINT
280 POINT " 0(STAR)"," KI"," K2"
290 POINT 08,1(1,K2

300 PRINT
310 PRINT
320 LET N3=101(1/100)
330 LET EmEl/N3
340 LET 06=G0
350 POINT " CGS UNITS"
360 PRINT " E"," P"," ALPHA"," GAMMACEFF)"
370 LET N9=1
380 FOR N4m1 TO 100*N1
400 LET E=E*N3
410 LET PmG6mE/V6
420 LET Q.E/E2
430 IF 0<1 THEN 460
440 LET P8-0
450 GO TO 470
460 LET P8mP7*(1-012)
470 IF 0m08 THEN 500
480 LET AmAl/(1-012)
490 GO TO 510
500 LET A•Aim(K1mK2m0)
510 LET V7mV6 ,011-P8/(P6*S7 1 2),
520 LET D3mP8*CI-G*(V6-V7))
530 LET DI•S*S*D3+G*K0mV0

540 LET D2.2.0.54,D3*KO
550 LET D4.(D21C2sO1))12-03/01
560 LET N•D2/(2/01)-Sw,c(04)

570 LET 1/1.V00(1-N)
580 LET LI.O7/V1
590 IF P<P8 THEN 650
600 IF ABSCA.cP-P8».25 THEN 630
610 LET L=1.0.(1.1-1).EXPC-A.(P-P8))
620 GO TO 670
630 LET L•1
640 GO TO 670
650 IF 08.0 THEN 610

660 LET L.LO-(L0-L1)*P/P8
670 GO SUB 960
680 LET FS•P-FI-F2•E
690 LET P4 -P
700 LET PmP4m.999
710 FUt M•l TO 50
720 IF P<P8 THEN 780
730 IF ABS(A.(P-P8))2.25 THEN 760
740 LET L=1+(L1-1).EXP(-A.(P-P8))
750 GO TO 800
760 LET L•1
770 GO TO 800
780 IF P8•0 THEN 730
798 LET L•L0-(L0-L1).P/P8
800 GO SUB 960
810 LET F6-P-F1-F2.E
820 LET PS-P
630 LET PmP5-F6m(P5-P4)/CF6-F5)
840 IF ABS((P-P5)/P)mm.08885 THEN 890
850 LET P4mP6
860 LET F5-F6
870 NEXT M

880 PRINT "ITERATION DID NOT CONVERGE"
890 LET G6•6sPIE
900 IF N4>./.79 THEN 920
910 GO TO 940
920 PRINT E.P,L.G6
930 LET N9.N94.100/N2
940 NEXT N4
950 GO TO 2000
960 LET N•1-1.0/L
970 LET p1.108.N/(1-S.N)12
980 LET 21.PI*V06N/2
990 LET F2.2.G
1000 LET F1-13 1-F2.6,1
1010 RETURN
1020 DATA
1030 DATA
1040 DATA
2000 ENO

UNCLASSIFIED
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Input instructions can be made through statements 1020 through 1040 as follows:

Statement 1020: Enter solid material parameters ' ^r room tamperature P so
(initial density in g/cm

3
), Co (bulk sound speed in rnm/psec), S (slope of s - Up

line), and o (zero stress Gruneinen parameter).

Statement 1030: Enter the parameters; Q' (see Equations 13 and 14 of text),

El (minimum energy to be considered in ergs/g), E 	 (incipient melt energy in

ergs/g), Ni (number of orders of magnitude over which energy variation is to be

considered), and N2 (number of calculations in each order of magnitude).

Statement 1040: Enter porous material parameters at room temperature; p o
(initial density in g/cm 3 ), P 10 (precursor amplitude in kbar), Usl (precursor wave

velocity in mmlpsec), and ao (parameter in Equations 13 and 14 of text in kbar -1
).

The printed output of the program includes most of the input parameters and

calculated values for generated pressure (P), a (ALPHA), and the effective

Griineisen parameter (GAMMA(EFF)) for the specified values of energy (E). A

sample calculation follows:
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FATr
Ion rf)Tp.
1040 TPTA 6.42,1.25,I.93,.P5 4

1.uM

TT,CFFF
	

13:32
	

27-NOV-79

[74. r ASSIFIED

UNLESS SPFCIFTFP, uNIT5 AF.E 0/CC, MM/TISFC, 	 FFAECOP 1/YEAF)

• soLir MATFMAL ?PFAFF:TP.14S
PHO(C) 	 CO
	

(.
	

0AMt/A(0)
	

F(Im)-Frrsic
8.93 	 4.022 	 1.48
	

1.96
	

/1.7r70r F,9

P0:01 1S MATFFIAL FAEAMETF!-F
FH0(2) 	 P1(0) 	 US(1)

	

6.43 	 1.35 	 1.92

0.(STA) 	 FI 	 2

	

0.9 	 -29.6122 	 49.8615

CGS UNITS
F 	 ALPHA

PLPHAC0) 	 P-Ca)
1.3888 	 V.25b

GA•MA(FEF)

1.00000 F+8 F+8 1.3874 0.450639

1.24896 F+8 3.90990 F+S 1.38691 0.450769

1.77628 F+8 5.15607 +8 1.3862 9.450929
2.39883 F+8 6.95900 F+8 1.38542 0.451166
3.16228 F+8 9.17954 F+8 1.38435 0.45145
4.26579 F+8 1.23942 E.+9 1.38279 R.451869
5.62341 F+8 1.34857 E+9 1.38059 0.37296
7.58577 E+8 1.26699 E+9 1.37726 0.2802sE

1.00000 F+9 1.38259 F+9 1.27313 P.215022
1.34896 E+9 1.38993 E+9 1.36711 f?.16024k
1.77828 F+9 1.37197 F+9 .1.2596 0.119908
2.39883 E+9 1.28007 E+9 1.248 5 5 8.29897 E-2
3.16225 F+9 1.94269 F+9 1.23457 5.12753 F-P
4.26579 E+9 3.85936 F+P 1.21255 1.40753 F-2

5.62341 F+9 59596985 1.28733 1.6•266 F-3

7.58577 E+9 43229183 1.24821 8.86476 F-4

9.99999 F+9 4.226(4 F+7 1.19699 6.26228 F-4

1.34896 F-1-0 46921180 1.11596 5.30575 F-4

1.77828 E+10 1.35528 F+0 1.0022 1.18536 8-2
2.39F83 F+10 1.07348 E+11 1 P.695961

3.16227 F+19 2.40972 8+11 1 1.18511

4.26579 E+10 4.34119 F+11 1 1.5827

5.62241 E+10 6.71740 8+11 1 1.85776

7.58577 F+10 1.01521 F+12 1 2.08135

TINE: 2.03 5FCc.

READY

UNCLASSIFIED
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Effects Technology, Inc. 	 M3552
M0654 	 5383 Hollister Ave.

P. 0. Box 30400
Santa Barbara, California 93105

Attn: D. V. Keller
R. R. Tuler

University of California
	 M0830

Lawrence Radiation Laboratory
P. 0 Box 808

M3228 	 Livermore, California 94550
Attn: C. J. Taylor

A. Maimoni

Los Alamos Scientific Laboratory M0737
P. 0. Box 1663

M1221 	 Los Alamos, New Mexico 87544
Attn: Report Librarian
For: M. Katz, W-8

L. C. Horpedahl, W-9
R. S. Thurston, W-4

Systems, Science and Software M3296
P. 0. Box 1620

M1991 	 La Jolla, California 92037
Attn: Glenn E. Seay

R. A. Kruger

Director 	 M3282
USAF Project RAND
c/o The RAND Corporation
1700 Main Street
Santa Monica, California 90406

Attn: J. E. Whitener

DISTRIBUTION:
Chief
Administrative Services Branch
Defense Atomic Support Agency
Washington, D. C. 20305

Attn: J. F. Moulton, Jr. (3)
M. C. Atkins
D. J. Kohler
R. V. Smith
D. R. Carlson

Aerospace Corporation
P. 0. Box 5866
San Bernardino, Califcrnia 92404

Attn: Hardened Reentry
Weapons Effects Dept.

Avco Corporation
Interdivisional Program Control
201 Lowell Street
Wilmington, Massachusetts 01887

Attn: W. L. Bade
L. Landere
J. Yos

Director
Air Force Weapons Laboratory
(WLIL/E. L. Bowman)
Kirtland AFB, New Mexico 87117

Attn: SR/Lt. Col. H. F. Rizzo
SRR/Lt. Col. D. D. YuAng, Jr.
SSRU/Dr. K. J. Davis
SRR/Maj. C. F. Lee
SRR/Capt. S. F. Gianotta
Lt. B. Kohn

Batelle Memorial In3titute 	 M1352
505 King Avenue

olumbus, Ohio 43201
Attn: R. W. Klingensmith

R. S. Kohn
R. Castle

McDonnell-Douglas Astronautics Co. M3503
5301 Bolsa Avenue
Huntington Beach, California 92647

Attn: J. Peck

Kaman Nuclear 	 M1713
Division of Kaman Aircraft Corp.
Garden of the Gods Road
Colorado Springs, Colorado 80907

Attn: J. Armstrong
D. Williams
F. Shelton

J. M. Wiesen, 100
D. B. Shuster, 1200
R. L. Peurifoy, Jr. , 1220
C. R. Blaine, 1221
R. H. Braasch, 1222
A. J. Chabai, 1224
P. D. Anderson, 1224
R. R. Boade, 1224
L. W. Kennedy, 1224
S. L. Thompson, 1224
H. W. Schmitt, 1225
R. R. Neel, 1516
C. H. Mauney, 1530
W. F. Hartmt.::, 1541
J. T. Risse, 1553
0. E. Jones, 5130
P. C. Lysne, 5132
L. W. Davison, 5133
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DISTRIBUTION: (Cont. )
W. Herrmann, 5160
B. M. i3utcher, 5161
L. M. Lee, 5161
L. D. Bertholf, 5162
D. E. Munson, 5163
A. W. Snyder, 5220
F. C. Perry, 5225
L. D. Boxton, 5225
J. E. McDonald, 5300
H. M. Stoller, .5310
R. G. Kepler, 5510
D. R. Anderson, 5513
P. D. Gildea, 8124
C. H. Stoll, 8157
G. E. Brandvold, 8170
R. E. Rychnovsky, 8176
R. H. Meinken, 8310
J. M. Brierly, 8311
M. D. Meyer, 8311
T. S. Gold, 8324
J. E. Marion, 8332
J. R. Smith, 8332
J. C. Wirth, 8340
J. A. Mogford, 8341
H. R. Sheppard, 8342
R. Ng, 8352
L. S. Ostrander, 8232
R. S. Gillespie, 3411
W. K. Cox, 3422-1 (15)
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