Development Report

RS 3410/1864
SC-DR-69-748
November 1969

A COMPARISON OF EXPERIMENTAL

AERO-THERMODYNAMICS

AND THEORETICAL AERODYNAMIC COEFFICIENTS
FOR TWO ASYMMETRICAL REENTRY VEHICLES (U)

eT i):'- 3 .': ! 'nm-!r,auon Rerwioai %

James R. Kelsey, 9325 Tk w a: “‘w:ﬁ::n—%%——
Sandia Laboratories, Albuquerque éf_’ aaaaa o Jle=———— |
| — |

- T S AT xiyrie~id
IS R s I kL

L wnterta stem (Circle Mumeetsy

ok

o 'rr"'r.\

SANDIA SYSTEMATIC DECT 4,5817; CATION !’\tVWW
. DOWNSG aDING OF DECLARSIFICATION STAMP
o o L ATION CHANGED TO. i THURITY. Jg &Q l_a_ng ‘
rrrr—————ry G '
. ) PERSON CHANGING MAZRING & DT irr‘_%x, B3y 7¢(
o ——— T i éi a
waanand PERSON VEFR YN MARRING - Tt paxen S[R3[78
K/> 3491y L6004 6(
THIS PUBLICATION CUNTAINS 3
0022 PAGES. CGPY NU. 83 ¥
o OF 0088 COPIES, SEPIES A
N TGO 3428-1 FOR  ,428-1 E
_ e EY IR LN ;’

T Y TW
Ul"‘é 'Kji JLL“LDMLL

irD

SANDIA LABORATORIES

OPERATED FOR THE UNITED STATES ATOMIC ENERGY COMMISSION BY SANDIA CORPORATION | ALBUQUERQUE, NEW MEXICO. LIVERMORE. CALIFORNIA

y & & & o\ T & &




Intentionally left blank

anilia bQiFiED

2 S




T R R ——% "

.
UNCTL.ASCSIFIED

SC-DR-69-748

A COMPARISON OF EXPERIMENTAL
AND THEORETICAL AERODYNAMIC COEFFICIENTS
FOR TWO ASYMMETRICAL REENTRY VEHICLES (U)

RS 3410/1864
)

James R, Kelsey, 9325
Sandia Laboratories, Albuquerque

November 1969

ABSTRACT (U)

Experimental and theoretical values of axial force
and pitching moment coefficients for two asymmetrical
reentry vehicles are prosented in graphical form.
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SUMMARY

Theoretical predictions of static stability and resulting trim angle of attack
for bent and warped reentry vehicles and axial force coefficients are compared with

experimental results,

It is concluded that aerodynamic coefficients for vehicles within the limits of
this study m~vy be theoretically determined to a degree of accuracy adequate for

flight dynamics analysis,
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LIST OF SYMBOLS

A Reference area, in.

CA Axial force coefficient, axial force/qu

Cm Pitching moment coefficient, pitching moment/qud

Cp Pressure coefficient, (P - P )/q

d Reference diameter, in.

L Undamaged vehicle length, in,

Ml Local Mach number

Mns Mach number normal to shock wave

M, Free stream Mach number

P Tunnel stilling chamber pressure, 1b/in.

P, Local pressure, lb/in, 2

P, Free stream pressure, lb/in, 2

a., Free stream dynamic pressure, lb/in, 2

TO Tunnel stilling chamber temperaturé, °R

X Axial distance downstream of vehicle nose, in.

a Angle of attack, pitch plane, deg

5 Distortion of warped vehicle centerline from undamaged vehicle
centerline, in,

) Model roll angle, deg

9 Angle between body and free stream velocity, deg

Y Ratio of specific heats
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A COMPARISON OF EXPERIMENTAL
AND THEORETICAL AERODYNAMIC COEFFICIENTS
FOR TWO ASYMMETRICAL REENTRY VEHICLES

Introduction

Uneven ablation, vehicle structural failure, and uneven vehiclie heating often
lead to geometrical distortions in reentry vehicles (RV's) (References 1 and 2),
These distortions in vehicle geometry may be great enough to cause a considerable
change in the aerodynamic coctficients of the vehicle, These changes include

center-of-gravity offsets and trim angles of attack.

As noted in References 1 and 2, these aerodynamic asymmetries often lead to
RV spin up and/or roll reversal, Thus, a study was undertaken to determine if the
theoretical tools presently available are capable of adequately predicting the aero-

dynamics of these asymmetrical vehicles for flight dynamics analysis.

The experimental results used for this study were obtained from Reference 3.
This experimental program, conducted by the General Electric Company, consisted

of wind tunnel tests of a sleighride RV and several damaged configurations.

Theoretical calculations were made, using the Douglas Hypersonic Arbitrary

Bod.j Computer Program (Reference 4),

Theoretical Analysis

Shown in Figure 1 are the geometrical details of the models which were stud-
ied. In order to theoretically analyze the models, it was necessary to divide them
into many small rectangles, Computer drawings of thcse resultant models are
shown in Figures 2, 3, and 4. Test conditions and reference values are listed in

Table I.
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Figure 1, Model Details
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TABLE I

Test Conditions and Reference Values

M Ps 5 To a9, 9 ¢ A22 d L
« (Ib/in, ) (°R) (lb/in. ") (deg) (in. ") (in.) (in.)
| 10.15 1725 1900 2,6 0.0 78.54 10.0 32,09

Several different theoretical methods were used on different portions of the

body. The theoretical methods used on various portions of the body were:

Impact Theory Shadow Theory
Nose (x = 0,01t00, 196) Modified Newtonian Prandtl-Meyer
Afterbody (x = 0.0196t032.09) Tangent cone Prandtl-Meyer
Base Modified Newtonian High mach number

base pressure
A brief description of these theories is given below.

Modified Newtonian

The usual form of the modified Newtonian pressure coefficient is:

C =Ksin29
p

, (1)

where 8 is the angle between the free stream velocity vector and the vector normal
to the surface of the body.

In true Newtonian flow (M = «, ¥ = 1), the parameter K is taken as 2,0, In

the various forms of modified Newtonian theory, K is given values other than 2.0

depending on the type of modified Newtonian theory used. For this study, the coef-

ficient suggested in Reference 5 was used, This coefficient is defined as:

Y+3 2 1
K= 1- —\! . (2)
Y+1[ Y+3< 2>:|
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For y=1.,4and M = 10,15, this parameter equals 1.83.

Prandtl-Meyer

This method assumes a simple, isentropic, characteristic expansion. The
smooth contoured body is approximated by a series of small step-like expansions.
The assumption that the flow conditions are constant along the emanated Mach lines
leads to the conclusion that the velocity parallel to the Mach line must be constant.
This leads to the following relationship between the body angle, 6, and the local

Mach number:

tan“1 Yo lf® -1 -tan-l Mz-l. (3)

This equation is generally referred to as the Prandtl-Meyer function, and tabulated .

values of 8 as a function of Ml can be found in References 6 and 7.

Once the local Mach number is known, the surface pressure ratio may be

calculated and, thus, the pressure'coefficient:

P
2 )

C = [ = ] ) (4)
P ym?lFe

where

. (5)

Tangent Cone

This is an empirical method using oblique shock relations (Reference 8)., A
relationship between the body angle, shock angle, and Mach number is détermined,

from which the pr:ssure coefficient may be determined:

9 -1
(v - 1)Mrls + 2
s (6)

C =2 sin2 ef1 - 5
P 4(Y + 1)M
ns
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where Mns is the Mach number normal to the surface.

High Mach Number Base Pressure

This is a simple empirical relationship which states that the base pressure

coefficient is inversely proportional to the square of the Mach number, i.e.,

c,- -1om 20 (7)

The above methods were used to predict the pressure over the various rectangular

elements which were then integrated to determine the various aerodynamic coef-

ficients,

Results and Discussion

Theoretical values of axial force coefficient, CA’ and pitching moment coef-
ficient, Cm, are compared with experimental results in Figure 5 for the undamaged
body. Excellent agreement between experimental and theoretical values for CA
were obtained throughout the angle-of-attack range. Theoretical values of Cm com-
pare very well with experimental values at « = 0 degrees, and above ¢ = 10 degrees,
but are greater than the experimental values by approximately 25 percent at

a = § degrees,

Shown in Figures 6 and 7 are comparisons of theoretical and experimental
values of CA and Cm for the two damaged configurations. Theoretical and experi-
mental axial force coefficients for both damaged configurations compare within

7 percent throughout the angle-of-attack range.

The pitching moment coefficient predicted by theory for the bent-nose config-
uration is the same as that obtained experimentally for @ = 0 degrees. Howevc.,
the initial slope of the Cm curve obtained experimentally is greater than the thcoreti-
cal value, Thus, the experimental trim angle (angle at which the moment is zero)
for the bent-nose configuration is 4 degrees, and the theoretical prediction is

5 degrees,
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A quite different trend is noticed when comparing the experimental and theo-
retical values of Cm for the warped configuration. The slopes of the two Cm curves
are almost the same, but the theoretical values are consistently higher than the
experimental values by approximately 25 percent, Thus, the theoretical trim angle

is 4 degrees and the experimental value is 3 degrees.

Therefore, for both damaged configurations, theory overpredicts the aero-

dynamic trim angle by 1 degree,

Conclusion

4n light of the above discussion, it is felt that the analytical tools which are
presently available are probably adequate for predicting the static aerodynamics
of slightly deformed bodies for the purpose of flight dynamics analysis. This
means that the theory is accurate enough to supplement, but not replace, experi-

mental methods,
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