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ABSTRACT (U)

Experimental and theoretical values of axial force
and pitching moment coefficients for two asymmetrical
reentry vehicles are pr, 3ented in graphical form.
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SUMMARY

Theoretical predictions of static stability and resulting trim angle of attack

for bent and warped reentry vehicles and axial force coefficients are compared with

experimental results.

It is concluded that aerodynamic coefficients for vehicles within the limits of

this study m:7 be theoretically determined to a degree of accuracy adequate for

flight dynamics analysis.
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A COMPARISON OF EXPERIMENTAL
AND THEORETICAL AERODYNAMIC COEFFICIENTS

FOR TWO ASYMMETRICAL REENTRY VEHICLES

Introduction

Uneven ablation, vehicle structural failure, and uneven vehicle heating often

lead to geometrical distortions in reentry vehicles (RV's) (References 1 and 2).

These distortions in vehicle geometry may be great enough to cause a considerable

change in the aerodynamic coefficients of the vehicle. These changes include

center-of-gravity offsets and trim angles of attack.

As noted in References 1 and 2, these aerodynamic asymmetries often lead to

RV spin up and/or roll reversal. Thus, a study was undertaken to determine if the

theoretical tools presently available are capable of adequately predicting the aero-

dynamics of these asymmetrical vehicles for flight dynamics analysis.

The experimental results used for this study were obtained from Reference 3.

This experimental program, conducted by the General Electric Company, consisted

of wind tunnel tests of a sleighride RV and several damaged configurations.

Theoretical calculations were made, using the Douglas Hypersonic Arbitrary

Bodj Computer Program (Reference 4).

Theoretical Analysis

Shown in Figure 1 are the geometrical details of the models which were stud-

ied. In order to theoretically analyze the models, it was necessary to diyide them

into many small rectangles. Computer drawings of these resultant models are

shown in Figures 2, 3, and 4. Test conditions and reference values are listed in

Table I.
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(a) Undamaged Configuration

(b) Bent-Nose Configuration

(c) Warped Configuration

Figure 1. Model Details
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(a) Front View

. 	 s
-=-----021111agiummIONNI

(b) Side View

Figure 2. Theoretical Model - Undamaged Configuration
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(a) Front View

(b) Side View

Figure 3. Theoretical Model - Bent Nose Configuration 
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(b) Side View

Figure 4. Theoretical Model - Warped Configuration
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TABLE I

Test Conditions and Reference Values

M
Po 	 To 	 qx 	 A2

(113/in. 2 ) 	(°R)	 (lb / in. 2 ) 	 (deg) 	 (in. 
2

) 
d 	 L

(in.) 	 (in.)    

10.15 	 1725 	 1900 	 2.6 	 0.0 	 78.54 10.0 	 32.09

Several different theoretical methods were used on different portions of the

body. The theoretical methods used on various portions of the body were:

Impact Theory Shadow Theory   

Nose (x = 0.0 to 0.196)
	

Modified Newtonian 	 Prandtl-Meyer

Afterbody (x = 0.0196 to32.09)
	

Tangent cone 	 Prandtl-Meyer

Base 	 Modified Newtonian 	 High mach number
base pressure

A brief description of these theories is given below.

Modified Newtonian

The usual form of the modified Newtonian pressure coefficient is:

C = K sin2 9 , (1)

where 9 is the angle between the free stream velocity vector and the vector normal

to the surface of the body.

In true Newtonian flow (M = cc, y = 1), the parameter K is taken as 2.0. In

the various forms of modified Newtonian theory, K is given values other than 2.0

depending on the type of modified Newtonian theory used. For this study, the coef-

ficient suggested in Reference 5 was used. This coefficient is defined as:

, Y + 3 ,rs. = 	 y +2 3 ( 1
Y + 1 	

2)] 	
(2)

14
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For y = 1.4 and M = 10.15, this parameter equals 1.83.

Prandtl-Meyer

This method assumes a simple, isentropic, characteristic expansion. The

smooth contoured body is approximated by a series of small step-like expansions.

The assumption that the flow conditions are constant along the emanated Mach lines

leads to the conclusion that the velocity parallel to the Mach line must be constant.

This leads to the following relationship between the body angle, 9, and the local

Mach number:

- e 1 	 1tan -1 41Y+1Y 	 (M2 - 	 - tan -1 1\171 2 -7. 	 (3)

This equation is generally referred to as the Prandtl-Meyer function, and tabulated

values of 9 as a function of M1 can be found in References 6 and 7.

Once the local Mach number is known, the surface pressure ratio may be

calculated and, thus, the pressure coefficient:

C = 2 	 - 	 ,ym2 /

where

P
	 Po [- 1 2 (Y1)C 	 m= 	 1 +P 	 Por 	 2	 1]or. 

Tangent Cone

This is an empirical method using oblique shock relations (Reference 8). A

relationship betweer the body angle, shock angle, and Mach number is determined,

from which the pressure coefficient may be determined:

1-1
(Y - 1)M n

2
s + 2

C = 2 sin2 
9 1

4(Y + 1)M 2ns

(4)

(5)

(6)

15
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where Mns is the Mach number normal to the surface.

High Mach Number Base Pressure

This is a simple empirical relationship which states that the base pressure

coefficient is inversely proportional to the square of the Mach number, i.e.,

C = -1. OM -2" °r.p (7)

The above methods were used to predict the pressure over the various rectangular

elements which were then integrated to determine the various aerodynamic coef-

ficients.

Results and Discussion

Theoretical values of axial force coefficient, CA, and pitching moment coef-

ficient, Cm , are compared with experimental results in Figure 5 for the undamaged

body. Excellent agreement between experimental and theoretical values for C A

were obtained throughout the angle-of-attack range. Theoretical values of C m com-
pare very well with experimental values at a = 0 degrees, and above a = 10 degrees,

but are greater than the experimental values by approximately 25 percent at

a = 5 degrees.

Shown in Figures 6 and 7 are comparisons of theoretical and experimental
values of C A and Cm for the two damaged configurations. Theoretical and experi-

mental axial force coefficients for both damaged configurations compare within

7 percent throughout the angle-of-attack range.

The pitching moment coefficient predicted by theory for the bent-nose config-

uration is the same as that obtained experimentally for a = 0 degrees. Howevk— ,
the initial slope of the C m curve obtained experimentally is greater than the theoreti-

cal value. Thus, the experimental trim angle (angle at which the moment is zero)

for the bent-nose configuration is 4 degrees, and the theoretical prediction is
5 degrees.

16
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A quite different trend is noticed when comparing the experimental and theo-

retical values of C m for the warped configuration. The slopes of the two C m curves

are almost the same, but the theoretical values are consistently higher than the

experimental values by approximately 25 percent. Thus, the theoretical trim angle

is 4 degrees and the experimental value is 3 degrees.

Therefore, for both damaged configurations, theory overpredicts the aero-

dynamic trim angle by 1 degree.

Conclusion

in light of the above discussion, it is felt that the analytical tools which are

presently available are probably adequate for predicting the static aerodynamics

of slightly deformed bodies for the purpose of flight dynamics analysis. This

means that the theory is accurate enough to supplement, but not replace, experi-

mental methods.

.4 	 .
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