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SOUND PULSE APPROXIMATIONS TO BLAST LOADING
(WITH COMMENTS ON TRANSIENT DRAG)

C. C. HUDSON, 5112

ABSTRACT

The equations of sound-pulse theory are used to calculate the overpressure
pulses on the fronts of targets with the major assumptions of (1) a plane, ideal,
shock wave; (2) diffracted waves from only nearest edges; and (3) no signal from
rear of target. Both point overpressure pulses and average overpressure pulses
are found. Corresponding experiments from both Coyote Canyon and Operation
GREENHOUSE show good to excellent agreement with theory. The significance to
transient drag of the overpressure on the front of the target is noted.
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CHAPTER 1 -- INTRODUCTION

Background

There are some problems involving the interaction of blast or shock waves with obstacles

which are sufficiently similar to the corresponding acoustic problem that, to learn pressure

distributions, one need not begin with differential equations, but may instead proceed by simi-

larity directly from acoustic or semi-acoustic solutions. The present problem, that of the dif-

fraction of a blast wave by a rectangular target, is, in certain respects, of this type. We shall

be talking about waves in which the increase in pressure is less than one atmosphere, known

as "weak" waves, but with no limit on duration.

The basic principles of the sound-pulse approximation to shock diffraction were set down

in the first End Effects report 
1

. We shall now put these principles to use in computing the

overpressures that result when a plane shock wave having the pulse shape

A(a) = 146)- (1 - a) exp (-Ca) 	 (1)

Pm

impinges normally upon the front wall of a rectangular target. In Eq 1, p m is the peak over-

pressure of the incident wave, a is a variable Vt/X t, and C is a decay constant. The asterisk

is used to signify "incident wave".

Setting Up the Problem

We assume that the ground the target rests upon is a perfectly reflecting plane. Then,

since incidence of the blast is taken as normal to the front face, the interaction may be simu-

lated by allowing the wave to impinge upon a free block in space, as shown by Fig. 1. The di-

mensions of the block length a, height 2b, and breadth c. The overpressure at any point on the

front surface is given approximately by 1

p(t) 	 2	
6 p

m
 A( 

17) A (a) 	 f ( a, n .1 ) 	 (2)i 
Pm 	 Pm A(6).il7p

where effects of fluid flow at the edges of the target are being ignored.

The symbol f (a, n i) means a function corresponding to A(a) which represents the shape

of the diffracted pulse. Again a = Vt/A and n = x/x where X is the "wave length" of the incident

pulse. We will calculate its magnitude in the next chapter. The wave length is obtained for

the incident pulse only and is used throughout to give a common length scale to the whole

t At this point we take time arbitrarily zero at the pulse front. Time for the interaction will
be discussed in more detail later. 
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• 	 problem; it does not indicate the length of the diffracted waves. The dimensionless function

fi ( a, n) gives the shape of the diffracted pulse (that is, the profile of the diffracted wave) as

it moves along a radius from the source. Here we think of n as a parameter and a as the in-

dependent variable so that f(a, 77 i ) is the a profile of the wave at n i .

The quantities V, t, and X are propagation velocity, time after the incident wave strikes

the diffracting edge, and distance along the radius, respectively. In general V = V(t) but a is

invariant; that is, in different interactions the normalized pressure in the wave is the same for

constant a. We choose the radius to lay along the face of the target so that X. 1 actually denotes

the position of a point on the target relative to a certain diffracting edge.

The position of the field point on the front surface is given by (X, Y) where Xis the

distance from the left edge and Y is the distance from the top edge. There are diffracted

waves arriving at the point (X, Y) from all four edges of the front. The relative distances are

given by

nl = x/x
71 2 = Y/X

n 3 = (a - X)/ X
77

4 = (2b - Y) /X

where X is the wavelength of the pulse. These numbers, n i .... 774 , will tell us how the

shapes of the diffracted waves have changed in moving from their origin to the point in question.

We introduce the Sommerfeld-DeWitt acoustic function for f( a, n) 1, App C which has been cal-

culated and is presented in comprehensive form in Fig. 2. This figure, along with Eqs 1 and 2

will constitute our working tools for this problem.

CHAPTER 2 -- THEORETICAL DEVELOPMENT

Determination of the Wavelength

We shall define the characteristic length of the wave motion as the length of the positive

phase of the incident wave when measured in the ground system as if the target were not there.

This length becomes the measuring unit for the interaction; it will presently be shown that this

is a sliding scale, variable in time.

Imagine that we are moving with such speed that the shock front is always at rest in our

system. From this vantage point, we can look back and see the tail of the wave (i.e., the place

where the pressure first falls to ambient). This tail slowly recedes with time because the head

6
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and tail of the wave move with speeds U and ao' respectively, with respect to the ground, a o
being ambient sound speed.

	Now consider a marker fixed in the ground system (for instance, the target). 	 The times

	

at which the head and tail of the wave coincide with it are, respectively, t 1 and t 2 . 	 The dis-

tance measured will be exactly

X(t ) =f
t2 U(t) dt,2	 t 1

and the X at any time will be given closely * by 7_

(3)

X(t) - X(t 1 ) = [U(t 2 ) - ao] (t - t 1 ). (4)

In particular, at t = t 2

X(ti) = X(t 2 ) - [U(t2 ) - a0] (t2 - t 1 )

so that t 2f /

(5)

Q(t) 	 t 1 	 U(t) dt
X(t) = 	 1[ (6)Q(t2 ) 	 -c-gt) +

2 	 Q(t 2 )

where Q(t) = [U(t) - a0] (t - t 1 ). 	 If U(t) does not vary much between t 1 and t2 , we note that

X(t) z U(t - t 1 ) + a0 (t2 - t), (7)

which is Ut+ at t2 or ao t+ at t l' where t+ = t - t1 For stronger waves, the characteristic

length X must be evaluated more accurately.

Sound-pulse theory specifies that a disturbance in a changing wave propagates with

speed V such that

V = a + u, 	 ( 8)

depending upon the sign of the gradient, a being the local sound speed and u the local fluid

speed. It also chooses a characteristic length X relative to which the distance moved by the

disturbance may be noted. The variable is, therefore, a = Vt/X. The speed of any gradient

within the incident shock wave lies between U and a o . Thus

ao< V <U 	 t 1 < t <t2 	
(9)

ao t+ < X < Ut + 	t 1 < t < t2

but if the variation of V and X is not marked (and for weak waves it is not), we may neglect it
and for the incident wave write

= t/t+.

The tail of the overpressure pulse does not move exactly at ambient sound speed but the dis-
crepancy here is not significant for our purpose. 

UNCLASSIFIED
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It is now necessary to reduce a for the diffracted waves also to a form involving explicitly the

ratio t/t÷ . Our justification for this seemingly arbitrary phrasing is to exploit the fact that

here the pulse nature of the interaction is more important than minor changes in propagation

speed. This is to say that the error A a/a due to changes in V is small:

U - ao	max error - 	 «1.

Under such conditions the diffracted pulses do not suffer significant nonlinear changes in shape

while propagating, and V— —*-1 closely.

Calculation of the Point Overpressure

Let us now obtain for two experimental examples1 2' the overpressure measured as a

function of time at a point on the front face.

The	 as mentioned before, determines the shape of the diffracted pulse; looking back

at Fig. 2, one sees that when 77 is very small the diffracted pulse has essentially the same

shape as the incident pulse and as increases the shape of the diffracted pulse becomes more

round, weaker, and longer. Early in the interval (t 2 - t 1 ) the diffracted pulse has about the

same length as the incident.

According to Eq 2, the overpressure at a point is equal to the sum of the overpressures

associated with the incident and reflected waves

2+ 	
P + 7P

o
and those associated with the diffracted waves f. (a, 77) in their proper phase relationships.

These phase relationships are rather complex, but within certain limits they can be

simplified. In terms of a, there is no problem; it is a variable incorporating changes in both

propagation velocity and characteristic length in ratio so that differences between various

partial waves are self-compensating. However, to relate sound-pulse theory to experiment,

a single time scale must be arrived at which is easy to use. The interval (t 2 - t 1 ) marks out

the part of the interaction with which we are interested. Early in this interval (one might say

"at the head of the incident wave") the diffracted waves move into an area of stagnation. Their

fronts (where they do not interact) travel exactly with local sound velocity. In the region be-

hind a reflected shock, this speed is

a	 r + 6	 4 /3 y2 + 7 
(—ao)

2 	 y

	

Yr 1 + 6yr 	 7 (10)

which, it turns out, is nearly identical to the incident shock speed

u)2	 +7 6y

UNCLASSIFIED
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for y greater than 1 but less than about 3. The approximation is the result of neglecting 7

relative to 48 y2 .

The distance traveled by the diffracted wave front during the interval t 1 to tX is
tx

X= ft 	a(t) dt
1

where the shock hits the front at time t 1 . Since a(t) is almost constant during the early part

of the interval, X = a(tx - t 1 ), and using the equivalence of a and U, the n x denoting the arrival

of the wave is
X U(tX - t 1 )

n - 	 - xx X

c7 	T tX < t <t2
where we have neglected the motion of the fluid caused by the diffracted (rarefaction) wave

itself.

As previously noted, X at the head of the wave (time t 1 ) is about ao t+ so

(tX - t 1 )nx 	 a
- (U)
 t+

U) t
a to +

tX < t <t2 .

The basic unit of time measure that we would like to use is t/t+1 which would be the same as

the unit for the incident wave. Here it is multiplied by a quantity (Wad which has a magni-

tude  
( 1 + 6y )1 /2

7
Note in the interval (at the tail of the incident wave), the propagation speed for the dif-

fracted waves is more like ao, ambient sound speed, so since X = Ut +,

ao tv= _ •
U t+

the reciprocal of the other value. Somewhere in the middle of the interval, a = tit÷. If we take

this value for simplicity, we will be making an error toward too long times at the head of the

interval and too short times at the tail. But for weak waves, the error is small and not worth

correcting.

We have now reduced our problem to a true sound-pulse representation in terms of p/p

and tit+ with propagation speed U. From this point on, we may take t 1 = 0 to simplify the

description.

UT 7"rmi w qc-IFIED

(12)

In the same part of the interval, a, the time variable for the diffracted wave is

_ Vt at iv Ut

(13)

(14)

(15)

9
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Comparison with Experiment: Point Overpressures

Let us now use Fig. 2 to make up pulses equivalent to those measured in some actual

tests. 	 sests. The target was 6 feet square and 36 feet long 1,2 , and the X.' are given in the order

X1 = distance from leading edge

X2 = distance from image of leading edge

X3 = distance from nearer end

X4 = distance from farther end.

This notation is more functional and is not intended to follow that of Chapter 1. Table I gives

the pertinent data.

TABLE I

Shot Gauge 	 Pm 	 t+ X1 X2	 X3 	 X4
No. 	 No. 	 C 	 (psi) (msec) (ft) 	 (ft) 	 (ft) 	 (ft) 	 711 	 n2 	 n3	 r74

M-11 4 1.15 7.5 47 4 8 17-1/4 18-3/4 0.06 0.12 0.261 0.284
M-11 8 1.15 7.5 47 1 11 17-1/4 18-3/4 0.015 0.067 0.261 0.284
H-2 9 1.2 8.5 58 2 10 1 35 0.024 0.122 0.012 0.427

The incident and reflected overpressures are given by the first term of Eq 2 using Eq 1
to give A(o-). The functions so computed are plotted in Fig. 3. Then from Fig. 2 the normalized
diffracted overpressures are read off at constant n as a function of Q. These overpressure

pulses are subtracted from the curve just plotted. They are put in the correct phase by com-

mencing at nit+ after the front of the pulse; the 	 are given in Table I. The complete pulses

are shown in Fig. 3. The heavy line gives the effective overpressure at the point. This com-

pares rather well with the experimental curve (the dotted line) during the first part of the pulse.

The two curves, theoretical and experimental, for M-11 diverge at about t/t + = 0.26, or
12 msec, which is too soon to expect positive pulses returning from the rear of the target.

Therefore we must conclude that the rarefaction waves arriving from the ends of the target

have been greatly weakened compared with values predicted by a two-dimensional diffraction

theory; this is due simply to divergence (lack of confinement) at the upper edge of the wave.

As an approximation, we may write from our experience that the pulse associated with a

wave having traveled more than the length of the originating edge is negligible. Thus, for M-11,

the measured overpressure is given essentially by Eq 2 using just the first two diffracted waves,

while in H-2 where pressure stations were closer to the end, three diffracted waves must be

used. Our rule of thumb must be taken for the moment as empirical. It gives a simple means
of deciding which waves to use.

T 	 r4T7TT-41D
A

11111111111111111111111111111M 10
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It is important to comment on an assumption in our synthesis, an assumption that be-

comes very significant when long shock waves hit small targets. We have assumed that the

target is so deep in the direction of motion of the wave that no signals from the rear of the

target reach the front during the positive-phase duration such as was the case at Coyote Can-

yon 1 ' 2 ; but for most nuclear explosions this is not a realistic attitude. Chapter 4 in this

report gives a brief examination of the question.

The Space-Time Diagram

The complete picture of the overpressures developed on the front of the target is given

by the space-time diagram of this area. The diagram is discussed in detail in the End Effects

reports2 3' and briefly amounts to plotting overpressure contours (or some other physically

significant variable) so that they describe the events in one direction across a surface of the

target as a function of time. The experimental overpressures (corrected for gauge aberra-

tions) were plotted directly in terms of distance (feet) and time (msecs) in these reports. Fig-

ure 4 (M-11) is a typical example. Here we shall synthesize the diagram from a knowledge

of the target geometry, the incident wave, and the sound-pulse theory. In fact, Fig. 2 is a

space (n) -time (a) diagram of the propagation of a single diffracted (rarefaction) wave.

As an example, let us choose an idealized situation where the dimension b of the (two-

dimensional) target is no = b/A = 0.10; * this will compare closely with the M-11 example where

no = 0. 09. The diagram (Fig. 5) is made with axes n and a, where n is essentially X, the dis-

tance from the leading edge, and a is essentially t, time after the shock hits the front surface.

Due to the condition that the plane incident wave strikes the plane target surface normally, the

instantaneous peak overpressure at any n due to the incident and reflected waves above is

given by the first term of Eq 2.

We have also calculated the a - 77 diagram for the back of this target (Fig. 5). The

errors involved in this process are in general greater than those for the front because waves

on the back (a) change their shape during propagation and (b) are not as strong, relatively

speaking, as the waves on the front. Nonetheless, there are occasions when such calculations

are appropriate, as will be shown in Chapter 4.

On the front, a rarefaction wave from the leading edge passes diagonally through the

field, intercepting the line n = 0.10 at a = 0.10 (Fig. 5). The image wave, having started in

an imaginary space, now enters the diagram as the reflected wave and passes through the field

no is used as a parameter characteristic of the interaction since it relates the size of the
target to the size of the wave. Usually the chosen dimension of the target is the smaller of
the two dimensions of the face most directly hit by the incident wave.

UNCLASSIFIED
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to a = 0.20 at n = 0. These features are shown by the dotted lines in Fig. 5. We shall assume

that no further signals are pertinent and proceed to compute the pressures behind the wave

fronts.

CHAPTER 3 -- NUMERICAL CALCULATIONS

Sound-Pulse Synthesis

We shall now describe in detail how to construct such diagrams. On the assumption

that we may synthesize directly from Eq 2 with constant propagation velocities, our working

formula is given by

p (t/t+ ) 	 6p 	 (tit )
r(a, 77) = 	  - 2 + 	  A(t/t+) + f 1 (t/t+, n 1 )

Pm 	 pm (tit+ ) + 7Po
(16)

f2 (t/t+, n2 ) 	f3 (t/t+, n3 ) 	f4 (t/t+, 714 )

where A(t/t+) is given by Eq 1 and the f 1 (t/t+, ri i ) by Fig. 2. We may compute either at con-

stant t/t+ or at constant n. Calculating overpressures around the target at constant tit + is

analogous to photographing the density variations as is done in the shock tube whereas calcu-

lating at constant n is analogous to making a measurement of pressure as a function of time,

such as is done by physically locating a pressure gauge on the target.

It is again pertinent to note that Fig. 2 was constructed for C = 1.0 (Eq 1) and therefore

is not exact for interactions where the incident wave has other values of the decay constant.

However, we have computed diffraction problems with different values of C (work not yet

published) and the effect of variation in C for values near unity is very small, becoming no-

ticeable only as C—, 0 or as C exceeds 5. We feel that the errors introduced by a variation

0.5 < C < 2.0 are minor compared with errors brought in by other approximations.

We must now deal with the phase relationships involved in combining several diffracted

waves with the pulse due to the incident and reflected waves. We will make use of the example

just described. Suppose we wish to compute the resultant overpressure pulse at a given value

of n in the space-time diagram, Fig. 5. The arrivals of the diffracted wave fronts relative to

t+ are given by n i = x i /x, n 2 = X/X, etc, for as many diffracted pulses as are to be used.
`4(

The overpressure (normalized by p m ) at any position behind a given diffracted wave front, i. e.,

at b i = a - rif 
is obtainable from Fig. 2. The diffracted waves begin at t = 0, coincident with

the hitting of the face of the target by the shock front. In other words, a is our basic, inde-

pendent variable; we choose a's at intervals of, say, 0.1, and for each value add up the

-131k7xCIASSIFIED
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components

has a value

then the ith

of the incident-reflected pulse and the (negative) diffracted pulses. When no a - ni

greater than zero, no diffracted wave can have arrived at that station. If a - n i > 0,

wave has arrived and contributes to the resultant overpressure.

Figure 6 shows the pressure-a curves at various values of n for the a - n diagram of

Fig. 5. These were obtained with the use of the curves of Fig. 2. To form the a - n diagram,
equal pressures were read from these drawings and plotted in Fig. 5. Notice that this front

space-time diagram is very similar to that of Fig. 4, dealing with a (measured) shock inter-

action, except that in the latter the contours at n = 0 all turn back toward earlier a. This

turning is accountable to the finite flow of fluid around the corner which, by the Bernoulli

effect, lowers the pressure in the stream. In other words, a given pressure near the edge is

found earlier with finite flow than with no flow.

In remarking about this digcrepancy, we would like to point out that the complete sound-

pulse solution contains a velocity term which at the edge goes to –.co, in the classical tradition.
We have omitted the term on the grounds that the actual flow is relatively small and the large
negative values of classical theory are not justified. *

Average from the Space-Time Diagram

When the space-time diagram for a line on the front surface has already been drawn or

when, as for experimental work, it must be drawn, a numerical method for obtaining the
average pressure is already available. 4 For sound-pulse work, however, it is not necessary
to complete the diagram if all that is desired is the average pressure. For example, let us
consider how to obtain the average pressure along a line on the front face parallel to the end
of the target, a situation often actually encountered. At any a, the pressure-distance relation-

ship along this line is found from Eq 2 by the use of the diffracted wave data of Fig. 2. Taking
►'s at equal intervals across the face rim = b/A, where b is the height of the face, we have by
the trapezoidal rule,

=°L1 [I./ 2 ro + 	 + r2 	 n -1 + i/2 rn]71 ma const

(17)

where the terms r. are the values of the sound-pulse function at the various intervals. Each

of these terms is an individual application of Eq 2 and Fig. 2, uniquely given by

r . = r(cr,ri i ).

A vortex forms at the edge which forces air flow to go around a new blunt contour; actual air
speeds are not very high at the edge.

UN CT A SFIFFD
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Repeating this computation for enough o-ts defines the average pressure-time curve for the line.

Choosing enough lines appropriately would permit obtaining the average pressure-time function

over any desired area of the target face.

Comparison with Experiment: Average Overpressure

Figure 7 shows the sound-pulse average pressure functions for shots M-11 1 and H-2 2

along with the actual average overpressure functions obtained from these experiments. The

M-11 curve includes the effects of 2 diffracted waves, and that of H-2 includes also the effect

of the third diffracted wave from the target end only 5 feet away. The shaded area represents

the usual +5 per cent error of the field measurements; but the sound-pulse curves, on this

same scale, are essentially without error. A small discrepancy almost always exists in the

establishment of the maximum overpressure.

Clearly the sound-pulse calculation is a satisfactory means of predicting the average

overpressure-time function in the case of Coyote Canyon experiments at these pressure levels

when the target is large enough to make the assumption of negligible fluid flow at corners

tenable.

Full-Scale Tests

The chief purpose of both the sound-pulse theory and the Coyote Canyon experiments is

to permit us to estimate with engineering accuracy the pressure pulses that are applied to real

targets in full-scale explosions. We naturally expect such great explosions to present rather

complex interplay of various physical effects.

There have been, however, only a few full-scale tests which could be used for evaluation

purposes and of these only one had a ratio b/A great enough to be of interest; that is, when the

ratio b/A is too small, the decaying nature of the pulse becomes unimportant. Structure 3.1.1

(36 x 52 x 194 feet) on Operation GREENHOUSE was hit almost normally on the front face by a

shock wave having approximately the parameters p = 12.5 psi, t + = 830 msec and C = 2/3.

The radius of the shock was so great compared with the size of the target that the wave front

could be considered plane.

The gauge records from this experiment were individually difficult to interpret for

several reasons: (1) there was some evidence of electronic circuitry malfunction; (2) there

was an indication that the front of the target was aflame when the shock arrived and how much

effect this had on the propagation of aerodynamic disturbances is not known; (3) since the target

was not a simple one, local disturbances undoubtedly played a part in modifying the over-

pressure pattern. However, even though no one gauge can be trusted, the whole set of gauges

that measured the movement of the system of waves over the target does give a rather good

picture of the interaction. Thus a space-time diagram was composed 3 and from it one is able

UNCLASSIFIED
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to obtain an idea of the pressure applied on a part of the target's surface at about 60 feet from

one end. The average of the space-time diagram was taken surface by surface, and the aver-

age overpressure on the front of the target is shown in Fig. 8. On the same scale, we have

presented two sound-pulse estimates, one including waves from the target ends and one not.

Again the effect of the end waves is exaggerated. Notice that the reflected shock from the

ground behind the target would have been felt at about a = 0.25 (arrow in drawing). Before

this time, only rarefaction waves are present; afterwards, the situation becomes more com-

plex as waves pass back and forth. There is apparently some small contribution from the end

waves to the real pressure; our rule of thumb would neglect them altogether.

We have computed the point overpressure on the front for two actual gauge positions.

Figure 9a shows a gauge near one end where three diffraction waves were important. Agree-

ment in magnitude is not good although timing appears to be satisfactory. Here again we are

uncertain both as to the gauge reading and to the necessary end corrections. Figure 9b shows

the best (front) gauge in the set that contributed the space-time diagram. We have (by rule of

thumb) ignored the end waves. Agreement is satisfactory.

CHAPTER 4 -- THE DRAG QUESTION

Sound-Pulse Calculation of Drag: Asymptotic Value

Let us assume that the principal contributions to drag are the average front and back

overpressures, then we have

Drag = (p f (t) - pb (t) .

We further make the assumption that

Drag = C Elq = Chip

where q and p are the dynamic pressure and static overpressure, respectively. Then

C = (13 -	 VPD	 f Pb )/P

 we shall now calculate from sound-pulse theory for a flat-topped wave.

It has previously been pointed out that in a real situation, the diffracted wave upon en-

countering an edge is diffracted around it but a negligible signal is sent back. We take this

always to be true. Thus if the strength of the diffracted wave is z, its diffracted counterpart

(18)

(19)

(20)
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is 213 z, the second diffraction gives 2/3 • 2/3z, and so on. For a flat-topped wave in the

limit of a—000, we find on the front face the approximation to the average overpressure

pf/L [2 7+y1 + 2 [-2/3 + 2/3

and on the back

(22)

The difference is merely the first bracket. The drag coefficient is then

CD [2 + 66y÷-yll /K (23)

where K is the ratio of dynamic pressure to static overpressure in the incident wave. It was

found that in the first End Effects report 1 that (for -y = 1.4)

- 1K= 2. 5 y 
y + 6 •

Thus

C D = [2 + 6 	 - 1/2 5(3; - 1 )6 + y 	 • 	 , + 6

2 [1/(Y - 1) + 3]2.5 	 y + 6

The wave analysis thus gives in a first approximation a drag coefficient of co for y--.11 and in the

limit, y-►00, it oes to 3. 2. This equation gives much too high values. The difficulty can be
- 1traced to the 6 	 + 	 term, which says that the nonlinear increase in overpressure at the6 

target front due to stopping the blast wave persists as a—∎ 00. Partially the discrepancy is also

DeWitt 6 has shown that the velocity potential of the diffracted wave is

cD. = 1tan -1 	 sin € 7T sinh eb 
7r 	 cos E(P - p.) - cos €7rcosh En

in the region 7r+ pi< sti <7r/€ where p is the angle at the field point, p , is the angle of incidence,

E m/n and b = cosh -1 (Q/ri). If we let o•—∎ oo, b—,co but the limit of the argument remains

finite and is tamer. In our case m/n = 2/3 because the exterior angle of the wedge is 270 0 .

Thus CD= 2/3. It was shown in the first End Effects report 1 that CD= p/pm so that the peak

overpressure in the limit of small 77 approaches 2/3p m for one diffraction. We call

3pm = z the strength of the diffracted wave.
From both theory and experiment the infinite limit at y— , 1 appears to be proper.

pb/Pm = 2 [2/3 - 2/3 • 2/3

2/3 • 2/3 - 2/3 • 2/3 • 2/3 • 2/3 • 2/3 +....]

• 2/3 + 2/3 • 	 2/3 • 2/3 • 2/3 • 2/3 - 	 ....]

(24)

(25)
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due to the assumption of no interference between front and back faces. We know experimental-

ly that the limit is, instead, the stagnation or total pressure. In our case it consists of the

static pressure present in the wave and the dynamic pressure. Thus the overpressure on the

front, including the effect of the diffracted waves, goes to 1 + 2. 5( y
Y 

- 1) . The difference

between this and the wave formula must be due to terms arising from flow alone, i.e.

Y + 6[2 + 6 y - + 2 [-2/3 + 2/3 • 2/3 • 2/3 - 2/3 • 2/3 • 2/3 • 2/3 • 2/3 + ....]+ R f (y)

= 1 + 2. 5 (Y - 1)ky + 6

The first part of this equation may be called the elastic t terms and Rf (y) the inertial part.

Similarly on the back we should find
.71.t 	 -41E3 E(- '- (-0(71114- 	( • 1)11L Z/3)T 	 • • • (- imh2) Tt 4 	 • ' • 	 3
2[2/3 - 2/3 • 2/3 • 2/3 + 2/3 • 2/3 • 2/3 • 2/3 • 2/3 - ....] + R b (y) = base overpressure,(27)

--(9/4/1-q773)1 = 	 IV);
but unfortunately we do not know what the base overpressure ought to be. Making the assump-

tion that the base overpressure is given by the elastic terms the drag coefficient becomes

CD 
= [1 +

7
 2. , Y

5 (y
+ b
- -)]/I‹ = 1 + 2. y y 6 ( 	1) • 	 (28)

- 1 	 + 

--ife-C"--- 1 Vii 1- ' 1'1 Wit ))/K
Again at y = 1 (the acoustic -limit) the drag coefficient goes to co but at y-►co, it now limits at

1.40, which is a more reasonable range. Table III gives some values computed from this for-

mula for various y.

TABLE III

	y 	1	 2	 3 	 4 	 5 	 10 

	

C D 	 co 	 --47-iL0- -27-80 	 •733 	 2.-10 	 1:71
ob 	 11.1-1(1 	 1 , 111 	 1,101 	 I,DYS 	 I' 0) 1

Actually this calculation of the drag coefficient is valueless for any practical work. It

merely shows that for the case of a flat-topped (step) pulse acting on a long square member,

in the a --■co limit, our drag coefficient has a reasonable range of values. The front over-

pressure is the dominant contribution to the drag. Note the inconsistancy in using only the elastic

terms on the back as a-oco.

Drag for a Decaying Wave

If we do not take the limiting case o- -,co and if we look again at decaying waves, the

problem becomes rather more complex. Let us consider both the elastic and inertial parts.

This notation is due to Dr. John S. McNown, University of Michigan, consultant to Sandia
Corporation.

UNCLASSIFIED
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The drag is now defined as

Drag = C D q (a) 	 (29)

*
where q (a)is the dynamic pressure in the incident wave as a function of a (time). The front

average overpressure is given by

= 2 + 
6 pm A (a) ]

k(a) + 	 fi (a, T)+ Rf (a, n, pm )
Pm 	 pm A(a) +9Po 	 Ave

where now the inertial part Rf must consist of two types of terms, the usual one in V2 and a

new one in dV/dtt to account for the fact that the wave is decaying. The diffracted waves of

all kinds are included in the Z fi term and the phase relationships here must be carefully con-

sidered. The back average overpressure is given less accurately by

Pb
f. (a, ri)	 Rb (a, rt, %.1 )}

Pm 	 Ave
(31)

where f. (a, n) is the back wedge counterpart to the front wedge function already used and where

Rb (u, n, pm ) stems from the flow associated with these waves. Neither of these quantities can

be expected to be exact but at least one can hope to be able to calculate them eventually.

Digressing a moment, and going back to the interval (t 2 - t 1 ), which designates the time

of interaction, it seems obvious that early in the interval (near t 1 or at the head of the wave),

the elastic terms will always be predominant. Now it appears that a certain relative time

might be needed to set up the inertial flow. So if the ratio no = L/X is large, where L is the

characteristic dimension of the target, then perhaps throughout the interval the elastic terms

will dominate. But certainly, as no becomes smaller, there will be a transition from elastic

to inertial terms and if no is small enough, the inertial terms will dominate the interval. We

might present in these words the usual drag relationships (Table IV).

TABLE IV

n large 	 no medium 	 no small

Elastic 	 Elastic -inertial 	 Inertial

Pure diffraction 	 Mixed 	 Pure drag

t From Dr. John S. McNown.

(30)

T T1\77 A rN..,C.:4 1-7.4 TVT),
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Our asymptotic approximation to drag might be said to be in the no small limit. The

most difficult range in which to calculate, and the most important in actual target analysis,

is the middle range of mixed interaction. The Coyote Canyon experiments fall in the pure

diffraction range. Note that in each case there is some diffraction and some drag. Our ranges

merely indicate which effect dominates the interaction interval (t2 - t 1 ).

Returning now to the drag coefficient, it is calculated by

ISf (a) - pm (a)
CD (o-)  	 (32)

cim (a)

These quantities cannot be readily obtained algebraically, but we can get p f (a) and pb (g) by

semigraphical procedures using the space-time diagram. We can then describe in general

terms what CD (g) must look like.

The first phase will depend only on the diffraction or elastic terms. The curve C D (cr)

must begin at

[2 + 6 (y - 1y 6 )]/2. 5 (Y 1 ) - O. 80(Y  6 )+ *K 20y + 6 	 y - 1 (33)

and decrease rapidly to a minimum. The minimum is caused by the reflection of the com-

pression wave at the back and its arrival at the front. Whether or not this minimum is nega-

tive depends upon the target depth. If waves from the rear are delayed long enough, the full

effect of the rarefaction waves will be felt and the overpressure will go negative. If waves

from the rear arrive sooner, they will more or less neutralize the effect of the rarefaction

waves and the drag minimum will be less negative or may even be positive.

Following this minimum we should expect oscillations of rather large amplitude which

rapidly die out. These oscillations are caused by the movement of the rarefaction and com-

pression waves around the target out of phase. The period should be approximately 2T I from

a consideration of the interplay of the diffracted waves.

The final phase of the drag interaction is the leveling off of C D (g) to a more or less steady

value. At some time the dv/dt term should play a prominent role but eventually this effect

should die out leaving the time-independent steady-state drag coefficient.

All of these phases may or may not occur within the positive phase interval (t 2 - t 1 ) of

the interaction. We have demonstrated that the first phase (ahead of the first minimum) is

principally elastic in nature by showing that the elastic terms suffice as a means of arriving

The dimensionless time unit 't is defined as tit x where tx is the time required by the wave
front to travel the height of the target, hill.

SI) \ A ' -'-IFT7DTIC I"
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at experimental results. While the diffracted waves are encircling the target, inertial effects

begin to be set up as the waves die out (second phase) and eventually (third phase) the inter-

action is almost entirely inertial. Small-scale experiments do not give us clear-cut drag data

when the second and third phases occur in the negative phase of the incident wave (that is, for

times greater than t 2 ). Thus we must go to the full-scale tests for experimentation.

Numerical Calculations

By the methods outlined in this report one can arrive at a sound pulse estimate of the

actual drag force at any section of the target. The estimate is, of course, best for weak blast

interactions, best for only the first part of the interaction, and best either close to the target

end or far from it, so that the divergence of the end waves is not an uncertainty. We have

determined the drag coefficient to its first minimum for M-11, H-2, and GREENHOUSE 3.1.1

by sound-pulse methods. The measured drag coefficients (from the second End Effects report) 3

are given in Fig. 10; the calculated values are indicated by dashed lines. One should remem-

ber that the sound pulse calculation assumes no interference between front and back, which is

not true for GREENHOUSE 3. 1. 1.

A preliminary effort to obtain the dv/dt effect has been made by Prof. John S. McNown

of the University of Michigan. His result has been communicated (privately) to the author in

the case of GREENHOUSE 3.1.1. The horizontal line in Fig. 10 is his estimate of the drag,

using his corrections. The range of its applicability is not well fixed.

CHAPTER 5 -- CONCLUSIONS

We have tried to present in a simple manner the accomplishments of a similarity theory

of blast diffraction. Mostly the theory has been developed intuitively, and its physical back-

grounds are not very firmly established. Within the range of its application, however, it can

serve as an engineering procedure. The tedious numerical and graphical work that is neces-

sary to get, for instance, an average pressure-time curve can be eliminated entirely by the

use of a simple electronic computor. A prototype has already been tested and has proved

entirely satisfactory. In principle we can expect to be able to calculate any of the quantities

described in this report in a matter of seconds with a machine as simple as a slide rule.

Many of the difficulties associated with this study will be remembered by the reader.

Among them are:

(a) Restriction to incidence in the plane of the target cross section

(b) Omission of fluid flow

(c) Noninteraction of diffracted waves

UNCLASSIFIED
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(d) Restrictions to weak waves
	 T11,717 SF:MED

(e) No description of the transition from elastic to inertial states

(f) Divergence of end waves.

We are hoping to be able to set the theory on a more realistic physical foundation, at

which time some of these difficulties will disappear.

C. C. HUDSON, 5112

Case No. 408. 01
August 3, 1955
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