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ABSTRACT

The equations of sound-pulse theory are used to calculate the overpressure ,
pulses on the fronts of targets with the major assumptions of (1) a plane, ideal, -
shock wave; (2) diffracted waves from only nearest edges; and (3) no signal from -k
rear of target. Both point overpressure pulses and average overpressure pulses
are found, Corresponding experiments from both Coyote Canyon and Operation :
GREENHOUSE show good to excellent agreement with theory. The significance to £
transient drag of the overpressure on the front of the target is noted. 4
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CHAPTER 1 -- INTRODUCTION

Background

There are some problems involving the interaction of blast or shock waves with obstacles
which are sufficiently similar to the corresponding acoustic problem that, to learn pressure
distributions, one need not begin with differential equations, but may instead proceed by simi-
larity directly from acoustic or semi-acoustic solutions. The present problem, that of the dif-
fraction of a blast wave by a rectangular target, is, in certain respects, of this type. We shall
be talking about waves in which the increase in pressure is less than one atmosphere, known

as "'weak' waves, but with no limit on duration.

The basic principles of the sound-pulse approximation to shock diffraction were set down
1
in the first End Effects report . We shall now put these principles to use in computing the

overpressures that result when a plane shock wave having the pulse shape

A(0) =f;—(0—)=(1 - 0) exp (-Co) (1)

Pm
impinges normally upon the front wall of a rectangular target. In Eq 1, ;m is the peak over-
pressure of the incident wave, o is a variable Vt/A ', and C is a decay constant. The asterisk

is used to signify "incident wave''.

Setting Up the Problem

We assume that the ground the target rests upon is a perfectly reflecting plane. Then,
since incidence of the blast is taken as normal to the front face, the interaction may be simu-
lated by allowing the wave to impinge upon a free block in space, as shown by Fig. 1. The di-
mensions of the block length a, height 2b, and breadth ¢. The overpressure at any point on the

front surface is given approximately by1

b3
) 6p._ Ao) '
BY) fio, m) =2 + 20— a(0) £ (g, 1) (2)
i’;m : pm A(o')-‘.7Pov;

where effects of fluid flow at the edges of the target are being ignored.

The symbol f (g, ni) means a function corresponding to A(c) which represents the shape
of the diffracted pulse. Again o= Vt/X and n = X/x where 2 is the "'wave length' of the incident
pulse. We will calculate its magnitude in the next chapter. The wave length is obtained for

the incident pulse only and is used throughout to give a common length scale to the whole

t

. At this point we take time arbitrarily zero at the pulse front. Time for the interaction will

be discussed in more detail later. _
UNCLASSIFIED
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problem; it does not indicate the length of the diffracted waves. The dimensionless function
fi (g, n) gives the shape of the diffracted pulse (that is, the profile of the diffracted wave) as
it moves along a radius from the source. Here we think of n as a parameter and ¢ as the in-

dependent variable so that f(g, r;i) is the o profile of the wave at n;-

The quantities V, t, and X are propagation velocity, time after the incident wave strikes
the diffracting edge, and distanéé along the radius, respectively. In general V = V(t) but o is
invariant; that is, in differegt interactions the normalized pressure in the wave is the same for
constant g. We choose the r%diqs_;co lay along the face of the target so that Xi actually denotes

the position of a point on the target relative to a certain diffracting edge.

The position of the field point on the front surface is given by (X, Y) where X is the
distance from the left edge and Y is the distance from the top edge. There are diffracted

waves arriving at the point (X, Y) from all four edges of the front. The relative distances are

given by
ny = X/
UP Y/
7'73 = (a - X)/A-
where X is the wavelength of the pulse. These numbers, My veee Ty will tell us how the

shapes of the diffracted waves have changed in moving from their origin to the point in question.

1, App C

We introduce the Sommerfeld-DeWitt acoustic function for f(qg, )™’ which has been cal-

culated and is presented in comprehensive form in Fig. 2. This figure, along with Eqs 1 and 2

will constitute our working tools for this problem.

CHAPTER 2 -- THEORETICAL DEVELOPMENT

Determination of the Wavelength

We shall define the characteristic length of the wave motion as the length of the positive
phase of the incident wave when measured in the ground system as if the target were not there.
This length becomes the measuring unit for the interaction; it will presently be shown that this

is a sliding scale, wvariable in time.

Imagine that we are moving with such speed that the shock front is always at rest in our
system. From this vantage point, we can look back and see the tail of the wave (i.e., the place

where the pressure first falls to ambient). This tail slowly recedes with time because the head
~
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and tail of the wave move with speeds U and a';', respectively, with respect to the ground, a,

being ambient sound speed.

Now consider a marker fixed in the ground system (for instance, the target). The times
at which the head and tail of the wave coincide with it are, respectively, t and tye The dis-

tance measured will be exactly

Alt,) =jt't12 Ut) dt, (3)
2

and the A at any time will be given closely* by

-

A(t) - Mey) = [Ulty) -a ] (t - t)). (4)
In particular, att =t,
Mtg) = Mty) - [Ulty) - a ] (&, - t)) (5)
so that ftz ,
M) = Q) |8 4 b vma (6)

Q(tz) Q(tz)
where Q(t) = [U(t) - ao] (t - tl)' If U(t) does not vary much between t and ty, we note that
M) = Ut - t) +a (ty - 1), 7 (.7)

which is Ut+ at t2 or a t+ at t., where t+ = t2 - tl. For stronger waves, the characteristic

1)
length A must be evaluated more accurately.
Sound-pulse theory specifies that a disturbance in a changing wave propagates with

speed V such that

P . N P

V=a+tu, (8)
depending upon the sign of the gradient, a being the local sound speed and u the local fluid
speed. It also chooses a characteristic length ) relative to which the distance moved by the
disturbance may be noted. The variable is, therefore, o= Vt/x. The speed of any gradient
within the incident shock wave lies between U and a,. Thus

ao< v<gU 1:1<t<'c2

<
aot+<)t<Ut+ . tl 1:<1:2

but if the variation of V and X is not marked (and for weak waves it is not), we may neglect it

(9)

and for the incident wave write

o= t/t+.

*
The tail of the overpressure pulse does not move exactly at ambient sound speed but the dis-

crepancy here is not significant for our purpose. ~
UNCLASSIFIED
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It is now necessary to reduce ¢ for the diffracted waves also to a form involving explicitly the
ratio t/t+. Our justification for this seemingly arbitrary phrasing is to exploit the fact that
here the pulse nature of the interaction is more important than minor changes in propagation
speed. This is to say that the error A o/c due to changes in V is small:
U-a
0
U

Under such conditions the diffracted pulses do not suffer significant nonlinear changes in shape

max error = <<1,

while propagating, and -IYI- —1 closely.

Calculation of the Point Overpressure

X - 1,2
Let us now obtain for two experimental examples™ “ the overpressure measured as a

function of time at a point on the front face.

The n, as mentioned before, determines the shape of the diffracted pulse; looking back
at Fig. 2, one sees that when n is very small the diffracted pulse has essentially the same
shape as the incident pulse and as increases the shape of the diffracted pulse becomes more
round, weaker, and longer. Early in the interval (t2 - tl) the diffracted pulse has about the

same length as the incident,

According to Eq 2, the overpressure at a point is equal to the sum of the overpressures
associated with the incident and reflected waves
6p
2 + E—m—
P + 7PO
and those associated with the diffracted waves fi (o, n) in their proper phase relationships.

These phase relationships are rather complex, but within certain limits they can be
simplified. In terms of ¢, there is no problem; it is a variable incorporating changes in both
propagation velocity and characteristic length in ratio so that differences between various
partial waves are self-compensating. However, to relate sound-pulse theory to experiment,

a single time scale must be arrived at which is easy to use. The interval (t2 - tl) marks out
the part of the interaction with which we are interested. Early in this interval (one might say
"at the head of the incident wave'') the diffracted waves move into an area of stagnation. Their

fronts (where they do not interact) travel exactly with local sound velocity. In the region be-

hind a reflected shock, this speed is

a_~2= y,. +6 _4j3y? 47 - 10)
a " Ie\T+ 6y _J~ 7
o) T
which, it turns out, is nearly identical to the incident shock speed
(E) =118 (11)
ICLASSIFIED
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for y greater than 1 but less than about 3. The approximation is the result of neglecting 7

relative to 48 ,y2.

The distance traveled by the diffracted wave front during the interval 1:1 to tX is

t
x= L% a)at (12)
1

where the shock hits the front at time t Since a(t) is almost constant during the early part

1

of the interval, X = a(t, - tl), and using the equivalence of a and U, the Ny denoting the arrival

X
of the wave is
Ult,, - t,)
XX 1
SR - (13)
In the same part of the interval, o, the time variable for the diffracted wave is
_Vt_at_ Ut
CTXEYY tx< <t

where we have neglected the motion of the fluid caused by the diffracted (rarefaction) wave

itself.

As previously noted, A at the head of the wave (time t;)is about a_t so

. ’ (tx-tl)
My = (a_i) t+ ?

_(U\ ¢
o= (a_> T tX< t <t2.
[e) +

(14)

The basic unit of time measure that we would like to use is t/t+, which would be the same as

the unit for the incident wave. Here it is multiplied by a quantity (U/ ao) which has a magni-

1/2
tude (1 + 6y)

7

Note in the interval (at the tail of the incident wave), the propagation speed for the dif-

fracted waves is more like a ambient sound speed, so since A = Ut+,

a

o=-2
U t,

the reciprocal of the other value. Somewhere in the middle of the interval, o = t/t+. If we take
this value for simplicity, we will be making an error toward too long times at the head of the
interval and too short times at the tail. But for weak waves, the error is small and not worth

correcting.

%
We have now reduced our problem to a true sound-pulse representation in terms of p/pm
and t/t + with propagation speed U. From this point on, we may take t, = 0 to simplify the

description.

UNCL ASSIFIED
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Comparison with Experiment: Point Overpressures

Let us now use Fig. 2 to make up pulses equivalent to those measured in some actual

tests. The target was 6 feet square and 36 feet longl’ 2, and the Xi's are given in the order

X, = distance from leading edge

1
X2 = distance from image of leading edge
X3 = distance from nearer end
X4 = distance from farther end.

This notation is more functional and is not intended to follow that of Chapter 1, Table I gives

the pertinent data.

TABLE I

%k
Shot Gauge Pm ty X1 X2 X3 X4
No. _No. C  (psi) (msec) (ft) (ft) (ft) (ft) m M2 3 N4
M-11 4 1.15 7.5 47 4 8 17-1/4 18-3/4 0.06 0.12 0.261 0,284
M-11 8 1.15 7.5 47 1 11 17-1/4 18-3/4 0.015 0.067 0.261 0.284
H-2 9 1.2 8.5 58 2 10 1 35 0.024 0.122 0.012  0.427

The incident and reflected overpressures are given by the first term of Eq 2 using Eq 1
to give Alg). The functions so computed are plotted in Fig. 3. Then from Fig. 2 the normalized
diffracted overpressures are read off at constant n as a function of . These overpressure
pulses are subtracted from the curve just plotted. They are put in the correct phase by com-
mencing at n;t_ after the front of the pulse; the n; are given in Table I. The complete pulses
are shown in Fig. 3. The heavy line gives the effective overpressure at the point. This com-

pares rather well with the experimental curve (the dotted line) during the first part of the pulse.

The two curves, theoretical and experimental, for M-11 diverge at about t/t+ = 0,26, or
12 msec, which is too soon to expect positive pulses returning from the rear of the target.
Therefore we must conclude that the rarefaction waves arriving from the ends of the target
have been greatly weakened compared with values predicted by a two-dimensional diffraction

theory; this is due simply to divergence (lack of confinement) at the upper edge of the wave.

As an approximation, we may write from our experience that the pulse associated with a
wave having traveled more than the length of the originating edge is negligible. Thus, for M-11,
the measured overpressure is given essentially by Eq 2 using just the first two diffracted waves,
while in H-2 where pressure stations were closer to the end, three diffracted waves must be

used. Our rule of thumb must be taken for the moment as empirical. It gives a simple means

TMCT ASSIFIED
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Fig. 3 -- Pressure pulses from Coyote Canyon experiments
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It is important to comment on an assumption in our synthesis, an assumption that be-
comes very significant when long shock waves hit small targets. We have assumed that the
target is so deep in the direction of motion of the wave that no signals from the rear of the
target reach the front during the positive-phase duration such as was the case at Coyote Can-
yonl’ 2; but for most nuclear explosions this is not a realistic attitude., Chapter 4 in this

report gives a brief examination of the question.

The Space-Time Diagram -

The complete picture of the overpressures developed on the front of the target is given
by the space-time diagram of this area. The diagram is discussed in detail in the End Effects
reportéz’ 3 and briefly amounts to plotting overpressure contours (or some other physically
significant variable) so that they describe the events in one direction across a surface of the
target as a function of time. The experimental overpressures (corrected for gauge aberra-
tions) were plotted directly in terms of distance (feet) and time (msecs) in these reports. Fig-
ure 4 (M-11)is a typical example. Here we shall synthesize the diagram from a knowledge
of the target geometry, the incident wave, and the sound-pulse theory. In fact, Fig. 2 isa

space (n) -time (o) diagram of the propagation of a single diffracted (rarefaction) wave.

As an example, let us choose an idealized situation where the dimension b of the (two-
dimensional) target is Ny = b/x = 0. 10;* this will compare closely with the M-11 example where
Mo = 0. 09. The diagram (Fig. 5) is made with axes n and o, where n is essentially X, the dis-
tance from the leading edge, and o is essentially t, time after the shock hits the front surface.
Due to the condition that the plane incident wave strikes the plane target surface normally, the
instantaneous peak overpressure at any n due to the incident and reflected waves above is

given by the first term of Eq 2.

We have also calculated the o - n diagram for the back of this target (Fig. 5). The
errors involved in this process are in general greater than those for the front because waves
on the back (a) change their shape during propagation and (b) are not as strong, relatively
speaking, as the waves on the front. Nonetheless, there are occasions when such calculations

are appropriate, as will be shown in Chapter 4.

On the front, a rarefaction wave from the leading edge passes diagonally through the
field, intercepting the line n = 0.10 at o = 0.10 (Fig. 5). The image wave, having started in

an imaginary space, now enters the diagram as the reflected wave and passes through the field

%
No is used as a parameter characteristic of the interaction since it relates the size of the
target to the size of the wave. Usually the chosen dimension. of the target is the smaller of
the two dimensions of the face most directly hit by the incident wave.

UNCLASSIFIED
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to o =0.20 at n = 0. These features are shown by the dotted lines in Fig. 5. We shall assume
that no further signals are pertinent and proceed to compute the pressures behind the wave

fronts.

CHAPTER 3 -- NUMERICAL CALCULATIONS

Sound-Pulse Synthesis -

We shall now describe in detail how to construct such diagrams. On the assumption
that we may synthesize directly from Eq 2 with constant propagation velocities, our working

formula is given by

P(/L,) 6p_, (t/1,)
P P, (t/t) + 7P

m
(16)

+1, (t/t,, ny) + 15 (t/t,, ng) + 1, (t/t,, ny)

where A(t/t ) is given by Eq 1 and the f; (t/t,, n,) by Fig. 2. We may compute either at con-
stant t/t+ or at constant n. Calculating overpressures around the target at constant t/t+ is
analogous to photographing the density variations as is done in the shock tube whereas calcu-
lating at constant n is analogous to making a measurement of pressure as a function of time,

such as is done by physically locating a pressure gauge on the target.

It is again pertinent to note that Fig. 2 was constructed for C = 1.0 (Eq 1) and therefore
is not exact for interactions where the incident wave has other values of the decay constant.
However, we have computed diffraction problems with different values of C (work not yet
published) and the effect of variation in C for values near unity is very small, becoming no-
ticeable only as C—0 or as C exceeds 5. We feel that the errors introduced by a variation

0.5 < C < 2.0 are minor compared with errors brought in by other approximations.

We must now deal with the phase relationships involved in combining several diffracted
waves with the pulse due to the incident and reflected waves. We will make use of the example
just described. Suppose we wish to compute the resultant overpressure pulse at a given value
of n in the space-time diagram, Fig. 5. The arrivals of the diffracted wave fronts relative to
t, are given by n; = Xl/k, n, = Xz/)t, etc, for as many diffracted pulses as are to be used.

The overpressure (normalized by pm) at any position behind a given diffracted wave front, i.e.,
at bi =0~ is obtainable from Fig. 2. The diffracted waves begin at t = 0, coincident with
the hitting of the face of the target by the shock front. In other words, o is our basic, inde-

pendent variable; we choose o's at intervals of, say, 0.1, and for each value add up the

UMNCLASCIFIED
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components of the incident-reflected pulse and the (negative) diffracted pulses, When no o - n,

has a value greater than zero, no diffracted wave can have arrived at that station. If o - n; > 0,

then the ith wave has arrived and contributes to the resultant overpressure,

Figure 6 shows the pressure-o curves at various values of n for the ¢ - n diagram of
Fig. 5. These were obtained with the use of the curves of Fig. 2. To form the ¢ - n diagram,
equal pressures were read from these drawings and plotted in Fig. 5. Notice that this front
space-time diagram is very similar to that of Fig. 4, dealing with a {(measured) shock inter-
action, except that in the latter the contours at n = 0 all turn back toward earlier ¢. This
turning is accountable to the finite flow of fluid around the corner which, by the Bernoulli
effect, lowers the pressure in the stream, In other words, a given pressure near the edge is

found earlier with finite flow than with no flow,

In remarking about this discrepancy, we would like to point out that the complete sound-
pulse solution contains a velocity term which at the edge goes t0 —w, in the classical tradition.
We have omitted the term on the grounds that the actual flow is relatively small and the large

negative values of classical theory are not justified, *

Average from the Space-Time Diagram

When the space-time diagram for a line on the front surface has already been drawn or
when, as for experimental work, it must be drawn, a numerical method for obtaining the '
average pressure is already available, 4 For sound-pulse work, however, it is not necessary
to complete the diagram if all that is desired is the average pressure. For example, let us
consider how to obtain the average pressure along a line on the front face parallel to the end
of the target, a situation often actually encountered. At any o, the pressure-distance relation-
ship along this line is found from Eq 2 by the use of the diffracted wave data of Fig. 2. Taking
n's at equal intervals across the face M = b/A, where & is the height of the face, we have by

the trapezoidal rule,

P _4n .
(*m) i [1/2 To+T1+T2...T  +i/2 rn] (17)
P o const

where the terms I"i are the values of the sound-pulse function at the various intervals., Each

of these terms is an individual application of Eq 2 and Fig. 2, uniquely given by

r; = »I"(o, ;).

* A vortex forms at the edge which forces air flow to go around a new blunt contour; actual air
speeds are not very high at the edge.
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Repeating this computation for enough o's defines the average pressure-time curve for the line.
Choosing enough lines appropriately would permit obtaining the average pressure-time function

over any desired area of the target face.

Comparison with Experiment: Average Overpressure

Figure 7 shows the sound-pulse average pressure functions for shots M-111 and H-2

along with the actual average overpressure functions obtained from these experiments. The
M-11 curve includes the effects of 2 diffracted waves, and that of H-2 includes also the effect
of the third diffracted wave from the target end only 5 feet away. The shaded area represents
the usual +5 per cent error of the field measurements; but the sound-pulse curves, on this
same scale, are essentially without error. A small discrepancy almost always exists in the

establishment of the maximum overpressure.

Clearly the sound-pulse calculation is a satisfactory means of predicting the average
overpressure-time function in the case of Coyote Canyon experiments at these pressure levels

when the target is large enough to make the assumption of negligible fluid flow at corners

tenable,

Full-Scale Tests

The chief purpose of both the sound-pulse theory and the Coyote Canyon experiments is
to permit us to estimate with engineering accuracy the pressure pulses that are applied to real
targets in full-scale explosions., We naturally expect such great explosions to present rather

complex interplay of various physical effects.

There have been, however, only a few full-scale tests which could be used for evaluation
purposes and of these only one had a ratio b/X great enough to be of interest; that is, when the
ratio b/X is too small, the decaying nature of the pulse becomes unimportant. Structure 3.1.1
(36 x 52 x 194 feet) on Operation GREENHOUSE was hit almost normally on the front face by a
shock wave having approximately the parameters ;m = 12. 5 psi, t, = 830 msec and C = 2/3.
The radius of the shock was so great compared with the size of the target that the wave front

could be considered plane.

The gauge records from this experiment were individually difficult to interpret for
several reasons: (1)there was some evidence of electronic circuitry malfunction; (2) there
was an indication that the front of the target was aflame when the shock arrived and how much
effect this had on the propagation of aerodynamic disturbances is not known; (3) since the target
was not a simple one, local disturbances undoubtedly played a part in modifying the over-
pressure pattern. However, even though no one gauge can be trusted, the whole set of gauges
that measured the movement of the system of waves over the target does give a rather good

picture of the interaction. Thus a space-time diagram was composed3 and from it one is able

UNCLASCIFIED
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to obtain an idea of the pressure applied on a part of the target's surface at about 60 feet from
one end. The average of the space-time diagram was taken surface by surface, and the aver-
age overpressure on the front of the target is shown in Fig. 8. On the same scale, we have
presented two sound-pulse estimates, one including waves from the target ends and one not.
Again the effect of the end waves is exaggerated. Notice that the reflected shock from the
ground behind the target would have been felt at about ¢ = 0. 25 (arrow in drawing). Before
this time, only rarefaction waves are present; afterwards, the situation becomes more com-
plex as waves pass back and forth, There is apparently some small contribution from the end

waves to the real pressure; our rule of thumb would neglect them altogether.

We have computed the point overpressure on the front for two actual gauge positions.
Figure 9a shows a gauge near one end where three diffraction waves were important. Agree-
ment in magnitude is not good although timing appears to be satisfactory. Here again we are
uncertain both as to the gauge reading and to the necessary end corrections. Figure 9b shows
the best (front) gauge in the set that contributed the space-time diagram. We have (by rule of

thumb) ignored the end waves. Agreement is satisfactory.

CHAPTER 4 -- THE DRAG QUESTION

Sound-Pulse Calculation of Drag: Asymptotic Value

Let us assume that the principal contributions to drag are the average front and back

overpressures, then we have
Drag = (;')f(t) - ﬁb@ . (18)

We further make the assumption that

Drag = CDq = Cbp (19)
* %
where q and p are the dynamic pressure and static overpressure, respectively. Then

which we shall now calculate from sound-pulse theory for a flat-topped wave.

It has previously been pointed out that in a real situation, the diffracted wave upon en-
countering an edge is diffracted around it but a negligible signal is sent back. We take this

always to be true. Thus if the strength of the diffracted wave is z, its diffracted counterpart
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is 2/3 z', the second diffraction gives 2/3 - 2/3z, and so on. For a flat-topped wave in the

limit of o0 —w, we find on the front face the approximation to the average overpressure
f)f/;m = [2+§g#1—)] +2[-2/3+2/3-2/3-2/3-2/3-2/3-2/3-2/3-2/3+....] (21)
and on the back

p/py, =2[2/3-2/3-2/3-2/3+2/3:2/3-2/3-2/3-2/3-....] (22)
The difference is merely the first bracket. The drag coefficient is then

cp - [2 + %%1—)] /K (23)

where K is the ratio of dynamic pressure to static overpressure in the incident wave, It was

found that in the first End Effects r'eport1 that (for v = 1.4)

=' y-1
K 2.5y+6. (24)
Thus
- y-1 y-1
Cp = [2+66+y]/2.5(y+6> (25)

o5 =)+ ]

The wave analysis thus givesin a first approximation a drag coefficient of © for y — 1t and in the

traced to the 6

target front due to stopping the blast wave persists as 0 —w. Partially the discrepancy is also

limit, y—, it goes to 3. 2. This equation gives much too high values. The difficulty can be
C

M ; ; term, which says that the nonlinear increase in overpressure at the

t Dewitt® has shown that the velocity potential of the diffracted wave is

1 sin e sinh eb
cose(f - f') - cosemcosheb

N
CI)-;tan

inthe region 7+ §'< P < 7/e where P is the angle at the field point, p' is the angle of incidence,
€e=m/nandb = cosh_l(o/n). If we let 0—ow, b but the limit of the argument remains
finite and is tanen In our case m/n = 2/3 because the exterior angle of the wedge is 270°,
Thus = 2/3. It was shown in the first End Effects report1 that @ = p/?:;m so that the peak
overpressure in the limit of small n approaches 2/3;m for one diffraction. We call

2/3;m = z the strength of the diffracted wave.

From both theory and experiment the infinite limit at y =1 appears to be proper.

UNCLASKIFIED
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due to the assumption of no interference between front and back faces. We know experimental-
ly that the limit is, instead, the stagnation or total pressure. In our case it consists of the
static pressure present in the wave and the dynamic pressure. Thus the overpressure on the
front, including the effect of the diffracted waves, goesto 1 +2.5 (%:—i——é) . The difference

between this and the wave formula must be due to terms arising from flow alone, i.e.

- !

[2+6§+6]+2[2/3+2/3 2/3-2/3-2/3-2/3-2/3.2/3: 2/3+....]+Rf(y)

(26)
=1+2.5 (g = ;)
The first part of this equation may be called the %t terms and Rf (y) the inertial part,
Similarly on the back we should find
T cmies b A R C G 1 & A SRR (Y 7 P

2(2/3-2/3- 2/3- 2/3+2/3 2/3 2/3 2/3 - 2/3—.... + R, (y) = base overpressure, (27)

vlcels bem thy e ~(4/3) g‘l = - "
but unfortunately we donot know w at the base overpressure ought to be. Making the assump-

tion that the base overpressure is given by the elastic terms the drag coefficient becomes

[1+2 5( +6)]/K-1+2.—5>’()',*-_§T). (28)

‘/(\.o—_dm heeo— S{/f; + 2 5(7—-)]/1(

Again at y = 1 (the acoustic limit) the drag coefficient goes to o but at y—w, it now limits at
1. 40, whichisamorereasonablerange. Table III gives some values computed from this for-

mula for various y.

TABLE 11

¥y l 2 3 4 5 10
Cp 0 426 ~2-80 2733 210 171
% WG EF e 0 deod)

Actually this calculation of the drag coefficient is valueless for any practical work, It
merely shows that for the case of a flat-topped (step) pulse acting on a long square member,
in the o0 = limit, our drag coefficient has a reasonable range of values. The front over-

pressure is the dominant contributiontothe drag. Notethe inconsistancy inusing only the elastic

terms on the back as g—w.

Drag for a Decaying Wave

If we do not take the limiting case oo and if we look again at decaying waves, the

problem becomes rather more complex. Let us consider both the elastic and inertial parts,

ﬁI‘his notation is due to Dr. John S. McNown, University of Michigan, consultant to Sandia
Corporation.
CLASSIFIED
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The drag is now defined as

Drag = Cp,3 (o) C(29)

* . . o . .
where q (0)is the dynamic pressure in the incident wave as a function of o (time), The front

average overpressure is given by

Py 6p_ A (0)

%
| L et LR EACR IR NCR N Y (59)
Py P, Mo) ¥TP Ave

where now the inertial part Rf must consist of two types of terms, the usual one in V2 and a
new one in dV/dt‘t to account for the fact that the wave is decaying. The diffracted waves of
all kinds are included in the 7{ fi term and the phase relationships here must be carefully con-
sidered. The back average overpressure is given less accurately by
— = {31 (0. W+ Ry (o, m, b)) (31)
Ave

o 3
B

where fi (o, n)is the back wedge counterpart to the front wedge function already used and where

k-3
Rb (o, n, pm) stems from the flow associated with these waves. Neither of these quantities can

be expected to be exact but at least one can hope to be able to calculate them eventually,

Digressing a moment, and going back to the interval (’t2 - tl), which designates the time
of interaction, it seems obvious that early in the interval (near tl or at the head of the wave),
the elastic terms will always be predominant., Now it appears that a certain relative time
might be needed to set up the inertial flow. So if the ratio n, = L/X is large, where L is the
characteristic dimension of the target, then perhaps throughout the interval the elastic terms
will dominate. But certainly, as n, becomes smaller, there will be a transition from elastic
to inertial terms and if U is small enough, the inertial terms will dominate the interval, We

might present in these words the usual drag relationships (Table IV).

TABLE IV
S large n, medium n, small
Elastic Elastic-inertial Inertial
Pure diffraction Mixed Pure drag

t From Dr. John S, McNown.
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Our asymptotic approximation to drag might be said to be in the n, small limit, The
most difficult range in which to calculate, and the most important in actual target analysis,
is the middle range of mixed interaction. The Coyote Canyon experiments fall in the pure
diffraction range. Note that in each case there is some diffraction and some drag. Our ranges

merely indicate which effect dominates the interaction interval (t2 - tl).

Returning now to the drag coefficient, it is calculated by

- pf(o) - P, (0)
Cp (o) -—-r——— (32)
9., (0)

These quantities cannot be readily obtained algebraically, but we can get f)f(o) and f)b (o) by
semigraphical procedures using the space-time diagram. We can then describe in general

terms what CD(cr) must look like,

The first phase will depend only on the diffraction or elastic terms. The curve CD (a)

must begin at

[2+6(y+é):'/2 5(§+é) 0. so(;”_’?)+ bty (33)

and decrease rapidly to a minimum. The minimum is caused by the reflection of the com-
pression wave at the back and its arrival at the front. Whether or not this minimum is nega-
tive depends upon the target depth. If waves from the rear are delayed long enough, the full
effect of the rarefaction waves will be felt and the overpressure will go negative. If waves
from the rear arrive sooner, they will more or less neutralize the effect of the rarefaction

waves and the drag minimum will be less negative or may even be positive,

Following this minimum we should expect oscillations of rather large amplitude whica
rapidly die out. These oscillations are caused by the movement of the rarefaction and com-

1

pression waves around the target out of phase. The period should be approximately 21" from

a consideration of the interplay of the diffracted waves.

The final phase of the drag interaction is the leveling off of CD (o) to a more or less steady
value. At some time the dv/dt term should play a prominent role but eventually this effect

should die out leaving the time-independent steady-state drag coefficient.

All of these phases may or may not occur within the positive phase interval (t2 - tl) of
the interaction. We have demonstrated that the first phase (ahead of the first minimum) is

principally elastic in nature by showing that the elastic terms suffice as a means of arriving

f

The dimensionless time unit T is defined as t/t, where t, is the time required by the wave

front to travel the height of the target, h/U
‘ TﬁT -
_ASSIFIED
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at experimental results. While the diffracted waves are encircling the target, inertial effects
begin to be set up as the waves die out (second phase) and eventually (third phase) the inter-

action is almost entirely inertial. Small-scale experiments do not give us clear-cut drag data
when the second and third phases occur in the negative phase of the incident wave (that is, for

times greater than t,). Thus we must go to the full-scale tests for experimentation.

Numerical Calculations

By the methods outlined in this report one can arrive at a sound pulse estimate of the
actual drag force at any section of the target, The estimate is, of course, best for weak blast
interactions, best for only the first part of the interaction, and best either close to the target
end or far from it, so that the divergence of the end waves is not an uncertainty. We have
determined the drag coefficient to its first minimum for M-11, H-2, and GREENHOUSE 3.1.1
by sound-pulse methods. The measured drag coefficients (from the second End Effects report )3
are given in Fig. 10; the calculated values are indicated by dashed lines. One should remem-
ber that the sound pulse calculation assumes no interference between front and back, which is

not true for GREENHOUSE 3.1.1.

A preliminary effort to obtain the dv/dt effect has been made by Prof. John S. McNown
of the University of Michigan. His result has been communicated (privately) to the author in
the case of GREENHOUSE 3.1.1. The horizontal line in Fig. 10 is his estimate of the drag,

using his corrections, The range of its applicability is not well fixed.

CHAPTER 5 -- CONCLUSIONS

We have tried to present in a simple manner the accomplishments of a similarity theory
of blast diffraction. Mostly the theory has been developed intuitively, and its physical back-
grounds are not very firmly established. Within the range of its application, however, it can
serve as an engineering procedure. The tedious numerical and graphical work that is neces-
sary to get, for instance, an average pressure-time curve can be eliminated entirely by the
use of a simple electronic computor. A prototype has already been tested and has proved
entirely satisfactory, In principle we can expect to be able to calculate any of the quantities

described in this report in a matter of seconds with a machine as simple as a slide rule.
Many of the difficulties associated with this study will be remembered by the reader.
Among them are:

(a) Restriction to incidence in the plane of the target cross section
(b) Omission of fluid flow

(c) Noninteraction of diffracted waves

UNCLASSIFIED
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(e) No description of the transition from elastic to inertial states

(d) Restrictions to weak waves

(f) Divergence of end waves.

We are hoping to be able to set the theory on a more realistic physical foundation, at

which time some of these difficulties will disappear.
C. C. HUDSON, 5112

Case No. 408, 01
August 3, 1955
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