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INVESTIGATION OF EFFECT OF AERODYNAMIC
TIIE LAGS ON THE DYNAMIC STABILITY

OF AN IDEALIZED CONFIGURATION

Sumary. -- A theoretical analysis is made of the
effect OT-FFrodynamic time lags on the dynamic stability of
an oscillating airfoil, Two special c'__es are examined
(see Fig. 1). Fo- the first case the airfoil is assumed to
be rotating harmonically about a fixed point. The second
case considers two degrees of freedom consisting of rotation
about a point coupled with the transverse oscillation of
that point, The magnitudes and phase lags of the aerodynamic
forces in the low subsonic and supersonic regions are taken
from known solutions. Since there is no adequate theory for
the correspondin6 information in the transonic region, the
aerodynamic parameters in this range were approximated by
fairing-in curves between the known subsonic and supersonic
values.

For the case of rotation about a fixed point it is
found that the motion is unstable for a definite range of
values of the parameter 	 1/c there I is the distance
from the leading edge of the airfoil to the point of rota-
tion and c is the chord of the airfoil. The range of
values of a for instability varies with Mach number and
with tae "reduced frequency," as shown in Fig. 2.

For the two-degree-of-freedom case essentially the same
qualitative results are obtained. However, the calculations
for one particular numerical example indicate that the
unstable range is smaller than for the corresponding single-
degree-of-freedom cases This implies that if the motion
is stable for rotation about a given fixed point, it will
also be stable if that point has a transverse oscillation
provided the transverse motion has the same amplitude and
phase relative to rotation that was found in the example.

- 4--
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The analysis given herein nay possibly be considered
as approximating the behavior of a falling body with tail

i fins if it is assumed that the aerodynamic effects of the
; body do not significantly change the conditions upon which
the analysis is based. The fins then act as oscillating
airfoils with the point of rotation at the center of gravity
of the unit.

---- The application of this analysis to the Mk IV bomb is
discussed on this basis. It is found that the principal
means of increasing the dynamic stability is to increase
the parameter j. . This change in 	 can be obtained
either by moving the center of gravity forward or by reducing
the airfoil chord, provided that static stability is main-
tained. Due to the many assumptions made both in the
analysis and in its application to a specific unit, it is
evident thst the cuantitative results must be unreliable.
However, it is possible that the theory may be useful in
indicating general trends. A wind-tunnel program is recom-
mended to test the theory.

INTRODUCTION

There are many possible causes for the instability of
a falling body. For example, static instability may occur
because of unfavorable variations of the aerodynamic forces
and moments with angle of attack or each number, and dynamic
instability may result from various causes such as buffeting
or tinie lags in the buildup of the aerodynamic forces. In
addition, other factors such as nonlinear variations in the
aerodynamic forces, or coupling between roll, yaw, and pitch
may also contribute to instability. In any one case the
instability may be due to a combination of several of these
causes.

As a step in attempting to understand the different
possible mechanisms which can lead to instability, it was
thought desirable to investigate the effects of aerodynamic
time lags on the dynamic stability of an oscillating airfoil.

Time lags arise from nonstationary flow conditions
which may be of two radically different types. The first
type is associated with a smooth flow pattern corresponding

11111111111111WiliM
UNCLASSIFIED
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to potential flow theory in the subsonic region and to
linearized flow theory in the supersonic region. The second
type, which is more difficult to treat analytically, involves
separated flows, periodic breakaway and reattachment of flow,
shocks, and various hysteresis effects between the flow
pattern and motion.

Intuitively, it seems natural to expect more trouble, 	 i
at least in the transonic region, from the second type of
flow conditions. However, there is no adequate theory for
theetlme_lags involved in flioad--60: 	 se-cond—FeT—tyarid-eit-
was therefore necessare-  to basi—tEIT-EnmteeslesTIT5477;he avariz
able t-Fe-a-FfeTh-Fflows of the first type. Conse-iiiiinTIY,'

4- o -Fi"arh -671Y-Ti6ws
ofethe first type. In addition, the analysis is restricted
to a consideration of an idealized configuration consisting

discussed. Th e first case, see Fig la : is an airfoil which /
of an oscillating airfciJ. alone. Two special cases are

is constrained to rotate about a fixed point. The second
case, see Fig. lb, eonsiders two degrees of freedom consist
ing of rotation about a point coupled with a transverse
displacement of that point.

The magnitude and phase lag of the aerodynamic forces
acting on an harmonically oscillating airfoil are known for ,
subsonic potential flow-L and for supersonic linearized flow. 2
Ther_e_14J10_knownesnlution forthe_correspondinginformation
in the transonic regiOn .:--- -In order to obtain the aeroaYfifath16
paFatieters-for-the-transonic region, the procedure was
adopted of fairing-in curves between the known subsonic and
supersonic valuAs. Ptlthene/h_a_oertaineamount -of - phyaleal
intuitLen was used in plotting the faired •urve.s,ethereeis
no rational basis for fhis -procedure, - and it must be regarded
as an umproved 	 a expedient.eracticl eediet. __nee

Because of the many assumptions made in the analysis,
it is evident that the particular numerical results obtained
are quantitatively unreliable. However, it is lielieved
that qualitatively the results may indicate the general trend
of factors affecting instability and may serve as a guide in
planning and interpreting tests with a wind-tunnel model.

The solution for the case of an airfoil rotating about
a fixed point is discussed in the section immediately follow- ,
ing. The analysis for the two-degree-of-freedom case is
presented later on in the report.
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(II). STABILITY OF AN AIRFOIL OSCILLATING ABOUT A FIXED POINT

Consider an airfoil which is oscillating harmonically
in rotation about a fixed point B as shown in Fig. la.
Let

= chord of the airfoil

= distance from point of rotation
to leading edge of airfoil

W.: circular frequency of oscillation

=

G = G oe 	 17 angular displacement of the

velocity of air stream

f3 = air density
S area of airfoil

a = dO L/dce: = slope of lift coefficient
of airfoil

;4) C
k 	 - reduced frequency

The moment of the aerodynamic forces about the fixed
point B can be expressed in the following form:

= a(1/2) 	 V23c 	 f

where

7 1 k- 	 4(r72 - 2kr2 - kqi)f kri 4

* 	 — 2
-q, 	 ka - p,(ri 	 2ki 2 1 Zia ) 	 112

41111111111111111111MIL
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*In the equations above the eight parameters r,, rip r2,
-r"2 , q l , q i , 0 2 , and q2 can be calculated for subsonic and

supersonic velocities from equations given in the above-
mentioned references by Thoodcrsen and Borbely. Each
parameter is a function of both the reduced frequency and
Mach number. Values of these parameters in the transonic
range were roughly estimated by fairing-in curves between
their subsonic and supersonic values and making due allow-
ance for an abrupt peak near a Mach number of unity.

The stability of the oscillating system can be deter-
mined by calculating the energy input per cycle. This pro-
cedure leads to the simple relation that the motion is stable
if ',7* is less than zero and unstable if le is greater than

zera. 5 Examination of the expression for 4 shows that for
a given set of aerodynamic parameters (that is, for a given
reduced frequency and given Mach number) there will be a
range of values of P. for which the system is unstable.*

The calculated values of p at the boundary between
stability and instability are shown in Fig. 2, These
limiting values of P. are plotted as a function of Mach
number for each of several values of the reduced frequency
k =;,0c/V. For example, for k = 0.02 and Mach number = 0.8,
the system is unstable for any p, between 1.57 and -0.46p
that is, for points of rotation from 1.57 chord lengths
ahead of the leading edge of the airfoie to 0.46 chord
length behind. It is stable for points outside of this range.

(A). Application to Complete Unit

In order to apply this theory to a falling body with
tail fins, it is necessary to make the additional assumption
that the aerodynamic effect of the body is negligible. This
is obviously not correct since there are aerodynamic forces
acting on the body and since, due to the shock waves and
other body interference effects, the flow over the fins will

*For Mach numbers greater than 1.58, the system is
stable for all values of
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not be the same as that assumed in the analysis above.
However, until a more complete theory is available, it seems
worthwhile to study the implications of this simplified
analysis with the hope that the general trends may still be
qualitatively applicable.

As an example, assume that for a unit similar to the
Mk IV we have the following data: 4.0 =27r radians per second;
c = 3 ft; and V = 900 fps. Then It = 27 x 3/900 = 0.02.
Consider the center of gravity as the point of rotation and
assume that it is 1.6 chord lengths ahead of the leading
edge of the fins. From Fig. 2 it is seen that when It = 0.02
and p = 1.6 the motion is unstable bet 	 Mach numbers
0.82 and 1.01.

Thus it is seen that the general trend of tha stability
curves is to indicate a range of Mach numbers within which
the motion is unstable. It is to be emphasized that the
specific numerical results obtained from Fig. 2 are very
doubtful because cf the numerous assumntions made in the
theory and its application. It is only the general trend of
the curves that has possible significance.

If this theory is valid, one possible remedy for in-
stability is to make p, sufficiently large so that it will
be outside the instability range for all Mach numbers. This
can be accomplished either by moving the center of gravity
forward or by reducing the chordwise dimension of the fin,
provided that static stability is maintained.

The effect of changes in other parameters is represented
by the corresponding change in the reduced frequency
k =wc/V. For example, if the moment of inertia of the unit
is decreased, the frequency would increase, and hence k
would be increased. According to Fig. 2, if k is increased,
the region of instability becomes narrower. Similarly, in-
creasing either dOL/dft' or the density,/ ) would increase the
frequency and hence also narrow the region of instability.

It should perhaps be noted that the frequency of the 	 .
unit can be calculated with sufficient accuracy from static
test data by the usual formula

d.C1,,
	1,, 	4,V2 Sc 

‘J r.1	dc$,	
.

I
That is, the time lags do not appreciably change the fre-
quency within the range of parameters that is likely to occur.

111111111111111111111ft
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(2). Variation of Restoring Moment With
Time, -- If, during flight, the restoring
moment decreases continuously with respect to
time, it is possible for oscillations to build
UP. For such a decrease in moment the require-

dC ,
meat is that the quantitydot.

	
V2 decrease

with time. In flight, /3 and V generally
increase continuously with respect to time, while
dC,:l/dtw, may decrease with respect to time over
rather short intervals because of 'ts variation
with Mach number as shown by wind-:unnel tests.
The net effect is that there are only short in-
tervals in the flight during which the rest:eing
moment decreases with time. These intervals
are not well correlated with the occurrence of
oscillations.

(3). Tleeffstinq, 	 Sem5.periodic impulses on
,:re fInZ ceenoduced by the turbulent air
within a separated boundary layer behind a strong
shock wave. The rather meager data available
from airplane tests indicate that the frequency
of such impulses is probably so much higher than
the frequency of the unit the**, this cause is not
si

(4). Nonlinearity and Coupling. -- Nonlinear
variations in the aerodynamic forces and coupling
between roll, yaw, and pitch are additional fac-
tors which - may contribute to or cause instability.
There are not sufficient data at the present time
to assess the importance of these factors.

(C). Recommendations for Dynamic Stability Test

As a partial cheek of the validity of the time-lag
thecry, it is reccmmended that a one-d- , :;ree-of-freedom
oscillatory dynamic stability test in a wind tunnel be made
with each of the three fin planforms A. B, and C shown in
Fig. 3. The values of p. for each of these planforms are
shown in this fic,eure. From Fig. 2 it is estimated that,

t3NCLASKIET
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A (STANDARD DOUBLE—WEDGE )

B

C

12"

I
FIN =

A 1.63
B 2.17 .

C 3.00
4.42

VALUES OF 1A. BASED
ON c o POSMON 44 0

AFT OF NOSE.

NOTE FIN D IS PROBABLY
STATICALLY UNSTABLE.

SAME WEDGE ANGLES USED IN ALL PLATFORMS.

FIG. 3 FIN PLATFORMS
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*pith these values of 11, planform A is probably dynamically
unstable for high Mach numbers, planform B is about neutrally
stable, whereas planform C should be dynamically stable.

It is important that the reduced frequency in the model
test be the same as for the prototype. The similarity condi-
tion for equal k in prototype and model requires that

5
-9 	 1 2 	/22

I1 	 1 5 /421

where I is the moment of inertia, 1 is any characteristic'
length, and /2 is the air density; the subscript 1 refers
to the prototype; the subscript 2 refers to the model.

(III). IDEALIZE -1:i CaTFIGURATION WITH TWO DEGREES Cr FRF7DOM

CA). Introduction

In the first part of this report an idealized configura-
tion of one degree of freedom, consisting of an airfoil
oscillating about a fixed point, has been investigated. The
question that may be asked is whether a coupling of two or
more motions can produce more critical conditions than that
of pitching only. As a first step in answering this question,
the effect of time lags has been determined for an airfoil
oscillating about a point which is oscillating transversely
to the airflow direction. This may reprr.sent s in an approxi-
mate manner, the motion of the unit pitching about its
center of gravity with the center of gravity moving trans-
versely to the mean flight path for wh lh only the aerodynamic
forces or the fins are considered, The aerodynamic forces
on the body and the interaction between the body and fins
are completely neglected.

In the study of the two-degree -of-freedom system, it
is necessary to introduce such factors as the mass and moment
of inertia of the unite However, because of the many approxi-
mati -ns maCte, the results of the analysis should be used only
to indicate ouslitative trends, and in no case should they
be interpreted as quantitative values that apply directly to
the unit.

627
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(B). Stability and Motion

Referring to Fig. lb, the equations of motioi s are

• •
	my	 L

(1)
IG = M

if we assume an oscillation with angular frequency tAl such
that

iwta r,e

J e 	4-i(iot 	 g
7:- 	

)
O

on substituting the e7.pressions for the aerodynamic lift
and moment of the airfoil, the equations of motion become

r1_Mk2
f Cry + iP);' IAc D

Th.2	7 	 n
-1- 11112) 	 -"-- 4 	 '--:-— f (7e }ii i 

e
) 	 t-_, = 0

7 ' 	 J 	 c 	 , tic"'i- -

for which the characteristic equation is

4- (79 4- iP:) G = 0

(2)

(3)

k4 
4-
4- A f 77:

r 3
Ty 4- 1(-4- e

"w
m 

P*) k
2

2 r_
P 7.71

e 	
l 	 -r? e-*

eky 	 P'les 4- i(PM 	 P Y.^ - P*7 4-e y e 	 ey 	 y
A c

v.



where

G =

G o =
y =

yo =

c =

4

71:

=

UNCLASSIFIED
629

17 -

angle of pitch

amplitude of pitch

transverse displacement of cg

amplitude of y

chord of airfoil

moment of inertia of system about cg

mass of sys.em

A

• 

(1/2:) aS

• area of airfoil

• air density

a 

• 

slope of lift curve of airfoil

k
	 reduced frequency

V
velocity of flow

= angular freqLlency of oscillation

= mimber of airfoil chord lengths of cg ahead of
the leading edge of airfoil

11,/ -1

rl	 2r9"k
	

t.; a

p 	 .7: 	 r- 1. 2r k 4.- r-,1.1j,
e	 ! ,	 2 	 -

	 (5)

4	 T 	 = 	 r-.1,
.:,A	 y	 _,.
A

T,i 	 P*
Y 

= --Fl k-14
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Me = 	 f 	 - kql; -̀ 	2kr2) p,	 r1.10142

J'. 	
-q;" 	 kE12 - (r1 4.kql 	2kr2 ) 	 '473.k112

	(q1k 4. 2 r2k)	 2

-4-2,k 4- (ilk .4 27 2k) p. Fik p. 2

( 5 )

The values of the • rts and qts have been obtained for
Mach mrabers near unity by fairing between known subsonic
and supersonic values,

For a specific system with known values of mass, moment
of inertia, :jach number, and position of the center of
gravi7y, the characteristic ccluation, Eq 4, can be expressed
in terms of the unknown reduced frequency k. The values of
k that satisfy thn characteristic equation correspond to
the condition of oscillation of the system at constant ampli-
tude, which corresponds to neutral dynamic stability. Having
the value of k, the relative amplitude and phase between
the pitching motion and the transverse motion of the center
of gravity may be obtained from the equations of motion,
Eq 3. Thus

(Ik2/Ac 3 56) 2	(4)e-- -	
s1
V 	

(77 2 „r, (4)2

tan 
_
1

( I' 2/A 3- 	 4 	 C 	 Me)
4.•■•■•••■• 	 fuLan.•■•••••■•• ( 7 )

i`a*i 	
,
k 
2
/ 4 C 3 4. 7e)Tff, 	 iA 	 r ,i1. -7 k

In the numerical evaluations which were made to establish
- qualitative effects, it was found expeCent to allow both II
and k to vary so that the characteristic equation was
satisfied while holding all other parameters such as mass
and moment of inertia constant. Thus for a systFdi with a
given mass and moment of inertia, the position of the center
of gravity, in terms of 11, and the frequency, in terms of
k, are determined for neutral dynamic stability. Allowing
the position of the center of gravity to vary while holding
all other parameters constant is, of course, an expedient

INIMIPPOMMINEW

3oc
( 6 )
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for showing the variation of stability with the position of
the center of gravity. Neutral dynamic stability for an
actual system would only occur when the p thus determined
corresponded to the actual position of the center of gravity
for the system.

(IV). COMPARISON OF THE TWO SYSTEMS

To compare the relative stabilities of a system with
one degree of freedom with a s7sten of t•o degrees of free-
dom, an evaluation was made for each, assuming the same
physical characteristics and the same aerodynamic parameters
for the systems. The physical characteristics are those
for Vele Mk IV Mod 0 FM bomb.

The position of the center of gravity in terms of p
for neutral d7nalric stability in each system is shown in
Fig. 4. Each point on the curves represents, in terms of
p, the position of the center of gravity for neutral
stability for the particular frequency of oscillation that
the unit will experience under the given conditions of Mach
number and position of the center of gravity. In general,
the frequencies for the single-de gree-of-freedom system are
slightly higher (about 20 per cent) than the two-degree
system for the same iiach number. This difference is due
rather to the different positions of the centers of gravity
for neutral stability, with the corresponding change in static
stability than tc an inherent difference in the two systems.

It is evident that if the position of the center of
gravity is far enough forward to prevent instability in a
system that Is only pitching, this position should also be
sufficient to prevent instability due to the combination
of pitchine and transverse motion for the cases examined.
This implies that if the instability cc.. be corrected by
varying the p c --1 a model which is allowed only pitching
motion, this correction should be in the right d'rection to
improve the stability of the system that has a combination
of pitch and transverse motion, provided the motions fall
within the frequency range investigated. 
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The amplitude ratios and phase angles were evaluated
for the two-degree-of-freedom system. It was found that
yo/Gcc was of the order of unity, so that for the unit the
transverse motion of the center of gravity would be very
small compared with the pitching motion. The phase angle
between transverse motion and pitch is about 3 degrees,
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