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ABSTRACT (U)

An underwater acoustic source, consisting of an internally driven
spherical gas bubble, is analyzed for the cases of piston drive and pneUmatic
mass injection. The linearized radial motion is found, and the effect of
nonlinearity is determined. The linear analysis is then applied to a cylin-
drical source, yielding expressions for natural frequency and power output,
and comparison is made with experimental observations.
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I. Introduction

The acoustic response of gas bubbles has been of interest for a number

of years in underwater acoustics. 1 For the most part, attention has been

restricted to the behavior of bubbles as acoustic scatterers, and a number

of authors, including Spitzer
2 

and Zwick, 3 have dealt with the linear acoustic

response. The nonlinear acoustic response has been examined by Bernard
4 

and

by Norwood and Bernard. 5 In response to national interest in the generation.

of high intensity monochromatic underwater sound, Sandia has developed generators

which are, in effect, internally driven cylindrical gas bubbles6 (as opposed

to bubbles driven by an external acoustic field4 ' 5). The internal driving

mechanisms used are piston drive and pneumatic mass injection. The present

work applies the analysis of Ref. 4 to an internally driven spherical bubble
and then extends the treatment to a cylindrical bubble.

II. Statement of the Problem

The equation of motion for a spherical underwater gas bubble of negligible

mass (originally derived by Herring 7) is given by Cole8 as

RR + 3 i 	 _ - p

2 	 Pc 	 (R R ) = 	 (1 	 R ) '1-;
2.2

p c 	 cco 	 P„,
2.1)

5

where R is the bubble radius, c is the sonic speed in wat er, t is time, em

is the ambient water density constant, P is the water pressure at R, Pm

is the ambient water pressure = constant, and differentiation with respect

to time is denoted by a dot and also by d/dt. Equation (2.1) is derived. from

the fluid mechanical equations of continuity and momentum. The terms in 1/c

UIN CLASSIFIED



R(t) = R [1 + 	 enrn(t)
n=1

CO

(2.4) 
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represent approximately the effect of compressibility (i.e., non-zero divergence

of velocity); the term proportional to P represents the acoustic radiation of

energy; and the derivation of Eq. (2.1) requires that
8

	« 1 .	 (2.2)

In the limit as c 00, the equation for the incompressible case is recovered. 9

As in Ref. 4, attention is restricted to small but finite variations of

R such that

2
I Ro - 	 «1
	

(2.3)

where Ro 
is the bubble radius at equilibrium. Adopting a procedure analogous

to the stationary perturbation theory used in quantum mechanics, 4,10 R(t) is

expressed as

••

where e is an ordering parameter lying arbitrarily between zero and unity, and

the series is required to be uniformly convergent. The parameter e is intro-

duced in order to force the terms on the right-hand side of Eq. (2.4) to be

2inearly independent. After the governing equations for the functions rn

have been established, e can be set equal to unity without loss of generality.

Inserting Eq. (2.4) into Eq. (2.3) produces

SSIFIED
6
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2ri (2.5)

for uniform convergence.

The water/gas interface is assumed to be a thin elastic membrane so that

the pressure in the gas P is related to rij:' by

P - Pm(R) = P 	 (2.6)

where Pm is the inward normal stress due to the membrane. For small deviations

of R from R o , Pm is given approximately by

Pm Pmo + Po a :E: e rnzwl
(2.7)

where

P = P (R )mo 	 m o

Ro (dPm

a = 	 50R=Ro

(2 .8)

(2. 9)

and Po is the gas pressure at equilibrium.

The expansion and compression of the gas are assumed adiabatic, i.e.,

P— = constant
o

(2.10)



(3.1)

(3.2 )

that

v(t) = T R3 
- Ro

3 ex(t)]11

where

22e x << 1 	 .

With regard to Eq. (3.1), Eq. (2.10) becomes

(3.3)exxP . / R3
o Ro

(-7

where 0 and y are the density and specific heat ratio of the gas, respectively.

III. Rubble Driving Mechanisms

Two internal mechanisms for driving the bubble are considered:

(A) Piston Drive

Suppose that the bubble volume V can be varied by an internal piston such

Substituting Eqs. (2.4), (2.6), (2.7), and (3.3) into Eq. (2.1), coefficients

of equal powers of e must be equal (due to the arbitrariness of e), and an

infinite set of equations is generated far the functions r n :

2 Ro • 	 R
 •r

1 + w o 	r1 + wo
2
r
1 

= Kyx + Ky 	 xc e1 . ( 3.4)



(ri - R
o • 	

[

rl (3Y 1)11 YXJ
- 1r1

•r
2

•

 + 
wog 	r2 + w o2 r2 	 2= 	 (y + 1)(3r

1
 - x) 2 - 3Yr16j

R
o 

+ K -2/y(y + 1)(3r
1 

- x)(3i•
1 

- x) - 6yr,;)_

2e :

2R
3 	 •• 2 	 o 	 .._ 	 r 	 + 	 r
2 1 	 c 1

r 
1

2 
R
o 2•r

n

•

 + w
o 

77 r
n 

+ w
o

r
n 

= KFn (rl,	 r
n-1

)

where

P
o 	

P +mo
P

K = 	 -
P.R 

2
0 p.R 20

and w
o 
is the natural frequency of oscillation, given by

n
e :

2
W
o
 = K(3y + (1) 	 (3.8)

in agreement with other authors. 1
6

(B) Pneumatic Drive

Suppose that the gas mass M enclosed by the bubble can be varied by

pneumatic mass injection such that

11111111111 9

•

(3.5)

(3.6)

(3.7)



where Mo is the gas mass at equilibrium. With regard to Eq. (3.9), Eq. (2.10)

coefficients of equal powers of e again yields an infinite set of equations
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For cases (A) and (B) the e
1 equations are identical, indicating that

the linear response is the same for a given piston drive or pneumatic drive

(i.e., when the fractional volume and : .7ass variations ex(t) are the same).

The e 2 equations (3.5) and (3.11) determine the first nonlinear corrections to

the motion in cases (A) and (B). From the two sets of equations, (3.4)-(3.6)

and (3.11)-(3.12), it is evident that the expansion (2.4) in e generates a

systematic iteration scheme for the functions r n . For n > 1, the solutions to

the rvAceding n - 1 equations combine with x(t) to form the forcing functions

Fn ,  G
n
 = 0(r.

n
 i) n the nth equation. The ore?: ;ring parameter e is now set

equal to unity4 ' 1C and Eqs. (2.4), (3.1), and (3.9) are replaced respectively

by

R(t) = R
o
11 + g rn(t)]

V(t) = 
3 

R3 - R
o
3 x(t)1

M(t) = Mo ll + x(t)1	 .

Consider now a forcing function given by

x(t) = x
o 

cos wt (3.16)

where x
0 

<< 1. Positive X corresponds to compressive piston stroke (for piston

drive) or influx of gas (for pneumatic drive). Subject to Eq. (3.16), Eq. (3.4)

becomes

UN CLASS FED
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2 Ro •
1rl + wog — r + wo

2r1 = Kyxo cos (wt + 41)

where

4t = tan -1 (±2)

(3.17)

(3.18)

The transient solution to Eq. (3.17) dies out in time due to the acoustic
2 Ro •radiation damping term w

o 	
r
l' 

leaving the steady st:;:te solution

r1 = B11 cos (wt + pil ) 	 (3.19)

where

Yxo 
B1111 3y + a

[(1

2 w2R 2

w
2

)

c2
o 	

o (3.20 )

and

[

wo

wR
J + tan-1 	o 

2 	 (3.21)
c 	 -

cell = 	 w2\

TIP

Figure 1 presents a plot of Bil/x0 vs w/wo for the case of a strengthless membrane

(a = 0, Pco = Po ) enclosing an air bubble in water (y = 1.4 po, = 1.94 slug/ft3 ,

c = 4900 ft/sec). In this case, the natural frequency wo =i3yp,./00,R0
2

UNCL ASSIFIED
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= 100 lb/in2

Pm = 500 lb in2

47Pm = 1000 lb/in2

0 	 1 	 1 	 i 	 i
0 0 	 0.2 	 0.4 	 0.6 	 0.8

w/w
o 

(Dimensionless)

1 .0 1.2 1 .4	 1.6•

Figure 1. Plot of B 11/x0 vs. w/wo 
for Spherical Air Bubbles in Water.
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The solution for r
2 
will not be determined explicitly here, but the reader

is referred 1,0 Ref. 4 where r
2 

is determined for the simpler case of a bubble

driven by an external acoustic field. Substitution of Eq. (3.19) into Eqs. (3.5)

and (3.11) produces equations whose right-hand sides are proportional to

sin2 (wt + cp), cos 2 (wt + cp), and cos(wt + cp) sin(wt + cp). Such equations can

be rewritten producing equations of the form

2 o
R 

•
2+ wog c— r + wo

2r
2 

= w
o
2B
20 

+ 
wo2b22 

cos (2wt + *
22

) (3.22)

where *
22 

is a constant and B20 and b
22 

are constants proportional to B112
. 

The

steady state solution to Eq. (3.22) is

r
2 

= B
20 

+ B
22 

cos (2wt + cp122 )

where cp22 is a constant and

2 2 4w2R 2ir
B
22 

= b
22 

[(1 -
2
)

w
o 	

c
2

(3. 23 )

(3.24)

For n > 2 the governing equations for the functions r n (t) have the general

form

2 R
 0 • 	 2

n
r + w — r + w

o

2r
n 

= w
oo c n bnm co

s 
(mwt + * ).nm (3. 25)

where b and * 	 are constants. When n is even, b is nonzero only for mnm 	 nm	 nm

even; when n is odd, bnm is nonzero only for m odd. Equation (3.25) leads

UN ASSIFIED
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to steady state solutions of the form

rn (t) = nm cos (mwt + cpnm ) (3.26)

where Bnm and cpnm are constants, and 

1

[2

	 2 2 2 -2
2 2 \ m W R

o B 	 = b 	 (1 111 w+run 	 nm 	 w 2) 	
c
2

o
(3.27)

It is thus seen from Eqs. (3.22)-(3.27) that the effect of nonlinearity in the

steady state is the excitation of harmonics of the driving frequency w.

Resonance occurs in the mth term of r
n 
whenever w = w

o
/m (m = 1, 2, ..., n).

When m > 1, this is known as subharmonic resonance which is a well-known property

of nonlinear oscillators. 11 For a sinusoidal forcing function as in Eq. (3.16),

the relative nonlinear contribution to the motion is largest at the first sub-

harmonic resonance w = w
o
/2, when the ratio 

B22/B11 
is maximized. Nonlinear

effects can also be significant at the natural resonance w = w
o
, when B

11 
is

maximized
4 

(recalling that B22 
m 3112).

For a non-sinusoidal forcing function x(t), Eq. (3.16) is replaced by a

FoUrier series

x(t) = x
o
	an cos (nwt + *

n
)

n=1
(3.28)

where a
n 

and *
n 

are constants. Substitution of Eq. (3.28) into Eq. (3.4) leads

to the steady state solution

IFIED
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cpn = tan -1
nwR

c(1 	 2
(3.31)

n
2
w
2

o 

wo ) 1 

• 1 -111 : 1 

yx 	 00
o r1 - 3y + a $n cos (nwt + clon )

n=
(3.29)

where   

n2w2F.o
2

an [(1 n

2w2

2
wo 	C

( 3.30)  

From Eq. (3.30) it is seen that when w = w o , the leading term in Eq. (3.29) pre-

dominates, and r, is essentially sinusoidal if w o 
2R 

o
2/o2 << 1. Hence, to produce

a sinusoidal oscillation in the bubble radius it is not necessary to impose

a sinusoidal forcing function, so long as the fundamental w wo and w 0 0
2
R 

2
/c

2 
<< 1.

Substitution of Eq. (3.29) into Eqs. (3.5)-(3.6) and (3.11)-(3.12) results in

equations which are identical in form to Eq. (3.25) with the summation going

from m = 0 to m = co.

IV. Analysis of a Cylindrical Acoustic Generator

The analysis of Chapters II and III is now extended to the case of a cylindri-

cal bubble, in an attempt to model the cylindrical acoustic generators developed

by Sandia.6 Only the linear analysis for sinusoidal forcing functions is pre-

sented; however, the conclusions of Chapter III regarding nonlinear effects and

non-sinusoidal forcing functions also apply to the cylindrical case.

UNCLASSIFIED
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The idealized generator, shown schematically in Fig. 2, consists or a

solid cylinder of radius Rs and height H and a concentric cylindrical membrane

of radius R > R s , height H, and negligible thickness. In the actual generator,

the inner cylinder contains pistons which vary the enclosed volume (piston drive)

or ports through which gas is alternately injected and exhausted (pneumatic

drive).6 A coordinate system is affixed to the generator with the origin

located at the center and the z-axis coinciding with the axial line of sym-

metry, as shown in Fig. 2. For piston drive the gas volume V is given by

2 	
R 2 C2
2

V = o H 	 - 	
- (1 - C2 )x(t)

o

(4.1) 

where Ro is the cylindrical membrane radius at equilibrium, x(t) is the fractional

variation of the equilibrium volume V o = rRo
2H(1 - C2 ), and

R

C = e0

For pneumatic drive V is

( 2
V = rrRo

2 
H 

R
—7 -

2)Ro

and the gas mass M varies according to

	

M = Mo [l + x(t)] 	 (4.4)

where x(t) is the fractional variation of the equilibrium gas mass Mo .

CLASSIFIED
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Cylindrical Membrane

Solid Cylinder

,

R

Figure 2. Idealized Acoustic Generator
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(4.8)

(4.7)wo
2 
= K(i + a)

= 	
2y 

3(1 -2 )

yoki.laxi4

Equation (2.1) is assumed to he the governing equation for the membrane

radius R. However, it must be r 	 'size ,' that, for a cylindrical bubble of

height H, this equation is, in fact, invalidated by the lack of spherical

symmetry (see Appendix). Nevertheless, it is conjectured that tangential pres-

sure and velocity gradients may be weak enough that Eq. (2.1) is not an un-

reasonable approximation for the cylindrical bubble. Writing R(t) as

R(t) = Ro [l + r(t)] 	 (4.5)

and employing Eqs. (2.6), (2.7), (2.10), (4.1), and (4.5) in Eq. (2.1), the

linearized governing equation for r(t) is found by disregarding terms of 0(r
2
):

2 Ro' • •
r+w —r+w

2r= Kyx + Ky o x
o c

where wo 
is the natural frequency of oscillation given by

Th? quantities a and K are defined by Eqs. (2.9) and (3.7), respectively.

Replacing Eq. (4.1) by Eqs. (4.3) and (4.4) also obtains Eq. (4.6) and Eq. (4.6)

CLASSIFIED

(4.6)
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where

therefore determines r(t) for both piston drive and pneumatic drive. For

sinusoidal x(t) given by Eq. (3.16), Eq. (4.6) becomes

where it is given by Eq. (3.18). The steady state solution to Eq. (4.9) is

r = B cos (wt + cp) 	 (4.10)

and cp is given by Eq. (3.21).

Having determined the linear solution for R(t)

R(t) 	 Ro [1 + B cos (wt + cp)] 	 , 	 (4.12)

consider the far field pressure variation produced by a cylindrical generator

of finite dimensions located at the origin. Assuming that the cylindrical

membrane radius can be roughly approximated by Eq. (4.12) over the whole length

of the 'generator, the volumetric flow rate of water away from the generator is



Taking R and H to be small relative to the radiated wavelength X = 21o/w,

the generator appears like a monopole source in the far field, and the far

field pressure variation p is given by 12

where s > X is radial distance from the: origin, and 6 is evaluated at

retarded time (t -s/c)due to finite c. The average radiated sound intensity I

at s is proportional to (p
2), the mean square of p over one cycle,

13 
such that

The average radiated power E is then given by

7W B2 pwoRH
2

n 	 47s2I Pe, 2c
(4.16)

Referring to Eqs. (4.7) and (4.11), and using the equilibrium pressure balance

which follows from Eq. (2.6), the maximum average radiated power no occurs at

w = wo 
and is given by
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In the present analysis, two important quantities have been derived: the

natural (i.e., resonant) frequency wo , given by Eq. (4.7), and the maximum power

output Flo , given by Eq. (4.18). Figure 3 presents a plot of computed and ob-

served values of the natural frequency (in Hz), vo = w0/27, vs ambient pressure

Pm for the SEA piston-driven acoustic generator. 4 Figure 4 compares computed

and observed values of H
o 

vs Pco for the same device. No comparisons are made

for the pneumatically driven device since its membrane has not yet been com-

pletely characterized. 15 The agreement between computed and observed values

of v
o 

is quite good. However, agreement between computed and observed values

of IIo is very poor, with observed 
values falling a factor of six or more below

those computed. The primary source of error in II o lies in the assumpt ..'on that

the spherical bubble equation (2.1) is valid over the entire length of

the cylinder. Other possible sources of error include non-sinusoidal forcing

function x(t), end effects and interference in the near field due to non-

spherical geometry, excita -..ion of longitudinal and circular modes on the mem-

brane, and dissipative effects in the membrane. At any rate, Eq. (4.7) can be

used to determine the natural frequency fairly accurately, while Eq. (4.18)

gives at best a qualitative estimate of maximum power output. The difference

between the power output given by Eq. (4.18) and the numerical results6 ' 15

presented in rig. 4 is due to nonlinear effects which decrease with increasing

ambient pressure.
4

As a final consideration, it is of interest to examine the relatior between

w
o 
and deviations from cylindrical geometry. Restricting attention to alally

and longitudinally symmetric deflections of the membrane, R is now defined to

be the membrane radius R'(z,t) at z = 0, using the coordinate system in Fig. 2.

This is expressed by

R(t) =	 . 	 (4.19)

22
	 i,UNCLASSIFIED
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v 50

4o

ct3

0

30

0

Legend:

computed, Eq. ( 4 .7)
•IMINN =MO numerica16,15

experimenta114

Pmo = 17.5 lb/in2

dPm =

20

10

23.3 lb/in3
dR

y = 1.4

pm = 2.0 slug/ft 3

Ro = 1 ft

Rs = 0.727 ft

50 	 100 	 150 	 200 	 250	 300 	 350 	 400

- Ambient Pressure (lb/in 2 )

Figure 3. Natural Frequency vs. Ambient Pressure for the SEA Piston-Driven
Acoustic Generator.
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Figure 4. maximum Average Power Output vs. Ambient Pressure for the
SEA Piston-Driven Acoustic Generator.
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For piston drive, the gas volume now becomes

V(t) =
H/2

dzfe(z,t) 	
R s2 	

I o 2
(z) 	 R 21 x(t)1

j-H/2 	 `
(4.20)

where iC(z) is R at equilibrium. Expressing R(t) by Eq. (4.5) and applying the

linear analysis, the governing equation for r(t) is Eq. (4.6) with wo given by

2 P03 Pmo RoY (dV

--) 	
+ a]W =	2 	 Vo dR

	

owRo 	R=Ro

(4.21)

where

TH/2
Vo = n 	 dz[R'2(z)

-H/2 s
(4.22)

For deflections of the membrane proportional to cos (7z/H) and cos
2 
(70),

computed values of wo for the SEA piston-driven generator are 15% to 30% lower

than those observed experimentally.

V. Conclusion

The forced response of a spherical underwater bubble has been analyzed and

extended to a cylindrical acoustic generator for piston drive and pneumatic

drive. A method of determining nonlinear response has been outlined and the

effect of nonlinearity shown to be the excitation of harmonics of the driving

frequency. Furthermore, the relative contribution of nonlinearity is maximized

when the driving frequency is half the natural frequency. Maximum acoustic power

is radiated when the driving frequency is equal to the natural frequency, and

good agreement is obtained between computed and experimentally observed natural

LT, (-I- A rieN

‘"-
clooLFD
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frequencies. On the other hand experimentally observed radiated powers are

less than computed values by at least a factor of six.
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Appendix

Cole
8 

derives the radial equation of motion for a spherical bubble (2.1)

from the spherically symmetric equations of continuity and momentum, given respec-

tively inspherical coordinates (r, 0, cp) by

+ 1
at r2 pr2u) = 0 (A.1)

au u ?la _ 1
at 	 ar 	 p (A.2)

where o is fluid density, t is time, u is radial fluid velocity, and P is fluid

pressure. Equation (2.1) is obtained by combining an approximate form of Eq.

(A.1) with Eq. (A.2) and integrating the result from the bubble surface r = R(t)

to r = co. The important point is that Eq. (2.1) is valid only when Eqs. (A.1)

and (A.2) are valid in the surrounding fluid.

Now consider an axially symmetric bubble centered at the origin and sym-

metric about 0 = r/2. The bubble surface is given by R(0,t) and the flow field

of the surrounding fluid must be independent of cp and symmetric about e = r/2.

Accordingly, the continuity equation and the r- and 0-components of the momentum

equation are given respectively by

-t 1 	 ( r2u) +
—2. F. 	 r sin 0 	 (pv sin e) 	 0
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where v is the 8-component of velocity, and the cp-component of velocity w is

taken to be zero. From the requirement of symmetry about 8 = 7/2 it follows

that

The lack of spherical symmetry is apparent everywhere, even in the plane of

symmetry. In order to obtain an equation analogous to Eq. (2.1) for a cylin-

drical bubble, one must integrate an appropriate combination of Eqs. (A.3)-(A.5)

with respect to r from the bubble surface to r = co. The resulting equation would

necessarily have an explicit dependence on 8 everywhere on the bubble surface.

However, the 0-dependence in Eqs. (A.3)-(A.5) makes the task extremely compli-

cated if not impossible, and no such attempt is made here.
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But v is anti-symmetric about 8 = 7/2, thus
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