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ABSTRACT (U)

An underwater acoustic source, consisting of an internally driven
spherical gas bubble, is analyzed for the cases of piston drive and pneumatic
‘mass injection. The linearized radial motion is found, and the effect of
nonlinearity is determined. The linear analysis is then applied to a cylin-
drical source, yielding expressions for natural frequency and power output,
and comparison is made with experimental observations.
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I. Introduction

The acoustic response of gas bubbles has been of interest for a number
of years in underwater acoustics.l For the most part, attention has been
restricted to the behavior of bubbles as acoustic scatterers, and a number
of authors, including Spitzer2 and Zwick,3 have dealt with the linear acoustic
response. The nonlinear acoustic response has been examined by BernardLL and

5

by Norwood and Bernard. In response to national interest in the generation .

of high intensity monochromatic underwater sound, Sandia has developed generators
which are, in effect, internally driven cylindrical gas bu.bbles6 (as opposed

to bubbles driven by an external acoustic fieldh’s). The internal driving
méchanisms used are piston drive and pneumatic mass injection. The present

work applies the analysis of Ref. 4 to an internally driven spherical bubble

and then extends the treatment to a cylindrical bubble.
II. Statement of the Problem

The equation of motion for a spherical underwater gas bubble of negligible

mass (originally derived by Herring7) is given by Cole8 as

RR+.3_§2__J'_1(32§2)=_1R_(1-§)%’+ > (2.1)

where R is the bubble radius, ¢ is the sonic speed in water, t is time, o
is the ambient water density =~ constant, P is the water pressure at R, P_
is the ambient water pressure = constant, and differentiation with respect

to time is denoted by a dot and also by d/dt. Equation (2.1) is derived from

the fluid mechanical equations of continuity and momentum, The terms in l/c
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represent approximately the effect of compressibility (i.e., non-zero divergence
A, .
of velocity); the term proportionsl toP represents the acoustic radiation of

energy; and the derivation of Eq. (2.1) requires that8

l§| «<1l . (2.2)
In the limit as ¢ - », the equation for the incompressible case is recovered.9
As in Ref. 4, attention is restricted to small but finite variations of

R such that

(%L - 1)2 << 1 (2.3)

o]

where Ro is the bubble radius at equilibrium. Adopting a procedure analogous

L,10

to the stationary perturbation theory used in gquantum mechanics, R(t) is

expressed as

R(t) = Ro[l + f_: enrn(t)] (2.4)

n=1
where ¢ is an ordering parameter lying arbitrarily between zero and unity, and
the series is required to be uniformly convergent. The parameter ¢ is intro-
duced in order to forne the terms on the right-hand side of Eq. (2.4) to be
Jinearly independert. After the governing equations for the fﬁnctions r,
have been estzblished, ¢ can be set equal to unity without loss of generality.

Inserting Eq. (2.4) into ¥q. (2.3) produces
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for uniform convergence.

The water/gas interface is assumed to be a thin elastic membrane so that
the pressure in the gas P is related to P by

P-P(R)=F (2.6)

where Pm is the inward normal stress due to the membrane, For small deviations

of R from Ro’ Pm is given approximately by

=

and Po is the gas pressure at equilibrium,

The expansion and compression of the gas are assumed adiabatic, i.e.,

= constant (2.10)

£
oY
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where o and y are the density and specific heat ratio of the gas, respectively.
III. Bubble Driving Mechanisms

Two internal mechanisms for driving the bubble are considered:
(A) Piston Drive
Suppose that the bubble volume V can be varied by an internal pisten such

that

v(t) = %EI-;?3 - Ro3 ex(t)] (3.1)

where

ezx2 <«<1l (3.2)

With regard to Eq. (3.1), Eq. (2.10) becomes

/3 =Y
= (-*‘—3 - ex> (3.3)
o] RO

Substituting Eqs. (2.4), (2.6), (2.7), and (3.3) into Eq. (2.1), coefficients
of equal powers of : must he equal (due to the arbitrariness of e), and an

infinite set of equations is generated for the functions T

R
1 . % (3.4)

o o= -
e r, +uw o T + W, Ty Kyx + Ky
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e ¥ oew? 53 * +w % =Kp (r r_ ) (3.6)
) o ¢ n on Tnvl’ % “npol 3.
where
P P _ +P
K = 02 = mo 2“’ (3.7)
pcoRo pro
and wy is the natural frequency of oscillation, given by
2
w," = K(3y + a) (3.8)

16

in agreement with other authors.

(B) Pneumatic Drive

Suppose that the gas mass M enclosed by the bubble can be varied by

pneumatic mass injection such that -
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M= Mo[l + ex(t)] (3.9)

where M_ is the gas mass at equilibrium. With regard to Eq. (3.9), Eq. (2.10)

becomes

= (1 + ex)Y (%)—3\{ (3.10)

2
PO

Substituting Eqs. (2.4), (2.6), (2.7), ard (3.10) into Eq, (2.1) and equating
coefficients of egual powers of ¢ again yields an infinite set of equations

for the functions T

] . R
o o’
—=ry + Ty = Kyx + Ky = x (3.4)

Y 2 3 2 2 1
K[’é‘ (v - 1)x° + —21 (3y + l)rl - 3y rli

K l—zgg(rl - 1—1-0- I"l)[w'c - (3y + cn)f'l]

Y(Y = 1) + 3y(Y + 1)ry7; - 3Y2(1'Plx + :'rrl)i

(3.11)

= KGn(rl, ceos rr..-l) .
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For cases (A) and (B) the el equations are identical, indicating that
the linear response 1s the same for a given piston drive or pneumatic drive
(i.e., when the fractional volume and :ass variations ex(t) are the same).
The e2 equations (3.5) and (3.11) determine the first nonlinear corrections to
the motion in cases (A) and (B). From the two sets of equations, (3.4)-(3.6)
and (3.11)-(3.12), it is evident that the expansion (2.4) in ¢ generates a
systematic iteration scheme for the functions r . For n > 1, the solutions to
the rreceding n - 1 equations combine with x(t) to form the forcing functions
Fn’ Gn = O(rln) in the nth equation. The ordoring parameter ¢ is now set
equal to unityu’io and Egs. (2.4), (3.1), and (3.9) are rcplaced respectively

by

R <, fe 3 ro) (3.13)
v(t) = 933 RS - B> x(t)] (3.14)
u(e) =mof1 e xe)] (3.15)

Consider now a forcing function given by
x(t) = x  cos wt (3.16)

where x02 << 1., Positive X corresponds to compressive piston stroke (for pisten

drive) or influx of gas (for pneumatic drive). Subject to Eq. (3.16), Eq. (3.h4)

UNCLASSIFIED
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T+ W 2rl = Kyx cos (wt + ¥) (3.17)

where
wR
¢ = tan™t (—9-) X (3.18)

The transient solution to Eq. (3.17) dies out in time due to the acoustic
R
2

radiation damping term wo ?? T leaving the steady state solution

l’

r, = By, cos (wt + mll) (3.19)
where
¥y w2 ° uJ2Ro2
B Twvre (W2 ) o (3.20)
w c
)
and
WR
oy =V tan™t s . (3.21)
c < - -@-—2>
w
? 3 o

Figure 1 presents a plot of Bll/xo vs w/wo for the case of a strengthless membrane
(@ =0, P_ = PO) enclosing an air bubble in water (y = 1.k, p_ = 1.9k slug/ft3,

¢ = 4900 ft/sec). 1In this case, the natural frequency Wy =‘/3YPw/°mRo2 .
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Figure 1. Plot of Bll/xO VS, w/wo for Spherical Air Bubbles in Water.
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The solution for r, will not be determined explicitly here, but the reader
is referred Lo Ref. 4 where r, is determined for the simpler case of a bubble
driven by an external acoustic field. Substitution of Eq. (3.19) into Egs. (3.5)
and (3.11) produces equations whose right-hand sides are proportional to

-sinzﬂnt + ), cosg(wt + @), and cos(wt + ) sin(wt + ¢). Such equations can

be rewritten producing eqﬁations of the form

R
> 2 "o ¢ 2. _
Ty W T, v w T, = woszo + w02b22 cos (2wt + wzz) (3.22)

. . 2
where w22 is a constant and B20 and b22 are constants proportional to Bll . The

steady state solution to Eq. (3.22) is

r, = By, + By, COS (2wt + mzz) (3.23)

where Poo is a constant and

22 ngRoz

Boo = Pop < - U‘J_2> Mmt-an (3.24)
)

For n > 2 the governing equations for the functicns rn(t) have the general

form

o R

.o o o 2
Tt - Y, tw T, = wg ;i; bnm cos (mwt + wnm) (3.25)

where bnm and wnm are constants. When n is even, bnm is nonzero only for m

even; when n is 0dd, b is nonzero only for m odd. Equation (3.25) leads

. * UNCLASSIFT
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to steady state solutions of the form

n

rn(t) = :Z; B, €OS (mot + wnm) (3.26)
m=

where B__ and ¢ __ are constants, and
nm nm

2 2 mwR
= P <l ) : (3.27)

It is thus seen from Egs. (3.22)-(3.27) that the effect of nonlinearity in the
steady state is the excitation of harmonics of the driving frequency w.

Resonance occurs in the mth term of T, whengver w = wo/m (m=1, 2, «00y n).

When m > 1, this is known as subharmonic resonance which is a well-known property
of nonlinear oscillators.”> For a sinusoidal forcing function as in Eq. (3.16),
the relative nonlinear contribution to the motion is largest at the first sub-
harmonic resonance w = wo/2, when the ratio B22/Bll is maximized. ©Nonlinear

effects can also be significant at the natural resonance w = w,» when B 1 is

1

maximizedh (recalling that B 5 < B

2 11 )
For a non-sinusoidal farcing function x(t), Eg. (3.16) is replaced by a

Fourier series

o

x(t) = x, 2;; o cos (mwt + 1y ) (3.28}

where o, and § are constants., Substitution of Eq. (3.28) into Eq. (3.4) leads

to the steady state solution

UL CLASSIFIED
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Yx 2
- 0
: SRl v n; B, cos (mwt + ¢ ) (3.29)
.,» where
i
5 2 2 n2 2.27°
_ nw Wk,
By =0y [(1 -2 ) +—p— (3.30)
W, c
and
-1 nwR
®, = tan (3.31)

From Eq. (3.30) it is seen that when w = W the leading term in Eq. (3.29) pre-
dominates, and T, is essentially sinusoidal if woeRoe/c2 << 1, Hence, to produce
a sinusoidal oscillation in the bubble radius it is not necessary to impose

a sinusoidal forcing function, so long as the fundamental w = Wy and woeR 2/c2 << 1.
o

Substitution of Eq. (3.29) into Egs. (3.5)-(3.6) and (3.11)-(3.12) results in
- equations which are identical in form to Eq. (3.25) with the summation going

fromm = 0 tom = =,
IV. Analysis of a Cylindrical Acoustic Generator

The analysis of Chapters II and III is now extended to the case of a cylindri-
cal bubble, in an attempt to model the cylindrical acoustic generators developed

by Sandia.6 Only the linear analysis for sinusoildal forcing functions is pre-

sented; however, the conclusions of Chapter III regarding nonlinear effects and

non-sinusoidal forcing functions also apply to the cylindrical case.

UNCLASSIFIED
14 - ‘ ‘




The idealized generator, shown schematically in Fig. 2, consists of a
solid cylinder of radius RS and height H and a concentric cylindrical membrans
of radius R > Rs’ height H, and negligible thickness. 1In the actual generator,
the inner cylinder contains pistons which vary the enclosed volume (piston drive)
or perts through which gas is alternately injected and exhausted (pneumatic
drive).6 A coordinate system is affixed to the generator with the origin
located at the center and the z-axis coinciding with the axial line of sym-

metry, as shown in Fig. 2. For piston drive the gas volume V is given by
2 [z2 2 2
V=R H| s - 0 - (1= (T)x(t) (k.1)

where Ry is the cylindrical membrene radius at equilibrium, x(t) is the fractional

variation of the equilibrium volume v, = TTROZH(l - Qg), and

Rs
C = ﬁ— . (h'e)
o
For pneumatic drive V is
5 ,
v = TR _°H <—R—2— - <;2> (4.3)
[0}
R
o
and the gas mass M varies according to
M= Mo[l + x(t)] (L.b)

where x(t) is the fractional variation of the equilibrium gas mass M.

UNCLASSIFIED
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/\ ‘ Cylindrical Membrane
Solid Cylinder
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o |
> Y
X

Figure 2. 1Idealized Accustic Generator
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Equation (2.1) is assumed to he the governing equation for the membrane
radius R, However, it must be run::sized that, for a cylindrical bubble of
height H, this equation is, in fact, invalidated by the lack of spherical
symmetry (see Appendix)., Nevertheless, it is conjectured that tangential pres-
sure and velocity gradients may b= weak enough that Eq. (2.1) is not an un-

reasonable approximation for the cylindrical bubble. Writing R(t) as
R(t) = B[+ 2(t)] (L.5)

and employing Egs. (2.6), (2.7), (2.10), (4.1), and (4.5) in Eq. (2.1), the

linearized governing equation for r(t) is found by disregarding terms of O(rz):

Ry 2 Ro y
o T = Kyx + Ky —x (4.6)

. 5 By e
r+w —_— 4+ Y
(o} c

where Wy is the natural frequency of oscilletion given by

w2 =K +a) , (4.7)

o}

and

Ve . (14.8)
3(1 - ¢)

Th: quantities & and X are defined by Eqs. (2.9) and (3.7}, respectively.

Replacing Eq. (U4.1) by Egs. (4.3) and (4.4t) also obtains Eq. (L4.6), and Eq. (L.6)

UNCLASSIFIED
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therefore determines r(t) for both piston drive and pneumatic drive. For
sinusoidal x(t) given by Eq. (3.16), Eq. (4.6) becomes
2B 2

;+wo -cg-z"+wo r = Kyx_ cos (wt + V) (%.9)

where § is given by Eq. (3.18). The steady state solution to Eq. (4.9) is

r =B cos {wt + ) (4.10)
wnere
5 -3
Y%, / w2 \ u)2R02
B = (l - —) + — (,‘*"ll)
A~ 2 o
3y + o w, c

and @ is given by Eq. (3.21).

Having determined the linear solution for R(t)
R(t) = R, [l + B cos (wt + cp)] s (k.12)

consider the far field pressure variation produced by a cylindrical generator
of finite dimensions located at the origin. Assuming that the cylindrical
membrane radius can be roughly approximated by Eq. (k.12) over the whole length

of the generator, the volumetric flow rate of water away from the generator is

Q = Edt‘ (rngH) ~ - 2rrwBRO2H sin (wt + o). (4.13)

1

¥
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Taking R and H to be small relative to the radiated wavelength \ = 2nc/uw,

the generator appears like a monopole source in the far field, and the far

field pressure variation p is given byl2
O . < w Bp_R_“H st
P“’ETEQ<t'€>='“—e°s°—L°°S Wt - T (b.18)

where s >> )\ is radial distance from the origin, and. ¢ is evaluated at
retarded time (t -S/C)due to finite ¢. The average radiated scund intensity I

at s is proportional to (p2), the mean square of n over one cycle,13 such that

2
<p2> the prohH ’
I = o ~ S ()4.15 )
pco 8s%¢
The average radiated power [ is then given by
nw*ngprohHe
I =4I ® ———e————— (4.16)

2¢c

Referring to Eas. (4.7) and (L.311), and using the equilibrium pressure balance

¥ = (
; P =P, + P L.17)

which follows from Eq. {2.6), the maximum average radiated power HO occurs at
w =Wy and is given by

22 2
mP_+P JHYX ¢
1 ~ b mg o ° (}4.18)
° 2(3y + a)
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In the present analysis, two important gquarntities have been derived: the
natural (i.e., resonant) fregquency W given by Eq. (4.7), and the maximum power
output Il , given by Eq. (4.18). Figure 3 presents a plot of computed and ob-

served values of the natural frequency (in Hz), v_ = wo/2ﬂ, vs ambient pressure

o}
P, for the SEA piston-driven acoustic generator.lu Figure L compaxes computed
and observed values of Ho vs P for the samz device. No comparisons are made
for the pneumatically driven device since its merbrane has not yet been com-
pletely characterized.15 The agreement between computed and observed values
of vy is quite good. However, agreement between computed and observed values
of Ho is very poor, with observed values falling a factor of siX or more below
those computed. The primary source of error in HO lies in the assumpt’on that
the spherical bubble equation (2.1) is valid over the entire length of

the cylinder. Other possible sources of error include non-sinusoidal forcing
function x(t), end effects and interference in the near field due to non-
spherical geometry, excitavion »f longitudinal and circular modes on the mem-
brane, and dissipative effects in the membrane. At any rate, Eq. (4.7) can be
used to determine the natural frequency fairly accurately, while Eq. (4.18)
gives at best a qualitative estimate of maximum power ocutput. The difference
between the power output given oy Eq. (4.18) and the numerical results6’15

presented in ¥ig, 4 is due to nonlinear effects which decrease with increasing

ambient pressure,

As a final consideration, it is of interest to examine the relatior between
wo end deviations from cylindrical geometry. Restricting attention to a.ially
and longitudinally symmetric deflections of the membrane, R is now defined to
be the membrane radius ﬁ(z,t) at z = 0, using the coordinate system in Fig. 2.

This i1s expressed by

R(t) = R(0,t) . (4.19)

: " wmmmm 3UNCLASSIFIED
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Figure 3. Natural Frequency vs. Ambient Pressure for the SEA Piston-Driven
Acoustic Generator.

UNCLASSIF]




O

—— numerical6’15
computed, Eq. (4.18)
(@) experimentallh

B .2
Pmo = 17.5 1b/in

B
L)
=
£y
FE)
o]
O
1]
5
O
~
Q
of
«
8
>
<
g
o
b
S
=
'

i
o

EEE 23.3 lb/'ﬁ3
dR - o i 1 -
R

o = 1 ft, R, = 0.727 ft
H=1.92 ft
= 0,009
= 1.b4
2.0 slug/ft3
4900 ft/sec

""l'

100
P_ - Ambient Pressure (lb/ine)

Figure 4, Maximum Average Power Output vs. Ambient Pressure for the

SEA Piston-Driven Acoustic Generator.
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For piston drive, the gas volume now becomes

H/2
V(t) =7 /H/: dz{ﬁ‘e(z,t) - Rse - ’ﬁoz(z) - Rszlx(t)} (4.20)

where ﬁ;(z) is R at equilibrium. Expressing R(t) by Eq. (4.5) and applying the

linear analysis, the governing equation for r(t) is Eq. (4.6) with w, given by

i}

P +P R Y
2 ® mo o) av
w, e [77— <é§>R + a] (4.21)

where

<
1}

H/2 .
= /;{/2 dz[Rog(z) -ng:’ (h.22)

For deflections of the membrane proportional to cos (mz/H) and cos2 (rz/H),
computed values of W, for the SEA piston-driven generator are 15% to 30% lower

than those observed experimentally.
V. Conclusion

The forced response of a spherical underwater hubble has been analyzed and
extended to a cylindrical acoustic generator for piston drive and pneumatic
drive. A method of determining nonlinear response has been outlined and the
effect of nonlinearity shown to be the excitation of harmonics of the driving

frequency. Furthermore, the relative contribution of nonlinearity is maximized

when the driving frequency is half the natural frequency. Maximum acoustic power

is radiated when the driving frequency is equal to the natural frequency, and

good agreement is obtained between computed and experimentally observed natural

ULNCLASSIFIED
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frequencies. On the other hand, experimentally observed radiated powers are

less than computed values by at least a factor of six,
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Appendix

Cole8 derives the radial equation of motion for a spherical bubble (2.1)
from the spherically symmetric equations of continuity and momentum, given respec-

tively inspherical coordinates (ry, 8, ©) by

2, 1 3 .20y -
i EME (pru) =0 (A.1)
' 3w . su_ Llap
5-1—:-4'11-5;—--6-5; (A.2)

where o is fluid density, t is time, u is radial fluid velocity, and P is fluid
pressure., Equation (2.1) is obtained by combining an approximate form of Eq.
(A.1) with Eq. (A.2) and integrating the result from the bubble surface r = R(t)
to r = ®, The important point is that Eq. (2.1) is valid only when Egs. (A.l)
and (A.2) are valid in the surrounding fluid.

b Now consider an axially symmetric bubble centered at the origin and sym-

b metric about § = m/2. The bubble surface is given by R(6,t) and the flow field
of the surrounding fluid must be independent of ¢ and symmetric about 6 = ﬂ/2.
Accordingly, the continuity equation and the r- and §-components of the momentum

equation are given respectively by

v, 13, .2 10 :
st T 2o (P * pggmg gy (v sin 8) = 0 (8.3)
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- 2, B
du du ., vdu v _  129P
-5_€+uar+.17'§é-_—z"——_par (A.k)
v Av |, v av uv _ 1 gg
Y UETTR T w0 (A-5)

where v is the 9-component of velocity, and the gp-component of velocity w is

taken to be zero. From the requirement of symmetry about 6 = ﬂ/2 it follows

that

M _ 2% 2P =0
v=g=5=5=0 @ 8=3 . (4.6)

But v is anti-symmetric about § = m/2, thus

XNio e 8 =5 . (A.7)

The lack of spherical symmetry is apparent everywhere, even in the plane of

il symmetry. In order to obtain an equation analogous to Eq. (2.1) for a cylin-
drical bubble, one must integrate an appropriate combination of Egs. (A.3)-(A.5)
with respect to r from the bubble surface to r = «», The resulting equation would
necessarily have an explicit dependence on § everywhere on the bubble surface.
However, the g-dependence in Egs. (A.3)-(A.5) makes the task extremely compli-

cated if not impossible, and no such attempt is made here.
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