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THE FLOW OF CHARGE FROM AN INFINITE PLATE

Eugene J. McGuire, 5233

Sandia Laboratory, Albuquerque, Now Mexico

.4 73STRACT

One simple scheme to measure an x-ray spect= involves the

measurement of the velocity of electrons emerging from a target str ,,Ich

by the x-ray beam. We have examined the dynamics of electron flow from

an infinite plate tp determine the development of the current pulse in

space and time. In addition, we devel ,m a rough cr i terion, in terms of

total current and emission velocity, as to whether the infinite para]il

plate is a good analogue of an experiment with a finite emission area.
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THE FLOW OF CHARGE FROM AN INFINITE PLATE

I. INTRODUCTION

We consider a pulse of current density of magnitude Jo , duration T,

with initial electron velocity v o , emerging from an infinite ungrounded

plate. A back-of-the-envelope calculation can be performed as follows:

The surface charge density at time t is J
o 

t for t !=", T and J
o 

T for
J to

t	 T. An electron in the pulse sees a force of magnitude 	  a-d itsco

and
J eT

2J
o
eTt

o
e

v - 	
M	

+ v + 	 for t ..-= 7
e
C
o 	

o 2M e o

It is clear that at some time v = 0; the pulse turns around and returns

to the plate. Thus, the current pulse can reach a position x (depending

on Jo ,  v
o
 and T) and go no farther.

An immediate counter to this back-of-the-envelope calculation is

that if the pulse is distributed in time at the emitter, it will be

distributed in space at any time. Attraction to the plate will remove

some of the charge, reducing the surface charge density and consequently

the attractive force. One may have here a feedback process which, while

it reduces the total charge passing any point x to a value less than Jo T,
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still allows a major fraction of the charge to reach distances greater

than that allowed in the aforesaid back-of-the-envelope calculation.

We shall show that the latter contention is correct; that, in fact,

when the feed back mechanism is relevant the current seen at P

reasonable distance from the plate is independent of J o :
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II. EQUATIONS GOVERNING CURRENT FLOW

Because we are dealing with an emitted current and a return

current, we consider a two current problem. We have two velocities and

two types of charge (i.e., electrons moving away from the emitter and

electrons moving towards the emitter). The physical boundary conditions

apply to the emitted particles (i.e., j,, v, and p 1 ). For the return

particles (j-, v 2 and p 2 )we use the condition that the return parameters

are zero until j 1 (x,t) =":"- v. Then

j2 (x,t) = j 2 (x,t) + j i(x,t)

j1(x,t) = 0

o2 (x,t) 	 o2 (x,t) + p i(x,t)

pi(x,t) = 0
	

( 1)

We do not allow returning electrons to turn around and rejoin the emitted

stream. This cannot occur as the force on the electron is always

attractive toward the plate (emitter).

The equation governing the electron streams are (definlng the

charge on the electron as positive to avoid minus signs),

	  - e (p (x,t) 4- p2(X,t))
CO 1

11.(x,t ) 3,7 (x,t)

at	  + v (x,t) bx 	 = 
me E(x,t)
e

( 1 	0 )'2' 2



6v 1 (x'
' t')i + v'(x'

'
 t') 	 v' 	 '(x' t') = C Et(xl,t 1 )at' 	 i 	 6x' i 

I 	 •

6ji(x,t)

e -at 	 3x

We use scaled units x = xt (vo 7) ., 77. = 'VI (17 ), t = tt7,p. = o!p ,
o	 oc

o
E

= J' J0 J . (e p v ), and E' =
	0 0

o
T 	

Then Equations (2-4) becomeT

	= pi(x , ,t , ) +
	

(2a)

(3a)

ap!(xi,t t) 	 6j
i
(c'

'
t')

ti - 0

	

6	 6x'

where
J
oT

2

C - eM
e
e
o 

v
o

Using eo = 10 /367 farads/met, M = 9.0 x 10 -31 Kg and e = 1.6 x 10 -'
_ 7

,

	

coul, we find C = 2.0 x 1022 J
o 

T2/v. Using j 	 a x 10E amp/rnet2 ,

= Y x 10-9 sec and v = 3c = 3 a I x 10 - net/sec we find C = C7 . a Y /3.

Equation (3a) can he modified by using v. = L/3.; it bec000es.

	

a 	 - a a

	

6j i	j. ap i
	6t	 0.6t 	

= p. C E - j i 	(ii/Pi)

aj i

using Equation (4.a)

i i 6J
= Pi C E - 	 i

o 	 6x

Win

- i6x i /p i )
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( 5)

4

The final two terms on the right-hand side can be cL,nbined to give

i .P CE- 	 0 
2
/0 )i

Equations (2a), (4a) and (5) were integrated by a finite difference method.

The boundary conditions were

j
1
 (0

1
 t) 	 p

1
 (0

'
 t) = 1
	

0	 t 	 1

j11(0 t) 	 p1'
(0 t) 	 0
	

t > 1, t < 0

When the value of j
1
(x,t) < 0 we used Equation I to bring j 2 and c, into'

the problem.

The equations were solved for C = 70 K (K = C, 	 3). An estimate

of the grid spacing (Gx,Lt) for the finite difference integration can

made from the observation (after the fact) that the electrons which turn

back do so at the trailing edge of the pulse (i.e., near the plate). Near

the plate we can use the back-of-the-envelope estimate for the force on

an electron. Is scaled units F = C j t, where j = j, (0,t), so that

2v=vo -j , C/2, where v = v (0,t), and a= t(v - Cjt 2
/6). An electron

will turn around at

2v
and x - v

0
	° -
 Cj 	 3 C

For C = 1000 these criteria lead to a 	 .03 t 	 .04.5. We require that at

least ten steps occur before turnaround, leading to Lx = .003. We further

requiredtLxfor stability.

UMW

4

•

8



• • "

.„.

However, in numerically integrating the equations by the finite difference

scheme we found dx = .003, At= .003 and Ax = .010, At = .000 to produce

instabilities; while Ax = .010, At = .005 produced stable results. Mc

results reported in the next section were obtained using the latter

spacings. As a result of oho- 'ing At= 1/2 Is we find that isturc

propagate too rapidly, e.fH 	 the completion of the first step t = It,

but some charge appears at 	 = dx = 2 It. This has sere effect onte

final results, but probably does not modify the gener.711

MIR
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III. RESULTS

A difficulty with this problem is that there is no unique significant

quantity to measure (for two parallel plates one can measure anode current

for various cathode emissions). Current density as a . function of time at

different positions seemed to be a reasonable quantity of interest. In

Fig. 1, we show the current density as a function of time at x = 	 and

in Fig. 2 at x = .99. Fig. I seems to indicate that there are two

different regions, i.e., C == 1 and C '1C. For the former the pulse seen

at x = .5 is similar to the emitted pulse, though slightly smeared out.

However, for C z 10, the pulse is sharply peaked, in no way resembling

the emitted pulse, and in addition is Lreatly reduced in magnitude.

With regard to magnitude, for C 	 10, we observe that C 	 (x) = D(x);

where D(x) is independent of C and where j refers to current movjng away

from the plate, j to return current density, and j o to tho peak current.

But examining Fig. 2, we see that the division into two regimes

is not as clear as in Fig. 1. For C = 1 the ,.,,_rent distribution has

become less flat and begin: to approach the higher C current distributicrs.

Again for C z 10 we observe

Cj+0 (x) = D(x)

In Fig. 3, we plot j + vs x for C = 100 and find

+,
j okx) = Aix for x -2 .5 .
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Figure 2
Current versus time at x s .99.
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Peak current as a,ftnction of position.
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Further A = .0112 so that

100 .
x

D(x) = F/x2.0112

Thus

F 1.12 and j+(x)
1.12

Cx
2

')2 = V(vo T)and v o = x 3 x 10
8

Using j i = j i/Jo , C = 2 x 10 - Jo T
2
/vo ,

1.12 
met/sec, the relation j o(x) = 	 becomes

C(x )-

2, 	 .5 x2103
Jo (amp/met ) =
	 (x in meters) or

x2

Jo (amp/cm
2 ) - 1.5 x2103 (x in cm) 	 (6)

x2

Thus, we have the result that the maximum current one can have at

distances x Z v o T for emitted currents Jo is independent of both Jo 
and T

and depends on the cube of the emitted velocity:

This is similar to the Childs-Langmuir Law where for parallel

2/2 2plates with voltage V and spacing d, JCL'., V' /d . However at the anode,

/the electron velocity vanode V 1 2- 	 so J
CL (vanode'

13/A2 The physics of

the two situations is of course very different as in the Childs-Langmuir

case the limiting current density is uniform between the plates.

This is treated in greater detail in the Appendix.
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IV. VELOCITY DISTRIBUTION

Since we have both j and p at x,t we can find v(t) at fixed x. In

Fig. 4 we show v(t) at x = .5 for .4 5 t s .9. Again, we point out that

the finite charge density at x = .5 for .J 5-". t s .5 is due to the numerical

integration grid, and is not real.

From Fig. 4 it is clear that there is a considerable velocity

spread even when monoenergetic electrons are emitted.

15



Figure 4
Velocity as a function of time at x = • 5•



V. TO GROUPS AND FOUR STREPrS

When electrons are emitted with different velocities from the

plate, one's intuition indicates that the fastest electrons will travel

farthest and turn around last. To examine this point we added another

emitted current such that for the fast group j i = 1, v i = 1 and o f = 1

at the cathode while for the slow group j_ = 1, v. = 1/2 and s, = 2 at
j 	 J

the cathode. The grid spacing was modified to Lx = .010, Lot = .0025.

No further stability examination was made.

The conclusion reached in this examination are so drastic there

seems no reasonable way of presenting it graphically. In Fig. 5 we plot

and j 5 vs time at x = .5 for C = 1.0. However for 0 = 10.0 : = C

for all times 	 I at x = the electrons emitted with ——

never reach the position x = .

17
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Figure 5
Currthlt versus time It x = .5.
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VI. RELEVANCE TO EXPERIMENT

Physical experiments on large current pulses normally have a

natural length, e.g., beam diameter. The current emitting area can be

thought of as a disk of radius a. Fields should then involve terms of

distances away from the plate equal to or less than a. The drastic

effects noted in oreceeding sections should not be relevant if at a the

space charge limited peak current is greater than the emitted current:

that is if

This can be rewritten as

This is now a restriction on total current, not current :]ensity. For

electron kinetic energy between 10 and 102 keV, 	 .3. is a real

mean. Then the parallel 	 Jisaster should not occur if I < 12C a;)s.

The equations which we solved were not relativistic but we

that up to 100 keV the neglect of relativistic effects should not

significant.

We have indicated were the parallel plate argument 'croa'ks

We have not said what happens when it Ices break down. 	 is woul±'I

require an investigation of the problem of emission from a finite disk
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(which we hope to do). The parallel plate case should be relevant to the

disk when the current drawn exceeds 120 amps.
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VII. CONCLUSIONS

The results presented here indicate that the dynamics of electron

emission from an infinite plate is not a completely sterile problem

(i.e., we found a current density limit similar to the Childs-Langmir

Law). However, when the infinite parallel plate is relevant to an

experiment one should not expect any significant information from the

experiment. In this context, conclusions drawn from a discussion of an

infinite parallel plate are relevant if 	 0> 5 x 1 	amos, where I is

the total current and o is the ratio of electron emission velocity to the

velocity of light.

Precisely what one shou 1.d expect when the infinite parallel plate

is not relevant cannot be determined from this investigation. We plan

to continue this study Ly examining current flow from a finite emitter.

21

e

■

4

4



APPENDIX I

The Childs-Langmuir Law for finite emission velocity.

We wish to derive the space charge limited current between parallel

plates when there is a potential Vo across the plates and when the elec-

trons are emitted from the cathode with velocity vo .

Physically the current between the plates will build up until at some

point the repulsive space charge potential is just sufficient to bring an

electron to rest. On the cathode side of the zero velocity position the

electric field is decelerating and on the anode side it is accelerating.

The governing equations are

,21/Ax2 :P 	 v(1) 	 (2) 	 Mv—.e7c
0

From (3) we have p Jo/ev and from (2)

(3) 	 j = ePv 	 Jo

mv2 . e V + 1– mv o2 .2 	 2 (4)

The latter equation is the energy equation. We note that the anode

velocity va is given by

2eVo 2+ vo

Substituting into (1) we have

	

Jo 	1 

	

bx2 ' c o 	 2eV 	 2
+ v0

Multiplying through by BV/x, and integrating leads to

(5)
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(6)

IMO

6V 2 2 Jo m 	 2eV(x) + v
o

2 + C ,6) 	 e
o
e 	 m

where C is an arbitrary constan' . At the point where v(x) = 0, the

expression under the square root is zero. But here the electric field

i also zero since it is at this point that it chmges sign. Therefore,

C = 0 and
1	 1
2

(V) 	 (2eV(x) 4. v2 ) 	
•:Tc 	

0 e
	 0

(2 J	 m) 	

(7)

The point at which v . 0 is defined as x = x
o
. Then for x < x

o 
we take the

minus sign and for x > x
0
 we take the plus sign.

The above equation can be integrated to give

3/4

2(2eV + v
o2 	

2m)
) 	 3e 	 (c o e 	

x + C l 	
x < x

o 
,( 	 jo m )

(8)
3/14.

2

2eV
1- V

02)

2 J

oe
x + C

2 	
x > x

o(3e) 	 ( c ooe •

Inserting the boundary conditions: at x 0, V . 0, and at x = d, V = V o

leads to

) 3/4 	

) I

(2J
2m [(2eV— — + v

o

2
	- v

0

3/2-
1 = - 	

o m 	 x< x
o3e 	

c
o

) 3/4 	 3/4] 	 1
2

(2eV 	 2J
2m {(2eV 	 2 	 2 	 ov 	 o 	 c c 	(x-d) x > x

o3e o

(9)
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Thus the peak current obtained from a single infinite plane emitter

at position x is close to the space charge limited current flawing between

grounded plates with separation d x, when the emission velocity is the

same for both cases.

4
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