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ABSTRACT

The 1ong—te£m effects resulting from an accidental release of radioactive
material are considered. The magnitude of the release is defined in terms of the
percentage of total excess cancer mortalities relative to the number that would
have been expected in the same population had the accident not occurred. The
increased risk is expressed as the chainge in life expectancy as a function of age
at the time of exposure. Loss of life-years per person are calculated for an
increase of 0.1%, 1%, 10% and 100% in cancer deaths and are quoted for ages 1, 10,
20, 30, 40 and 50 years at the time of exposure. The variation of the effect
with age may be summafised using the ratio of the reduced life expectancy to the
reduced life expectancy for a person aged zero at the time of the accident. For
the initial external dose, this ratio exhibits a linear decrease up to about
45 years at the rate of about 2% per vear so, for example, the increased risk for
a person aged 40 years at exposure is 20% of the increased risk of a child just

born.

Similar estimates are made for a dose which is prolonged over 50 years, to

represent doses from internally incorporated radionuclides.
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1. INTRODUCTION

In the event of a release of radiocactive material into the environment, the
population in the path of the plume will be subjected to an increased risk of death
from certain causes. This report describes a procedure for assessing the long-
term effects of the accident by estimating the number of excess cancer deaths which
are induced in the exposed population by the dose of radiation they receive. The
dose experienced consists of two components; an external dose from the radio-
activity of the passing cloud and the material deposited, and a protracted internal
dose from material inhaled and ingested. Here we shall consider the effects of
the external dose accumulated during the year following the accident and,
separately, the effects of the full dose commitment represented by the dose versus
time relationship shown in Figures 1 and 2. Figure 1 is representative of the
annual dose to lung and Figure 2 to bone marrow (the latter being appropriate to
estimate induced leukaemias). Both correspond to the exposure of a person 1 km
from the point of release. Also considered is a uniform dose over 50 years as
the other extreme to the external dose all in the first year. By comparison of
these two, the effects of internal and external dose can be separated (for the

long-lived nuclides).

In calculations for radiological protection purposes, it is necessary to
estimate the total (or average) effect and to identify the section of the community
which incurs the greatest risk. This report is concerned with relative risk for
different age groups and, in the following, age normally means age at the time of
the release. The population at risk is assumed to have an age distribution (men,
women and children) similar to the population of England and Wales and the home
population statistics contained in the Registrar-General's Review for 1973 have
been used (Figure 3). Differences in the standard mortality rates for males and
females are not taken into account, all properties being averaged over the two

sexes.

In making the estimates reported here, the level of risk is chosen to produce
a predetermined ﬁumber of excess deaths defihed as a percentage of the number of .
cancer deaths that would have been expected without the accident. Thus, the
product of the dose (in rads) And the risk coefficient (the number of radiation-
induced cancer deaths per rad) is adjusted by an iterative procedure until the
required number is predicted. Then the corresponding age distribution of the
effect of the accident can be extracted and is expressed here in terms of effective
life shortening per person of a given age due to induced cancer deaths lowering

their expected average age at death.

The concept of reduced life expectancy has been chosen to describe the effect
in preference to numbers of cancer deaths. The latter is dependent on the popu-
lation which is exposed and, hence, this must be specified. Reduced life

expectancy may be quolted for a person of specified age and is quantitatively more
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meaningful than increased probability of dying of cancer. It is also a

convenient measure of the impact of the accident on a population.

The results presented in Section 4 demonstrate the relative risk of the young
and old and indicate the possibility of simplifying approximations in estimating
population effects. These deductions are dependent on the assumptions made in

the modelling described in the following two sections.

2. NATURAL MALIGNANCIES

Figure 4 shows the distribution of deaths from all causes which have been used
for the natural deaths of the éopulation. Figures 5 and 6 (dashed lines) show
the corresponding distribution for lung cancer deaths and for leukaemia,
respectively. These all derive from death rates given by the Registrar General
(1973). These rates are assumed to have remained applicable every year following
exposure. Data from the same source have been used to evaluate the expected
number of cancer mortalities in the exposed population. This number is used as
the reference for the number of radiation-~induced deaths. It should be emphasised
that this is the number expected without the accident; when the accident is taken
into account there will be less non-radiation-induced cancers because some cancer
deaths which would have occurred will be pre-empted by a radiation-induced death.
In the following discussion the term 'percentage excess' of cancers means the
number of radiation-induced cancers (as a result of the accident) expressed as a
percentage of the number of cancer deaths that would have been expected had the
accident not occurred. Thus, the percentage excess cancers is a measure of the

magnitude of the accident.

The death rates corresponding to Figure 4 may be used to construct a survival
curve showing the probability that a person of a given age will still be alive as

a function of time in the future. These are shown for various ages in Section 4.

3. RADIATION-INDUCED MALIGNANCIES

The period of risk following exposure to ionising radiation is not well
established. It is reasonably well agreed that there will be a latent period of
zero risk after exposure followed by a finite risk extending over some consider-
able time. The literature does not contain adequate data to predict the form of
this time variation. Some guidance in making a choice is available from the
times of appearance of cancers and leukaemias among the survivors of the Japanese
atomic bombs. The data suggest that about 90% of the deaths due to radiation-

induced leukaemia had occurred by 1972. These did not begin to appear for at

‘least 5 yecars after the bomb but they reached a peak quickly and thereafter

decreased steadily. The negative slope has not been included since it is
partially accounted for by the underestimating of radiation-induced leukaemias

due to deaths from other causes. In order to generate over—cstimates rather



than underestimates, a rectangular time variation has been taken, as described below.
Significant numbers of induced deaths due to other cancers appeared later than

the leukaemias and the data suggest that by 1972 perhaps half of them had occurred.
For these the increase had been slower but it was clear that the effects extended
over much greater times following exposure. For reasons similar to those for the
leukaemia deaths, the time variation was taken to be rectangular but starting later
and lasting longer. The simple models shown in Figure 7 have been used; for all
cancers a latent period of 15 years followed by uniform risk for 30 years (dashed
line); for leukaemia a S5-year latent period and finite risk extending up to

25 years after exposure.

As discussed in the previous section, separate values for the risk coefficient
and the dose are not relevant; however, their product is uniquely determined by
the excess deaths and hence, for a given risk coefficient, the dose necessary to
produce the effect can be quoted. To give an indication of the magnitude of the
accident which will cause the effect, the average doses necessary are Juoted
assuming a risk coefficient of ’.LO_4 radiation-induced cancer deaths per rad
averaged over a standard population (this is based on observations on Japauese
atomic bomb survivors (Goss, 1574)). For example, to produce 100% excess cancer
(see Section 2, ie, to double the risk of dying through cancer) requires an
external dose during the year following the accident of 3500 rads per person. If
the dose is accumulated unifofmly over a 50-year period the dose required to
double the risk is 7500 rads (received by a person who survives for 50 years

after the accident).

The probability (normalised to unity) that a radiation-induced lung cancer
death will occur at a particular age is shown in Figure 5 (solid line) along with
the corresponding curve for the natural incidence (dashed line). This histogram
has been calculated for the 100% excess cancer accident using the dose-time
relationship as in Figure 1 and the risk-time relationship as in Figure 7 (dashed
line}. A clear difference in the age distribution is demonstrated: fof examplé,
a person aged under 25 years at exposure has an order of magnitude increase in
risk of cancer death at 40 years compared with the risk had the accident not
occurred. However, this must be taken in perspective with the absclute risk of
dying due to cancer at 40 years, viz. about 5 deaths per 10,000 perscns per year.
The same comparison 1s made in Figure 6 for leukaemias. It is seen here that the
radiation-induced leukaemias-appear earlier on average than the lung cancers
shown in Figure 5, although the peak for lung cancers occurs at a lower age
(45-50 years compared with 55~60 years for leuksemias). This happens because
the lung cancers are considerably more numerous and influence the population
significantly. Figure 6 also shows the clear difference in the age distribution
of induced and spontaneous leukaemia deaths. Probability of death from leukaemia
at age 40 (for a person under 35 years at the time of the accident) is about

five times greater than if the release of activity had not occurred; the
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spontaneous rate at age 40 is just under 3 leukaemia deaths per 100,000 persons

per year. It should be remarked that although a standard population of men,

women and children has been worked with, mortalities due to lung cancer (without the
radiation exposure) are very unevenly distributed between the sexes, male deaths

due to lung cancer being a factor of S greater than in females. The radiation-
induced lung cancers are expected to be evenly distributed between the sexes.

Thus, since population averages were used to define the accident, women

will experience an increased risk relative to the no-accident situation, which is
greater than that for 'men. This is not so for leukaemias, which are more evenly

distributed.

4. AGE VARIATION OF INCREASED RISK

The effect of the accident is assessed as modified life expectancy. The
life expectancy of a person aged i years is defined as

L(i) = (ni AR P S .)/ni cecsecanees (1)

where h is the number of people aged 1,
04 is the number out of the original ng still alive 1 year later
(ie, who survive until i+1),

Do is the number who survive for 2 years, etc.

Life expectancy predicts a mean age of death (L(i) + i for a group of given age 1)
which increases with the age of the group. The life expectancy, L(i), may be
calculated with (LR(i)) and without (LN(i)) the accident and the effect of the

accident expressed as the difference, LN(i) - LR(i) (= BL(1)).

The decrease in life expectancy, AL(i), has been calculated for all i up to
80 years and for accidents corresponding to 0.1%, 1%, 10% and 100% excess,
ie, radiation-induced deaths (relative to the number of cancer deaths expected

without the accident, as described in Section 2).

Considering first the case of external dose accumulated during the year
following the accident, Table 1 shows 8L{1i) for sample ages and Figure 8 shows the
ratio, 8L(1)/8L(0), for four magnitudes of accident falling closely on the same curve.
From these results (solid line) it can be seen that the effect decreases linearly
with age at a rate of about 2.1% per year up to about the age of 45. Beyond that
the risk flattens to zero, being identically zero at 80 years, since this model
assumes a 15-year latency and everybody dying before 95 years. Itis seenagso from
Table 1 that the effect measured as reduced life expectancy is closely proportional
to the excess death rate at all ages shown. Thus, using a figure of 13 years'
reduced life expectancy for a newborn child for an accident which produces 100%
excess cancer deaths, together with a 2.1% decrease per year 'age at exposure’,
enables estimates corresponding to any accident and any age to be made. That is,

for an accident which results in x% excess cancer deaths, the reduced life



expectancy of a person aged i is

AL(i) = 13(1 - 0.021i)=2-

() 3(1~0 211)100 . (2)

Figure 8 also shows the corresponding curve for a protracted dose (dashed line).

This curve is always below the acute dose curve and is well fitted by the quadratic
OL(L) = 12.3(1 - 0.03561 + 0.0003231%)2=  eeuiien (3)

Figure 9 shows the survival curves for sample ages for the 100% case. Also
shown (dotted line) for age 1 is the 10% case which is the only one distinguish-
able on the scale from the no-accident curve. The solid curves show the
probability of surviving against years after the time cf the accident and the

broken lines show the same probability taking account cf the accident.

The last column of Table 1 shows the reduced life expectancy corresponding to
a dose accumulated uniformly over 50 years producing 100% excess cancers. The
dose necessary is over twice that for the previous case of the accumulation all in
the firct year but a smaller loss of life-years is seen despite the same total
number of radiation-induced deaths from cancer. Figure 10 compares the sﬁrvival
curves of the protracted dose (solid line) with the acu£e dose (dashed line) for
ages 1 and 30. For age 1 at exposure the prcbability of survival for 54 years is
greater for a protracted dose,but survival longer than this is less for a
protracted dose. This is due to the full effects of the dose not being effective
for the first 45 years. For a person aged 30 at exposure there is no cross-over

since the average perscn aged 30 does not expect to live long enough to experience

the full dose.

5. COMMENTS

The main cobjective of this work is to investigate the age distribution of the
effects of exposing a standard population to radiation. There is no involvement
in assumptions about the type of accident nor in its probability; the sole -
concern is with the distribution of an assumed total effect over the age at time of
exposure. Intuitively, the greatest risk is expected to be incurred by the younger
among the exposed since they have a greater probability of living long enough to
experience the full long-term effects of their exposure.. This is demonstrated by
Table 1 and Figures 8, 9 and 10. The magnitude of the ratioc of the risk between
young and old is quite striking. Figure 8 shows, for example, that an exposed
40-year old incurs only 20% of the risk of a newborn baby.

We have chosen to express the effects of the accident in terms of years of
life lost per person of given age. This is a quantity whose significance is
easily grasped, as well as being population independent. This does not mean that

all children aged 1 at the time of exposure will die the specified number of years

1014988
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earlier than they would have done had the accident not occurred. It means that
during each year following exposure, some children who were 1 year old when the
accident occurred will die of radiation-induced cancers (on this model ncne during
the first 15 years following exposure or after 45 years). This results in a
reduction of the total number of person life-years. This total is averaged over

all children exposed at the age of 1 year to represent a reduced life expectancy.

The survival curves shown in Figures 9 and 10 illustrate the same differ-
ential risk. In addition, they show‘the relationship with the survival
probabilities that would have existed had the accident not occurred. The curves
show the probability of still being alive x years after the accident for sample
ages. The area between the two curves for a given age is a measure of the impact
of the accident on a person of that age at exposure; the greater the area the
greater the impact. The curves are drawn for the largest accident considered,
100% excess cancers. Even 10% excess produces survival curves which are barely
distinguishable from the no-accident situation. The 10% case for age 1 is shown
in Figure 9 as a comparison and shows that, even for the most significant age, the

radiation-induced curve is close to the natural curve.

There is a simple relationship between the reduction in life expectancy for
different ages and for different magnitude accidents (measured by the percentage
total excess cancers induced by the radiation). This is summarised by
equation (2) in the previous section for dose received during the first year
following the accident. For the dcse spread over 50 years the ratios are less
at all ages and fall on a smooth curve that is closely approximated by the quadratic

equation (3).

6. REFERENCES
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Table 1

The reduced life expectancy (equation (1)) for a series of

accidental releases of radiocactive material for persons

aged i at the time of the release

Reduced life expectancy (years), AL(i)

E death 100%
xcess deaths 0.1% 1% 10% 100% (uniform dose
(see Section 2)
50 years)
Age (1)
1 0.013 0.13 1.3 12.9 12.3
10 0.010 | 0.10 1.0 10.3 8.6
20 0.007 | 0.07 0.74 7.49 5.2
30 0.005 | 0.05 0.47 4.87 2.7
40 0.003 | 0.03 0.25 2.66 1.1
50 - 0.001 | 0.01 0.10 1.11 0.35
Population mean
(over all ages) 0.005 | 0.048 0.48 4.9 3.7
Equivalent dose/
person based on 3 rads | 31 rads | 307 rads | 3515 rads 7442 rads

risk coefficient
of 10“4/rad
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