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SUMI\{IARY

Gamma radiation emitted by selected fallout samples
collected at Operation REDWING was spectrometrically
analyzed for the purpose of determining its characteristics
(expressed in terms of absolute photon intensities for each
discernible gamma line) as a function of time after shot.

Since the absolute photon intensities are given and most
samples represent known fractions of the area of the fallout
collectors, one result is that dose rates in the vicinity of
the collecting site can be calculated.

Another important result of the analysis suggests that
Na# becomes an increasingly important contributor to the

radiation hazard from fallout at ea.rli times after detonation
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ADMINISTRATIVE INFORMATION

This report is one of a series of technical reports on the gamma-
ray spectra of fallout samples collected at various weapon tests.
Previous data has been reported in this laboratory's USNRDL-420,
31 August 1953, USNRDL- TR-32, 26 January 1955, and USNRDL- TR-106,
27 August 1956. The sample study reported here was conducted in
conjuncrion with Project 2.6.3, Operation REDWING.

The work was done under Bureau of Ships Project No. NS 081-001,
Technical Objective AW-7, and is a continuation of that described ’
as Subtask 6 in this laboratory's report to the Bureau of Ships,

DD Form 613, July 1956. Similar work is described under Program 9,
Problem 1, in this laboratory's Semi-annual Progress Report,

1 July to 31 December 1956, Progress Report USNRDL-P-1,
January 1957.
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I3TCDUCTION

Lnzlyses have been made at USUTDL with a single-channul

ramme-ray spectrometer, of raiiaﬁion emitted by 21 selected
radicactive fallout samples collected by Project 2.6.3 at
the Spring, 1956, weapons test series known as Cperacion
DIDWING at the Pacific Proving Grounids. These measure-
merts were made to determine tne spectrometric character-
1stics of the fallout radlationversus time and to compare
+hese characteristics for consistency among samples from
the samé and different shots. -

The present work 1s a continuation of the spectrome%fic
analyses of fallout gamma radiation which have ﬁeen made at
Operation UPSHOT-KMOTHOLZ at the Nevada Test Site 1n 19531,
Operation CASTLZ at the Pacific Zroving Grounds in 19542.
and Operation TEAPCT at the Nevada Test Site in 1955 3,4,
taking advantage ol further refinements in instrumentation
and analyzingz technique.

Project 2.6.3 collected samples of various types at
several ship, barge and land stations and returned them
to NRDL by air. This rapid return allowed analysils to
begin as early as 51 hours after shot time--a notable im-
provement over the earliest-time recelpt of 4 days accom-
plished at Operation CASTLE., Other samples requiring

specialized handling, i.e. weizhing, aliquoting, evaporation,
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etc., voachad the inveshizit-r ot rarious times, some es

lace as ten dnjs alter shot tire.

The results show absolute photon Source strenztns
for each energsy from the various samples, wnlile in previQ
ous reports only relative line intensities were given.
Since eacn sample constituted an accurately determined
portion of the material taken from a fallout collector
of known area, an estimate can be made concerning the
total gamma source strenzth per unit area in the vicinity
of the collecting site.

Other than reporting quantitative information on
photons emitted per square inch of fallout collection
area, this experiment exemplified better organization
and preparation in other ways. The samples were pre-
pared in standardiilzed containers so that changing geo-
metry was‘never a problem. -The spectrometer was 'well-
seasoned” and dependable and was used without modifica-
tion througzhout the course of the experiment. The 1lnstru
ment was improved by the substitution of a Moseley X-Y
plotter for the Brown recorﬁer. Finally the analysls
itself was maide simpler and more consistent by the

use of a better way of measuring peak areas.
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INSTRUNERTATION

A gamma-ray photon 1s detectable only by means of
the enerzy it loses in an interaction or interactions
with matter. Gamma-ray photons lose enerzy by three maln
processes: photoelectric effect, Compton effect, and
positron-negatron pair production. The cross=-section for
each effect is dependent on the energy of the gamma-ray
photon and the atomic number of the detecting material.

The enercy given up by the gamma-ray phofﬁn under- ?1’
going any of these processes ultimately manifests itself
in the molecular excitation of the detectinz material.
¥any organic crystals{such as anthracene, stilbene, and
diphenylbutadiene)and many inorsanic Erystals(such as
thallium-activated sodium iocdide, indium~ or théllium-
activated lithiumiodide, and potassium 1odide) relieve
this excitation in the form of useful scintillatlons of
licht whose predominant color depends on the crystal.

The 4intensity of the light flashes produced 1n these
materials is dependent (in some cases, linearly) on the
enerzy of the incident photon (provided it 1s totally
absorbed). These licht pulses are detected by a photo-

multiplier tube which converts them into electrical pulses.
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These pulses are amplified then analyzed according to
peak voltage and counted.

¥aI(Tl) crystals are in wide use today as gamma-
ray detectors because of their high efficiency anid linear-
i1ty. The disadvantage of their belng nygroscopic is largely
overcome by sealing them hermetically in thin-walled alumi-
num containers.

For this experiment a special sample holder was made
for fhe'spectrometer which allowed the bottoms of the
sample containers to be placed 2 inches above the top of S
the collimetor (a 1/2-inch hole through 6 inches of lead)
and centered without further adjustment,

The 4-inch in diameter by 4-inch long NaI(Tl) crystal,
S5-inch Du Mont photomultiplier tube, preamplifiler and
housing (Fig. 1) were the same as those used in the analy-

sis of the data from Operation TEAPOT3

and are more fully
described elsewhere.4

The output of the preamplifier was fed into a Tracer-
1ab non-overloading linear amplifier whose output pulses
were analyzed by an Atomic Instrument Company Model 510
pulse height analyzer, the variable base line bias o; which

was provided by a helipot, motor driven tHrough 1ts renze.®

The output pulses from the analyzer were fed 1into
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an IIl‘LDL-:lesi;nedJ+ count-rate meter. Tnils count-rate
‘meéer has 7 scales ranging in sensitivity from 10 counts
per second full scale to 1000 counts per second full
scale., The output of the count-rate mater contrelled the
Y coordinate of a Moseley Lutorraf X-Y plotter, while the
¥ coordinate was varied by the base line bias of the ‘
analyzer. A modification in the form of 2 potentiometer
in series with the X input allowed fine adjustments {0 be
made in matching pulse height to particular lines on the
recoriing paper. A cypical recording made by the XY
recorier is shown in Fipg. 2.
Thne rezulated hizh-voltaze supply for the photomult€£’

plier tube was constructed from a UCRL deslgn.

PROCZDUTE

The fallout samples were supplied by Project 2.6,3
in 3/4-inch in diameter by 2-inch in length polystyrene
containers each containing approximately 50-1000 micro-
curies total activity.  Descriptive information about each

:  sample, the effective fallout area 1t repfesents, and its

associated shot is listed in Tablel?

Samples were obtained from 2 types of collectors. The
cloud sample consisted of material caugnt on a filter paper
through which a representative sample of alr was drawn as

an aircraft flew throuzh the cloud following. the d=tonation,

so———

% The tables sopeer at the end of the text.
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The open-close total collector (OCC)G’7 vias designed to
collect and hold fallout material wnile reducing to 2
nininum the amount of extraneous material deposited both
before ani after the collecting period. When triggered
either by an increase in radioactive backzround or by hand,
the cover of the device opens and a collecting tray rises
{nto the wind stream for the preset exposure time (variable
in 15-minute increments between O and 81 hours). The tray
has an effective collecting area of about 2.5 square feet
divided into numerous cells to reduce loss of material dugf,
to wind. Samples, other than cloud samples, were obtained~
from this type of collector mounted on converted liberty
ships (¥2G's), barges (YFNB's) and ‘How Island.

After collection the fallout material was flown back
to the Laboratory and aliqudted by Chemical Technology
Division. The aliquots suppiiad to’this section for analy-
sis were placed in the polystyrene contalners and prevented
from shifting, in the case of granular or pulverized samples,
by the addition of a small amount of paraffin,

fhe machine was calibrated so that on "standari" galn
the total absorption peak of a 100, 200, or 300, etc., kev
garma ray would be centered on the 1/2-inch, l-inch, or 1-1/2-
inch, etc., line on the recording paper. This calibration

was accomplished first by careful zero-settinz of the X-Y
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reéorder and analyzer, and then by varying the'gain of the
amplificr and the fine pulse-heizht adjustment on the recor-
der until total absorption pealis from standards ol known
zamma enerjies (Hg203, Nae% and Csl37) fell at the appro-
priate positions on the recarding paper (Fig. 2). 1t was
found that this calibration was very stable, requiring only
an occasional small adjustment in the zero-set control of
the recorder to allow for variation in paper placement and
ruling defects on the paper. That the equipment was essen-
tially stable in the Y direction was shownvby periodic
checks with the 60-cycle test position of the count-rate
meter and by the linearity of the decay curves on semi-
logarithmic paper of the calibrated standards.

Pulse height spectra were recorded for each sample on
standard gain (3 lMzv full scale) and on "high"” gain--
amplifier gain increased by a factor of four (0.75 Mev full
scale)--in those cases where the strengtnh of the sample
allowed 4it. How long the taking of perlodic recordings of
eagh sample could continue after shot time before the éount
rate became too low for statistically significant results
depended of course, on the original strength of the sample.

On nearly all of the standard-gain records, a callbrated

22

Na standarid source was recorded on the same sheet in a

different color ink, while on the high-galn records a

9
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calibrated Hg203 source was used. This use of the calibrated
standards allowed a constant check to be made on the stabil-

ity of the equipment (see Appendix I).

ANALYSIS OF DATA

The pulse height spectrum of a monoenergetic gamma ray
consists of a total absorption peak and continuous "Compton'
distributidn. If the energy of the gamma ray is above 1.02
Mev, pair production begins to tske place and one of two

secondary vesks 1s contributed to, according to_whether o€

e e e —

or both of the annihilation quanta escape from the cfystal.
The peaks all have the shape of normal distribution functlons
or "Gaussians'" because of the statistical nature of the
photoelectric effect and the secondary-emisslon phenomenon
inherent in the operation of a photomultipliler tube.

If two incident gamma energiles are present, the lower
is superimposed additively on the continuous Compton dis-
tribution of the higher. An example of the ideallzed
addi?ion of three different monoenergetic gamma rays is
shown in Fig. 3. As more gamma energles are added the
resulting confusion becomes progressively worse. (If the
higher energies are above 1.02 Mev, the presence of
annihilation radiation escape peaks further complicates

the spectrum and thus the analysis.)

10
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In order to untangle these overlapping distributions
and érrive at the basic gamma lines, a method of graphical
unfolding is used. One starts at the highest-energy peak
present (assuming that i1t is not superimposed on the Compton

: distribution of a still higher energy) and measures the area
under the total absorpticn peak. Then knowing the peak-to-
total ratio (the method of ascertaining this ratio is des-
cribed later) for each energy, one can calculate the area
of the Compton distribution. After drawing in the Compton
distribution of the highest energy, the process is repeated

Lo ' for the next highest-energy peak using the Compton of the g

highest energy as a base line. The process is continued

until all the ehergies present are analyzed. Knowlng the
resolution of the instrument for each energy, one can tell
whether there is only one energy contributing to a particu-
lar peak, or two or more unresolved energles present, by
the width of the peak. The resolution (width of a peak in

[ kev at half-maximum height) was determined by measuring the
resolution for several total absorption peaks of known energy
ani plotting the results (Fig. 4).

In order to facilitate the measuring of the photopeak
areas and to aid in estimating the relative slze of two
unresolved peaks,a series of Gaussian curves of predetermined
widths, various heights and,thus, known areas, were drawn by

means of a Gaussian curve generator (see Appendix II). By

12
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superimposition of the sultable Gaussian oﬁ thé pﬁise height
spectrum with the aid of a frosted-glass light table, the
area of each total absorption peak was determined without
tedious measuring with & planimeter. ¥For errors incurred
by thls measuring system see the section on errors. .
The ratlio of absolute photon intensity to total absorp-
tion peak area 28 some function of the energy of the gamma
ray, I/A = T{E). For the determinatiem of the graphical
relationshlp between I/A and E, 1t was first necessary to

ascertain further machine parameters ang other energy-

B U

dependent factors. These were:
o , {3) Crystal 1interaction probability, v. This -
l is simply the fraction of incident photons of a par=-
ticular energy which interacts in the crystal and is
— given by:.

vel f’exp(-uxx)

jr : : where U, is the total linear absorption coefficient
: for gamma rays in sodium 1odide8 and X 18 the crystal
length. TFor a crystal 40.16 cm (¥ inches) in length,
'v versus E 1s shown plotted in Fig. 5.

(2). Peak-to-total watio, w. This Tector is deter-
mined experimentally by recording the spectra of severel
sources of known gamma energy and measuring areas of the
total absarption peaks and the areas under the total spec-

trum, The metlos of these areas plotted against energy

14
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furnish a fairly smootli curve. Tne peak~to-total

" curve characteristic of the machnine used in the present

experiment is shown in Fig. 6.

(37’ Counts per second per square 1lnch in the
total absorption peak, C. This number is a constant
of the machine and is found by dividing the number of
counts per second per inch of deflection in the Y direc-~
tion by the channel width in chart inches. The channel
width used throughout the experiment corresponds to
0.1 inch on the chart paper and the total Y deflectiogf
18 10 inches. Theﬁ for the 200 c¢/s scale, C 1s 200,

(4) Source reduction factor, K. This factor is
the fraction of photons leaving the source which enter
the crystal and takes into account effects of collimator
penetration, finite extension of source, and solid angle
subtended by the crystal from the source, assuming a V

point source ani an opaque collimator. These effects

are discussed in some detail in a theoretical paper by

‘R. L. Mather of this laboratory.’ Derived from informa-

tion contained 4in this paper is Fig. 7, showing K, the
source reduction factor for a polnt source, versus r,
the distance of the source from the collimator axis.

To find the average source reduction factor, X, to account

15
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“for the finite extension of the source, it was necessary

to perform the following numerical integration:

L

g = -2 Kpdr
ST
o rdr

where Trg 41s the radius of the exténded source. Tae
jetermination of T 1s somewhat simplified by the fact

that X is constant over part of the range of r, 1.e.:

Kk = a¥/18(z = b/2)% (0= <e/2).

~where & 1s the collimator diameter, b the collimator

thickness and z the distance from the center of the g
collimator to the source. When r is larger than a/2 )
and smaller than az/b, K 1s scne function of r determined
graphically by interpolation and derived from Fig. 9 of
Mather's paper. For values of r equal to or larger than
az/b, X vanishes.
To make the reduction factor K, enersy dependent,

i.e.,to include penetration effects, an approximation9
is used. Penetratlion 1is 2 function of gamma-ray energy

and the increased aperture due to increased energy 1is

"approximately the same as the geometrical aperture of

an opaque collimator two mean-free-paths less tnick.
For the particular geometry ynvolved in the present’
experiment, the values of the machine parameters are 2as

follows: -

13



2 = 1/2%inch

5 1inches

z
rg = 3/5 inch
b = (6 - 2/1) inches

where 1/u is the mean-free-path of gamma radiation
in lead.

¥ was evaluated by means of numerical 1lntegra-
tion for values of E (and corresponding values of
p) at 200-kev intervals between O and 2 Mev and at
3 Mev (Fig. 8). ‘ B4

The absolute photon intensity is a combination of these

various correction factors, i.e.:
I = AC/vWK

A graph of I/A versus E 1s snown in Fig. 9. After reading
the energetically approrriate I/A from the graph, the numﬁer
was multiplied by the area of the total absorption peak of
the corresponding gamma ray to obtain absolute photon inten-

sity of that line.

RESULTS
The absolute photon intensitles with their estimated

errors are listed for each gamma line of each record in
Tables 2 and 3. The abbreviated sample notation used for
19
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brevity in Tebles 2 and 3 is explained in Table 1. Table
1T coétains the information cbtained from the standard zain
recoriings and Teble 3 1lists the photon intensities founi
from the hizh gzain (4%x) recordings. DBecause of the lncrease
in resolving power some lines which were unanalyzable or
undetectable on the standard gain records became analyzable
on the nigh gain records,

The data have been left in tabular form to make the

information more readily accessible to those who wish to use -

ERROR - -~
In actual practice the analysis is more difficult than

might be assumed {rom tne description in the Analysis of

Data section for the following reasons:

(1) The shape of the Compton distributlon is known
only approximately for a given energy even thouzh 1ts
area is known fairly accurately. Even if the snape
were accuratély known, it would be mechanically diffi-
cult to draw such a distribution in with a predetermined
area. For thls reason a straight line is used for the
Compton distribution, with the resultlng rectangle having
the proper area. It 1s found, however, after drawing in

tnis rectangular representation of the Comptgn distribu-

tion several times and cetting the "feel" of the machine,
that the base line for each succeeding peak can be
~estimated with similar accuracy
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‘and considerably greater speed. Elther way, of course,
this approximation contributes to the overall error, the
errors becoming progressively greater toward the lower
- energies,
(2) If two or more energies are present too close
together to be resolved, one can draw two Or more
Gaussians of the proper width beneath the broad peak
representing these unresolved energies, but it is 3if-
ficult if not impossible to determine which of the ener-
. gles is preponderant. In this case one can do little
. more than estimate. The energies present in this wé&f
‘ therefore have larcer estimated errors assoclated with
tnem,
(3) Because of statistical fluctuations due to the
” lo& count rate on many samples, the curves drawn by the
X-Y recorder are not smooth and the size of the peaks
is somewhat questionable. On records where low count

rate exists, therefore, the associated errors are estl-

——— -
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mated to be larger.

s i e ol e 2 e e

For éomparison between areas determined by suﬁerimposition
of genersted curves sand areas measured with the plsnimeter, sev-
eral total absorotion neaks were ricasured 5y both methods. The

' dlsperity between those peesks so comrsred renged from O to 2 per-

cent, This error 1= in gencorel less then the ststistlcel error.




found by takinz the square root of the total number of counts
contained in a rectangular area whose width 1s determined by
the width of the Gaussian at the point where it ceases to
coincide with the machine-drawn peak. This area is presumed
to be the actual area compared. The statistical error found
in this way varies widely (because of the great range in
count rate), but for the peaks tested it varlics between 2 ond
6 percent.

A hindrance to accurate superimposition of the Gaussian
surves on the total absorption peaks, contributing further
to the error, may be the slicht non-Gaussian character of the
total ébsorption peak caused by the lack of perfect hpmogeﬁgaty
of the crystal's light production. | |

To get some idea of how much of each spectrum occurred
in analyzable peaks,the total areas of several spectra were
measured with the planimeter and compared with the sums of .
the total areas associated with each 1listed energy (found by
dividing each peak area by the appropriate peak-to-total
ratio). It was found by this method that from 70 to 90 per-
cent of a spectrum was accounted for in the peak-by-peak
analysis.'

The errors assoclated with the photon intensities shown
in Table 2 are the result of estimates of the cumulative
errors discussed abové. They range from 3 percent for peaks

with good resolution, good count rate,and good fit with the

23
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supérimposed Gausslan curves to 50 percent for peaks poor
in 211 respects. Occasionally there is present an enerzy
which is too small in photon intensity even for a good esti-
. mate to be made as to the quantity. The symbol>0 1Is used

in the appropriate column in Table 2 to indicate the pres-

ence of such an energy. More rarely the symbol >>0 is

used to indicate the presence of an energy too poorly resolved
| (althouzh not necessarily very small in intensity) to warrant
an estimated quantitative listing.

3 In some cases there appear to be discrepancies between

-~
photon intensities from the same lines taken at nearly the -

same time for the two gain settings. Most of these lnten-
: sities are not discrepant, however, by much more than the
estimated error would allow. In those cases where the 4dif-

T ]
" ference is too large, the estimated errors should be increased,

However, some of the differences seem predominantly

—————— et

one-sided, This inconsistency is especially noticeable for
some of the 220 kev lines, 1i.e.,areas recorded at'high gain

i are lower than comparable areas recorded at standard galn,
sometimes by as much as 36 percent. This effect appears in
the resolution curves of Fig. 4. For many of the 105 kev
lines compared, the effect is reversed, 1l.e. the areas recorded
at high gain are higher than comparable areas recorded at

standard gailn. It 1is possible to account for the latter

R4




effect by considerin_ the sreater effect an Integrating time

constant, such es 1s used In the count rate meter, has on low
10

pulse heighfs. No mechanism to explain the former effect
suggests 1tself, however, and the fact that falr agreement
exists in most cases between comparable 60-kev ani 280-kev
lines leads one to doubt the existence of a consistent energy-
dependent machine effect to explain the discrepanciles.

It may be that the disagreements are largely due to
resolution problems in the low energy region of the standard
gain records, since in many cases the areas could be brought
closer to agfeement by taking from one line and adding to -
an adjacent line, Thistproblem is especially troublesome ih‘
trying to separate the 60, 105, and 140 kev lines on the
standard galn records.

A discussion of the overall performance of the system

in analyzing the standard sources, including the conslstency

of the results,is found in Appendix I.

DISCUSSION

It 1s of special interest to note the presence of Na24
activity in both the Zuni and Favaho cloud samples (the only
samples to reach this section soon enough for such detection
were fhe cloud samples from each shot). This activity is
evident from the 1.37-and 2.75-Mev total absorptlion peaks
detectable on the first two or three recordings made with
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If a fission-product decay curve of t1:2 and a 15-

hour half-life for Nazu are assumed, then the maximum ratio
-~

of Nagy activity occurs 26 hours after shot time., The

intensities of the 2.75 Mev and 1.37 Mev lines may be extra-
poleted back to this time to glve a maximum_ggrggpgééé;yj?f_i

contribution.




\Na24 is & mesjor source of radiation hazard in fallout

%radiition one day past shot time,

There are severasl possible mechanisms for the production

of Na2% by neutron induction: A127 (n,a)Na24, Mg(n,p) Na%4, |
and Na23(n,y )Na24 with respective oross sections of about
100 mb for 14-Mev neutrons, 191 #35 mb for l4.5-Mev neutrons

and about 0.5 b for thermal neutrons.l1l

e

the time of writing enough detailed information was not

immediately available to permit 1nteiligent speculation on
which of these processes predominstes.

Another interesting result apparent on most of the
series of recordings begun at early enough times 1is the
build-up of the 1,59-Mev activity from Lal40, The fact
that there 1s evidence of an increase in this activity et
early times indicates that most of the original fission
product of the mass number-140 series was Bal40 or a percursor,
Assuming that all of the Bal40-Lal40 frissl on-product ecomplex
was Bal40 originally, the build-up of the 1.59-Mev activity
should reach its maximum at 136 hours after shot
time, Theoretically there should be no build-up in




H
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activity 1if the original contribution of La1 to this

parent-jaughter complex is more than 11,5 percent of the
total activity of the combination. The evidence 1n:the
records of samples whose analysis was begun early enough
for the bulld-up to show up,points toward thelr belng very
little or no Lal)+0 produced as an instantaneous fission
product. This conclusion is borne out by studies of fis-
sicn product ylelds from U235 maie by Yaffe,e§ al.}2 and
Petruska et a1.13, who report yields of 6,32 + 0.24 percent
of Ba140 and 6,33 * 0.32 percent of Celuo,respectively. ot
Since the Adifference 1s zero within experimental error,

140
, La 18 not produced as an original fission product. /
\__\\_*“_-

The samples collected at ground and ship stations may
be different due to fallout fractionation and posslble
’anisotropies in fission-prcduct ejection from the weapons.3
That there 1s evidence that one or both of these mechanisms
are operating can be ascertained by comparison of the spec-
tra of samples collected at different places for the same
shot. No pattern is discernible however, wlth so few sample
collection locations. Therefore it is not possible to say
anything more than that there seem to be discrepancies be-

‘tween samples from the same shot which are too large to

explain in terms of measurement error alone, e.g8., the 330-

28
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kev sctivities present in records QA2 and RA2 (see Table 1
for notationsl definitions) differ by more than a factor of
3 in percentagewise contribution, Also the 105;kov activi-
ties in BA7 and GA2 differ by more than a factor of 3.

Dose rates measured 3 feet above the surface of How
Island in the vicinity of the collecting sites have been
plotted as a function of time after burstl4 for Shot Zuni.
The dose rates calculated from the photon intensities, 1istod
in Table 2, of the two samples received from the How Islnnd
collection stations (GA and IA), when compared for the :

proper times with the curve drawn from the measured dose

rates, agree withln experimental error.

Approved by:

A, GUTHRIE
Head, Nucleonics Divislon

For the Scientific Director
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APPENDIX I STANDARDS CALIBRATION

N eT -
NE= L

Calibrated standard sources were supplied to this
group by Analytical and Standards Branch of Chemical Tech-
nology Division to allow checks to be made of the relation-
ship between area of total absorption peaks and their
associated photon intensities, and to provide standards of
known energy for record by record energy calibration. The
calibrated standards used were 75.6 (t4 percent) microcuries
of Na'22and 145 (&5 percent) microcuries of Hg203.' The ¢
standards were calibrated on May 18, 1956, -

In order to use these standards to check the correct-
ness of the I/A versus E curves, corrections had to be made
" in the source strengths listed. In the case of Na22 the
standards were calibrated in terms of positron emission
: alone, so that to arrive at the 1.28 Mev photon intensity,
i account had to be taken of the 6 to1ll percent electron cap-
ture.15’16 When this correction is applied, the original
1.28 Mev photon source sérength becomes 80.4to 84,9 "micro-
curies® or 2.97 X 106toj3.14 X 106 photons per seconﬂ. To
compare this number to that obtained by multiplying the
area of the total absorption peak by I/A for 1.28 Mev, the

area must first be founld by extrapolating the decay curve

back through the calibration date., This area is 1.54 (22
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percent) square inches and gives 2.90 X 106 when multiplied

by the proper I/A from Fig. 9. The latter intensity 1s from
2.5to 7.6 percent lower than the intensity determined frd;
the calibration of the standard, but agrees within the
experimental error.

The comparison of the Hg203 photon intensities proceeds

203 source strength

similarly to the N322 comparison; The Hg
was given in actual disintegrations per second but only 78.7
of these disintegrations result in 279-kev gamma rays becquee

203. After theappropriaffew

of the internal conversion in Hg
corrections are made the photon intensities obtained from
the extrapolated total absorption peak area and calibrated
source strength are 4.15 X 106 (¢5 percent) and 4,22 X 100
(25 percent) photons per second respectively. The intensi-
ties obtained by the two methods differ by less than 2 percent.,
well within experimental error.

With 54 recordings of the 145 pc Hg2O3.standard and 9%
recordings of the 75.6 pc N322 standard made over a period
of aé#eral months already available, it was decided to make
a least squares fit of the decay curve to get a quantitative
idea of the machinet’s stability. It was assumed that the
functional form of the equations relating area to time was
A = exp(-At) or a polynomial of the form y = a, + a,t (a

straight line) where y = 1lnA.
31
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 The coefficients ai were found by solution of the

gimultaneous equations:

slao } 8,87 = my

N N
k
where 8, = 2: tk m =E tS y,, and N is the number of
k n=1 n.' k n=1n n’

measured areas. The details are not shown here but the

results are as follows:’ ?1;
For Hg203: y = 1.3022 - 0.0154t,
For Na2?; y = 0.4336 - 0.0014¢t,
Areas were computed from the equations for each day

that spectra were made and cqmpared with the measured areas.

20
The average deviation for Na22 was 0,03 in2 and for Hg 3

e e e s o o e e

was 0.106 1n2{.The average pércentage deviation was 2.0 per-
cent for Na22 end 5.4 percent for Hg203, The probable reason
for the higher deviation for H3205 i{s a combination of fewer
records, shorter half 1life (réquiring progressively more
aensigive count-rate scales with consequent loss in statis-
tical accuracy during the latter part of the recording
period) and higher amplifier gain requiring the use of more

sensitive count-rate scales to provide peaks of adequate

32
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APPENDIX II THE GAUSSIAN CURVE GENERATOR

The Gaussian curve generator consisted of & Gaussian
template mounted on & lucite disk which in turn was mounted
1ike a wheel on the shaft of a potentiometer. w1th‘a bat-
tery to provide voltage and another potentiometer to vary the

'~ amount of voltage across the main potentiometer, the pen of

the X-Y recorder was caused to move along the X axis as the
wheel was turned. The range of the pen's motion during one
revolution of the wheel was governed by the setting of thaﬂ;
secondary potentiometer. A photovoltaic cell "looking" a;
a light through the template was connected to the Y axis

of the X-Y recorder with another potentiometer controlling
its range. As the wheel was turned by hand and the amount
of light reaching the cell was varied by the template, &
Gaussian curve of height and width, as determined by the
range-controlling potentiometers, was drawn on the recorder
paper. The template was made of thin, opaque sheet metal
and its shape was determined by plotting a Gaussian curve
bn polar graph paper.

By this method several hundred Gaussian curves were
drawn of various heights for each width. The widths were
chosen to correspond to the widths at half maximum for the
actual energiles present»in_the fallout spectra as determined

from the resolution versus energy curve,

. e—
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~ The areas in square inches of the Gausslan .curves 80
dprawn were determined by measuring their height and width
(the same for each series of heights) and applying the

formula (derived from the equation for a Gaussian curve):
A = 1.06w} n(0)

where w%.is the width in inches at half maximum and n(O)

is the maximum height in inches.
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TABLE |

Miscellaneous Sample Data

Sample
Site Abbreviated
- Designation Designation Collector Collector Location Weight or Ground Area
Std High Type From G4 Volume Repre'ur;tuion
Gain Gain (in.*%)
- Shot Cherokee,
Std Cloud AA AB Filter Paper Cloud - -
Std Cloud BA BB Filter faper Cloud - -
YFNB "Whim" ] FA - Deckia 10 mi ENE - -
How F.61 GA GB occl(b) 13 mi ENE 10 ml 7.2
YAG 40 B-ly HA HB ocCccC 52 NNW 1.36 g 194.1
How F.67 1A 1B ocC 13 mi ENE 0.57¢g 62.5
: YAG 40 B-6 JA JB oCC 52 mi NNW 10 ml la.4
3
| Shot Flathead,
! - Std Cloud KA KB Filter Paper Cloud - - i !
YAG 39 C-36 LA LB occC 29 mi NNE - -
' YFNB-13-E.56 MA MB occC 7.5 mi WNW 0.02 g 11.5
YFNB-13.E.54 NA NB occ 7.5 mi WNW 10 ml 4.4
. Shot Navaho,
Std Cloud OA OB Filter Paper Cloud - -
YFNB-13-E.54 PA PB occC 8.5mi W 0.28 g 60.6
YFNB-13-E-56 RA RB occC 8.5mi W 10 ml 18,0
YAG 39 C.2] SA - occC 21 mi NNW 19 ml 36.0
YAG 39 C-36 QA QB e]ol] 21 mi NNW - -
Std Cloud TA TB Filter Paper Cloud - -
YAG 39 C.36 UA uB ocCC 24 NNW 0.02¢g 1.2
YFNB-13.E-56 VA VB occC 10 mi SW 0.03g 9.3
Y3-T-1C-D WA - Seawater(c) - - -
YFNB.13.E-54 XA XB occ 10 mi SW 10 ml 14.4
YAG 39 C-21 YA YB occC 24 mi NNW 10 ml 14.4

(a) Picked up at random from deck of YFNB-29.
{(b) Open.close collector

(c) Evaporated sample from large open tank on deck.




TABLE 2

Abseivte Phaton intensities (Randard Gain), 1» Millrens of Photoas Per Bacond Pur Liae for Eacn Sampie
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i 65 Director, Special Weapons Development, Fort Bliss
66 CO, Ordnance Materials Research Office, Watertown -
i : AIR_FORCE
67 Directorate of Intelligence (AFOIN-3B)
* 68 Assistant Secretary of the Air Force
69 Commander, Air Materiel Command (MCMTM)
70 Commander, Wright Air Development Center (WCRTY)
o 71 Commander, Wright Air Development Center (WCRTH-1)
o 72-74 Commander, Wright Air Development Center (WCOSI-3)
75 Commander, Air Res. and Dev. Command (RDTDA)
- 76 Director, USAF Project RAND (WEAPD)
( 77 Commander, Air Technical-Intelligence Center (AFOIN~ATIAW)
i 78 Cammandant, School of Aviation Medicine, Randolph AFB
79 CG, Strategic Air Command, Offutt AFB (IGABD)
| 80 CG, Strategic Air Command (Operations Analysis Office)
| 81 Commander, Special Weapone Center, Kirtland AFB
' 82 Director, Air University Library, Maxwell AFB
! 83 Commander, Technical Training Wing, 3415tk TIG
8l - CG, Cambridge Research Center (CRHTM)
85 . CO, Air Weather Service - MATS, Langley AFB
86 AFOAT - Headquarters

OTHER DOD ACTIVITIES

87 Chief, Armed Forces Special Weapons Project
. 88 AFSWP, SWTG, Sandie Base (Library)
89-91 AFSWP, Hq., Field Command, Sandia Base
92 Assistant Secretary of Defense (Res. and Dev.)
4l
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AEC ACTIVITIES AND OTHERS
For addressees below, transmission is made via specific
transfer-accountability stations designated by the AEC.)

93 Argonne National Laboratory
94-96 . Atomic Energy Commission, Washington
97-98 Bettis Plant (WAPD)
- 99-100 Boeing Airplane Company, Seattle
101 Brookhaven National Laboratory

102-103 duPont Company, Aiken
104-105 General Blectric Company (ANPD)
106-108 General Electric Company, Richland
109 Hanford Operations Office
110-111 Knolls Atomic Power Laboratory

! 112-113 Los Alamos Scientific Laboratory

114 Lovelace Foundation
115 National lead Company of Ohio
o 1nsé New York Operations Office
. 117-118 Phillips Petroleum Company (NRTS)
119 Public Health Service )
120 San Francisco Operations Office f1?
i1 ‘ 121 Sandia Corporation
: 122 Sandia Corporation, lLivermore
""" 123-124 Union Carbide Nuclear Company (K-25 Plant)
. 125-127 Union Carbide Nuclear Company (ORNL)
128 UCLA Medical Research Laboratory

129-130 University of California Radiation Laboratory, Berkeley
e 131-132 University of California Radiation Laboratory, Livermore
o 133 University of Rochester

L 134-148 Technical Informatjon Service Bxtension, Oak Ridge

-—

USNRDL

149-175 USNRDL, Technical Information Division
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