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One i n t e r e s t i n g  development, i n  cur ren t  day radiotherapy, i s  the 

u t i l i z a t i o n  of high LET r ad ia t ion  i n  the  form of f a s t  neutrons f o r  t he  t r e a t -  . 
ment of deep-seated tumors. (e.g., ref .  1). 

f a c t o r  arguing i n  favor of neutron therapy i s  the reduced oxygen enhancement 

r a t i o  observed, mainly'with s i n g l e - c e l l  systems, when c e l l  k i l l i n g  with high 

LET r a d i a t i o n  is compared t o  t h a t  w i th  low LET radiat ion.  The evidence 

The p r inc ip l e  radiobi.9logical 

' 2  
seems n w  general ly  accepted t h a t  s i g n i f i c a n t  f r a c t i o n s  of a t  l e a s t  most 

s o l i d  tumors are hypoxic but  s t i l l  v i a b l e  (2) and i n  accord w i t h  t h i s ,  

treatment of experimental tlrmors under condi t ions which should reduce t h e  

proport ion of hypoxic c e l l s  (e.g., hyperbaric  oxygen) usua l ly  leads t o  

'. 

L reduced doses f o r  tumor s t e r i l i z a t i o n  (3). I n  concept, therefore ,  t he  lw 

OER assoc ia ted  with h igh  LET r a d i a t i o n  could serve t o  improve t h e  therapeut ic  

r a t i o  by enhancing the  degree of damage i n  tumors compared t o  normal t i s s u e s  

s i n c e  the l a t t e r  a r e  thought t o ' b e  wel l  oxygenated. 

. .  
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In recent  years ,  severa l  groups of  i nves t iga to r s  have reported 

on t h e  s t a t e  of oxygenation of s o l i d  tumors during the course of f rac t iona ted  

i r r a d i a t i o n .  

conclude t h a t  s i g n i f i c a n t  i f  no t  complete reoxygenation sets i n  f a i r l y  soon 

after a moderate dose f r a c t i o n  (6-9). Further ,  i t  is reported t h a t  many 

s o l i d  t m o r s  have anoxic ce l l  f r a c t i o n s  which a r e  i n i t i a l l y  high, i.e., from 

10 t o  20% (3,lO-13). Thesefestimates come from radiobio logica l  observations 

and a r e ,  therefore ,  i nd i r ec t .  

events ,  appreciable  a m h n t s  of  reoxygenation occur betwee;> f r a c t i o n s  two 

impl ica t ions  of considerable  importance follow. 

With some exceptions (4,5), t h e  au thors  of most of these repor t s  

\ ,  
Nonetheless, i f  i n  t he  na tu ra l  course of 

. 

The f i r s t  I s  t h a t  reoxygena- 

t i o n  should counteract  t he  dose spar ing e f f e c t  t h a t  r e p a i r  of suble tha l  

damage between f r ac t ions  introduces (14) and thus ' tend to. jus t i fy- -on  purely 

c e l l  k i l l i n g  grounds--the use of f r a c t i o n a t i o n  even when low LET rad ia t ions  

l i k e  conventional x rays a r e  used. 

is t h a t  t he  j u s t i f i c a t i o n  f o r  high LET o r  neutron therapy would be 

considerably peakened. 

6 
'- 

And, accordingly,  t h e  second implicat ion 
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In view of  these  considerations--and the f a c t  t h a t  i n  severa l  

i n s t ances  cu r ren t ly  a v a i l a b l e  da ta  i n  the  medical l i terature do not suggest 

a n  apprec iab le  e f f e c t  due t o  reoxygenation (14)-- i t  i s  worthwhile t o  analyze 

t h e  experiments dea l ing  wi th  reoxygenation s t a r t i n g  from first pr inc ip les .  

The ob jec t ives  of t h e  ana lys i s  w i l l  be: 1 )  t o  de l inea te  the c e l l  biology; 

2) t o  spec i fy  cri teria which have t o  be m e t  and, therefore ,  measurements 

which should be made i n  order%qt reoxygenation da ta  may be in t e rp re t ed  

w i t h  confidence; 3) t o  compare animal da ta  on reoxygenation due t o  f rac t iona-  

t i o n  with r e s u l t s  on tfik f r a c t i o n a t i o n  treatment of human tumors t o  see  i f  the  

la t ter  are cons i s t en t  w i th  pred ic t ions  of t he  former; and 4) t o  specify the  

information needed t o  be a b l e  t o  a s s e s s  the releva'nce of rad iobio logica l  

p r i n c i p l e s  t o  tunor  therapy. 

L 

. Last ly ,  based upon t h i s  ana lys i s ,  I w i l l  

propose some c l i n i c a l  t r i a l s  aimed a t  determining whether the e f f i cacy  of 

f r a c t i o n a t i o n  therapy can be improved by enhancing the  reoxygenation i n  

oppos i t ion  t o  sub le tha l  damage repair .  

Est imat ing the Hvpoxic Frac t ion  
. -  

Radiobiological ly ,  t he  procedure used f o r  es t imat ing the  proportion 

of c e l l s  i n  a t m o r  which is hypoxic may be described with the a i d  of Text 

F igure  1. I n  t h i s ,  and the  f igures  t o  follow, t o  f a c i l i t a t e  t ha  ana lys i s  \ 

. reasonable  values f o r  the parameters involved are assumed. Spec i f i ca l ly ,  i n  

Text Figure 1 these  a re :  aerobic  su rv iva l  parameters :'= 4, 3 - 75 rads;  an 

oxygen enhancement r a t i o  of 3; s t r i c t  dose modification is assumed f o r  t he  

inf luence  of  oxygen so t h a t  the hypoxic su rv iva l  parameters are 

225 rads ;  and f i n a l l y  a 10% proport'ion of hypoxic ce l l s .  

= 4, - 
b 
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The su rv iva l  curve f o r  a population mixed i n s o f a r  as i t s  oxygen 

s t a t u s  is concerned can be a r r i v e d  a t  as follows. To t h e  aerobic  cume ' 

p l o t t e d  from surv iv ing  f r a c t i o n  0.9 is added the  hypoxic curve p lo t t ed  from 

surv iv ing  f r a c t i o n  0.1. 

which, by way of i t s  i n f l e c t i o n ,  shows t h a t  i t  is composed from a t  l e a s t  

two curves. 

The r e s u l t  is t he  curve marked "air breathing" 

The terminal port ion of th i s '  curve has a n  hypoxic-like zn; - 
\ t h e  i n i t i a l  port ion of t he  curve-indicates  t h a t ,  a t  l e a s t ,  a moiety wi th  a 

.e 
smal le r  % is a l s o  involved. 

\ 

. .  
. . .  ' .  
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Experimentally, t he  procedure o f t e n  used f o r  es t imat ing  the hypoxic 

f r a c t i o n  i a  i l l u s t r a t e d  by the (INZ breathing" and "air breathing" curves and 

is based upon the assay  techniques introduced by H e w i t t  and Wilson (13,lS). 

In one o r  more donors, tumors 'are i r r a d i a t e d  w i t h  graded doses. These animals . 

are alive and breathing a i r  a t  t h e  time. A f t e r  exposure, survival is assayed 

by determining the  number of i r r a d i a t e d  tumor cells required t o  give r i s e  t o  

a s i m i l a r  tumor a t  the  s i t e  o E g l a n t a t i o n  i n  an  appropriate  t e c i p i e n t .  

Ordinar i ly ,  a n  i n t e r p o l a t i v e  method is used t o  obta in  the  number required f o r  

.. 507. t akes  (i.e., t h e  The r a t i d  of the number required when uni r rad ia ted  

trrmors are used t o  t h a t  required a f t e r  i r r a d i a t i o n  'is taken as t h e  surviving 

f r a c t i o n  a f t e r  t h e  p a r t i c u I a r  dose involved. 

importance may come i n  here--such a s  t h e  proport ion of con t ro l  c e l l s  assayable 

by t h i s  method, d i f f e r e n t i a l  c e l l  s t r e s s e s  imposed by the  manipulations involved 

i n  the  assay,  poss ib le  inmunological e f f e c t s ,  and so on--which i n  a given 

ins tance  may minimize t h e  usefulness  of t h e  data  because, f o r  example, they 

Cer ta in  technica l  quest ions of 

b 

.. 

may no t  be s u f f i c i e n t l y  representa i ive  of the  proper t ies  of a l l  the c e l l s  of 

t h e  tumor. I w i l l  ignore such technica l  po in ts  and consider  only the l a rge r  

i s s u e s  which concern e s s e n t i a l  rad iobio logica l  pr inc ip les .  Thus, t he  curve ' 

marked "air breathing" -is a ' r e s u l t  t y p i c a l  of a tumor mixed in ' r e spec t  t o  \.- - 
. state of oxygenation. 
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The curve i n  Text Figure l m a r k e d  'IN2 breathing" r ep resen t s  t h e  

r e s u l t  when a l l  the  ce l l s  in the tumor are rendered hypoxic. Oreway of doing 

t h i s  is first t o  k i l l  the  donors which may be done by n i t rogen  asphyxiation. 

Hypoxia sets  i n  as the  oxygen l o c a l l y  available a t  t h e  time o f  death is 

depleted.  2 

paral le l  and from t h e i r  relative displacement, t he  hypoxic f r a c t i o n  is estim- 

aced. 

Frequent ly , . the  terminal  por t ions  of t he  a i r  and N curves appear - 
Text Figure I,. Schematic r ep resen ta t ion  of the  aurv iva l  of tumor 

cells when i r r ad ia t ed  i n  a donor under normal condi t ions,  of oxygenation, "a i r  

breathing,"  and in k i l l e d  donors, )INZ breathing." . The la t ter  condi t ion is 

expected t o  render  a l l  ce l l s  hypoxic. The terminal  port ions of both curves 

are displaced by a f a c t o r  of 10 which presumably ref lects  the  f a c t  t h a t  10% 

. .  

+ 

of t h e  ce l l s  are hypoxic under normal condi t ions ,  

3, ex t r apo la t ion  number; D 

exp,,nential  por t ion  of a curve; and OER - 3 ,  

Surviva l  parameters are: 

t he  dose t o  reduce su rv iva l  by 0.368 along the 
N w 

-0' 
u - 

The shoulder width, D -go l n l .  -4 

In Text Figure 1, t h e  measured displacement is ind ica ted  by t h e  

"air/N2rt r a t i o .  

t o  be the hvuoxic f r a c t i o n ,  i.e., the  hvpoxic/aerobic ratio. 

By those  who apply this  method, the  "air/NZ" r a t i o  is assumed 

I w i l l  d i s t i ngu i sh  

. t h e  two by des igna t ing  t h e  la t ter  by fthyp/aer.'8 Br i e f ly  stated, the  purpose 

of t h i s  ana lys i s  i s  t o  de f ine  t h e  condi t ions under which t h e  measured r a t i o  

w2) and the  a c t u a l  r a t i o  (hyplaer) are equal  when the  standard tes t  

i n  Text Figure 1 is applied.  

. .  
L 

1 
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Estimatinn the  Degree of Reoxytenation 

The procedure f o r  de t ec t ing  and es t imat ing  the  ex ten t  of reoxygena- 

t i o n  is out l ined  i n  Text Figure 2. Here t h e  compound "air breathing'' curve 

from Text Figure 1 i s  a l s o  shown and starts from zero dose and surviving 

f r a c t i o n  1.0. 

of  those c e l l s  which survive i s  exponent ia l  wi th  a Eo - 225 rads  and a t  t h i s  

time, no change i n  t h i s  curve i-ected from rendering the  cells hypoxic. 

A t  some l a t e r  time, when tumors s t i l l  i n  donor animals a r e  given graded second 

doses,  experimentally it i a  o f t en  found t h a t  t he  " a i r  breathing" and'h breath- 

ing" curves become once again displaced as shown i n  Text Figure 2, ;or example. 

The da ta  def in ing  the terminal  por t ions  of these  curves f requent ly  may be 

f i t t e d  by p a r a l l e l  l i n e s  and the &N2 r a t i o  is taken once again t o  be equal 

t o  t h e  hyo/aer r a t i o  (10). Usually i t  i s  then  concluded t h a t  i n  the  i n t e r v a l  

between the condi t ioning dose and the graded second doses, those c e l l s  surviv- 

Immediately a f t e r  a dose of say 400 rads,  t h e  su rv iva l  curve 

2 

- 

i n g  the  condi t ioning dose were reoxygenated presumably because oxygen t h a t  

would have been consumed by the  i n i t i a l l y  aerobic  cells became ava i l ab le  t o  

. d i f f u s e  t o  the  i n i t i a l l y  hypoxic c e l l s .  For example, from t h e  second dose . '. 
curves shown i n  Text Figure 2, s ince  air/N - 0.1 i t  would be concluded t h a t  

2 
.. complete reoxygenation had occurred. -. - 

Text Figure 2. Schematic representa t ion  of t h e  e f f e c t  of tumor re- 

-oxygenation assayed a t  some time a f t e r  a c,onditioning dose of 400 rads. The con- 

d i t i f n i n g  dose i s  l a rge  enough t o  k i l l  off e s s e n t i a l l y  a l l  oxygenated c e l l s .  

The 

i n  t i me i s  taken t o  represent  reoxygenation of the hypoxic cells which survived 

t h e  condi t ioning dose. 

isplacement i n  the "air breathing" VS. l'N2 breathing" curves which develops 

I 

(See Text  Figure 1 f o r  s u m i v a l  curve parsmoters.) 
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I n  passing, 2 note t h a t  a s  drawn t h e  'IN breathing" curve has  a 

shoulder which implies  r e p a i r  of sub le tha l  damage i n  a t  l e a s t  those c e l l s  

which become oxygenated. 

i n t e r p r e t a t i o n  are considered present ly .  

Conditions f o r  air/N2 * hyplaer  

2 

' 
This  and o t h e r  points  which qua l i fy  the  preceding 

With t h e  foregoing background, I inqu i r e  now: What are the  con- 

d i t i o n s  under which curve d i s p w e n t s  as i n  Text Figures  1 and 2 can be 

expected accura te ly  t o  measure i n i t i a l  o r  rees tab l i shed  hypoxic f r ac t ions?  

To develop answers t o  this quest ion,  f consider  f irst  t h e  v a r i a t i o n s  i n  

s u r v i v a b i l i t y  t h a t  c e l l s  experience as they t r ave r se  t h e i r  growth ,cycles. 

. 

- .  



. .  
, . *  

L 

~~ 

~. - -_ 

.. .. 
-9- 

Schematically,  i n  Text Figure 3 are shown age-response funct ions f o r  

t h r e e  well-known, cu l tured  cel l  lines. 

cycle--here spec i f i ed  by t h e  customary designat ions of the phases of  t h e  

cyc le  r e l a t i v e  t o  DNA synthes is  (GI, S, G2, and H)--are' shown the va r i a t ions  

In  su rv iva l  obserred following a f ixed  dose of low LET rad ia t ion  l i k e  x rays. 

Broadly speaking, t hese  t h r e e  cel l  l i n e s  typ i fy  t h r e e  d i f f e r e n t  age-dependent 

su rv iva l  charac te r i s t iqs .&er 'a  f ixed dose; i n  t h e  case of Chinese hamster 

cells  surv iva l  v a r i e s  mainly because of v a r i a t i o n  i n  ex t rapola t ion  number 

o r  i n  shoulder width (lb), 
of f i n a l  s lope  v a r i a t i o n s  (17). And i n  the  case of mouse L c e l l s ,  2 and Eo 
vary  inverse ly  through the  cycle  (18). While thes'e pa t t e rns  apply t o  c e l l s  

cu l tu red  in v i t r o ,  they show nevertheless  tlia.t f i r s t ,  su rv iva l  v a r i e s  through 

t h e  cycle  and second, t h a t  the bas i s  f o r  t h l s  v a r i a t i o n  might depend on the 

ce l l  type and presumably therefore  on the  tumor,type. One f a c t o r ,  however, 

which is important i n  ce l l  su rv iva l  and which cur ren t  evidence suggest appl ies  

i n  a p red ic t ab le  way from c e l l - l i n e  t o  c e l l - l i n e  i s  the dose modifying property 

of hypoxia. 

su rv iva l  curves f o r  oxygenated c e l l s  a r e  r e l a t e d  t o  those of hypoxic c e l l s  

by a cons tan t  dose f a c t o r  which is cons i s t en t  w i th  a constant  dose modifying 

As a funct ion of pos i t i on  i n  the grovtk 

For HeLa cells, su rv iva l  f l u c t u a t e s  mainly because 
' A I  

.~ - 

I n  ins tances  where c a r e f u l  measurements have been performed, 

. 
OER through the c e l l  cycle. .' 

/ 

! 
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Text Figure 3. Age-response funct ions of t h ree  c e l l  l ines .  I n  each ' 

case, t h e  parameter(s) are ind ica ted  which are mainly respons ib le  f o r  the  

s u r v i v a l  v a r i a t i o n  wi th  age following a f ixed  dose. 

func t ion  means t h a t  t h e  terminal  por t ions  of the  su rv iva l  curves are p a r a l l e l  

a t  d i f f e r e n t  ages and t h i s ,  i n  tu rn ,  t h a t  the  shoulder width D varies through 

t h e  cycle.  

cyc le  wi th  

(see legend t o  Text Figure 1). 

An n-type age-response 

-9 
A zo-type p a t t e r n  means t h a t  zo is t h e  main va r i ab le  through the  

being f a i r l y A s t a n t .  I n  t h i s  case,  D is proport ional  t o  zo 
-9 

To analyze the  relevance of age-dependent su rv iva l  v a r i a t i o n s  on the  

ques t ions  a t  hand, consider  t h e  schematics i n  Text Figure 4. 

several s i t u a t i o n s  r e l a t i v e  t o  c e l l  d i s t r i b u t i o n s  and, f o r  s impl i c i ty ,  I 

Here, I show 

assume that the  age-response p rope r t i e s  t h a t  apply i n  t h e  example t o  follow 

are similar t o  those of Chinese hamster cells. 

t hese  examples w i l l  make clear are general  and not c e l l - l i n e  spec i f i c .  

. .  

However, t h e  conclusions which 

Text Figure 4. 

p a t t e r n s ,  the l a t t e r  based upon Chinese hamster cells .  

f o r  hypoxic vs. oxygenated c e l l s  are approximate. Cel l  number d i s t r i b u t i o n s  

f o r  hypoxic cel ls  only are shown and the  number of the  la t ter  are assumed t o  

be 107. of t he  t o t a l  population. 

Schematic drawings-of age-density and age-response 

The su rv iva l  s ca l e s  

- 

For s impl i c i ty ,  i t  i s  assumed t h a t  oxygenated 

- cells are uniformly d i s t r i b u t e d  through, the  cycle. Panel A: hypoxic c e l l s  

fo rn ly  d i s t r i b u t e d ;  panel B, hypoxic ce l l s  are mainly i n  S; and i n  panel C ,  

ox ic  c e l l s  are mainly i n  GI. 

1 . .  

I c i 
I 



In Text Figure 4,  each panel conta ins  scherpa of Angle-dose surv iva l  

and cel l  number v a r i a t i o n s  & as a funct ion of age o r  v a r i a t i o n s  

p o s i t i o n  i n  the  cyc le  designated by L. No propor t iona l i ty  i s  intended by the  

su rv iva l  scales and t h e  c e l l  n&ber d i s t r i b u t i o n s  f o r  hypoxic c e l l s  only 

are shown. 

t h e  curves are t h e  same i n  each panel and t h a t  t h i s  corresponds t o  an hypoxic 

With re spec t  t o  t h e  latter, it is assumed that  t h e  a reas  under 

f r a c t i o n  of 10%. The oxygenated cells  are f u r t h e r  assumed, f o r  s impl ic i ty ,  

t o  be uniformly d i s t r i b u t e  d- through t h e  cycle. Three c h a r a c t e r i s t i c  cases 

are shown i n  panels A,*B, and C which I w i l l  d iscuss  i n  t h a t  order.  

Panel A i n  Text Figure 4 shows the  s i t u a i i o n  we would expect i f  the 

hypoxic cells  as  w e l l  as the  aerobic  c e l l s  a r e  uniformly d i s t r i b u t e d  through 

t h e  cycle. 

the shapes of t h e  su rv iva l  pa t t e rns  f o r  both s t a t e s  o f  oxygenation a r e  the 

same. Aside from the  f a c t  t h a t  I am assuming i n  this instance a s p e c i f i c  

r e l a t i o n  of hypoxic t o  oxic  c e l l s  L e . ,  1 t o  9 ) ,  t h e  sketches i n  panel A 

represent  what t he  t i s s u e  c u l t u r i s t  imagines when he renders his c e l l s  hypoxic 

This is  perhaps the simplest  ca5e as suggested by the f a c t  t h a t  - 

f o r  an  experiment. 

t h e  cyc le ,  a f t e r  gassing with ni t rogen he would expect h i s  hypoxic c e l l s  t o  be 

s i m i l a r l y  spread, 

I f  his aerobic  population was uniformly spread through 

The reason f o r  t h i s  is simply that  generalIy i n  v i t r o  a 

. s t a t e  of  hypoxia can be e f f ec t ed  quickly or  a t  l e a s t  i n  a period of time, 

phys io logica l ly  speaking, shor t  compared t o  the  cycle  time of t h e  c e l l s .  

As a r e s u l t ,  c e l l s  remain e s s e n t i a l l y  i n  the  same age p a t t e r n  a f t e r  gassing 

L 

t h a t  they were in beforehand. 
. .  
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Relative t o  survival--and what we consider  as OUT 6tandard radio-  

b io log ica l  assay of  the hypoxic f r a c t i o n  (see Text Figure 1)-- the age-density 

d i s t r i b u t i o n  i n  panel A. Text Figure 4 leads t o  the  resul t  shown i n  Text 

Figure 5.  

and aerobic  c e l l s ,  t he  two curves f i r s t ,  must be p a r a l l e l  i n  t h e i r  exponential  

por t ions  and second, t h e i r  r e l a t i v e  displacement must come about because of 

t h e  relative s e n s i t i v i t y  of t h e  aerobic  cells i n  t h e  "air breathing" case. 

Thus, we have t h e  s i t u a t i o n  where the measured r a t i o  lfair/NZ1l i s  exac t ly  

equal  t o  t h e  a c t u a l  r a t i o  llhyp/aerff which i n  t h i s  is 0.1 as per  my s t a r t i n g  

assumptions. 

Since we have assumed the  same r e l a t i v e  d i s t r i b u t i o n  of hypoxic 

' /  

. 

mile panel A, Text Figure 4 i s  an  example where our  standard t e s t  

g ives  us exac t ly  the  r i g h t  answer, there  a r e . o t h e r  s i t u a t i o n s  where e s s e n t i a l l y  

t h e  r i g h t  answer would be obtained. 

s tandard t e s t  t o  work, t h e  e s s e n t i a l  requirement r e l a t i v e  t o  population com- 

p o s i t i o n  i s  t h a t  t h e  d i s t r i b u t i o n ' o f  c e l l s  through the cycle  be the same f o r  

F i r s t ,  I should point  ou t  t h a t  f o r  the 

both the'hypoxic and oxic  fractions.. 

condi t ion c r e a t e s  f o r  the whole population t h e  same ageidensi ty  d i s t r i b u t i o n  

t h a t  t he  hypoxic f r a c t i o n  has and as a r e s u l t ,  t he  terminal port ions of the 

When t h i s  i s  the case,  t he  "N breathing" 
2 

-- . survival  curves are p a r a l l e l  and displaced by the  r i g h t  amount (e.g.', Text . 

Figure 5 ) .  

uniform through t h e  cyc le  (as we assumed i n  Text Figure 5 )  but  only t h a t  

they be the  same f o r  t he  hypoxic and oxic  f rac t ions .  

Note t h a t  i t  i s  not required t h a t  t he  age-density d i s t r i b u t i o n s  be 

. .  

. .  

. 



. 

Text Figure 5. Survival  curves r e s u l t i n g  from a standard NZ-air 

b rea th ing  tes t  corresponding t o  the  s i t u a t i o n  i n  panel A, Text Figure 4. 

When t h i s  more general  c r i t e r i o n  i s  recognized, modif icat ions of i t  

can be i d e n t i f i e d  which permit our  standard test  t o  give e s s e n t i a l l y ,  i f  not 

p r e c i s e l y ,  t he  r i g h t  answer. One of these  a l s o  can be seen wi th  reference t o  

Text Figure 5 and cons i s t s  of modif icat ions of the hypoxic cel l  age d i s t r ibu -  

t i o n  in which the  percentage of c e l l s  i n  t h e  r e s i s t a n t  age i n t e r v a l  (shown 

shaded i n  Text Figure % a n d  panel A, Text Figure 4 )  remains fixed. Even i f  

t he  remainder of  cells which comprise the 109. hypoxic moiety a r e  d i s t r i b u t e d  

d i f f e r e n t l y  than shown, the  'lair breathing" curve w i l l  be e s s e n t i a l l y  

/ 

- .  unaffected and hence, i t  w i l l  remain that d N Z  - hyp/aer - 0.1. 

t rue ,  however, t h a t  t he  "air breathing" c u w e  would be l a rge ly  unaffected i f  

t h e  c e l l s  I n  t h e  unshaded age i n t e r v a l s  i n  panel A, Text Figure 4 were removed 

from the  hypoxic moiety. 

about 0.1, i t  wou'ld be l a r g e r  than the  r a t i o  hyp/aer. 

It i s  a l s o  

I n  t h i s  circumstance while  t h e  r a t i o  a i r / N 2  remains 

. _ .  . . . . . .  .... 

I 
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' Examples Where: airjNZ # hyplaer  

While, as I have j u s t  shown, the population requirements f o r  the 

.- 

N2-air breathing t e s t  t o  give a reasonably accura te  answer a r e  not  absolu te ly  . 

' r i g i d ,  they are n e v e r t h e l e s s - f a i r l y  unique. I i l l u s t r a t e  t h i s  now with the  

a i d  of panels B and C, Text Figure 4 and Text Figures 6 and 7. 

intended t o  i l l u s t r a t e  the case,  s t i l l  involving 10% hypoxic c e l l s ,  where 

a l l  of  tlie l a t t e r  are e s s e n t i a l l y  confined t o  the  most r e s i s t a n t  age i n t e r v a l  

which, i n  the  case of Chi l i f .  se hamster cells ,  happens t o  be tte S phase. Now 

e s s e n t i a l l y  the e n t i r e  hypoxic c e l l  d i s t r i b u t i o n  i s  shaded and the  N2 f ixed 

.dose su rv iva l  v a r i a t i o n  i s  much more peaked .than i n  panel A. 

Text Figure 6, the terminal  por t ion  of the " a i r  breathing" curve i s  displaced 

upward from where i t  was i n  Text Figure 5. 

t h e  l a t t e r  displacement would depend on the added proportion of r e s i s t a n t  

cells which, f o r  i l l u s t r a t i v e  purposes, i n  Text Figure 6 i s  shown t o  have a 

n e t  e f f e c t  of a f a c t o r  of 2. Clearly,  t he  e f f e c t  of such a d i s t r i b u t i o n  of 

c e l l s  i s  t o  make mZ > hyplaer even though the l a t t e r  r a t i o  is s t i l l  0.1. 

A second example of a lack of equivalence between the  observed and  

Panel B i s  

\ 

As shown i n  

I n  a given case, t he  degree of 

a c t u a l  r a t i o s  i s  sketched i n  panel C, Text Figure 4 and i n  Text Figure 7. 

Once aga in  a 10% hypoxic moiety i s  assumed but  here  these c e l l s  are mainly 

confined t o  a s e n s i t i v e  age i n t e r v a l  shown as G 

r e s u l t ,  t h e  "air breathing" curve h a s ' a  terminal port ion which is displaced 

downward from where i t  should be f o r  our  standard t e s t  t o  work and as a r e s u l t  

air/N2 < hyp/aer even though the l a t t e r  i s  kept  a t  0.1. 

i n  Text Figure 4. As a 1 
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Text Figure 6. Surv iva l  curves r e s u l t i n g  from a etandard N2-air 

brea th ing  test  corresponding t o  the  s i t u a t i o n  described i n  panel B, Text 

Figure 4. Here the  hypoxic f r a c t i o n  is st i l l  0.1 but t he  s h i f t  i n  t h e  

hypoxic moiety age d i s t r i b u t i o n  r e s u l t s  i n  a r a t i o  air/N2 - 0.2. 

Text Figure 7. Surviva l  curves r e s u l t i n g  from a standard N - a i r  2 

brea th ing  t e s t  correspon ' A  ng t o  the  s i t u a t i o n  in panel C, Text Figure 4. I n  

t h i s  case,  t he  r a t i o  hyp/aer i s  s t i l l  0.1 but  the d i s t r i b u t i o n  of hypoxic 

cells  l eads  t o  a2 - 0.033. 

. -  

. . .  
. .  ' .  a .  

*: 
. .. . .  . ... .. 

-. _ .  ' 
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- I  
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. .  
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p i n a l l y ,  f o r  c m p ~ e t e n e s s ,  z SI& an example of f a i l u r e  of the  N - 
2 

air  breathing technique which should be immediately evident  from the su rv iva l  

curves themselves. To begin with,  the I n s e t  i n  Text Figure 8 shows: a) an 

. .  age-density d i s t r i b u t i o n  f p r  hypoxic cells ( s t i l l  10% of t h e  population) con- 

f ined  l a rge ly  t o  t h e  S-Gz region; b) a su rv iva l  v a r i a t i o n  cu&e f o r  ox ic  c e l l s  ' 

(presumed t o  be uniformly d i s t r i b u t e d  i n  age) similar t o  t h a t  observed a f t e r  a 

f a i r l y  l a rge  ddse wi th  mouse L c e l l s  (Text Figure 3); 'and c) a su rv iva i  var ia -  

t i o n  cume  f o r  irradiatioifunder ni t rogen weighted by t h e  corresponding age- 

dens i ty  d i s t r ibu t ion .  

t h e  effect of a zo age v a r i a t i o n  i n  con t r a s t  t o  t h e  2 only v a r i a t i o n  more 

c h a r a c t e r i s t i c  of Chinese hamster c e l l s .  

mouse L c e l l s  has  a small 5 and l a rge  2 value  (18) and as a r e s u l t ,  f o r  the 

a i r  breathing case,  t he  terminal s lope  w i l l  d i sp lay  t h i s  minimum 

t h e  hypoxic c e l l s  are i n  the S-G2 region. 

s e n s i t i v e  S-G2 cells w i l l  have l i t t l e  a f f e c t  on . the  o v e r a l l  surv iva l  curve 

and hence, t he  terminal s lope w i l l  be smaller  and zo l a rge r ,  

My reason f o r , s e t t i n g  up t h i s  example is t o  i l l u s t r a t e  
* 

The S-G region of the age cycle  of . 2 .  

because 

I n  con t ra s t ,  f o r  N breathing, t he  2 

The r e s u l t  is 

shown i n  Text Figure 8 and i l l u s t r a t e s  t h a t  the da ta  would not  y i e ld  a constant 

- air/N2 r a t io .  

populat ions are e f f e c t i v e  and therefore  that the standard t e s t  cannot be used 

w i t h  any r e l i ance  a t  a l l  t o  es t imate  the hypoxic f rac t ion .  

This  f a c t  by i t s e l f  i nd ica t e s  t h a t  e s s e n t i a l l y  two d i f f e r e n t  

- As we indicated 

. in ' connec t ion  wi th  Text Figure 6, t h e r e  a r e  departures  from the requirement - of i d e n t i t y  of population compositions which may by chance y i e ld  air/N2 r a t i o s  

ec/uaZ t o  hyp/aer r a t i o s  b u t  i n  general  these departures '  w i l l  not  work when 

n s i t i v e  moie t ies  c o n s t i t u t e  most o f  the hypoxic f rac t ion .  Further ,  when 

ope changes a r e  involved, inadequacy of t he  t e s t  should be readi ly  evident. 



Text Figure 8. An example where the  standard N2-air breathing t e s t  

a l ready  i n d i c a t e s  t h a t  t he  hypoxic f r a c t i o n  cannot be estimated because a 

s lope  change i s  involved. The i n s e t ,  based upon the  age-response pa t t e rn  

of mouse L c e l l s ,  is explained f u r t h e r  i n  the text. 

Reoxynenation: Conditions f o r  air/N - hyplaer  2 
Analogous t o  Text Figure 1, Text Figure Z'shows t he  standard t e s t  

used f o r  a rad iobio logica l  determination of t he  hypoxic f r a c t i o n  a t  some time 

after one o r  more conNt ioning  doses (4,5,10). f i rs t ,  

t h a t  a t  tpe  terminat ion of t he  condi t ioning dose sequence, e s s e n t i a l l y  only 

hypoxic cells  survive;  second, t h a t  t h e  reduced oxygen consumption of k i l l e d  

cells plus  possibly shrinkage of the tumor due t o  c e l l  l y s i s  i n  time leads t o  

reoxygenation of the surviving c e l l s ;  and t h i r d ,  a standard N2-air breathing 

t e s t  then measures the  proportion of hypoxic c e l l s  which requi res  t h a t  airlN2 

The presumptions are:  

.- 

hyplaer. 

i n i t i a l l y  present  (Text Figure l), the standard test  f o r  es t imat ing reoxygena- 

t i o n  may f requent ly  y i e l d  an  erroneous r e su i t .  

I now show that a s  wi th  the determinations of t he  hypoxic f r ac t ions  

- .  - -- 1.. . .  
. .  

. .  

. .  

I '  



Consider f irst  Text Figure 9 where I show schematically age d i s t r lbu -  

c ion  p a t t c r n s  t o  i l l u s t r a t e  a case where the  standard tes t  works. 

A, an  age-survival  p a t t e r n  i s  shown--the shape of which is  independent of 

t h e  s t a t e  of oxygenation as 'I noted ea r l i e r - a s  w e l l  a s  t he  c e l l  number 

d i s t r i b u t i o n  f o r  the t o t a l  popu la t ions to t  and f o r  t he  hypoxic moiety 

Both of t he  la t ter  have been assumed t o  be uniform f o r  s implici ty .  

a n  acute  exposure denoted by Ix", t h e  age-density d i s t r i b u t i o n  of surviving 

cells becomes t h a t  shown i n  panel B. (The v e r t i c a l  s c a l e  i n  t h i s  panel and 

i n  panel C has been inoreased r e l a t i v e  t o  t h a t  i n  panel A f o r  c la r i ty . )  

Becuase of the very considerable s e n s i t i v i t y  conferred by oxygen, the d i s -  

t r i b u t i o n  of surv iv ing  c e l l s '  i n  panel B i s  made up almost e n t i r e l y  of hypoxic 

cells. 

'which a r e  l a rge  enough t o  surmount, more o r  l e s s ,  the ' shoulder  of a survival  

curve of asynchronous c e l l s ,  almost a l l  the  survivors  a r e  i n  the r e s i s t a n t  

age i n t e r v a l  i n  the  cycle  (S f o r  Chinese hamster ce l l s ) .  

I n  panel 

. 
2 

Afte r  

\ . " 

And f u r t h e r ,  because of t h e  synchronizing e f f e c t  of acute  exposures 

,. 

Panel C shows the  e f f e c t - o f  reoxygenation by the f a c t  t h a t  now the 

hypoxic c e l l  age-densi ty  d i s t r i b u t i o n  i s  appreciably lower than t h a t  f o r  the 

e n t i r e  population. However, t o  i l l u s t r a t e  f i r s t  a case where the  standard 

test  works, I have assumed t h a t  reoxygenation resu l ted  i n  only one change; 
- 

namely, a drop i n  the  proportion of hypoxic c e l l s  which a r e  i n  t h e  r e s i s t a n t  

age in t e rva l .  

. .  
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The sequence shown i n  Text Figure 9 i s  i l l u s t r a t e d  i n  terms of t he  

p e r t i n e n t  su rv iva l  curves i n  Text Figure 10. 

dose of 400 rads produces the  population s h i f t  from panel A t o  B, Text Figure 

9 i n s o f a r  as v i a b l e  cel ls  are concerned. 

ponding t o  t h e  reoxygenation i s  ind ica ted  i n  the  "air breathing" curve . in  

Text Figure 10. 

I have assumed t h a t  a condi t ioning 
' 

The e f f e c t  on su rv iva l  corres-  

T h i s  curve i s  p a r a l l e l  i n  i t s  exponential  p a r t  t o  the  

corresponding po r t ion  of t he  single-dose curve as it should be s ince  the  

te rmina l  regions of both curves r e s u l t  from cel ls  of the  same age i n t e r v a l  

and responsiveness ( T e x h - k u r e  9). The "air breathing" curve is drawn t o  

y i e l d  a r a t io  air/N2 = 0.33 on the  assumption that  ' in  t h e  i n t e r v a l  between 

t h e  condi t ion ing  dose and the s tandard tes t ,  reoxygenation r e su l t ed  i n  two-thirds 

o f  the  ce l l s  becoming oxic. Thus, the  lower two curves i n  Text Figure 10 

i l l u s t r a t e  t he  condi t ions f o r  an  accura te  rad iobio logica l  es t imate  of the  

hypoxic f r ac t ion .  
I .  

Text F igure  9. Schematic drawings of age-densi ty  and age-response 

p a t t e r n s  t o  i l l u s t r a t e  the  app l i ca t ion  of t h e  N - a i r  breathing tes t  t o  reoxy- 

genat ion estimates. I n  panel A, 5 stands f o r  su rv iva l  a f t e r  a f i x e d  dose and 

t h e  shape of t h i s  curve is assumed t o  be oxygen independent. The age-density 

d i s t r i b u t i o n s  are utot f o r  t he  whole population and u f o r  t he  hypoxic cel ls  

which are assuned i n i t i a l l y  t o  comprise 1 O ' h  of the  cells. Relat ive t o  s u r -  

v iv ing  ce l l s ,  panel B shows the  r e s u l t  of an acu te  x-ray dose. 

is enlarged a r b i t r a r i l y  f o r  c l a r i t y  (a l so  i n  panel C). 

of reoxygenation i s  represented 'by a reduct ion i n  the  shaded area compared t o  

panel B. 

2 

- 
- 

-N2 . 

The ord ina te  

I n  panel C,  the  e f f e c t  

-. 

.. 
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Text Figure io. Applicat ion of t he  N2-air breathing test to t h e  

s i t u a t i o n  i n  panel C, Text Figure 9. The change i n  the  r a t i o  mZ, 
depending on r e p a i r  of sub le tha l  damage, i s  a l s o  shown. 

To t h e  foregoing conclusion, unfortunately f u r t h e r  q u a l i f i c a t i o n s  

are required.  

surv iv ing  d id  not  r e p a i r  suble tha l  damage (see Chap. 6 ,  re f .  19) and d i d  not 

I f  i n  time a f t e r  t he  400 rad condi t foning dose, those cells  

become oxygenated (ignoring f o r  the moment .division a s  wel l ) ,  t h e i r  surv iva l  

curve would remain the  exponential  curve through the  second o r i g i n  i n  Text 

Figure 10. 

damage even when only t r a c e s  of oxygen a r e  ava i l ab le  (14,ZO) it i s  conceivable 

that in a tumor t h i s  might no t  be true o r  a t  least t h e  rate would b e  reduced, 

I f  the surv ivors  a f t e r  400 rads became oxic  wi th  no r e p a i r  the " a i r  breathing" 

curve would be the  lowermost curve a s  shown even if those c e l l s  which became 

oxygenated then  f u l l y  repaired suble tha l  damage. 

damage broadens the shoulder on a surv iva l  curve'whereas oxygen reduces the  

go As t h e  dose. i s  increased,  t he  l a t t e r  change d m i n a t e s  and hence, t he  

terminal  por t ion  of t he  su rv iva l  cume  remains unaffected. 

dependent sub le tha l  damage r e p a i r  does not a f f e c t  the terminal s lope of t he  

lowermost curve, i t  would a f f e c t  the uppermost curve s ince  now a l l  the s u r v i v i n g  

cells have the same f i n a l  slope.  As shown i n  Text Figure 10, under these con- 

/ 

Although there  is evidence t h a t  mammalian c e l l s  can r e p a i r  suble tha l  .. 

The reason is t h a t  suble tha l  

Y 

But while oxygen- 

, - 

--_ 
. d i t i o n s  although i t  might s t i l l  be t r u e  t h a t  hvp/aer - 0.33, t he  observed 

- a i r / S 2  r a t i o  would be smaller ;  perhaps, a s  smal l  as 0.1 i f  suble tha l  damage 

r e p a i r  s h i f t s  the ex t rapola t ion  number from 1 t o  4.5,  f o r  example. The ne t  

e f f e c t  would be t h a t  t h e  reoxygenation of 67% of the surviving c e l l s  a f t e r  400 

rads  would appear t o  be reoxygenation of 90% of the c e l l s .  
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A f i n a l  q u a l i f i c a t i o n  of t h e  s i t u a t i o n  i n  Text ,Figure 10 is required.  

If s u b l e t h a l  damage repair is independent of oxygen concentrat ion,  then i t  

would be  possib'le tha t  the  uppermost and lowermost curves could r e s u l t  

from t h e  s tandard tes t ,  and the re fo re  t h a t  air/NZ I hyp /ae r  0.1. when o the r  

cond i t ions  remain as assumed. This is because now once again the  a i r  and 

n i t r o g e n  brea th ing  populations are  t h e  same i h  a l l  respects .  However, i n  

a d d i t i o n  t o  a knowledge of  t h e  composition of t he  surv iv ing  population 

(panel C, Text Figure 9), now i t  is a l s o  required t o  know whether sub le tha l  

damage r e p a i r  i s l f i i e p h d e n t  of oxygen tension. 

1 

.. 
. ,  

. .  . 
/.- . -.. 

. .. 
_. 
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. .  - .  

- 
Reoxygenation: Conditions where air/N2 f. hypfaer 

The age-density d i s t r i b u t i o n s  i n  panel C, Text Figure 9 are somewhat 

a r t i f ic ia l  s ince  they imply t a c i t l y t h a t  no aging of cells  occurs during 

reoxygenation. 'Except f o r  t h e  f a i r l y  unl ike ly  s i t u a t i o n  t h a t  as  a r e s u l t  of . . 

aging and d i v i s i o n  the s i t u a t i o n  sketched i n  panel C is rees tab l i shed ,  an 

age-density d i s t r i b u t i o n  Bomewhat more l i k e  the  i n s e t  in Text Figure 11 might 

b e  expected. 

which remain hypoxic remain i n  the r e s i s t a n t  age i n t e r v a l ,  those which become 

oxygenated proceed t o  &e and perhaps d iv ide  so t ha t  more s e n s i t i v e  age 

i n t e r v a l s  a l s o  become populated wi th  v i a b l e  c e l l s  (e.&, C1, C2, and M i n  

Here, I suggest t h a t  while those survivors  a f t e r  400 rads 

t h e  / case of Chinese hamster c e l l s ) .  With respec t  t o  the  a i r  breathing da ta ,  

n o . s i g n i f i c a n t  change i n  t h e  surv iva l  curve occurs and  hence, i n  Text Figures 

10 and 11 the  lowermost curves a r e  the  same. But now s ince  the ni t rogen 

brea th ing  case increases  the  zo of c e l l s  which a r e  i n  s e n s i t i v e  ins tead  of 

r e s i s t a n t  age i n t e r v a l s ,  t he  upward s h i f t  accompanying complete hypoxia 

would not  be a s  l a r g e  a s  i n  Text Figure 10. 

ai_rlN2 might be less than the a c t u a l  hypoxic f rac t ion .  

Accordingly, t h e  observed r a t i o  

Text Figure 11. An extension of t he  case described i n  Text Figure - .- 
10. 

same, t he  aerobic  c e l l s  have moved t o  more s e n s i t i v e  age i n t e r v a l s  and a s  a 

r e s u l t  they make only a minorcontribution t o  an  upward s h i f t  i n  the surv iva l  

Here i t  is assumed t h a t  although the f r a c t i o n  of hypoxic c e l l s  is the  

curve f o r  the N,-breathing case. 

- .  
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A f i n a l  example of an  inco r rec t  conclusion based upon a standard 

-air  brea th ing  tes t  is summarized i n  Text Figures  12 and 13. Here I s t a r t  

w i th  a condi t ion r e l a t i v e  t o  the  hypoxic f r a c t i o n  which I would expect t o  be 

more l i k e l y  than those schematized i n  Text Figures 4 and 9. 

outgrow t h e r e  blood supply, one evidence of t h i s  is t h e i r  i n a b i l i t y  t o  be 

l abe led  wi th  H-thymidine (21). While i t  is poss ib le  t h a t  t h i s  r e s u l t s  from 

N2 

When tumor c e l l s  . 

3 

s m e  form of coordinated con t ro l  of metabolism which may o r  may no t  be 

causa l ly  r e l a t e d  t o  hypoxia, it is a l s o  q u i t e  poss ib le  t h a t  a lack 'of DNA 

. syn thes i s  r e f l e c t s  the 'accmulat ion of c e l l s  i n  phases o the r  than S. 

example, i t  seems possib,le t h a t  c e l l s  might accumulate i n  Gl as shown in 

For 

panel A, Text Figure 12 and even though t h i s  is a s e n s i t i v e  phase i n  the age- 

esponse p a t t e r n  chosen, t h e  s e n s i t i v i t y  conferred by oxygen on the  r e s t  of 

t he  ce l l s  could e a s i l y  leave behind most of t he  G1 c e l l s  which were hypoxic 

a t  t h e  time of the condi t ioning dose. Diagramnatically, t h i s  is shown by 

t h e  t r a n s i t i o n  from panel A t o  B with  the height  of the surviving moiety 

increased i n  the l a t t e r  f o r  c l a r i t y .  I n  time, some'reoxygenation of these G1 

surv ivors  may occur and concomitantly a port ion of these c e l l s  m i g h t  progress 

i n t o  S. 

and still hypoxic; however, t h i s  does not have much of an e f f e c t ,  as indicated - 

by t h e  "air  breathing" curve i n  Text Figure 13, even though S ' i s  a r e s i s t a n t  

phase. 

But when the population i s  rendered hypoxic, an  upward s h i f t  i n  surv iva l  could 

r e s u l t  because now the  r e l a t i v e  r e s i s t ance  of S c e l l s  is expressed. 

K 

1 This leads  t o  a small reduct ion of the proportion of c e l l s  i n  G 
- 

Once again,  t h i s  is because of the s e n s i t i z i n g  e f f e c t  of oxygen. 

Therefore, 



. *  , , .  
* -  

-24- 

. 

as i nd ica t ed  i n  Text Figure 13 a small  degree of reoxygenation could  lead 

t o  a n m 2  r a t i o  considerably l a r g e r  than the  a c t u a l  hypoxic f r a c t i o n ;  i n  

Text F igure  13, we s h o w d  

of t h e  c e l l s  might have been reoxygenated. 

- 0.1 even though perhaps,only one-third 2 

This  case i l l u s t r a t e s  t h a t  even i f  quest ions r e l a t i v e  t o  a poss ib le  

oxygen dependence of sub le tha l  dsmage ' repa i r  a r e  no t  implicated,  an oxygen- 

dependent progression i n t o  a r e s i s t a n t  age interval could lead t o  an 

apprec iab le  overest imat ion of the degree of reoxygenation. 

Text Figure 12. Age-density and age-response pa t t e rns  s imi l a r  t o  

those i n  Text Figure 9 except t h a t  i t  i s  assumed t h a t  i n i t i a l l y  the  hypoxic 

c e l l s  a r e  mainly i n  C The ord ina tes  i n  panels B and C are increased f o r  1. 
c l a r i t y .  Panel C shows t h a t  a small f r a c t i o n  of the surviving c e l l s  which 

. .  

1 

were e s s e n t i a l l y  a l l  hypoxic have become oxic  and have concomitantly progressed 

i n t o  a r e s i s t a n t  age in t e rva l .  
d' . I' -_ 

Text Figure 13. Application of the standard N - a i r  bceathing t e s t  

t o  t h e  s i t u a t i o n  i n  panel C, Text Figure 12. Because those c e l l s  which have 
2 

become oxic  a r e  a l s o  more r e s i s t a n t  a n  overestimate of t he  hypoxic f r a c t i o n  

is obtained. - 
- 
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Requirenents f o r  Accurate Hypoxic Frac t ion  Assessments 

The preceding examples can be of help i n  analyzing what i n  general  

are t h e  condi t ions f o r  a n  accura te  assessment of t he  oxygen s t a t u s  of a 

tumor e i t h e r  before  o r  during a f r ac t iona t ion  se r i e s .  

t he  following, unfor tuna te ly  these condi t ions a r e  not  easy t o  sa t i s fy .  

As w i l l  be c l e a r  from ' 

* * * * *  
Condition 1--The magnitude of  t h e  OER f o r  t he  p a r t i c u l a r  c e l l s  i n  

ques t ion  must be known as wel l  a s  whether it i s  independent of age o r  posi t ion 

i n  the  growth cycle  as'current i n  v i t r o  da ta  suggest. 

any age-dependent e f f e c t s  follows from the  f a c t  t h a t  d i f f e r e n t  population 

mixtures  may be involved. The magnitude of the OER i s  needed t o  insure  t h a t  

The need t o  know about 

for t h e  doses (or dose sequences) used, the inf luence of ox ic  c e l l s  i s  

neg l ig ib l e .  

s u r v i v a l s  might be i n  the  shoulder region of a cume,  i t  might be necessary 

t o  know a l s o  the shoulder widths s ince  these w i l l  bea& on the  degree t o  which 

oxic  ce l l s  inf luence the  a i r  breathing data.  

- 
When doses of the order  of 400 rads o r  l e s s  a r e  used, so t h a t  

\ 

Condition 2--The age-response pa t te rn(s )  must be known. 

present.ed, I assumed t h a t  O E R w a s  independent of s t a t e  of oxygenation. T h i s  

I n  the examples 

- 

implies  t h a t  the shape of t he  age-response pa t t e rn  i s  independent of oxygen. - 
. But can we be su re  t h a t  when c e l l s  "grow i n t o  hypoxia" as a tumor grows the age- 

response p a t t e r n  they assume is r e l a t e d  t o  t h a t  of oxygenated c e l l s  as would 

probably be the case when oxic  c e l l s  a r e  rapidly rendered hypoxic (e.g., a s  i n  

c e l l  c u l t u r e  experiments)? 

l e a s t  r e l a t i v e  t o  s p e c i f i c  tumors,'agc-response is a funct ion of degree of 

hypoxia and therefore ,  perhaps, the .age  and/or s i z e  of the tumor. The t e l l  

We need t o  know therefore  whether i n  general ,  o r  a t  

biology needed t o  answer t h i s  question i s  a s ' y e t  not avai lable .  
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Condition 3--A requirement r e l a t e d  t o  Condition 2 is whether hypoxic 

cells  grow, I f  they do, but  more slowly, t o  what extent do t h e i r  growth 

phases maintain the  same r e l a t i v e  lengths  t h a t  they have when c e l l s  a r e  we l l  

oxygenated. 

they confined t o  a p a r t i c u l a r  age i n t e r v a l ;  f o r  example, a r e  they i n  Go? 

These quest ions amount t o  the  requirement t h a t  we need t o  know t h e  age-density 

d i s t r i b u t i o n  of p a r t i c u l a r l y  hypoxh c e l l s  a t  t h e  time when the  N -air 

breathing test  is applied.  

I f  they do not growth when hypoxic (or  grow q u i t e  slowly) are 
. 

2 

Condition 4 - ~ J ? e  need t o  know whether o r  not suble tha l  damage r e p a i r  

is c e l l  age dependent and a t  an age where oxic  c e l l s  do r epa i r  damage; we 

need t o  know i f  r e p a i r  depends on the degree of hypoxia o r  a t  l e a s t  i f  i t s  

rate is influenced by hypoxia. Concerning r e p a i r  under wel l  oxygenated - 
condi t ions ,  cu r ren t  evidence ind ica t e s  t h a t  as long as c e l l s  have a capacity 

f o r  sub le tha l  damage, t h i s  damape can be repa i red  although i t  is  conceivable 

t h a t  i n  sone s i t u a t i o n s ,  i t  may be hard t o  d i s t ingu i sh  suble tha l  damage 

r e p a i r  f r m  the  assumption of r e s i s t ance  concomitant w i th  progression. 

r e l a t i v e  to r e p a i r  vs. oxygen tension, some bel ieve  t h a t  a t  l e a s t  t he  r a t e  

is reduced and as i l l u s t r a t e d  i n  Text Figures 9 and 10, d i f f e r e n t i a l  r e p a i r  

could be responsible  f o r  an  erroneous est imate  of degree of reoxygenation.. 

* * * * *  

“4, 

But 

I 

I 
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I n  summary, I can s t a t e  t h a t  the condi t ions which must be met 

enabl ing an accura te  assessment of the  hypoxic Eraction lead t o  the  following 

criteria: a) i n  general ,  t he  age-density d i s t r i b u t i o n  of hypoxic and aerobic  

c e l l s  must be t h e  same; b) in general ,  t he  OERmust be independent of age; 

c )  i n  the  case of es t imates  of reoxygenation, the condi t ioning dose(s) must 

be l a rge  enough t o  render  qu i t e  small t h e  proport ion of i n i t i a l l y  oxygenated 

cells s t i l l  surviving;  and d) also r e l a t i v e  t o  reoxygenation, t he  degree of 

s u b l e t h a l  damage r e p a i r  m u s t  be the same f o r  the hypoxic and oxic  f r ac t ions  

a t  the  time of t h e  N -Afr breathing t e s t .  2 

f o r  accura te  es t imates  of t he  r a t i o  hypiaer,  I note t h a t  N -air breathing 

su rv iva l  curves displaced from each o the r  as i n  Tkxt Figures 1 and 2 f o r  

example, i n d i c a t e  a t  least t h a t  t he  population is mixed wi th  respect  t o  

oxygen s t a t u s  and t h i s ’  by i t s e l f  i s  b io logica l ly  important, 

While these c r i t e r i a  are needed 

2 

L 

ZI. . .  
/:’ - 

+ .  r . .  
. .-. 

. .  . -  c 
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Human Tumor Treatment and Reoxygenation 

To apprec ia te  t he  consequences of reoxygenation, p a r t i c u l a r l y  

complete reoxygenation (LO), r e l a t i v e  t o  tumors, I proceed now t o  o u t l i n e  the  

consequences. By complete reoxygenation, o r d i n a r i l y  one means t h a t  i f ,  f o r  

example, a tumor i n i t i a l l y  cons i s t s  of 107. hypoxic v i a b l e  c e l l s  (as i n  

Text Figure l), betveen dose f r a c t i o n s  t h i s  percentage i s  rees tab l i shed  

i n s o f a r  a s  concerns those c e l l s  which survived. the p r i o r  i r r ad ia t ion .  

Text F i su re  14, I show a s e r i e s  of  su rv iva l  cuives (from ref .  14) which 

compares the e f f e c t  of’reoxygenation wi th  t h a t  of no reoxygenation while f o r  

both s i t u a t i o n s ,  f u l l  r e p a i r  of suble tha l  damage i s  assumed. In t h i s  f i gu re ,  

t he  r a t i o  aer/hvP i s  given ( instead of the rec iproca l  as i n  e a r l i e r  f igures)  

and  by the  symbolism aer lhyp  - 9 -  0, I mean t h a t  no reoxygenation between 

doses occurs while  aer/hYD = 9,9,...9 stands f o r  complete reoxygenation 

between f rac t ions .  

In  

If a f t e r  successive f r a c t i o n  of s i z e  2, no reoxygenation occurs, 

Text Figure 14 shows that the  successive su rv iva l  curves l i e  above the  s i n g l e  

dose curve (the think,  continuous l i ne ) .  Thus, r e p a i r  without reoxygenation 

r equ i r e s  a g r e a t e r  t o t a l  dose t o  reach a given l e v e l  of su rv iva l  than would 

be required by a s i n g l e  dose. 

. single dose curve show the  e f f e c t  of complete reoxygenation with repa i r .  

a f t e r  each f r a c t i o n ,  the i n i t i a l  curve i 5  r ep lo t t ed  from each new o r i g i n  so 

t h a t  the n e t  e f f e c t  i s  t h a t  surv iva l  drops o f f  more rapidly.  

given su rv iva l  l e v e l  requi res  a smaller t o t a l  dose than would be required 

when a s i n g l e  exposure is used even though I have assumed complete r e p a i r  of 

sub le tha l  damage between f rac t ions .  

On the  o the r  hand, t he  dashed curves below the 

Now, 

Therefore,  a 
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Text  Figure 14. Schematic drawing of t h e  e f f e c t  of r e p a i r  of sub-  

lethal damage: (1) when reoxygenation i s  negl ig ib le ,  curves ly ing  above t h e  

t h i ck  curve (aer/hve - 9 - O).; and (2) when reoxygenation r e tu rns  the mixing 

r a t i o  t o  i t s  i n i t i a l  va lue  between each f r ac t ion ,  curves ly ing  below the  th i ck  

- curve (aer lhyl  .- 9,9, . . .9) .  For s impl i c i ty ,  the s i n g l e  f r a c t i o n  dose 2 was ' 

' 

assumed l a r g e  enough t o  reach the  surv iva l  region cont ro l led  i n i t i a l l y  by 

hypoxic c e l l s .  

ins tead  of hyplaer.  a. 

I n  con t r a s t  t o  e a r l i e r  f i gu res ,  here  t h e  r a t i o  aer/hyp i s  used 

Since r e s u l t s  wi th  human tumors usua l ly  become ava i l ab le  as i s o t r e a t -  

ment p l o t s  (14), the pred ic t ions  of the t rends i n  Text Figure 14 a r e  shown a s  

i s o s u m i v a l  p l o t s  i n  Text Figure 15. 

in Text Figure 14 and the  surv iva l  parameters a r e  the  same as those i n  Text 

- The nomenclature here  l a  s i m i l a r  t o  t h a t  

Figure 1. 

l i n e s  show the  predic t ions  f o r  100% aerobic  c e l l s  (lower pa i r )  and 9D% aerobic  

c e l l s ' w i t h  no reoxygenation (upper ' pa i r  s t a r t i n g  f r m  -4900 rads). No r e p a i r  

(plus no d iv is ion)  between f r a c t i o n s  leads t o  hor izonta l  p lo t s  while complete 

r e p a i r  f o r  both s e t s  of conditions leads  t o  ascending l i n e s  as long a s  

As has already been explained i n  d e t a i l  (14), t he  t h i n  s e t s  of 

reoxygenation is a t  most only minorly involved. 

t o  f u l l  reoxygenation shows t h a t  a s  t h e  number of f r a c t i o n s  is increased,  

t he  cume  drops t o  a minimum and then r i s e s .  If cells do not  r epa i r ,  t h i s  

curve drops more rap id ly  but always l i es  above t h e  ascending aerobic  curve (14). 

The th ick  l i n e  which r e f e r s  

. 

. I  
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Text F igure  15. I sosu rv iva l  curve f o r  1 x 6UntiVing frac-  

t i o n ,  an  i n i t i a l  and  repea t ing  mixing ' ra t io  of 9 ,  f u l l  r e p a i r  of suble tha l  

damage, and t h e  su rv iva l  curve'parameters used i n  Text Figure 1. 

t o  e a r l i e r  f i g u r e s ,  here  the  r a t i o  aer lhvp  i s  used in s t ead  of hyplaer. 

I n  con t r a s t  

Thus, Text Figure 15  shows diagrammatically the opposite t rends  

r e l a t i v e  t o  i sosu rv iva l  when t h e  extreme s i t u a t i o n s  j u s t  out l ined a r e  

considered. These opposi te  t rends  may be charac te r ized  a s  follows, When no 

reoxygenation occurs,  a n  ascending i sosu rv iva l  p l o t  is predicted i f  t he re  is 

r e p a i r  of s u b l e t h a l  damage, To a f i r s t  approximation, t he  i n i t i a l  steepness 

of this curve depends upon the  OER and t h e  shoulder width of the s ing le -ce l l  

s u r v i v a l  curve. 

t h e  degree of reoxygenation is r e l a t i v e l y  la rge ,  t h e  charac te r  of  the  

I 

I n  con t r a s t ,  when the  amount of r e p a i r  i s  moderate and/or 

' 

i sosu rv iva l  p l o t  changes i n  t h a t  a minimum i s  evident. Clear ly ,  a family of 

cvrves between these extremes is t o  be expected from various combinations of 

r e p a i r  of sub le tha l  damage and reoxygenation but when reoxygenation w i t h o u t  

r e p a i r  is involved, a minimum i s  'always predicted.  .. -. 

.. . .  . 
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Several  sets of da ta  r e l a t i v e  t o  human tumors show ascending iso- 

e f f e c t  t rends  (14). These include human sk in  cancers (22-24) ,  carcinoma of 

t h e  cervix (25), recur ren t  b r e a s t  nodules (26) ,* and b reas t  cancer (Primaries,  

recurrences,  and metastases ,  27); p l o t s  of a l l  o f  these da ta  a r e  contained i n  

re ference  14. 

clear--because the curves a r e  c l e a r l y  ascending--but i n  each ins tance  some 

cont r ibu t ion  from reoxygenation cannot be ruled out. 

I n  each tns tance ,  t he  importance of suble tha l  damage seems 

Although the  data a r e  

not extensive enough t o  e s t a b l i s h  c l e a r  t rends,  the r e s u l t s  of Scot t  and 

Br i ze l  (28)  i n  Text F i b r e  16 f o r  Hodgkin's d i sease  suggest that the i n i t i a l  

por t ion  of t he  i sosu rv iva l  p l o t  does not  go up and may be f l a t .  

represent  a range of numbers of treatments i n  which reoxygenation i s  j u s t  

balanced by r e p a i r  of sub le tha l  damage before  the  l a t t e r  e f f e c t ,  accompanied 

perhaps by some amount of repopulation between f r ac t ions ,  causes the t o t a l  

dose t o  increase ,  

of these  c e l l s ,  and therefore  t h e i r  a b i l i t y  t o  r e p a i r  suble tha l  damage, i s  

small (29). 

This  could 

.- 

It is a l s o  possible t h a t  t he  capaci ty  f o r  suble tha l  damage 
/. 

. .  
. .  
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The examples from the  c l i n i c a l  l i t e r a t u r e  (22-28) i l l u s t r a t e  t h a t  

i n  general  reoxygenation made evident by an e a r l y  minimum i n  the  isotreatment  

c u w e  is n o t  found, although Howes and Fie ld  (30) bel ieve  t h a t  a small d i p  

a t  two f r a c t i o n s  is evident  i n  t h e  da ta  on recur ren t  b reas t  nodules c i t e d  

above (26). B u t  a l ack  of a minimum may be l i k e l y  f o r  these reasons. I n  

t h e  region of  say 1 t o  10 f r ac t ions ,  each f r a c t i o n  is f a i r l y  large.  As a 

consequence, c e l l s  (survivors  and nonsurvivors) can be expected t o  age slowly, 

because they are re ta rded  by the  l a rge  doses, although general  metabolism 

and a t t endan t  oxygen c6nsumption ca be expected t o  continue. ' Tumor shrinkage 

accompanied by the spar ing of oxygen due t o  t h e  breakdown of k i l l e d  c e l l s  may 

take  days t o  s e t  i n  and as a r e s u l t  the e f f e c t s  of reoxygenation may be small 

L when the numbers of f r a c t i o n s  a r e  r e l a t i v e l y  few. (I note t h a t  f requent ly  

a f t e r  the onse t  of the  treatment of s o l i d  tumors, tumor s i z e  increases  f o r  

some number of treatments before i t  s t a r t s  t o  decrease; e.g., see  r e f .  31). 

It sefrns l i k e l y  t o  me, therefore ,  t h a t  a t  the beginning of an isotreatment 

curve where i n  terns of t h e  shape o f  the curve the e f f e c t  of reoxygenation 

would be expected t o  be most evident ,  t h e  time needed f o r  reoxygenation t o  

have a not iceable  e f f e c t  is inadequate when d a i l y  f r a c t i o n s  a r e  used. 

rplp 

. .  
This  

could be t rue ,  I f e e l ,  even though N2-air breathing t e s t s  i nd ica t e  (presumably. - 
erroneously) t h a t  f u l l  reoxygenation can set  i n  wi th in  24 hours. . 



A t  t he  opposi te  extreme, where the  dose size is small and many 

f r a c t i o n s  are used f i r s t ,  cel ls  are delayed less a f t e r  each f r a c t i o n  so that  

they may start t o  express t h e i r  damage by attempting the  r e p l i c a t i o n  process 

sooner. 

of oxygen spar ing  t o  set  i n  and fu r the r ,  t he  magnitude of sub le tha l  damage 

In addi t ion ,  t h e r e  i s  more t i m e  f o r  ce l l  breakdown and the  e f f e c t s  

r e p a i r  may be expected t o  be less because each dose is not  as e f f e c t i v e  i n  

surmounting the  shoulder  of the s i n g l e - c e l l  surv iva l  curve as is t h e  case 

i n  t h e  high dose region. 

\ . 
The n e t  r e s u l t  is a much slower rate of increase 

of  the  t o t a l  dose withvwmber of f r a c t i o n s  because i n  e f f e c t ,  the  i n i t i a l  

s t a t e  of oxygenation of the  surviving c e i l s  is maintaine,d and fu r the r ,  

they a r e  t r e a t e d  wi th  small dose f rac t ions .  
. .... 

Thus, f o r  many types of tumors, Ff t he  treatments a r e ' c l o s e  t o  

d a i l y ,  in general  I would not  expect reoxygenation t o  be e f f e c t i v e  when the 

number of f r a c t i o n s  is small (large' doses) even though i t  is i n  t h i s  region 

where the  e f f e c t  of reoxygenation might be m o s t  noticeable.  
! 

The reason i s  

/ simply t h a t  w i th  a slow growing tumor the -growth of which i s ' de l ayed  fu r the r  

by the r ad ia t ion ,  enough time i s  not  ava i l ab le  f o r  oxygen spar ing t o  s e t  in. 

. And when the  number of f r ac t ions  i s  l a rge ,  reoxygenation w h i l e  important, is 

-. not  easy t o  de t ec t  in a n  isotreatment  p l o t  because i t s  main e f f e c t  is t o  -. 

. con t r ibu te  t o  a lessening  of the  r a t e  of r i s e  of the curve. . '  
c 

. '  

. 
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Two q u a l i f i c a t i o n s  t o  the foregoing are i n  order. I€, because of 

p a r t i c u l a r  ce l l  and tumor proper t ies ,  tumor shrinkage s e t s  i n  rap id ly  even 

a f t e r  l a rge  doses and/or t h e  magnitude of r e p a i r  of suble tha l  damage is small ,  ' 
* 

a f l a t  region or a minimum might be observed i n  an  isotreatment p l o t  (e.g., 

Text Figure 16). 

oxygen spar ing does no t  happen.soon enough i n '  time when d a i l y  f r ac t ions  are 

On the  o t h e r  hand, i f '  tumor shrinkage and the  expected 

used, i t  is conceivable t h a t  the i s o e f f e c t  curve might not f l a t t e n  o f f  as 

r ap id ly  as otherwise expected'even when a l a rge  number of f r ac t ions  i s  used. 

The e f f e c t  i n  practive'of the l a t t e r  s i t u a t i o n  could be t o  f a i l  t o  achieve 

cures  because the  d i f f e r e n t i a l  advantage t h a t  reoxygenation might a f f o r d  i n  

counteract ing sub le tha l  damage repair and/or repopulation does not  s e t  i n  

soon enough. 

Text Figure 16. A l i n e a r  p l o t  of the da ta  of Sco t t  and Br ize l  (28) 

r e l a t i v e  t o  Hodgkin's disease.  Treatments were's days per  week. 

-b 

. .  . .  . . . .  . .  . . .  . . .  . .  . - ,  . ' .  
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- Data Needed t o  Assess Tunor Frac t iona t ion  

Recognizing t h a t  i n  tumor therapy a p r i n c i p a l  ob jec t ive  is t o  achieve 

a maximal d i f f e r e n t i a l  response between malignant and normal t i s s u e ,  i t  remains 

never the less  important t o  assess t o  what ex ten t  t h e  radiobiology of cel ls  is 

appl icable .  Therefore,  I undertake t o  b r i e f l y  descr ibe  f i r s t ,  t h e  main ce l l  

p r o p e r t i e s  of a tumor ' t h a t  should be measured and second, t h e  main tumor 

p rope r t i e s  which should be determined f o r  a reasonably d e f i n i t i v e  assessment. 

Since the  da t a  I w i l l  c a l l  f o r  are hard t o  ge t ,  I w i l l  a l s o  ind ica t e  some 

- 
. 

l imi t ed  observat ions which might be obtainable  i n  the  c l i n i c  and which might 

s t i l l  permit in ferences  of value. 
. 

I n  doing t h i s ,  I w i l l - n o t . a t t e m p t  an  

eva lua t ion  of f e a s i b i l i t y .  While many of t h e  observat ions may not be possible ,  

w 
L 

ways of measuring or i n f e r r i n g  o the r s  may be worked out  i n  time if a t  l e a s t  

we know what is required.. 

.. C e l l  P rope r t i e s  

1, S t a r t i n g  perhaps wi th  biopsy specimens, i t  would be des i r ab le  

t o  know i f  h i s to logy  can be used t o  pred ic t  surv iva l  p rope r t i e s  but i n  any 

event ,  f o r  a given tumor we need t o  know: a) the  aerobic  su rv iva l  curve; 

b) t h e  OER; and c) whether e i t h e r  a) o r  b) s t rongly  depend upon the  region 

of t h e  tumor sampled. Presumably, c e l l  c u l t u r e  techniques would be used f o r  - _ _ _  

. t hese  measurements s ince  in pr inc ip l e ,  they ought t o  work. I n  t h e  l i m i t ,  

we  would want t o  know t h e  age-response p rope r t i e s  of t he  oxic  and hypoxic 

regions of the  tumor as  w e l l  as the age-densi ty  d i s t r i b u t i o n s  but hopefully,  
c 

t h e  I peed f o r  da t a  as ex tens ive  as t h i s  could be avoided. 



- 
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2. Using ce l l  cu l turemethods  and aeynchronou; cells, we uould 

need t o  know: 

sub le tha l  damage; b) whether t h i s  is ' s i gn i f i can t ly  a f f ec t ed  by hypoxia; 

a) what is the  f r ac t iona t ion  response r e l a t i v e  t o  r e p a i r  of 

and c) whether a) and b) d.epend on the region of  t he  tumor sampled. 

3. We would need t o  know the  dose and oxygen dependence of p o p -  

l a t i o n  growth ( fo r  s i n g l e  and f rac t iona ted  doses) and p a r t i c u l a r l y  when c e l l  

breakdown starts. 

oxygen consumption is maintained and the  r e l a t i o n  between changes i n  t h i s  and 

It would be des i r ab le  t o  know i f  and t o  what ex ten t  . 
t he  onset  of c e l l  breakdown. I f  the  c e l l s  i n  quest ion can grow f a i r l y  

a c t i v e l y  under hypoxic condi t ions,  we may f ind  a t  most a weak depFndence of 

sub le tha l  damage repair on s ta te  of oxygenation. . 
Tumor Proper t ies  

We would want t o  know: 

1. What proportion of t he  tumor mass cons i s t s  of v i ab le  tumor c e l l s  
/ *  

and how they a r e  d i s t r i b u t e d  wi th  respec t  t o  the a v a i l a b i l i t y  of oxygen. 

2. Are hypoxic, v i ab le  cells  i n  cycle. 

3. A f t e r  one o r  more dose f r ac t ions  what are the growth k i n e t i c s  

of  the  tumor and hos is t h i s  dependent upon the i n t e r v a l  between fract ions.  

4, 

during f rac t iona t ion .  

5. 

How and when does the  d i s t r i b u t i o n  of  oxygen i n  the tumor change 
- 

To w h a t  ex t en t  a r e  host-tumor in t e rac t ions  involved l i k e  i m u n o -  

c l o g i c a l  r eac t ions  of t he  hos t  aga ins t  small res idua l  f r ac t ions  of v iab le  c e l l s  

and t o  what ex ten t ,  i f  a t  a l l ,  is t h i s  mediated by tumor shrinkage. 

r :  

*W 

. .  

I I  . 
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C l i n i c a l  Data 

While animal tumor systems can, and i n  p a r t  are, being used t o  

develop i n s i g h t s  concerning the  foregoing proper t ies ,  i t  is des i r ab le  t o  gain * 

information r e l a t i v e  t o  gEven types of human tumors where possible.  For 

this purpose, it seems j u s t i f i e d  t o  l i m i t  t he  scope of an experimental 

inqui ry  i n  order  t o  e f f e c t  a reasonable compromise' wi th  p r a c t i c a b i l i t y .  

The quest ion I put ,  therefore ,  is: To what ex ten t  does reoxygenation play 

a r o l e  i n  the  treatment of tumors and how might t h i s  r o l e  be made more 

e f f e c t i v e ?  \ .  
I 

While the  body of da ta  ava i l ab le  f o r  ana lys i s  on the fKactionation 

response of human tumors is l imi ted  (e.g., refs. 22-28), when p lo t ted  on 

coordinates  e s s e n t i a l l y  the same a s  i n  Text Figure 15, ascending curves a r e  

obtained. This  means, t o  begin wi th ,  t h a t  r e p a i r  of sub le tha l  damage . .  

e f f e c t i v e  s ince  the  u n i v e r s a l i t y  of  t h i s  process 8 is es tab l i shed  (e.g., re f .  19) ,  

and a reasonable explanation of such r e s u l t s  on o ther  grounds is not  ava i l -  

able .  I n  some ins tances ,  perhaps, i t  is possible  t h a t  e s s e n t i a l l y  only oxic  

c e l l s  populated the  tumors (e.g., t he  resul ts  of Friedman and Pearlman on 

r ecu r ren t  b reas t  nodules, 26), but i n  general  i t  seems hard t o  bel ieve t h a t  

s i g n i f i c a n t  f r a c t i o n s  of v iab le  hypoxic c e l l s  were not  involved. Thus, i t  

appears t h a t  e i t h e r  a l l  o r  a t  l e a s t  an appreciable  p a r t  of the c e l l s  which have 

hypoxic ce l l  s e n s i t i v i t i e s  do r e p a i r  sub le tha l  damage a t  l e a s t  rap id ly  enough 

t o  lead t o  ascending i s o e f f e c t  curves when d a i l y  treatments a r e  involved. 

u 
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As a guide t o  c l i n i c a l  s t u d i e s ,  therefore ,  2 propose t h e  thesis that 

tumors can be t r e a t e d  d i f f e r e n t i a l l y  more e f f e c t i v e l y  If cont r ibu t ions  t o  c e l l  

k i l l i n g  from reoxygenation can be increased simply by a f ford ing  more time 

between f r a c t i o n s  f o r  c e l l  l y s i s  and tumor shrinkage t o  set  In. To i l l u s t r a t e  

this, consider  two extreme s i t u a t i o n s  aimed a t  t e s t i n g  t h i s  t hes i s .  

* * * * *  
- Case I. A tumor type is selected known t o  shr ink r e l a t i v e l y  rap id ly  

a f t e r  modest doses del ivered,  f o r  example, da i ly .  Since,  radiobiological  

reasoning ind ica t e s  t h a t  t he  e f f e c t  of reoxygenation might be most e f f e c t i v e  

when about 10 o r  fewer treatments are involved (Text Figure. 15),  . t he  experi-  

ment could be s t a r t e d  by s e l e c t i n g  say 6 (e.g., Monday through Saturday) and 

a t o t a l  dose in agreement wi th  cu r ren t  pract ive.  

made between d a i l y  t reatment ,  treatment every second day; every t h i r d  day, 

A comparison would then be 

and so on. 

i n  order  t o  c o r r e l a t e  tumor growth and shrinkage wi th  the presence o r  absence 

A t  the same time, a ca re fu l  record should be kept of tumor s i z e  
. .  

of enhanced ef fec t iveness  and a l a r g e r  number of cures  with increasing f rac-  

t i o n a t i o n  in t e rva l .  

would be small  from increasing the  i n t e r v a l  between f r ac t ions  i n  t h i s  case. 

The predic t ion  from my t h e s i s  i s  t h a t  the net  bene f i t  

- Case If. A tumor type is se l ec t ed  which is r ad io res i s t an t  i n  t h a t  
. -  

i t s  growth r a t e  is usual ly  observed t o  be only slowly a l t e r e d  a f t e r  the onset 

of d a i l y  treatment. Once again,  10 or fewer f r a c t i o n s  a r e  chosen and u s i n g  an 
c. 

.accepted t o t a l  dose, cont ro l led  s e r i e s  o f  treatments a r e  i n i t i a t e d  with the 

i n c i p a l  v a r i a b l e  being the  i n t e r v a l  between dosea. 

/ ' . .  I I 

i 
I 

. 
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To f a c i l i t a t e  the  choice oE treatment times, some preliminary 

observat ions of tumor growth a f t e r  i r r a d i a t i o n  should be made ( i f  n o t .  

a l r eady  ava i l ab le )  i n  order  t h a t  i n t e r v a l s  can be selected f o r  t h e  study 

which s t r a d d l e s  t h e  t i m e  f o r  t he  onset  of tumor shrinkage. 

poss ib le ,  biopsy specimens as a funct ion of t i m e  a f t e r  i r r a d i a t i o n  should be 

sought i n  order  t o  confirm the onset  of ce l l  degeneration and t o  seek evidence 

Further ,  if 

* f o r  reoxygenation. For the  l a t t e r  purposes, the  scoring of pycnotic cells  

i n  r e l a t i o n  t o  c a p i l l a r i e s  could be used as an  ind ica t ion  of c e l l  degenera- 

t ion.  Observations of 'the s p a t i a l  d i s t r i b u t i o n  of cells  t h a t  can incorporate 

&thymidine may y i e l d  information of the ex ten t  t o  which c e l l s  i n i t i a l l y  . "3 

out  of cycle  (presumably hypoxic) a r e  brought back' i n t o  cycle  as oxygen 

becomes ava i lab le .  
'1- 

I n  t h e  foregoing protocols,  constant treatment i n t e r v a l s  a r e  implied. 

I 
* .  I n  add i t ion  t o  varying the  number of treatments and the t o t a l  dose,' considera- 

t i o n  should be given t o  using an  i n t e r v a l  sequence which might be changed as 

treatment progresses,  For example, i f  i t  takes  about 5 days f o r  the  onset 

o f  tumor shrinkage a f t e r  a given dose, an i n i t i a l  i n t e r v a l  of about t h i s  

time would be reasonable t o  use but t h e r e a f t e r  depending on the  r a t e  of 

shrinkage and/or t he  ind ica t ions  from biopsy measurements, t he  i n t e r v a l  - 

- might be decreased. b 
8 

. .  * * * * *  - . .  : 

. ,  . .  
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Recapi tulat ion 

I n  the  foregoing c l i n i c a l  t r ia l s ,  I have kept  t he  proposals r e l a t i v e l y  

simple in a n  e f f o r t  t o  e f f e c t  a reasonable compromise wi th  p r a c t i c a l i t y ,  

To test  the  a p p l i c a b i l i t y  of ' rad iobio logica l  p r inc ip l e s  and i sosu rv iva l  

theory,  i t  is easy t o  propose approaches considerably more complex and f o r  

such purposes, more complete measurements of ce l l  as w e l l  as tumor p rope r t i e s  

could be made along the  l i n e s  I suggested. However, cu r ren t  evidence leads  

me t o  be l i eve  t h a t  two opposing rad iobio logica l  f a c t o r s  con t ro l  t o  a l a rge  

e x t e n t  t h e  response of many s o l i d  tumors, 

damage and the  oxygen e f f e c t .  

re la t ive t o  tumor s t e r i l i z a t i o n ,  what I have proposed i n  essence i s  a s i m p l e  

\ 
These are r e p a i r  of suble tha l  

Having as they do e s s e n t i a l l y  opposing e f f e c t s  

way, a t  a c l i n i c a l  l e v e l ,  of increas ing  t h e  inf luence of t he  s e n s i t i z i n g  

e f f e c t  of oxygen i n  o rde r  t o  s h i f t  t he  balance i n  t h e  d i r e c t i o n  of a smaller  . 

t o t a l  dose f o r  a given e f f ec t .  

hos t  mediated reoxygenation although, as I have pointed ou t ,  t he  evidence 

The procedures I have out l ined  depend upon 

f o r  t h i s  from animal tumor systems i s  good i n  a q u a l i t a t i v e  sense but  might 

be q u i t e  poor quan t i t a t ive ly ,  

oxygen could a l s o  add a n  a d d i t i o n a l  bene f i t ,  

Once tumor shrinkage has se t  i n ,  hyperbaric 

. .  

.. 

.. ., 
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An underlying assumption i n  p i t t i n g  the oxygen effect i n  aVposition 

t o  sub le tha l  damage r e p a i r  is t h a t  normal t i s s u e  is w e l l  oxygenated and that  

any success i n  increas ing  tumor ce l l  k i l l i n  with the  same o r  a smaller  t o t a l  * 

dose than otherwise used would c o n s t i t u t e ' a n  improved d i f f e r e n t i a l  e f f ec t .  

Cer ta in ly  t h i s  would be expected t o  apply t o  normal ce l l  renewal systems, 

which are a l s o  known t o  r e p a i r  suble tha l  damage, but it could a l s o  apply 

t o  e s s e n t i a l  normal t i s s u e s  whose funct ion 'does not  involve c e l l  d iv i s ion  

and which may no t  be a b l e  t o  r e p a i r  suble tha l  e f f e c t s .  

t h a t  a reduced OER fo r th igh  LET r ad ia t ion  might s t i l l  be worth taking 

advantage but i t s  usefulness  would decrease as methods f o r  enhancing reoxy- 

It is a l s o  noteworthy 
' 

, .. . .  . 
genat ion improve. 

. Fina l ly ,  I should note  t h a t  e f f e c t i n g  a g r e a t e r  measure of reoxygena- 

t i o n  between doses does n o t  mean t h a t  the surv iva l  enhancing e f f e c t s  r e s u l t i n g  

from a g r e a t e r  degree of suble tha l  damage r e p a i r  would work aga ins t  the 

g r e a t e r  k i l l i n g  expected from reoxygenation. Even i f  i t  i s  t r u e  t h a t  c e l l s  

s u f f e r i n g  extreme condi t ions of hypoxia r e p a i r  damage only a f t e r  they become 

oxygenated, when l a rge  dose f r ac t ions  a r e  involved there  would be l i t t l e  i f  

any n e t  su rv iva l  increase.  
a .  

The reason is t h a t  oxygenation a l s o  means a 

decrease i n  z0 by 2 t o  3 times and as a r e s u l t ,  t h e  e f f e c t  of r e p a i r  r e l a t i v e  

t o  shoulder width would very l i k e l y  be overshadowed by the s e n s i t i z a t i o n  due 

t o  oxygen. 
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