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We present "exact" calculations, by the semiclassical method, of
vibrational excitation of a harmonic diatomic molecule A-B, in its ground
vibrational state, upon collinear collision with an atom C, Results are
compared with those of fiist-order quantum mechanical time dependent
perturbation methods and those of purely classical methods.

The interaction here is exponentially repulsive between B and C so that
V(X,Y) = A exp E(aY-x)/L] where Y is the A-B distance, X is the distance between
C and the A-B center-of-mass, and a = mA/(mA + mB). In the usual semiclassical
methodl X(t) is obtained classically, assuming Y = Yo the equilibrium value,
during collision and the ipteraction becomes V(t,Y). A solution is sought
for EHO + V(t,Y)] ‘% (t,Y) = ih \P (t,Y) with HO the unperturbed oscillator
Hamiltonian., Expansion of qJ’in unperturbed functions @J [€j =

G+ 3 ke, e

Z'aj(t) pj(Y)exp(-i ejt/*;), leads to the coupled

equations

(ﬁa)éj gan(t)vjn exp [i(j-n)o t] (1)
where an = J@j*V@nd’C’ and Wis the oscillator angular frequency.

Usual _first order perturbation theory1 (3 approximation) assumes that
ao(t') = 1 (zero refers to ground vibrational state) and that only n = 0

contributes to rhs of eqs. (1) to obtain (j # 0), (i:f))&j = ij exp Eijc)t].

e o L 4i-1 (¢ g
Substituting an(t) cn(t) exp E(::f)) j-wvnndt] in eq. (1), one obtains
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an improved fxrst order result2 (c- approximation) by setting co(t) 1 and
irﬁ = ik -1

proceedzng as above to f1nd (70, ( )c = Vjo exp(ijadt) exp E(1 )

t .

(v - V..)dt]. Th1s-1atter approximation has been employed by Mies.3
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One can obtain numerical solutions of a set of eqgs. (1), truncated. at
level j, on a computer using a Runge-Kutta-Gill procedure. Such resulfs are
cohsidered "exact" if addition of extra ievelg does not alter the'previous
result,  The hVerage,éhergy.transferred to the oscillator (originally in ground
= 2nﬁ

state) after. c0111s1on (t =60 ) is obta1ned from AR = 2: Ia (O°)| . - -In the
-'calculatxons here,only &y (c0) contr1butes non-neglxgxbly to ABR in the a- and the

o and also AR, ‘the

exact

.S-approx;mations. Table I shqws ABa, ABC, AB >1’

‘ N o 6o 4
'.contr;butzon of al( ) to‘ABexact,for some systems. Table II lists |aj(t)‘
for-j=1,...,4 for various cases at t = 0, the time of maximum v(t,Yo), and at
. t = ‘OO_,

.The classical equations of motion for an'initially non-vibrating
oscillator perturped by V(t,Y) were solved on a computer to obtéin AEclassical’

" the completely classical -analogue of AE ¢ in Table I. FPFor comparison,

exac
B Table I lists AB, pféyiously4 obtained as the exactAclassicgl energy transfer
' to'an<initiaily non-yibrating oscillator interacting with atom C through the
poteqtial v(X,Y). - Also listed is ABap’ previou§1y4 obtained classically as
the enefgy transferred to the oscillator when the interaction potential is
(YéYo)\}'(t,Yo)'wherei'v'_ = ('-'av(t,y)/aY).

Table I shows thﬁt-ABc better approximates AE

exact than ABa although for

cases 5 ABc’is not too goo& an approximation, One notes from the Table that
cher states besides the O and 1 state can enter the exact calculations
importantly, while in the a- and E-aépfoximations only the O and 1 states so
enter. The participation of»higher states as intgtmediate and final states

for systems like 3, with large energy transfer, confirms results of Sharp and

.



. 5 X " .
Rapp. However, such participation in the systems 5 occurs in cases where
final energy transfer is low. Prom classical calculations, participation of
- ‘higher states was expected since large Y displacement‘was found4 during such

collisions. Compari ' : ' '
isi Comparison of ABexact and Agclassical shows the smallness of quantum

ar
= AE ); small quantum effects are also shown by systems

. effects (ABexact classical

where the masses are uniformly scaled (3a,b,c and 5b,c) since mass scaling semi-
»classichl;y is equivalént'to scaling the time, as it is classically,4 and
similarly’scaling h, 'Pertutbing potentials linear in Y should show no quantum

6, ., e
effect, but comparison between AE and ABap shows that the linear

classical

. potential is.not always a good_approximdtion.7 Comparison of AE and
. ABclaséical giyea‘ggme'iqdica?ion of the error inherent in substituting

V(t,¥) for V(X,¥).
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Table I. Energy transfer in harmonic diatomic ﬁolecule-atom collisions.a

‘No.  System 4B, . 8B 8Bract 8F0 51 8B jassicar  2Fap AR
"A-B C (ev) (ev) (ev) (ev) (ev) (eV) (ev)
R R N — a—
12 1-12¢13° 6173 5073 5873 587 5873 6.7 5.87°
1 1412413 4872 462 4572 407 4,52 4,82 4.572
L2 12-1242° 120 1. '1'9.3“1 1.372 9.271 1.1 1.0
3a 1-1+2° 1,8 1,0 85t a7t g.a°l 1.7 7.471
3 2-2+4> 1.8 10 85+t 177t 8.471 1.7 7.47
3¢ 12-14+24° 1.7 9.9l 84t 1.7t 8.4 1.7 7471
4 1-1+24° 997 3371 30t 207 3.0t 0,67 1.77!
sa 12-1413° 957t 1,572 7,870 7,870 1,374 8.8"l 2.3
- sb 12-1413° 7.6 6.52 1.472 1.47° 1.672 6.9 1.27°
s 6-0.546.5° 8.0 5872 1.372 132 167 6.9 1.27°

® Collision energy BO = 5,078 ev. All enefgy conversions carried out as in
reference 4. In V(X,Y), L = 0.2214 and the calculations are independent of A.

b Eoice constant.qf diatomic molecule, k = 10,57 md/Ko.‘

¢ k= 5,312 ma/A®, -
| 3

d‘6.1."3 means. 6,1 xAIO--}



Table II. Values of ]aj(t)\z for j=1,...,4.

No.* Method 3, (0" 8 ¢ 3,000 8, 8y(0) .ay(e) 8,(0) 8, (09

b a approx . 1570 127t 1377 2277 1.27° '1.5‘13 11713 5,720
capprox 1.570 1,271 1,375 1,077 1279 10713 10713 55720
. exact’ 1370 100 000 6.0 a1t 23 1377 6.8
3¢ aapprox 6.8 .81 7,87 8.8% 7.6° 3.6° 788 897
capprox 5.7 4.6 5077 5470 46 32710 517° 0714
exact 4.22 7,972 10! 1.5t 1.6t 2.0t 1970 197t
5a ° a approx 10.1 1.7 692 217% 687t o™ 6% 27710
capprox 2,5 2772 2172 2778 227t o670 227 8.871°
exact 2,570 1,47 3.0 560 2t 40 002 1 47H

2 The numbers correspond to. those in Table I.
A b The poinfs do notAcorfespondAto t=0 exactly, but as closely as the calculation

conveniently'permifted.
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Treanpt6 has shown that including the quédtatic Y term in v(f,Y) should

lead to AB he predicts a negligible quantum effect

exact >’,.ABcléssica1;

for systems 1-4, but not for systems 5.





