Abstracts Database
Return to Search Results Return to Original Search Page


Register Number: ER65404
Title: Fluxes of CO2, CH4, CO, BVOCs,NOx and O3 in An Old Growth Amazonian Forest: Ecosystem Processes, Carbon Cycle, Atmospheric Chemistry, and Feedbacks on Climate
Principal Investigator: Wofsy, Steven
Institution: HARVARD COLLEGE
Institution Address: Boston, MA 2115
Awarded Amount to Date and B&R Code :
FY 2015$0 k
FY 2014$0 k
FY 2013$347 kKP170201
FY 2012$349 kKP170201
DOE Program Manager: Daniel Stover
BER Division: Climate and Environmental Sciences
Research Area: Terrestrial Ecosystem Science
Abstract Submit Date: 10/09/2013
Project Term: 07/15/2012 - 07/14/2015
Abstract: We propose to measure the following at a core site in central Amazonia: 1) ecosystem productivity and processes; 2) carbon cycle and forest structure; 3) production of methane (CH4) in upland environments; 4) environmental stresses; 5) biogenic emissions of nitric oxide (NO) radicals and of volatile organic carbon (BVOC); and 6) atmospheric consequences of biogenic NO on secondary organic aerosol (SOA) production. This will be the first set of comprehensive of ecosystem-scale fluxes, measured for an annual cycle, to provide the foundational knowledge for models to quantitatively represent coupling of basic ecosystem metabolism in tropical forests with atmospheric chemistry and to assess the response of these coupled processes with environmental forcing and climate change. Our studies will consist of the following: 1) Ecosystem flux measurements of CO2, H2O, CO, CH4, sensible heat, O3, NOx, NOy, isoprene and selected other BVOCs, plus measurements of ambient concentrations of CO, NOy and NOx, (to track biomass burning and BVOC oxidation, soil moisture, soil nutrients (N, P), and weather and climate parameters. These data relate the instantaneous fluxes of carbon to the fluxes of greenhouse gases, reactive gases and aerosol precursors. These measurements will define the BVOC, CH4, and CO components of the ecosystem carbon budget. The project will provide the first year-long observations, reported at hourly intervals, of these key fluxes in a tropical forest. 2) Ecological surveys of permanent plots, comprising 75 ha in the vicinity of the tower, will determine above-ground biomass and growth, changes in CWD stocks, and shifts in plant composition, all in the context of data extending back more than a decade. These data provide the long-term fluxes of carbon and link to ecosystem changes on the climate time scale. 3) Soil fluxes of CO2, NO, and CO to complement high-sensitivity NOx and NOy data and track nutrient interactions and their interaction with atmospheric oxidants. 4) Modeling and analysis using the Master Chemical Mechanism and the Ecosystem Demography-2 (ED-2) model.