National Library of Energy BETA

Sample records for x-ray tomography print

  1. Hyperspectral image reconstruction for X-ray fluorescence tomography |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne National Laboratory Hyperspectral image reconstruction for X-ray fluorescence tomography April 15, 2015 Tweet EmailPrint Scientific Achievement A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversion approaches, and allows for

  2. X-Ray Microcomputed Tomography for the Durability Characterization...

    Office of Scientific and Technical Information (OSTI)

    Conference: X-Ray Microcomputed Tomography for the Durability Characterization of Limestone Aggregate Citation Details In-Document Search Title: X-Ray Microcomputed Tomography for...

  3. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

  4. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  5. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a...

  6. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  7. Towards adaptive, streaming analysis of x-ray tomography data

    SciTech Connect

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  8. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  9. Hyperspectral image reconstruction for x-ray fluorescence tomography

    SciTech Connect

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversion approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.

  10. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE PAGES [OSTI]

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmoreapproaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.less

  11. X-ray Computed Tomography of coal: Final report

    SciTech Connect

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  12. Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    breakage over time | Argonne National Laboratory Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to breakage over time By Katie Elyce Jones * March 4, 2016 Tweet EmailPrint Titanium is strong but light - a desirable property among metals. In the twentieth century, titanium was used in military aircraft and equipment and commercial jets. Today, we find this tough and flexible metal all around us - in sports gear, tools, surgical and dental implants, prosthetics,

  13. A metallography and x-ray tomography study of spall damage in ultrapure Al

    SciTech Connect

    Qi, M. L.; Bie, B. X.; Zhao, F. P.; Fan, D.; Luo, S. N.; Hu, C. M.; Ran, X. X.; Xiao, X. H.; Yang, W. G.; Li, P.

    2014-07-15

    We characterize spall damage in shock-recovered ultrapure Al with metallography and x-ray tomography. The measured damage profiles in ultrapure Al induced by planar impact at different shock strengths, can be described with a Gaussian function, and showed dependence on shock strengths. Optical metallography is reasonably accurate for damage profile measurements, and agrees within 10–25% with x-ray tomography. Full tomography analysis showed that void size distributions followed a power law with an exponent of γ = 1.5 ± 2.0, which is likely due to void nucleation and growth, and the exponent is considerably smaller than the predictions from percolation models.

  14. Optimization of X-ray tomography through a cooperative computing system in grid

    SciTech Connect

    Hasan, Moin Goraya, Major Singh

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  15. Measuring the efficacy of a root biobarrier with x-ray computed tomography

    SciTech Connect

    Tollner, E.W.; Murphy, C.E. Jr. . Dept. of Agricultural Engineering)

    1990-08-16

    X-ray computed tomography is a useful tool for investigating soil physical properties nondestructively. There is a need to develop proper calibration relationships between soil properties and the x-ray absorption coefficient. The objective of the work was to evaluate soil factors affecting the x-ray absorption coefficient. Based on a theoretical analysis, experimental data from five soils and on results of several other investigators, it was concluded that for many applications, one calibration relationship is applicable to a wide range of soils. The montmorillinitic clay used in the study required special handling due to the extreme shrinkage of this soil upon drying. Knowledge of chemical composition enables approximations but not exact predictions of the x-ray absorption coefficient. The results suggested some reasonable alternative to exhaustive calibration for each anticipated soil condition. Quantification of root activity in terms of root growth and indirectly through water uptake is necessary for understanding plant growth dynamics. X-ray computed tomography (CT) enables qualitative as well as two quantitative outputs, one of which can lead to conclusions regarding root activity. A greenhouse study involving soil columns (Lakeland sand, bulk density 1.4 Mg/m{sup 3}) planted to soybean, Bahiagras, and control (no vegetation) was conducted in 1989. A treflan based on chemical barrier was placed in half of the soil column of each species. The mean x-ray absorption correlated to water content. Results suggested that root presence can also be indirectly inferred based on water content drawn down during planned stress events. It was concluded that x-ray CT may have a niche in soil-water-plant relation studies, particularly when plant species have large roots. 35 refs., 13 figs., 8 tabs.

  16. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGES [OSTI]

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  17. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  18. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  19. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE PAGES [OSTI]

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  20. Optimization and evaluation of metal injection molding by using X-ray tomography

    SciTech Connect

    Yang, Shidi; Zhang, Ruijie; Qu, Xuanhui

    2015-06-15

    6061 aluminum alloy and 316L stainless steel green bodies were obtained by using different injection parameters (injection pressure, speed and temperature). After injection process, the green bodies were scanned by X-ray tomography. The projection and reconstruction images show the different kinds of defects obtained by the improper injection parameters. Then, 3D rendering of the Al alloy green bodies was used to demonstrate the spatial morphology characteristics of the serious defects. Based on the scanned and calculated results, it is convenient to obtain the proper injection parameters for the Al alloy. Then, reasons of the defect formation were discussed. During mold filling, the serious defects mainly formed in the case of low injection temperature and high injection speed. According to the gray value distribution of projection image, a threshold gray value was obtained to evaluate whether the quality of green body can meet the desired standard. The proper injection parameters of 316L stainless steel can be obtained efficiently by using the method of analyzing the Al alloy injection. - Highlights: • Different types of defects in green bodies were scanned by using X-ray tomography. • Reasons of the defect formation were discussed. • Optimization of the injection parameters can be simplified greatly by the way of X-ray tomography. • Evaluation standard of the injection process can be obtained by using the gray value distribution of projection image.

  1. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  2. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  3. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that can operate in an x-ray beamline. With this capability, researchers can, for the first time, apply grazing-incidence x-ray diffraction (GIXD) and grazing-incidence...

  4. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGES [OSTI]

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  5. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    SciTech Connect

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edges complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.

  6. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  7. Feasibility study of a high-spatial resolution x-ray computed tomography using sub-pixel shift method

    SciTech Connect

    Yoneyama, Akio Baba, Rika; Sumitani, Kazushi; Hirai, Yasuharu

    2015-02-23

    A high-spatial resolution X-ray computed tomography (CT) adopting a sub-pixel shift method has been developed. By calculating sectional images, using plural CT datasets obtained by scanning the X-ray imager, the spatial resolution can be reduced relative to the sub-pixel size of an X-ray imager. Feasibility observations of a biomedical sample were performed using 12-keV monochromatic synchrotron radiation and a photon-counting X-ray imager 174-μm pixels in size. Four CT measurements were performed to obtain datasets at different positions of the X-ray imager. Fine sectional images were obtained successfully, and the spatial resolution was estimated as 80-μm, which corresponds to just under half the pixel size of the imager. In addition, a fine 3D image was also obtained by scanning the imager two-dimensionally.

  8. The Application of Monochromatic Energies to Investigate Multiphase Porous Media Systems using Synchrotron X-ray Tomography

    SciTech Connect

    Ham, Kyungmin; Willson, Clinton S.

    2006-01-31

    X-ray computed tomography (CT) is becoming a useful tool for nondestructive imaging of many geoenvironmental and geotechnical systems. Conventional X-ray CT systems typically utilize a polychromatic X-ray beam. While providing a high throughput of photons, the use of polychromatic energy can make quantifying material concentrations, densities or composition very difficult or impossible without appropriate standards. Synchrotron X-rays have an extremely small angular divergence, thus permitting spatial resolution that is only limited by the optical components of the system. In addition, the ability to tune to a monochromatic X-ray energy allows better phase contrast by reducing beam hardening and allowing for elemental discrimination. In this work we will show how monochromatic energy can be used to provide high-quality images allowing for phase separation several different porous media systems thus improving our ability to quantify a range of processes and phenomena.

  9. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    SciTech Connect

    Silva, I. Matias; Combe, Gaeel; Foray, Pierre; Flin, Frederic; Lesaffre, Bernard [Universite de Grenoble, 3SR Lab, UMR 5521 Grenoble-INP, UJF-Grenoble 1, CNRS, Grenoble, France CEN, CNRM-GAME UMR 3589, Meteo France - CNRS, Grenoble (France)

    2013-06-18

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 {mu}m were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  10. Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections

    SciTech Connect

    Oliveira, Jose Martins Jr. de; Martins, Antonio Cesar Germano

    2009-06-03

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 {mu}m. It was built as a general purpose nondestructive testing device.

  11. Study of the internal structure of lithium fluoride single crystal by laboratory X-ray topo-tomography

    SciTech Connect

    Zolotov, D. A. Buzmakov, A. V.; Asadchikov, V. E.; Voloshin, A. E.; Shkurko, V. N.; Smirnov, I. S.

    2011-05-15

    Defects in a synthetic LiF crystal have been studied by X-ray topo-tomography on laboratory X-ray sources with a spatial resolution of {approx}10 {mu}m. An algebraic reconstruction method was applied to reconstruct the defect 3D structure of the crystal based on the diffraction data. The results presented in this study are in good agreement with the topographic data obtained by the Lang method.

  12. X-ray Imaging Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  13. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining effective linear activity coefficients (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  14. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    small-angle x-ray scattering (GISAXS) to characterize active-layer formation in real time and at multiple length scales. Watching the Ink Dry Flexible, lightweight, and...

  15. Intense X-rays expose tiny flaws in 3-D printed titanium that...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    For 3-D printing, metals are usually atomized into powders first. Ti-6Al-4V powders are printed by using either selective laser melting or electron-beam melting (EBM), which is the ...

  16. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGES [OSTI]

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-01-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  17. Data fusion in X-ray computed tomography using a superiorization approach

    SciTech Connect

    Schrapp, Michael J.; Herman, Gabor T.

    2014-05-15

    X-ray computed tomography (CT) is an important and widespread inspection technique in industrial non-destructive testing. However, large-sized and heavily absorbing objects cause artifacts due to either the lack of penetration of the specimen in specific directions or by having data from only a limited angular range of views. In such cases, valuable information about the specimen is not revealed by the CT measurements alone. Further imaging modalities, such as optical scanning and ultrasonic testing, are able to provide data (such as an edge map) that are complementary to the CT acquisition. In this paper, a superiorization approach (a newly developed method for constrained optimization) is used to incorporate the complementary data into the CT reconstruction; this allows precise localization of edges that are not resolvable from the CT data by itself. Superiorization, as presented in this paper, exploits the fact that the simultaneous algebraic reconstruction technique (SART), often used for CT reconstruction, is resilient to perturbations; i.e., it can be modified to produce an output that is as consistent with the CT measurements as the output of unmodified SART, but is more consistent with the complementary data. The application of this superiorized SART method to measured data of a turbine blade demonstrates a clear improvement in the quality of the reconstructed image.

  18. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    SciTech Connect

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    significant amount of glassy material interspersed among the gas bubbles will be excluded, thus underestimating the melt rate. Likewise, if they are drawn too high, many large voids will be counted as glass, thus overestimating the melt rate. As will be shown later in this report, there is also no guarantee that a given distribution of glass and gas bubbles along a particular sectioned plane will always be representative of the entire sample volume. Poor reproducibility seen in some LMR data may be related to these difficulties of the visual method. In addition, further improvement of the existing melt rate model requires that the overall impact of feed chemistry on melt rate be reflected on measured data at a greater quantitative resolution on a more consistent basis than the visual method can provide. An alternate method being pursued is X-ray computed tomography (CT). It involves X-ray scanning of glass samples, performing CT on the 2-D X-ray images to build 3-D volumetric data, and adaptive segmentation analysis of CT results to not only identify but quantify the distinct regions within each sample based on material density and morphologies. The main advantage of this new method is that it can determine the relative local density of the material remaining in the beaker after the heat treatment regardless of its morphological conditions by selectively excluding all the voids greater than a given volumetric pixel (voxel) size, thus eliminating much of the subjectivity involved in the visual method. As a result, the melt rate data obtained from CT scan will give quantitative descriptions not only on the fully-melted glass, but partially-melted and unmelted feed materials. Therefore, the CT data are presumed to be more reflective of the actual melt rate trends in continuously-fed melters than the visual data. In order to test the applicability of X-ray CT scan to the HLW glass melt rate study, several new series of HLW simulant/frit mixtures were melted in the Melt Rate

  19. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    SciTech Connect

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  20. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography

    SciTech Connect

    Jin, Yusuke Konno, Yoshihiro; Nagao, Jiro

    2014-09-01

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples.

  1. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    SciTech Connect

    Lang, S.; Schulz, G.; Müller, B.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2014-10-21

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  2. X-ray Digital Radiography and Computed Tomography of ICF and HEDP Materials, Subassemblies and Targets

    SciTech Connect

    Brown, W D; Martz Jr., H E

    2006-05-31

    Inertial confinement fusion (ICF) and high energy density physics (HEDP) research are being conducted at large laser facilities, such as the University of Rochester's Laboratory for Laser Energetics OMEGA facility and the Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF). At such facilities, millimeter-sized targets with micrometer structures are studied in a variety of hydrodynamic, radiation transport, equation-of-state, inertial confinement fusion and high-energy density experiments. The extreme temperatures and pressures achieved in these experiments make the results susceptible to imperfections in the fabricated targets. Targets include materials varying widely in composition ({approx}3 < Z < {approx}82), density ({approx}0.03 to {approx}20 g/cm{sup 3}), geometry (planar to spherical) and embedded structures (joints to subassemblies). Fabricating these targets with structures to the tolerances required is a challenging engineering problem the ICF and HEDP community are currently undertaking. Nondestructive characterization (NDC) provides a valuable tool in material selection, component inspection, and the final pre-shot assemblies inspection. X-rays are a key method used to NDC these targets. In this paper we discuss X-ray attenuation, X-ray phase effects, and the X-ray system used, its performance and application to characterize low-temperature Raleigh-Taylor and non-cryogenic double-shell targets.

  3. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGES [OSTI]

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  4. Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images

    SciTech Connect

    Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho; Pacella, D.; Romano, A.; Gabellieri, L.; Kim, Junghee

    2014-11-15

    Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 240 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

  5. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: Custom built X-ray tomography system for microstructural characterization Detector design for maximizing polychromatic X-ray detection efficiency X-ray design offered for maximizing X-ray flux with respect to imaging resolution Novel lab

  6. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography

    SciTech Connect

    Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

    2010-09-15

    Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

  7. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    SciTech Connect

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; Mertens, James C. E.; Xiao, Xianghui; Chawla, Nikhilesh; Neithalath, Narayanan

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) models to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.

  8. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES [OSTI]

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; et al

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  9. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    SciTech Connect

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; Specht, Eliot D.; Terrani, Kurt A.; Katoh, Yutai

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.

  10. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    DOE PAGES [OSTI]

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; Specht, Eliot D.; Terrani, Kurt A.; Katoh, Yutai

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less

  11. TENSILE SPECIMEN DESIGN AND EXPERIMENTAL PROCEDURES FOR CHARACTERIZING POLYMERIC COMPOSITES USING X-RAY BASED MICRO-TOMOGRAPHY

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Nguyen, Ba N.; Case, Scott; Young, Stephen; Penumadu, Dayakar

    2008-01-01

    The recent rapid increase in the use of continuous and chopped fiber composites for automotive, aerospace, and naval applications demands an increased understanding of microstructure evolution with stress in order to understand potential failure locations. X-ray imaging with micro-focus source and optics with high resolution shows promise for exploring such technology to study the microstructure. Initial tomography and radiography results will be presented that clearly show individual fibers and its interface with the resin as a function of tensile stress. In this study, we focus on the design of miniature fiber reinforced polymer specimens suitable for examination during tensile loading using a micro-tomography system. Issues related to potential stress concentrations and experimental boundary conditions are examined using finite element analysis. Two gripping designs and specimen geometries are examined analytically and experimentally. Specimens with cylindrical cross-section with specimen ends bonded to a metallic threaded grip were considered for thermoset materials. Grips containing cavities with cylindrical and conical shapes were also examined. Dog-bone shaped, shoulder loaded, square cross-section sample was considered for thermoplastic materials because of difficulties bonding them to a metallic threaded grip.

  12. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless...

  13. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  14. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  15. Biological Imaging by Soft X-Ray Diffraction Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  16. Design of Mega-Voltage X-ray Digital Radiography and Computed Tomography Performance Phantoms

    SciTech Connect

    Aufderheide, M B; Martz, H E; Curtin, M

    2009-06-22

    A number of fundamental scientific questions have arisen concerning the operation of high-energy DR and CT systems. Some of these questions include: (1) How deeply can such systems penetrate thickly shielded objects? (2) How well can such systems distinguish between dense and relatively high Z materials such as lead, tungsten and depleted uranium and lower Z materials such as steel, copper and tin? (3) How well will such systems operate for a uranium material which is an intermediate case between low density yellowcake and high density depleted uranium metal? These questions have led us to develop a set of phantoms to help answer these questions, but do not have any direct bearing on any smuggling concern. These new phantoms are designed to allow a systemic exploration of these questions by gradually varying their compositions and thicknesses. These phantoms are also good probes of the blurring behavior of radiography and tomography systems. These phantoms are composed of steel ({rho} assumed to be 7.8 g/cc), lead ({rho} assumed to be 11.4 g/cc), tungsten ({rho} assumed to be 19.25 g/cc), uranium oxide (UO{sub 3}) ({rho} assumed to be 4.6 g/cc), and depleted uranium (DU) ({rho} assumed to be 18.9 g/cc). There are five designed phantoms described in this report: (1) Cylindrical shells of Tungsten and Steel; (2) Depleted Uranium Inside Tungsten Hemi-cube Shells; (3) Nested Spherical Shells; (4) UO{sub 3} Cylinder; and (5) Shielded DU Sphere.

  17. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    SciTech Connect

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  18. Use of volume x-ray tomography for characterizing density variations in as-cast ceramic bodies

    SciTech Connect

    Ellingson, W.A.; Holloway, D.L.; Sivers, E.A.; Ling, J.; Pollinger, J.P.; Yeh, H.C.

    1992-11-01

    A joint project is ongoing to evaluate nondestructive characterization (NDC) methods to detect and measure process-induced variations in ceramic materials. The process methods of current focus are slip-casting and injection molding, and a primary NDC method being evaluated is microfocus X-ray computed tomography (XCT). SiC-whisker-reinforced Si{sub 3}N{sub 4} has been pressure-slip-cast at two casting pressures, 0.103 and 0.276 MPa (15 and 40 psi); and at length/diameter ratios of 1.5, and 2.67 with whisker contents of 20, 23, 27, and 30 wt.%. Three-dimensional microfocus XCT has been used to study density variations in billets produced by different process conditions. Destructive measurement of density variation has been compared to the XCT measurements and correlations have been established. XCT has been proven (by destructive verification) to be capable of detecting <5% variations in as-cast density.

  19. Use of volume x-ray tomography for characterizing density variations in as-cast ceramic bodies

    SciTech Connect

    Ellingson, W.A.; Holloway, D.L.; Sivers, E.A. ); Ling, J. . Inst. for Ceramics); Pollinger, J.P.; Yeh, H.C. . Garrett Ceramic Components Div.)

    1992-01-01

    A joint project is ongoing to evaluate nondestructive characterization (NDC) methods to detect and measure process-induced variations in ceramic materials. The process methods of current focus are slip-casting and injection molding, and a primary NDC method being evaluated is microfocus X-ray computed tomography (XCT). SiC-whisker-reinforced Si[sub 3]N[sub 4] has been pressure-slip-cast at two casting pressures, 0.103 and 0.276 MPa (15 and 40 psi); and at length/diameter ratios of 1.5, and 2.67 with whisker contents of 20, 23, 27, and 30 wt.%. Three-dimensional microfocus XCT has been used to study density variations in billets produced by different process conditions. Destructive measurement of density variation has been compared to the XCT measurements and correlations have been established. XCT has been proven (by destructive verification) to be capable of detecting <5% variations in as-cast density.

  20. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    DOE PAGES [OSTI]

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; Mertens, James C. E.; Xiao, Xianghui; Chawla, Nikhilesh; Neithalath, Narayanan

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less

  1. TU-A-9A-05: First Experimental Demonstration of the Anisotropic Detection Principle in X-Ray Fluorescence Computed Tomography

    SciTech Connect

    Ahmad, M; Bazalova, M; Fahrig, R; Xing, L

    2014-06-15

    Purpose: To improve the sensitivity of X-ray fluorescence computed tomography (XFCT) for in vivo molecular imaging. Is the maximum sensitivity achieved with an isotropic (4π) detector configuration? We prove that this is not necessarily true, and that a greater sensitivity is possible with anisotropic detector configuration. Methods: An XFCT imaging system was constructed consisting of 1) a collimated pencil beam x-ray source using a fluoroscopy grade x-ray tube; 2) a CdTe x-ray photon counting detector to detect fluorescent x-rays; and 3) a rotation/translation stage for tomographic imaging. We created a 6.5-cm diameter water phantom with 2-cm inserts of low gold concentration (0.25%–1%) to simulate tumors targeted by gold nano-particles. The placement of x-ray fluorescence detector were chosen to minimize scatter x-rays. XFCT imaging was performed at three different detector positions (60°, 90°, 145°) to determine the impact of forward-scatter, side-scatter, and back-scatter on imaging performance. The three data sets were also combined to estimate the imaging performance with an isotropic detector. Results: The highest imaging performance was achieved when the XF detector was in the backscatter 145° configuration. The signal-to-noise ratio (SNR) was 5.5 for the 0.25% gold concentration compared to SNRs of 1.4, 0, and 2.4 for 60°, 90°, and combined (60°+90°+145°) datasets. Only the 145° detector arrangement alone could detect the 0.25% concentration. The imaging dose was 14 mGy for each detector arrangement experiment. Conclusion: This study experimentally proves, for the fist time, the Anisotropic Detection Principle in XF imaging, which holds that optimized anisotropic x-ray fluorescence detection provides greater sensitivity than isotropic detection. The optimized detection arrangement was used to improve the sensitivity of the XFCT experiment. The achieved XFCT sensitivity is the highest ever for a phantom at least this large using a benchtop x-ray

  2. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  3. Assessing image quality and dose reduction of a new x-ray computed tomography iterative reconstruction algorithm using model observers

    SciTech Connect

    Tseng, Hsin-Wu Kupinski, Matthew A.; Fan, Jiahua; Sainath, Paavana; Hsieh, Jiang

    2014-07-15

    Purpose: A number of different techniques have been developed to reduce radiation dose in x-ray computed tomography (CT) imaging. In this paper, the authors will compare task-based measures of image quality of CT images reconstructed by two algorithms: conventional filtered back projection (FBP), and a new iterative reconstruction algorithm (IR). Methods: To assess image quality, the authors used the performance of a channelized Hotelling observer acting on reconstructed image slices. The selected channels are dense difference Gaussian channels (DDOG).A body phantom and a head phantom were imaged 50 times at different dose levels to obtain the data needed to assess image quality. The phantoms consisted of uniform backgrounds with low contrast signals embedded at various locations. The tasks the observer model performed included (1) detection of a signal of known location and shape, and (2) detection and localization of a signal of known shape. The employed DDOG channels are based on the response of the human visual system. Performance was assessed using the areas under ROC curves and areas under localization ROC curves. Results: For signal known exactly (SKE) and location unknown/signal shape known tasks with circular signals of different sizes and contrasts, the authors’ task-based measures showed that a FBP equivalent image quality can be achieved at lower dose levels using the IR algorithm. For the SKE case, the range of dose reduction is 50%–67% (head phantom) and 68%–82% (body phantom). For the study of location unknown/signal shape known, the dose reduction range can be reached at 67%–75% for head phantom and 67%–77% for body phantom case. These results suggest that the IR images at lower dose settings can reach the same image quality when compared to full dose conventional FBP images. Conclusions: The work presented provides an objective way to quantitatively assess the image quality of a newly introduced CT IR algorithm. The performance of the

  4. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGES [OSTI]

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  5. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  6. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  7. Biological Imaging by Soft X-Ray Diffraction Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  8. X-Ray Diffraction Microscopy of Magnetic Structures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  9. ALS X-Rays Shine a New Light on Catalysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis ALS X-Rays Shine a New Light on Catalysis Print Thursday, 21 May 2015 11:16 Electrocatalysts are responsible for expediting reactions in...

  10. Biological Imaging by Soft X-Ray Diffraction Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in ...

  11. X-Ray Diffraction Microscopy of Magnetic Structures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing ...

  12. Correlated high-resolution x-ray diffraction photoluminescence and atom probe tomography analysis of continuous and discontinuous InxGa1-xN quantum wells

    DOE PAGES [OSTI]

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; Lauhon, Lincoln J.

    2015-07-14

    In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APTmore » analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.« less

  13. ALS X-Rays Shine a New Light on Catalysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme...

  14. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic ... The effect is unique in that it allows us to distinguish which atomic species magnetism ...

  15. In situ measurement of interfacial tension of Fe-S and Fe-P liquids under high pressure using X-ray radiography and tomography techniques

    SciTech Connect

    Terasakia, H; Urakawa, S; Funakoshi, K; Nishiyama, N; Wang, Y; Nishida, K; Sakamaki, T; Suzuki, A; Ohtani, E

    2009-09-14

    Interfacial tension is one of the most important properties of the liquid iron alloy that controls the core formation process in the early history of the Earth and planets. In this study, we made high-pressure X-ray radiography and micro-tomography measurements to determine the interfacial tension between liquid iron alloys and silicate melt using the sessile drop method. The measured interfacial tension of liquid Fe-S decreased significantly (802-112 mN/m) with increasing sulphur content (0-40 at%) at 1.5 GPa. In contrast, the phosphorus content of Fe had an almost negligible effect on the interfacial tension of liquid iron. These tendencies in the effects of light elements are consistent with those measured at ambient pressure. Our results suggest that the effect of sulphur content on the interfacial tension of liquid Fe-S (690 mN/m reduction with the addition of 40 at% S) is large compared with the effect of temperature (~273 mN/m reduction with an increase of 200 K). The three-dimensional structure of liquid Fe-S was obtained at ~2 GPa and 1373-1873 K with a high-pressure tomography technique. The Fe-S droplet was quite homogeneous when evaluated in a slice of the three-dimensional image.

  16. X-Ray Diagnostics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    including film developing and scanning, and image plate scanning. Related images X-ray framing camera being loaded into the TIM in the Trident North Target Area. X-ray framing...

  17. X-Ray Diagnostics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  18. A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale

    SciTech Connect

    Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

    2013-04-01

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature "shale" samples were constructed at resolutions close to 5 um. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400 degrees C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400 degrees C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled

  19. Application of x-ray tomography to optimization of new NOx/NH3 mixed potential sensors for vehicle on-board emissions control

    SciTech Connect

    Nelson, Mark A; Brosha, Eric L; Mukundan, Rangachary; Garzon, Fernando H

    2009-01-01

    Mixed potential sensors for the detection of hydrocarbons, NO{sub x}, and NH{sub 3} have been previously developed at Los Alamos National Laboratory (LANL). The LANL sensors have a unique design incorporating dense ceramic-pelletlmetal-wire electrodes and porous electrolytes. The performance of current-biased sensors using an yttria-stabilized zirconia (YSZ) electrolyte and platinum and La{sub 0.8}Sr{sub 0.2}CrO{sub 3} electrodes is reported. X-ray tomography has been applied to non-destructively examine internal structures of these sensors. NO{sub x} and hydrocarbon response of the sensors under various bias conditions is reported, and very little NO{sub x} response hysteresis was observed. The application of a 0.6 {mu}A bias to these sensors shifts the response from a hydrocarbon response to a NO{sub x} response equal for both NO and NO{sub 2} species at approximately 500 {sup o}C in air.

  20. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    SciTech Connect

    Bossa, Nathan; Chaurand, Perrine; Vicente, Jérôme; Borschneck, Daniel; Levard, Clément; Aguerre-Chariol, Olivier; Rose, Jérôme

    2015-01-15

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) and nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.

  1. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  2. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging

    SciTech Connect

    Wu, Meng; Keil, Andreas; Constantin, Dragos; Star-Lack, Josh; Zhu, Lei; Fahrig, Rebecca

    2014-12-15

    Purpose: The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Methods: Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kV and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. Results: The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10–15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%–10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. Conclusions: The authors have shown that it

  3. Effect of Network Structure on Characterization and Flow Modeling Using X-ray Micro-Tomography Images of Granular and Fibrous Porous Media

    SciTech Connect

    Bhattad, Pradeep; Willson, Clinton S.; Thompson, Karsten E.

    2012-07-31

    Image-based network modeling has become a powerful tool for modeling transport in real materials that have been imaged using X-ray computed micro-tomography (XCT) or other three-dimensional imaging techniques. Network generation is an essential part of image-based network modeling, but little quantitative work has been done to understand the influence of different network structures on modeling. We use XCT images of three different porous materials (disordered packings of spheres, sand, and cylinders) to create a series of four networks for each material. Despite originating from the same data, the networks can be made to vary over two orders of magnitude in pore density, which in turn affects network properties such as pore-size distribution and pore connectivity. Despite the orders-of-magnitude difference in pore density, single-phase permeability predictions remain remarkably consistent for a given material, even for the simplest throat conductance formulas. Detailed explanations for this beneficial attribute are given in the article; in general, it is a consequence of using physically representative network models. The capillary pressure curve generated from quasi-static drainage is more sensitive to network structure than permeability. However, using the capillary pressure curve to extract pore-size distributions gives reasonably consistent results even though the networks vary significantly. These results provide encouraging evidence that robust network modeling algorithms are not overly sensitive to the specific structure of the underlying physically representative network, which is important given the variety image-based network-generation strategies that have been developed in recent years.

  4. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches

    SciTech Connect

    Ruehrnschopf, Ernst-Peter; Klingenbeck, Klaus

    2011-07-15

    Since scattered radiation in cone-beam volume CT implies severe degradation of CT images by quantification errors, artifacts, and noise increase, scatter suppression is one of the main issues related to image quality in CBCT imaging. The aim of this review is to structurize the variety of scatter suppression methods, to analyze the common structure, and to develop a general framework for scatter correction procedures. In general, scatter suppression combines hardware techniques of scatter rejection and software methods of scatter correction. The authors emphasize that scatter correction procedures consist of the main components scatter estimation (by measurement or mathematical modeling) and scatter compensation (deterministic or statistical methods). The framework comprises most scatter correction approaches and its validity also goes beyond transmission CT. Before the advent of cone-beam CT, a lot of papers on scatter correction approaches in x-ray radiography, mammography, emission tomography, and in Megavolt CT had been published. The opportunity to avail from research in those other fields of medical imaging has not yet been sufficiently exploited. Therefore additional references are included when ever it seems pertinent. Scatter estimation and scatter compensation are typically intertwined in iterative procedures. It makes sense to recognize iterative approaches in the light of the concept of self-consistency. The importance of incorporating scatter compensation approaches into a statistical framework for noise minimization has to be underscored. Signal and noise propagation analysis is presented. A main result is the preservation of differential-signal-to-noise-ratio (dSNR) in CT projection data by ideal scatter correction. The objective of scatter compensation methods is the restoration of quantitative accuracy and a balance between low-contrast restoration and noise reduction. In a synopsis section, the different deterministic and statistical methods are

  5. Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data

    SciTech Connect

    Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.

    2009-08-15

    The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.

  6. Chest x-Rays

    Office of Energy Efficiency and Renewable Energy (EERE)

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  7. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  8. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  9. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  10. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  11. X-Ray Detection

    Office of Scientific and Technical Information (OSTI)

    ratio, I I on I off , recorded with plus (+, blue) and minus (-, red) x-ray helicities. This measurement was taken at -5 mA, which corresponds to a current...

  12. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    SciTech Connect

    Zhang, D; Wang, W; Jiang, B; Fu, D

    2015-06-15

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications.

  13. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the...

  14. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

  15. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

  16. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cells with Soft X-Rays Print A team of scientists has ... to collect a full 3D data set in a single ... The coherent (laser-like) beam of penetrating x rays allows ...

  17. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cells with Soft X-Rays Print Wednesday, 26 May 2010 ... to collect a full 3D data set in a single ... The coherent (laser-like) beam of penetrating x rays allows ...

  18. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block ... has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 ...

  19. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00 ...

  20. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print...

  1. X-ray fluorescence mapping

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  2. X-ray imaging reveals secrets in battery materials | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-ray imaging reveals secrets in battery materials June 22, 2015 Tweet EmailPrint Imaging and data analysis techniques offer new approach to probing material properties In a new...

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with...

  4. X-ray microtomography

    SciTech Connect

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  5. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  6. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  7. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  8. Soft-x-ray

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Soft-x-ray emission, plasma equilibrium, and fluctuation studies on Madison Symmetric Torus C. Xiao Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin and Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada P. Franz Consorzio RFX-Associazione EURATOM ENEA Sulla Fusione, Italy and Istituto Nazionale di Fisica della Materia, Unita' di Ricerca di Padova, Italy B. E. Chapman and D. Craig Department of Physics, University of

  9. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  10. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  11. SMB, X-ray Emission Spectroscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    include X-ray Emission Spectroscopy (XES), Resonant Inelastic X-ray Scattering (RIXS), High Energy Resolution Fluorescence Detection (HERFD) and X-ray Raman Spectroscopy (XRS). ...

  12. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  13. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  14. Correlated high-resolution x-ray diffraction photoluminescence and atom probe tomography analysis of continuous and discontinuous InxGa1-xN quantum wells

    SciTech Connect

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; Lauhon, Lincoln J.

    2015-07-14

    In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.

  15. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    SciTech Connect

    Harvel, G.D. |; Hori, K.; Kawanishi, K.

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  16. Correlated High-Resolution X-Ray Diffraction Photoluminescence and Atom Probe Tomography Analysis of Continuous and Discontinuous InxGa1-xN Quantum Wells

    SciTech Connect

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; Lauhon, Lincoln J.

    2015-07-14

    Atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  18. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  19. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. X-Ray Science Education

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TV Network external link DNA Interactive external link Reciprocal Net external link X-ray Science Courses and Programs Various educational efforts are closely related to the...

  1. Apparatus for obtaining an X-ray image

    DOEpatents

    Watanabe, Eiji

    1979-01-01

    A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.

  2. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  3. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  4. X-Ray Interactions with Matter from the Center for X-Ray Optics...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) Title: X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) The primary interactions of ...

  5. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  6. X-Ray Microscopy | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Microscopy X-Ray Microscopy This group exploits the unique capabilities of hard X-ray microscopy to visualize and understand the structure and behavior of hybrid,...

  7. Neutron and X-ray Detectors

    SciTech Connect

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    : Improvements in the readout speed and energy resolution of X-ray detectors are essential to enable chemically sensitive microscopies. Advances would make it possible to take images with simultaneous spatial and chemical information. Very high-energy-resolution X-ray detectors: The energy resolution of semiconductor detectors, while suitable for a wide range of applications, is far less than what can be achieved with X-ray optics. A direct detector that could rival the energy resolution of optics could dramatically improve the efficiency of a multitude of experiments, as experiments are often repeated at a number of different energies. Very high-energy-resolution detectors could make these experiments parallel, rather than serial. Low-background, high-spatial-resolution neutron detectors: Low-background detectors would significantly improve experiments that probe excitations (phonons, spin excitations, rotation, and diffusion in polymers and molecular substances, etc.) in condensed matter. Improved spatial resolution would greatly benefit radiography, tomography, phase-contrast imaging, and holography. Improved acquisition and visualization tools: In the past, with the limited variety of slow detectors, it was straightforward to visualize data as it was being acquired (and adjust experimental conditions accordingly) to create a compact data set that the user could easily transport. As detector complexity and data rates explode, this becomes much more challenging. Three goals were identified as important for coping with the growing data volume from high-speed detectors: Facilitate better algorithm development. In particular, algorithms that can minimize the quantity of data stored. Improve community-driven mechanisms to reduce data protocols and enhance quantitative, interactive visualization tools. Develop and distribute community-developed, detector-specific simulation tools. Aim for parallelization to take advantage of high-performance analysis platforms. Improved analysis

  8. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    SciTech Connect

    Myllys, M.; Hkknen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirvi, P.; Timonen, J.

    2015-04-14

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1??m spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70?nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  9. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined...

  10. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

  11. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  12. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  13. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  14. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  15. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  16. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray ...

  17. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics Citation Details In-Document Search Title: Femtosecond X-ray...

  18. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray emission...

  19. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Citation Details In-Document Search Title: Reabsorption of Soft X-Ray Emission at ...

  20. Compton tomography system

    DOEpatents

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  1. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  2. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  3. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the ... The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated ...

  4. Producing X-rays at the APS

    ScienceCinema

    None

    2016-07-12

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  5. SMB, X-ray Absorption Spectroscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure determination of a metalloprotein active site. XAS is element specific and sample state agnostic, making it ideal for dilute biological solutions. SSRL has three hard x-ray and two tender x-ray biological spectroscopy beamlines, together covering 2-30 KeV. The beamlines are equipped with specialized instrumentation,

  6. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  7. Neutron and X-ray Scattering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  8. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  9. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  10. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  11. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  12. Simultaneous cryo x-ray ptychographic and fluorescence microscopy of green

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    algae | Argonne National Laboratory Simultaneous cryo x-ray ptychographic and fluorescence microscopy of green algae May 4, 2015 Tweet EmailPrint Scientific Achievement We describe a new combined development in the field of imaging science and microscopy, with a high spatial resolution of sub-30 nm for x-ray imaging of a frozen hydrated cell. The work combines ptychography (a form of coherent diffraction imaging) to view cellular structure in whole cells too thick for electron microscopy and

  13. Controlling X-rays With Light

    SciTech Connect

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  14. X-Ray Diffraction > Analytical Resources > Research > The Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analytical Resources In This Section Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction X-Ray Diffraction...

  15. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  16. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  17. SMB, Small Angle X-Ray Scattering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Angle X-Ray Scattering Home » Small Angle X-Ray Scattering Small Angle X-Ray Scattering X-ray scattering from solutions or partially ordered arrays of biomolecules typically provides low-resolution (~7-10 Å or higher) structural information. Such studies can be done in solution, are relatively fast and require small quantities of material. SAXS studies are well-suited for time resolved measurements and hence can be used to address questions like conformational changes or folding

  18. Gamma Radiation & X-Rays

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations differ only in the amount of energy they have. Gamma rays and X-rays are the most energetic of these. 2. Gamma radiation is able to travel many meters in air and many centimeters in human tissue. It readily penetrates most materials and is sometimes called "penetrating radiation." 3. X-rays are like gamma rays.

  19. SMB, X-Ray Spectroscopy & Imaging

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home » X-Ray Spectroscopy & Imaging X-Ray Spectroscopy & Imaging SSRL has five hard X-ray Spectroscopy beamlines and three Microfocus Imaging beamlines dedicated to Biological and Biomedical research funded by the NIH and DOE-BER. The SMB group supports and develops technical instrumentation and theoretical methods for state-of-the-art tender and hard X-ray spectroscopy and EXAFS studies on metalloproteins, cofactors and metals in medicine. The SMB group has also contributed to the

  20. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). ...

  1. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  2. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light ...

  3. Neutron and X-ray Scattering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and ...

  4. X-ray microscopy. Beyond ensemble averages

    DOE PAGES [OSTI]

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  5. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  6. Gamma and X-ray Dosimetric Method

    DOEpatents

    Taplin, G.V.; Douglas, C.H.

    1954-06-29

    This patent application concerns a highly stable two-phase liquid system for use in a colorimetric dosimeter for measuring X-ray and gamma radiation.

  7. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  8. X-ray Attenuation and Absorption Calculations.

    Energy Science and Technology Software Center

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  9. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  10. Argonne X-rays validate quantum magnetism model | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory X-rays validate quantum magnetism model May 20, 2015 Tweet EmailPrint Scientists at the U.S. Department of Energy's Argonne National Laboratory and Max Planck Institute for Solid State Research in Stuttgart, Germany have validated a theorized model of quantum magnetism by observing it firsthand in a honeycomb lattice. The research is featured in an article titled "Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3" published

  11. Probing convex polygons with X-rays

    SciTech Connect

    Edelsbrunner, H.; Skiena, S.S. )

    1988-10-01

    An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known.

  12. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES [OSTI]

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  14. X-rays Illuminate Ancient Archimedes Text

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... DailyIndia.com: http:www.dailyindia.comshow48286.phpX-rays-illuminate-Archimedes-writings North Korea Times: http:story.northkoreatimes.comp.xct9ciddd8845aa60952db2id...

  15. X-ray image intensifier phosphor

    DOEpatents

    D'Silva, A.P.; Fassel, V.A.

    1975-12-01

    Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

  16. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  17. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  18. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  19. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  20. X-Ray Nanoimaging: Instruments and Methods

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA

  1. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  2. Lensless X-Ray Imaging in Reflection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    be reconstructed by a single Fourier transform; this is known as Fourier transform holography. The problem of getting sufficiently coherent x-rays onto and off of the sample in a...

  3. Femtosecond X-ray protein nanocrystallography

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source (4). ... We mitigate the problem of radiation damage in crystallography by using pulses briefer ...

  4. SMB, X-ray Fluorescence Imaging

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fluorescence Imaging X-ray Fluorescence Imaging X-ray fluorescence imaging utilizes the high brightness of SPEAR3 and focused beam generated by the uses of K-B optics, capillaries and apertures to study spatial distribution of elements in biological samples such as brain tissue. The imaging beam lines have the unique capability of combining spatial mapping with chemical and structural information of various elements through XAS (edges and EXAFS). The three beam lines are equipped with

  5. Optimization efforts in gated x-ray intensifiers (Conference...

    Office of Scientific and Technical Information (OSTI)

    Optimization efforts in gated x-ray intensifiers Citation Details In-Document Search Title: Optimization efforts in gated x-ray intensifiers Gated x-ray intensifiers are often ...

  6. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  7. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  8. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  9. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  10. Category:X-Ray Diffraction (XRD) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the X-Ray Diffraction (XRD) page? For detailed information on...

  11. Direct synchrotron x-ray measurements of local strain fields...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Direct synchrotron x-ray measurements of local strain fields in ... September 3, 2016 Title: Direct synchrotron x-ray measurements of local strain fields in ...

  12. Generation of Coherent X-Ray Radiation through Modulation Compression...

    Office of Scientific and Technical Information (OSTI)

    Generation of Coherent X-Ray Radiation through Modulation Compression Citation Details In-Document Search Title: Generation of Coherent X-Ray Radiation through Modulation Compression ...

  13. Experimental X-ray characterization of Gekko XII laser propagation...

    Office of Scientific and Technical Information (OSTI)

    Experimental X-ray characterization of Gekko XII laser propagation through very low ... Citation Details In-Document Search Title: Experimental X-ray characterization of Gekko ...

  14. Experimental X-ray characterization of Gekko XII laser propagation...

    Office of Scientific and Technical Information (OSTI)

    Experimental X-ray characterization of Gekko XII laser propagation through very low ... Title: Experimental X-ray characterization of Gekko XII laser propagation through very low ...

  15. Integrated X-ray Reflectivity Measurements for Elliptically Curved...

    Office of Scientific and Technical Information (OSTI)

    Title: Integrated X-ray Reflectivity Measurements for Elliptically Curved PET Crystals The elliptically curved pentaerythritol (PET) crystals used in the Supersnout 2 X-ray ...

  16. Simultaneous cryo X-ray ptychographic and fluorescence microscopy...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae Prev Next Title: Simultaneous cryo X-ray ptychographic and fluorescence ...

  17. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    394 PPPL- 4394 A Spatially Resolving X-ray Crystal Spectrometer for Measurement of ... Fusion Links A spatially resolving x-ray crystal spectrometer for measurement of ...

  18. Development of a Spatially Resolving X-Ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a Spatially Resolving X-Ray Crystal Spectrometer For Measurement of ... Links Development of a spatially resolving x-ray crystal spectrometer for measurement of ...

  19. Development Of a Spatially Resolving X-ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Development Of a Spatially Resolving X-ray Crystal Spectrometer For ... Title: Development Of a Spatially Resolving X-ray Crystal Spectrometer For Measurement Of ...

  20. Integrated X-Ray Reflectivity Measurements for Elliptically Curved...

    Office of Scientific and Technical Information (OSTI)

    Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET Crystals Citation Details In-Document Search Title: Integrated X-Ray Reflectivity Measurements for ...

  1. X-ray transient absorption and picosecond IR spectroscopy of...

    Office of Scientific and Technical Information (OSTI)

    X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation Citation Details In-Document Search Title: X-ray transient ...

  2. X-ray Tube with Magnetic Electron Steering - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Increases the proportion of electrons emitted from the cathode that contribute to X-ray production in a compact geometry Provides increased X-ray generation efficiency by...

  3. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  4. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    DOE PAGES [OSTI]

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; Liu, Yijin; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more » Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less

  5. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    SciTech Connect

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; Liu, Yijin; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle. Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.

  6. Ultrafast X-Ray Coherent Control

    SciTech Connect

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  7. Polarized X-Rays Reveal Molecular Alignment in Printed Electronics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... These discoveries are valuable in guiding the molecular design of improved polymers for transistors and in gaining a better understanding of charge generation at complex 3D ...

  8. X-ray scientist Haidan Wen wins DOE Early Career Award | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory X-ray scientist Haidan Wen wins DOE Early Career Award By Louise Lerner * May 3, 2016 Tweet EmailPrint X-ray physicist Haidan Wen of the U.S. Department of Energy's (DOE) Argonne National Laboratory has received a DOE Early Career Award, a prestigious research grant for $2.5 million over five years. The effort, now in its seventh year, is designed to bolster the nation's scientific workforce by providing support to exceptional researchers during the crucial early career years,

  9. Butterfly Effects: X-rays reveal the photonic crystals in butterfly wings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that create color | Argonne National Laboratory Butterfly Effects: X-rays reveal the photonic crystals in butterfly wings that create color June 17, 2016 Tweet EmailPrint Researchers examined a small piece of a wing scale from the bright green Kaiser-i-Hind butterfly, Teinopalpus imperialis, and ran X-ray studies at the Advanced Photon Source to study the organization of the photonic crystals in the scale. At sizes too small for the human eye, the scales appear to be a flat patchwork map of

  10. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  11. PROPX: An X-ray Manipulation Program

    SciTech Connect

    Kyrala, G.A.

    1992-05-01

    An interactive micro-computer program that performs some manipulations on an input x-ray spectrum is introduced and described. The program is used to calculate the effect of absorption of filters, transmission through fibers, responsivity of photocathodes, responsivity of absorptive detectors, folding of responses, plotting of cross sections, and calculation, as a function of electron temperature, of the response due to a bremsstrahlung spectrum. Fluorescence from the targets is not included. Two different x-ray libraries are offered, one covers the x-ray range 30--10,000 eV with 288 energy points, and the other covers the energy range 10 eV to 1 MeV with 250 energy points per decade. 7 refs.

  12. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  13. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  14. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  15. Energy resolved X-ray grating interferometry

    SciTech Connect

    Thuering, T.; Stampanoni, M.; Barber, W. C.; Iwanczyk, J. S.; Seo, Y.; Alhassen, F.

    2013-05-13

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  16. Radiobiological studies using gamma and x rays.

    SciTech Connect

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  17. X-ray focal spot locating apparatus and method

    DOEpatents

    Gilbert, Hubert W.

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  18. Multiple wavelength X-ray monochromators

    DOEpatents

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  19. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  20. Multiple wavelength X-ray monochromators

    DOEpatents

    Steinmeyer, Peter A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  1. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  2. X-ray microscopy of human malaria

    SciTech Connect

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  3. X-ray spectroscopy of manganese clusters

    SciTech Connect

    Grush, M.M.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  4. Femtosecond X-ray protein nanocrystallography

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; White, Thomas A.; Aquila, Andrew; Schulz, Joachim; DePonte, Daniel P.; Martin, Andrew V.; Coppola, Nicola; Liang, Mengning; Caleman, Carl; Gumprecht, Lars; Stern, Stephan; Nass, Karol; Fromme, Petra; Hunter, Mark S.; Grotjohann, Ingo; Fromme, Raimund; Kirian, Richard A.; Weierstall, Uwe; Doak, R. Bruce; Schmidt, Kevin E.; Wang, Xiaoyu; Spence, John C. H.; Schlichting, Ilme; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Strüder, Lothar; Ullrich, Joachim; Krasniqi, Faton; Lomb, Lukas; Shoeman, Robert L.; Bott, Mario; Barends, Thomas R. M.; Kuhnel, Kai-Uwe; Schroter, Claus-Dieter; Hartmann, Robert; Holl, Peter; Reich, Christian; Soltau, Heike; Kimmel, Nils; Weidenspointner, Georg; Pietschner, Daniel; Hauser, Günter; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Andritschke, Robert; Boutet, Sébastien; Krzywinski, Jacek; Bostedt, Christoph; Messerschmidt, Marc; Bozek, John D.; Williams, Garth J.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Gorke, Hubert; Hau-Riege, Stefan P.; Frank, Matthias; Maia, Filipe R. N. C.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Holton, James M.; Marchesini, Stefano; Neutze, Richard; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Barthelmess, Miriam; Bajt, Saša; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  5. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  6. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    SciTech Connect

    Eckert, S. E-mail: martin.beye@helmholtz-berlin.de; Beye, M. E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M.; Ochmann, M.; Huse, N.; Ross, M.; Khalil, M.; Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L.; Föhlisch, A.

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  7. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  8. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  9. High efficiency replicated x-ray optics and fabrication method

    DOEpatents

    Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.

    2001-01-01

    Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.

  10. Rise time measurement for ultrafast X-ray pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  11. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  12. X-ray radiography for container inspection

    DOEpatents

    Katz, Jonathan I.; Morris, Christopher L.

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  13. Sample holder for X-ray diffractometry

    DOEpatents

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  14. X-ray microscopy of polymeric materials

    SciTech Connect

    Ade, H.; Smith, A.P.; Hsiao, B.; Cieslinski, R.; Mitchell, G.; Rightor, E.

    1995-09-01

    The authors describe how the scanning transmission x-ray microscope at Brookhaven National Laboratory can be used to investigate the bulk characteristics of polymeric materials with chemical sensitivity at a spatial resolution of about 50 nm. They present examples ranging from unoriented multiphase polymers to highly oriented Kevlar fibers. In the case of oriented samples, a dichroism technique is used to determine the orientation of specific chemical bonds. Extension of the technique to investigate surfaces of thick samples is discussed.

  15. Ultrashort x-ray backlighters and applications

    SciTech Connect

    Umstadter, D., University of Michigan

    1997-08-01

    Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant to high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.

  16. X-ray Study Reveals How Silver-to-Silicon Contacts Form for Solar Cells |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource X-ray Study Reveals How Silver-to-Silicon Contacts Form for Solar Cells Saturday, April 30, 2016 Solar energy must be one of the primary energy sources as society transitions away from predominantly fossil fuels based economy. Currently, the overwhelming majority (>90%) of the photovoltaic (PV) market consists of silicon solar cells. While relatively inexpensive, this technology depends predominately on a screen-printed silver electrical

  17. X-ray Science Division (XSD) | Advanced Photon Source

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    XSD Groups XSD Safety and Training XSD Strategic Plan XSD Visitor Program XSD Intranet X-ray Science Division (XSD) XSD enables world-class research using x-rays by developing...

  18. Enabling X-ray free electron laser crystallography for challenging...

    Office of Scientific and Technical Information (OSTI)

    Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals Citation Details In-Document Search Title: Enabling X-ray ...

  19. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary Abstract not provided. Authors: Fournier, K. B. 1 + ...

  20. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and ... Citation Details In-Document Search Title: A Spatially Resolving X-ray Crystal ...

  1. Crystallization and preliminary X-ray crystallographic studies...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystallographic studies of Drep-3, a DFF-related protein from Drosophila melanogaster Citation Details In-Document Search Title: Crystallization and preliminary X-ray ...

  2. X-ray photonic microsystems for the manipulation of synchrotron...

    Office of Scientific and Technical Information (OSTI)

    (MEMS) when combined with micro-optics have found a wide range of photonics applications. ... for X-rays, a new generation of photonics microsystems for X-ray wavelengths will ...

  3. Using Light to Control How X Rays Interact with Matter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications. ...

  4. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide,...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 Prev Next Title: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 ...

  5. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322...

  6. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  7. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  8. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear ...

  9. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary You are accessing a document from the Department of ...

  10. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  11. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  12. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    SciTech Connect

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-06-10

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F{sub 3-9} {sub keV}, is below and above a critical flux, F{sub X,} {sub crit}, which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F{sub 3-9} {sub keV} ≳ F{sub X,} {sub crit} have a steeper radio-X-ray correlation (F{sub X}∝F{sub R}{sup b} and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F{sub 3-9} {sub keV} either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  13. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  14. Holographic Methods in X-ray Crystallography

    Energy Science and Technology Software Center

    1995-07-28

    The holographic method makes use of partially modeled electron density and experimentally-measured structure factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density, and can incorporate a target electron density, making it similar to solvent flattening. Using both synthetic and experimental data,more » we assess the potential for applying the holographic method to macromolecular x-ray crystallography.« less

  15. Digital X-ray Pipe Inspector Software

    Energy Science and Technology Software Center

    2009-10-29

    The Digital X-ray Pipe Inspector software requires a digital x-ray image of a pipe as input to the program, such as the image in Attachment A Figure 1. The image may be in a variety of software formats such as bitmap, jpeg, tiff, DICOM or DICONDE. The software allows the user to interactively select a region of interest from the image for analysis. This software is used to analyze digital x-ray images of pipes tomore » evaluate loss of wall thickness. The software specifically provides tools to analyze the image in (a) the pipe walls, (b) between the pipe walls. Traditional software uses only the information at the pipe wall while this new software also evaluates the image between the pipewalls. This makes the inspection process faster, more thorough, more efficient, and reduces expensive reshots. Attachment A Figure 2 shows a region of interest (a green box) drawn by the user around an anomaly in the pipe wall. This area is automatically analyzed by the external pipe wall tool with the result shown in Attachment A Figure 3. The edges of the pipe wall are detected and highlighted in yellow and areas where the wall thickness in less the the minimum wall threshold are shown in red. These measurements are typically made manually in other software programs, which lead to errors and inconsistency because the location of the edges are estimated by the user. Attachment A Figure 4 shows a region of interest (a green box) drawn by the user between the pipe walls. As can be seen there are intensity anomalies that correspond to wall defects. However, this information is not used directly by other software programs. In order to fully investigate these anomalies, the pipe would be reinspected in a different orientation to attempt to obtain a view of the anomaly in the pipe wall rather than the interior of the pipe. The pipe may need to be x-rayed a number of times to obtain the correct orientation. This is very costly and time consuming. The new software can perform the

  16. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  17. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture

    SciTech Connect

    Bogdan Neculaes, V. Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-05-15

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.

  18. Workshop on Artefacts in X-Ray Tomography | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    optical and mechanical distortions. Together with image perturbations related to the mathematical inverse problems that are solved after acquiring the data, all of these...

  19. Registration of the rotation axis in X-ray tomography

    SciTech Connect

    Yang, Yimeng; Yang, Feifei; Hingerl, Ferdinand F.; Xiao, Xianghui; Liu, Yijin; Wu, Ziyu; Benson, Sally M.; Toney, Michael F.; Andrews, Joy C.; Pianetta, Piero A.

    2015-01-01

    There is high demand for efficient, robust and automated routines for tomographic data reduction, particularly for synchrotron data. Registration of the rotation axis in data processing is a critical step affecting the quality of the reconstruction and is not easily implemented with automation. Existing methods for calculating the center of rotation have been reviewed and an improved algorithm to register the rotation axis in tomographic data is presented. The performance of the proposed method is evaluated using synchrotron-based microtomography data on geological samples with and without artificial reduction of the signal-to-noise ratio. The proposed method improves the reconstruction quality by correcting both the tilting error and the translational offset of the rotation axis. The limitation of this promising method is also discussed.

  20. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  1. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  2. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  3. A rapid noninvasive characterization of CT x-ray sources

    SciTech Connect

    Randazzo, Matt; Tambasco, Mauro

    2015-07-15

    Purpose: The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. Methods: To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name “HVL Jig” was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). Results: At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. Conclusions: The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter

  4. RYLLA. [X-ray transport code

    SciTech Connect

    Hyde, R.A.

    1983-06-08

    This paper describes a computer code, RYLLA, which models the deposition of x-rays into thin metal slabs, and transports the resulting photoelectrons, finding the distribution of electrons leaving the slab from both the front and back surfaces. The slab must be homogeneous, but can contain a mixture of up to 5 different elements. Due to the short electron mean free path at low electron energies, RYLLA should be used only for studying thin slabs, roughly < 100 mg/cm/sup 2/ for low Z metals, and < 10 mg/cm/sup 2/ for high Z metals. X-ray energies should be in the range of 1 to 150 keV, as they are deposited only via photoionization and Compton scattering processes. Following photoionization, a hole exists in the electron cloud of the absorbing atom. This fills either by Auger or fluoresence, resulting in lower energy holes which are also filled. Fluoresence photons are transported and absorbed in the same manner as the primary photons, except that they are isotropically produced. Once all photons have been transported and absorbed, and all holes have been filled, a space- and energy-dependent electron source spectrum has been obtained. This is used in a discrete ordinate expansion solution of the 1-D transport equation, which gives the output electron spectra at the two slab surfaces. This paper discusses both the physics and coding of RYLLA. Examples of user input are given, as are some comparisons with other codes.

  5. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  6. Gated monochromatic x-ray imager

    SciTech Connect

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  7. Gray scale x-ray mask

    DOEpatents

    Morales, Alfredo M.; Gonzales, Marcela

    2006-03-07

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  8. Hard x-ray tomographic studies of the destruction of an energetic electron ring

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P.

    2013-05-15

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfven wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

  9. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  10. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  11. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  12. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  13. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  14. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  15. X-ray transmission movies of spontaneous dynamic events

    SciTech Connect

    Smilowitz, L.; Henson, B. F.; Holmes, M.; Novak, A.; Oschwald, D.; Dolgonos, P.; Qualls, B.

    2014-11-15

    We describe a new x-ray radiographic imaging system which allows for continuous x-ray transmission imaging of spontaneous dynamic events. We demonstrate this method on thermal explosions in three plastic bonded formulations of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. We describe the x-ray imaging system and triggering developed to enable the continuous imaging of a thermal explosion.

  16. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald; He, Fei; Lau, Yue-Ying

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  17. ANL CT Reconstruction Algorithm for Utilizing Digital X-ray

    Energy Science and Technology Software Center

    2004-05-01

    Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms when using a massively parallelized computer architecture such as a Beowuif cluster by parallelizing the X-ray CT reconstruction routine. The algorithm uses the concept of generation of an image from carefully obtained multiple 1-D or 2-D X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection.

  18. Magnetism studies using resonant, coherent, x-ray scattering | Stanford

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Synchrotron Radiation Lightsource Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron lasers there has been interest in using coherent x-rays to probe condensed matter systems. Resonant scattering with x-rays allow elemental specificity with magnetic contrast, and coherent light leads to speckle in the scattered pattern due to interference from waves exiting the sample.

  19. Femtosecond nanocrystallography using X-ray lasers for membrane protein

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    structure determination Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Authors: Fromme, P., and Spence, J. C. H. Title: Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Source: Current Opinion in Structural Biology Year: 2011 Volume: 21 Pages: 509-516 ABSTRACT: The invention of free electron X-ray lasers has opened a new era for membrane protein structure determination with the recent first

  20. X-ray interferometry with spherically bent crystals (abstract)

    SciTech Connect

    Koch, Jeffrey A.

    2001-01-01

    Recent progress in manufacturing high-quality spherically bent crystals allows highly monochromatic x-ray beams to be produced, and allows efficient x-ray imaging with {mu}m-scale resolution. This article explores some of the constraints for x-ray interferometry utilizing spherically bent crystals and laser-produced plasma sources, and discusses several shearing interferometer concepts that might be experimentally investigated.

  1. 14.05.14 RH Synchrotron X-ray - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High-Throughput Synchrotron X-Ray Experimentation for Combinatorial Phase Matching Gregoire, J. M. et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. Journal of Synchrotron Radiation 21, 1262-1268, DOI: 10.1107/s1600577514016488 (2014). Scientific Achievement Development of new synchrotron X-ray diffraction and fluorescence methods for rapid characterization of material libraries. Significance & impact First demonstration of prototype facility capable of

  2. Legacy of the X-Ray Laser Program

    SciTech Connect

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  3. Diagnostics Implemented on NIF - X-ray Diagnostics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-ray Diagnostics Diagnostic acronym Diangostic Port location Built and commisioned by Description of function Published references ARIANE Active Readout in a Neutron Environment (gated x-ray imager) 90-89 (but uses DIM) LLNL ARIANE is a gated x-ray detector measuring x-ray output at yields up to ~1E16 neutrons from TCC. ARIANE uses gated MCP technology adapted to operate in this neutron regime by moving the detector to a position just outside of the target chamber wall. ARIANE is typically used

  4. X-Ray Microscopy Capabilities | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial...

  5. X-Ray Fluorescence (XRF) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dispersive Spectroscopy (WDS) typically performed using a SEM or EPMA, and X-Ray Diffraction (XRD) analyses. Rock Lab Analysis Core Analysis Cuttings Analysis Isotopic...

  6. Biological Imaging by Soft X-Ray Diffraction Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    methods (see previous highlight, "Demonstration of Coherent X-Ray Diffraction Imaging"). Experimental diffraction data used as input to the difference map algorithm....

  7. Subject: Ames Blue Alert - X-ray Shutter Maintenance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ames Blue Alert - X-ray Shutter Maintenance Statement: This lesson learned involves an ... 4. Follow the manufacturers suggested maintenance schedule. 5. Follow the standard ...

  8. Absolute Time-Resolved X-Ray Laser Gain Measurement

    SciTech Connect

    Mocek, T.; Sebban, S.; Zeitoun, Ph.; Faivre, G.; Hallou, A.; Rousseau, J.P.; Maynard, G.; Cros, B.; Fajardo, M.; Kazamias, S.; Dubau, J.; Aubert, D.; Lacheze-Murel, G. de

    2005-10-21

    We present the first direct measurement of the time evolution of the gain of a soft x-ray laser amplifier. The measurement is based on the injection of a seed pulse, obtained by high-order harmonic generation, into an x-ray laser medium. Strong amplification occurs when the seed pulse is synchronized with the gain period. By precisely varying the delay between the x-ray laser plasma creation and the seed pulse injection, the actual temporal evolution of the soft x-ray amplifier gain is obtained with a subpicosecond resolution.

  9. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  10. X-ray image reconstruction from a diffraction pattern alone

    SciTech Connect

    Marchesini, Stefano

    2015-03-16

    X-ray diffraction pattern of a sample of 50 nm colloidal gold particles, recorded at a wavelength of 2.1 nm.

  11. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: In Situ Ambient Pressure X-ray ... Citation Details In-Document Search Title: In Situ Ambient ... Resource Relation: Journal Name: Scientific Reports; Journal ...

  12. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  13. Staff Research Physicist (X-Ray Spectroscopy) | Princeton Plasma...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of X-ray spectrometers for high energy density plasma at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL, Livermore, California). In...

  14. X-ray crystallographic analysis of adipocyte fatty acid binding...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified ... LIFE SCIENCES; ALDEHYDES; CARBOXYLIC ACIDS; CRYSTAL STRUCTURE; IN VIVO; INFLAMMATION; ...

  15. Stimulated X-Ray Emission for Spectroscopy | Stanford Synchrotron...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Room 108A Speaker: Clemens Weninger, Max Planck Institute for the Physics of Complex Systems Program Description The recent advance of x-ray free electron lasers (XFELs)...

  16. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  17. ALS X-Rays Shine a New Light on Catalysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity generated from the sun via solar panels is ... at the ALS using x-rays to characterize working fuel cells. ... iron and cobalt perovskite oxide electrocatalysts ...

  18. Portable X-Ray Diffraction (XRD) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    X-ray powder diffraction, which has traditionally been used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline...

  19. X-Ray Diffraction (XRD) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances...

  20. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  1. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  2. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sprays X-Ray Characterization of Diesel Sprays 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerpowell.pdf (1.19 MB) More Documents & ...

  3. X-Ray Diffraction Microscopy of Magnetic Structures (Journal...

    Office of Scientific and Technical Information (OSTI)

    Prev Next Title: X-Ray Diffraction Microscopy of Magnetic Structures Authors: Turner, Joshua J. ; Huang, Xiaojing ; Krupin, Oleg ; Seu, Keoki A. ; Parks, Daniel ; Kevan,...

  4. XRMS: X-Ray Spectroscopy of Magnetic Solids

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    XRMS: X-Ray Spectroscopy of Magnetic Solids October 22-23, 2011 SLAC National Accelerator Laboratory, Menlo Park, CA More information...

  5. High intensity x-ray source using liquid gallium target

    DOEpatents

    Smither, Robert K.; Knapp, Gordon S.; Westbrook, Edwin M.; Forster, George A.

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  6. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE PAGES [OSTI]

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  7. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  8. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  9. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  10. A paediatric X-ray exposure chart

    SciTech Connect

    Knight, Stephen P

    2014-09-15

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.

  11. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  12. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  13. X-ray Echo Spectroscopy | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-ray Echo Spectroscopy Authors Shvydko, Yuri Division XSD Publication Year 2016 Publication Type Article DOI 10.1103/PhysRevLett.116.080801 Supporting Data Citation Shvydko, Yuri. "X-ray Echo Spectroscopy." Physical Review Letters 116, no. 8 February 25, 2016 doi: 10.1103/PhysRevLett.116.0808

  14. Beam Physics in X-Ray Radiography Facilities

    SciTech Connect

    Chen, Y J; Caporaso, G J; Chambers, F W; Falabella, S; Goldin, F J; Guethlein, G; Lauer, E L; McCarrick, J F; Neurath, R; Richardson, R A; Sampayan, S; Weir, J T

    2002-12-02

    Performance of x-ray radiography facilities requires focusing the electron beams to sub-millimeter spots on the x-ray converters. Ions extracted from a converter by impact of a high intensity beam can partially neutralize the beam space charge and change the final focusing system. We will discuss these ion effects and mitigation.

  15. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  16. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  17. ZAP! The X-Ray Laser is Born

    SciTech Connect

    Ratner, Daniel

    2009-11-17

    SLAC has converted its giant particle accelerator into the world's first X-ray laser. By a billion fold the world's brightest X-ray source, the laser packs a trillion photons into pulses as short as a millionth of a billionth of a second. The ultra-bright, ultra-short X-ray pulses will drive a wide range of new experiments, as scientists strip electrons from atoms, photograph single molecules and make movies of chemical reactions. How has SLAC accomplished such feats of X-ray wizardry? Attend this public lecture to learn about the basics of an X-ray laser, the technologies at SLAC that make it possible, and the exciting new experiments now underway.

  18. Apparatus for generating x-ray holograms

    DOEpatents

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  19. Apparatus for generating x-ray holograms

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  20. The X-Ray Microcalorimeter Spectrometer for the International X-Ray Observatory

    SciTech Connect

    Kelley, R. L.; Bandler, S. R.; Kilbourne, C. A.; Porter, F. S.; Shirron, P.; Smith, S. J.; Whitehouse, P.; Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Fujimoto, R.; Sato, K.; Gottardi, L.; Hartog, R. den; Herder, J.-W. den; Hoevers, H.; Korte, P. de; Kuur, J. van der

    2009-12-16

    The International X-Ray Observatory (IXO) is under formulation by NASA, ESA and JAXA for deployment in 2022. IXO emerged over the last 18 months as the NASA Constellation-X and ESA/JAXA X-Ray Evolving Universe Spectrometer (XEUS) missions were combined. The driving performance requirements for the X-Ray Microcalorimeter Spectrometer (XMS) are a spectral resolution of 2.5 eV over the central 2'x2' in the 0.3-7.0 keV band, and 10 eV to the edge of the 5'x5' field of view (FOV). The XMS is now based on a microcalorimeter array of Transition-Edge Sensor (TES) thermometers with Au/Bi absorbers and a SQUID MUX readout. One of the concepts studied as part of the mission formulation has a core 40x40 array corresponding to a 2'x2' FOV with 3'' pixels surrounded by an outer, annular 52x52 array of 6'' pixels that extends the field of view to 5.4'x5.4' with better than 10 eV resolution. There are several options for implementing the readout and cooling system of the XMS under study in the US, Europe and Japan. The ADR system will have from two to five stages depending on the performance of the cryocooler. Mechanical coolers with sufficient cooling power at 4K are available now, and {approx}2K coolers are under development. In this paper we give an overview of the XMS instrument, and some of the tradeoffs to be addressed for this observatory instrument.

  1. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE PAGES [OSTI]

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  2. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    SciTech Connect

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.

  3. NEW X-RAY DETECTIONS OF WNL STARS

    SciTech Connect

    Skinner, Stephen L.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  4. Ultrafast laser pump/x-ray probe experiments

    SciTech Connect

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-04-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution.

  5. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  6. Multilayer structures and laboratory x-ray laser research: SPIE volume 688

    SciTech Connect

    Ceglio, N.M.; Dhez, P.

    1987-01-01

    This book's contents are divided into five sessions. Papers are presented under the following topics: X-ray lasers I; X-ray laser research at the Rutherford Appleton Laboratory; X-ray lasers II. X-ray laser cavity experiments; Multilayer structures I; Multilayer structures II; and X-ray imaging CCD.

  7. Characterization of X-ray generator beam profiles.

    SciTech Connect

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  8. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  9. Laser-Produced Coherent X-Ray Sources

    SciTech Connect

    Donald Umstadter

    2007-01-31

    We study the generation of x-rays from the interaction of relativistic electrons with ultra-intense laser pulse either directly or via laser generated ion channels. The laser pulse acts as the accelerator and wiggler leading to an all-optical synchrotron-like x-ray source. The mm sized accelerator and micron-sized wiggler leads to a compact source of high brightness, ultrafast x-rays with applications in relativistic nonlinear optics, ultrafast chemistry, biology, inner-shell electronic processes and phase transitions.

  10. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs7624 (Hungary) [Institute of Physics, University of Pecs, Pecs7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  11. Resonant x-ray magnetic scattering in holmium

    SciTech Connect

    Gibbs, D.

    1991-01-01

    We review the results of resonant x-ray magnetic scattering experiments on the rare earth metal holmium. When the incident incident x-ray energy is tuned near the L{sub III} absorption edge, large resonant enhancements of the magnetic scattering and resonant integer harmonics are observed. These results are analyzed within the theory of x-ray resonance exchange scattering assuming electric dipole (2p {yields} 5d) and quadrupole (2p {yields} 4f) transitions among atomic orbitals. 30 refs., 5 figs.

  12. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    SciTech Connect

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc; Fisher, John P.; Anastasio, Mark A.; Brey, Eric M.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  13. X-ray Microscopy and Imaging (XSD-XMI)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and (c) technical R&D in collaborations with other groups on nano-focusing x-ray optics, image contrast mechanisms, phase-retrieval methodology, detectors and data...

  14. Soft x-ray capabilities for investigating the strongly correlated...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Soft x-ray capabilities for investigating the strongly correlated electron materials Friday, September 14, 2012 - 1:00pm SLAC, Bldg. 137, Room 226 Jun-Sik Lee Seminar One of the...

  15. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: X-ray Adaptive Optics, San Diego, CA, United States, Aug 14 - Aug 14, 2012 ...

  16. High performance x-ray anti-scatter grid

    DOEpatents

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  17. X-Ray Diffraction Microscopy of Magnetic Structures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    This method can be used at any coherent light source, such as x-ray free-electron lasers, where ultra-short pulses would freeze-frame magnetic changes, offering the potential for ...

  18. Using Light to Control How X Rays Interact with Matter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    powerful visible-light lasers to render a nominally opaque material transparent to x rays. ... In a dramatic demonstration, researchers used powerful visible-light lasers to render a ...

  19. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure...

  20. X-ray mask and method for making

    DOEpatents

    Morales, Alfredo M.

    2004-10-26

    The present invention describes a method for fabricating an x-ray mask tool which is a contact lithographic mask which can provide an x-ray exposure dose which is adjustable from point-to-point. The tool is useful in the preparation of LIGA plating molds made from PMMA, or similar materials. In particular the tool is useful for providing an ability to apply a graded, or "stepped" x-ray exposure dose across a photosensitive substrate. By controlling the x-ray radiation dose from point-to-point, it is possible to control the development process for removing exposed portions of the substrate; adjusting it such that each of these portions develops at a more or less uniformly rate regardless of feature size or feature density distribution.

  1. High performance x-ray anti-scatter grid

    DOEpatents

    Logan, Clinton M.

    1995-01-01

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  2. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and angles of x rays scattered from the sample rather than transmitted through it). Shapiro et al. have now chimed in with the first lensless imaging of a sample as complex as a...

  4. Probing Spatial, Electronic Structures with X-ray Scattering...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that ...

  5. ALS X-Rays Shine a New Light on Catalysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    vice versa. At the ALS, researchers were able to directly observe redox processes in thin-film iron and cobalt perovskite oxide electrocatalysts using surface-sensitive, x-ray...

  6. Vitreous carbon mask substrate for X-ray lithography

    DOEpatents

    Aigeldinger, Georg; Skala, Dawn M.; Griffiths, Stewart K.; Talin, Albert Alec; Losey, Matthew W.; Yang, Chu-Yeu Peter

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  7. Radiological Safety Training for Radiation-Producing (X-RAY)...

    Energy Saver

    ... Some X-ray workers lost fingers, and some eventually contracted cancer. By the early ... This can cause cell injury, cell death, and may be the cause of radiation-induced cancer. ...

  8. Radiological Safety Training for Radiation-Producing (X-Ray)...

    Energy.gov [DOE] (indexed site)

    ... Some X-ray workers lost fingers, and some eventually contracted cancer. By the early ... This can cause cell injury, cell death, and may be the cause of radiation-induced cancer. ...

  9. Detecting rare, abnormally large grains by x-ray diffraction

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Detecting rare, abnormally large grains by x-ray diffraction large-grains The theme of the Nanomechanics and Nanometallurgy of Boundaries project at Sandia National Labs is to ...

  10. X-Ray Diffraction Microscopy of Magnetic Structures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Work performed on ALS Beamline 12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys....

  11. High order reflectivity of graphite (HOPG) crystals for x ray...

    Office of Scientific and Technical Information (OSTI)

    High order reflectivity of graphite (HOPG) crystals for x ray energies up to 22 keV Citation Details In-Document Search Title: High order reflectivity of graphite (HOPG) crystals ...

  12. Intensity Pattern of Diffuse X-Ray Scattering From Thermally...

    Office of Scientific and Technical Information (OSTI)

    Populated Phonons in Fcc d-Pu-Ga Citation Details In-Document Search Title: Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc d-Pu-Ga ...

  13. Simulation and visualization of attosecond stimulated x-ray Raman...

    Office of Scientific and Technical Information (OSTI)

    Simulation and visualization of attosecond stimulated x-ray Raman spectroscopy signals in trans-N-methylacetamide at the nitrogen and oxygen K-edges Citation Details In-Document ...

  14. Lensless Imaging of Magnetic Nanostructures by X-ray Spectro...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    J. Lning, W. F. Schlotter and J. Sthr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely...

  15. Using Light to Control How X Rays Interact with Matter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiation damage due to x-ray absorption is, for instance, an unwanted consequence of ... Laser optics provides a possible path for addressing this issue, as well as for developing ...

  16. Femtosecond Time-Delay X-ray Holography

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. ... Those experiments showed that no damage occurred during the 30 fs duration pulse. However, ...

  17. Self-terminating diffraction gates femtosecond X-ray nanocrystallograp...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    without the requirement for the pulse to terminate before the onset of sample damage. ... indicate that current X-ray free-electron laser technology5 should enable structural ...

  18. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many ?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  19. Dose optimization in cardiac x-ray imaging

    SciTech Connect

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  20. Self-cleaning rotating anode X-ray source

    DOEpatents

    Paulikas, Arvydas P.

    1989-01-01

    A self-cleaning rotating anode x-ray source comprising an evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof.

  1. Frontiers in imaging magnetism with polarized x-rays

    SciTech Connect

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  2. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2016-07-12

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  3. Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Techniques | Stanford Synchrotron Radiation Lightsource Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to

  4. X-ray chemical analyzer for field applications

    DOEpatents

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  5. Self-cleaning rotating anode x-ray source

    DOEpatents

    Paulikas, A.P.

    1987-06-02

    A self-cleaning rotating anode x-ray source comprising and evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof. 2 figs.

  6. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W. (Albuquerque, NM); Turman, Bobby N. (Albuquerque, NM); Kaye, Ronald J. (Albuquerque, NM); Schneider, Larry X. (Albuquerque, NM)

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  7. New focusing multilayer structures for X-ray plasma spectroscopy

    SciTech Connect

    Bibishkin, M S; Luchin, V I; Salashchenko, N N; Chernov, V V; Chkhalo, N I; Kazakov, E D; Shevelko, A P

    2008-02-28

    New focusing short-period multilayer structures are developed which opens up wide possibilities for X-ray and VUV spectroscopy. Multilayer structures are deposited on a flat surface of a mica crystal which is then bent to a small-radius cylinder. The use of this structure in a von Hamos spectrometer for X-ray laser plasma diagnostics is demonstrated. (interaction of laser radiation with matter. laser plasma)

  8. 15.05.29 RH Operando X-ray - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Direct Observation of a Semiconductor/Liquid Junction by Operando X-Ray Photoelectron Spectroscopy (XPS) Lichterman , M. F. et al. Direct Observation of the Energetics at a Semiconductor/Liquid Junction by Operando X-Ray Photoelectron Spectroscopy. Energy Environ. Sci ., 2015, DOI: 10.1039/C5EE01014D (2015). Scientific Achievement We demonstrated that the operando XPS technique, applied to a semiconductor/liquid junction, can directly measure the positions of the electronic states of the

  9. Hard x-ray Zernike Microscopy Reaches 30 nm Resolution

    SciTech Connect

    Chen, Y.T.; Chu, Y.; Chen, T-Y.; Yi, J.; Lee, W-K.; Wang, C-L.; Kempson, I. M.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30 nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  10. Hard x-ray Zernike microscopy reaches 30 nm resolution.

    SciTech Connect

    Chen, Y.; Chen, T.; Yi, J.; Chu, Y.; Lee, W.-K.; Wang, C.; Kempson, I.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30?nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  11. A New Scheme for Stigmatic X-ray Imaging with Large Magnification...

    Office of Scientific and Technical Information (OSTI)

    F; Beiersdorfer, P; Wang, E; Sanchez del Rio, M; Caughey, T A 70 PLASMA PHYSICS AND FUSION TECHNOLOGY X-ray Imaging X-ray Imaging This paper describes a new x-ray scheme for...

  12. Ultra Fast X-ray Streak Camera for TIM Based Platforms (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ultra Fast X-ray Streak Camera for TIM Based Platforms Citation Details In-Document Search Title: Ultra Fast X-ray Streak Camera for TIM Based Platforms Ultra fast x-ray streak ...

  13. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 Citation Details In-Document Search Title: Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 Recently, X-ray ...

  14. Evaluation of partial coherence correction in X-ray ptychography

    DOE PAGES [OSTI]

    Burdet, Nicolas; Shi, Xiaowen; Parks, Daniel; Clark, Jesse N.; Huang, Xiaojing; Kevan, Stephen D.; Robinson, Ian K.

    2015-02-23

    Coherent X-ray Diffraction Imaging (CDI) and X-ray ptychography both heavily rely on the high degree of spatial coherence of the X-ray illumination for sufficient experimental data quality for reconstruction convergence. Nevertheless, the majority of the available synchrotron undulator sources have a limited degree of partial coherence, leading to reduced data quality and a lower speckle contrast in the coherent diffraction patterns. It is still an open question whether experimentalists should compromise the coherence properties of an X-ray source in exchange for a higher flux density at a sample, especially when some materials of scientific interest are relatively weak scatterers. Amoreprevious study has suggested that in CDI, the best strategy for the study of strong phase objects is to maintain a high degree of coherence of the illuminating X-rays because of the broadening of solution space resulting from the strong phase structures. In this article, we demonstrate the first systematic analysis of the effectiveness of partial coherence correction in ptychography as a function of the coherence properties, degree of complexity of illumination (degree of phase diversity of the probe) and sample phase complexity. We have also performed analysis of how well ptychographic algorithms refine X-ray probe and complex coherence functions when those variables are unknown at the start of reconstructions, for noise-free simulated data, in the case of both real-valued and highly-complex objects.less

  15. X-rays from a microsecond X-pinch

    SciTech Connect

    Appartaim, R. K.

    2013-08-28

    The characteristics of x-rays emitted by X-pinches driven by discharging a current of ∼320 kA with a quarter period of 1 μs in crossed 25 μm wires have been investigated. The x-ray emissions are studied using filtered silicon photodiodes, diamond radiation detectors, and pinhole cameras. The results show that predominantly x-rays from the microsecond X-pinch tend to be emitted in two distinct sets of bursts. The first is predominantly “soft,” i.e., with photon energy hν < 5 keV, followed by a second set of bursts beginning up to 100 ns following the initial bursts, and usually consisting of higher photon energies. Our results show, however, that the x-ray emissions do not contain a significant component with hν > 10 keV as might be expected from electron beam activity within the plasma or from the X-pinch diode. High-resolution images obtained with the observed x-rays suggest a well-defined small source of soft x-rays that demonstrates the potential of the microsecond X-pinch.

  16. Lasers, extreme UV and soft X-ray

    DOE PAGES [OSTI]

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  17. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  18. Normal incidence X-ray mirror for chemical microanalysis

    DOEpatents

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  19. Spherical grating based x-ray Talbot interferometry

    SciTech Connect

    Cong, Wenxiang E-mail: xiy2@rpi.edu Xi, Yan E-mail: xiy2@rpi.edu Wang, Ge E-mail: xiy2@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  20. Towards three-dimensional and attosecond x-ray imaging at the...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    x-ray wavelength appears desirable to achieve maximal spatial resolution in x-ray diffraction experiments, longer wavelengths turns out to enable the identification of...

  1. Magnetic imaging with full-field soft x-ray microscopies (Journal...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE X-ray magnetic dichroism; Soft X-ray ...

  2. X-ray micro-diffraction studies of heterogeneous interfaces between...

    Office of Scientific and Technical Information (OSTI)

    Article: X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations Citation Details In-Document Search Title: X-ray ...

  3. X-ray absorption spectroscopy study of Gd[superscript 3+]-loaded...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: X-ray absorption spectroscopy study of Gdsuperscript 3+-loaded ultra-short carbon nanotubes Citation Details In-Document Search Title: X-ray absorption ...

  4. Application of Image And X-Ray Microtomography Technique To Quantify...

    Office of Scientific and Technical Information (OSTI)

    Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution ... Citation Details In-Document Search Title: Application of Image And X-Ray Microtomography ...

  5. The Soft X-ray Research instrument at the Linac Coherent Light...

    Office of Scientific and Technical Information (OSTI)

    The Soft X-ray Research instrument at the Linac Coherent Light Source Georgi L. ... Fremont, CA 94539, USA. Keywords: FEL; X-ray; ultrafast; spectroscopy; materials science. ...

  6. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    The affects of x-ray and nuclear-radiation background on the measurement uncertainties are ... Resource Relation: Related Information: Invention Disclosure. Title X-ray Imaging Crystal ...

  7. Development of a High Resolution X-Ray Imaging Crystal Spectrometer

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for ...

  8. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ...

  9. Proposed New Accelerator Design for Homeland Security X-Ray Applicatio...

    Office of Scientific and Technical Information (OSTI)

    Design for Homeland Security X-Ray Applications Citation Details In-Document Search Title: Proposed New Accelerator Design for Homeland Security X-Ray Applications In the ...

  10. Synchrotron X-ray Studies of Super-critical Carbon Dioxide /...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Synchrotron X-ray Studies of Super-critical Carbon Dioxide Reservoir Rock Interfaces Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic ...

  11. Achieving hard X-ray nanofocusing using a wedged multilayer Laue...

    Office of Scientific and Technical Information (OSTI)

    anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy....

  12. X-ray Induced Quasiparticles: New Window on UnconventionalSuperconduc...

    Office of Science (SC)

    X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Basic Energy ... X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Creation of ...

  13. High brightness--multiple beamlets source for patterned X-ray...

    Office of Scientific and Technical Information (OSTI)

    source for patterned X-ray production Citation Details In-Document Search Title: High brightness--multiple beamlets source for patterned X-ray production Techniques for ...

  14. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect

    Wang, Yong; Wang, Shoujun; Oliva, E; Lu, L; Berrill, Mark A; Yin, Liang; Nejdl, J; Luther, Brad; Proux, C; Le, T. T.; Dunn, James; Ros, D; Zeitoun, Philippe; Rocca, Jorge

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  15. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  16. Tokamak physics studies using x-ray diagnostic methods

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

  17. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect

    Naz, Yal; Petit, Vronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ?60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  18. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  19. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  20. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  1. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGES [OSTI]

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  2. X-Ray Diffraction Project Final Report, Fiscal Year 2006

    SciTech Connect

    Dane V. Morgan

    2006-10-01

    An x-ray diffraction diagnostic system was developed for determining real-time shock-driven lattice parameter shifts in single crystals at the gas gun at TA-IV at Sandia National Laboratories (SNL). The signal-to-noise ratio and resolution of the system were measured using imaging plates as the detector and by varying the slit width. This report includes tests of the x-ray diffraction system using a phosphor coupled to a charge-coupled device (CCD) camera by a coherent fiber-optic bundle. The system timing delay was measured with a newly installed transistor-transistor logic (TTL) bypass designed to reduce the x-ray delay time. The axial misalignment of the Bragg planes was determined with respect to the optical axis for a set of eight LiF [lithium fluoride] crystals provided by SNL to determine their suitability for gas gun experiments.

  3. X-ray radiography with highly charged ions

    DOEpatents

    Marrs, Roscoe E. (Livermore, CA)

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  4. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  5. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  6. Magnetic x-ray dichroism in ultrathin epitaxial films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of high resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.

  7. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  8. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  9. Progress in Development of Kharkov X-Ray Generator Nestor

    SciTech Connect

    Androsov, V.; Bulyak, V.; Dovbnya, A.; Drebot, I.; Gladkikh, P.; Grevtsev, V.; Grigorev, Yu.; Gvozd, A.; Ivashchenko, V.; Karnaukhov, I.; Kovalyova, N.; Kozin, V.; Lapshin, V.; Lyashchenko, V.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Neklyudov, I.; Peev, F.; Rezaev, A.; Shcherbakov, A.; /Kharkov, KIPT /SLAC, SSRL /Eindhoven, Tech. U. /Lebedev Inst. /Kurdyumova Inst. Metalophysics

    2005-09-14

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43-225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The status of power supply system and control system is described. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  10. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure

  11. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  12. Cooled window for X-rays or charged particles

    DOEpatents

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  13. Cooled window for X-rays or charged particles

    DOEpatents

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  14. RESONANT INELASTIC X-RAY SCATTERING FROM TRANSITION METAL OXIDES.

    SciTech Connect

    HILL,J.P.

    1999-08-23

    Recent developments in hard x-ray resonant inelastic x-ray scattering as a probe of strongly correlated systems are reviewed. Particular attention is paid to studies of Nd{sub 2}CuO{sub 4}. A charge transfer excitation is observed when the incident photon energy is tuned in the vicinity of the copper K-edge. It is shown that the presence of resonant enhancements is controlled by the polarization dependence of the excitation process and by the overlap between a given intermediate state and the particular excitation being studied. This latter observation has shed light on the non-local effects present in certain intermediate states.

  15. Cooling for a rotating anode X-ray tube

    DOEpatents

    Smither, Robert K. (Hinsdale, IL)

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  16. Breakthroughs in photonics 2013: X-ray optics

    DOE PAGES [OSTI]

    Soufli, Regina

    2014-04-01

    Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.

  17. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    SciTech Connect

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; Liang, Mengning; Boutet, Sbastien; Coe, Jesse; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Fromme, Petra; Cherezov, Vadim; Hogue, Brenda G.

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  18. Bragg x-ray survey spectrometer for ITER

    SciTech Connect

    Varshney, S. K.; Jakhar, S.; Barnsley, R.; O'Mullane, M. G.

    2012-10-15

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  19. X-ray Diffraction from Membrane Protein Nanocrystals

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-ray Diffraction from Membrane Protein Nanocrystals Authors: Hunter, M.S., DePonte, D.P., Shapiro, D.A., Kirian, R.A., Wang, X., Starodub, D., Marchesini, S., Weierstall, U., Doak, R.B., Spence, J.C.H., and Fromme, P. Title: X-ray Diffraction from Membrane Protein Nanocrystals Source: Biophysical Journal Year: 2011 Volume: 100 Pages: 198-206 ABSTRACT: Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane

  20. Beam By Design - Customized X-rays from Free Electron

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    By Design - Customized X-rays from Free Electron Lasers Erik Hemsing SLAC November 2, 2016 4:00 p.m. - Wilson Hall, One West Modern x-ray free election lasers (XFELs) use relativistic electron beams to produce intense pulses of radiation for probing nature down to Angstrom wavelengths and femtosecond timescales. While the peak brightness of the pulses from XFELs exceeds conventional synchrotron sources by up to 10 orders of magnitude, a critical aspect of emerging XFELs is the capability to

  1. Inelastic x-ray scattering in heterostructures: electronic excitations in

    Office of Scientific and Technical Information (OSTI)

    LaAlO 3 /SrTiO 3 (Journal Article) | SciTech Connect Journal Article: Inelastic x-ray scattering in heterostructures: electronic excitations in LaAlO 3 /SrTiO 3 Citation Details In-Document Search Title: Inelastic x-ray scattering in heterostructures: electronic excitations in LaAlO 3 /SrTiO 3 Authors: Ruotsalainen, Kari O. ; Sahle, Christoph J. ; Ritschel, Tobias ; Geck, Jochen ; Hosoda, Masayuki ; Bell, Christopher ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Fister, Tim T. ; Gordon, Robert A.

  2. Inelastic x-ray scattering in heterostructures: electronic excitations in

    Office of Scientific and Technical Information (OSTI)

    LaAlO 3 /SrTiO 3 (Journal Article) | SciTech Connect Inelastic x-ray scattering in heterostructures: electronic excitations in LaAlO 3 /SrTiO 3 Citation Details In-Document Search Title: Inelastic x-ray scattering in heterostructures: electronic excitations in LaAlO 3 /SrTiO 3 Authors: Ruotsalainen, Kari O. ; Sahle, Christoph J. ; Ritschel, Tobias ; Geck, Jochen ; Hosoda, Masayuki ; Bell, Christopher ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Fister, Tim T. ; Gordon, Robert A. ; Hämäläinen,

  3. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGES [OSTI]

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; et al

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  4. Deep-etch x-ray lithography at the ALS: First results

    SciTech Connect

    Malek, C.K.; Jackson, K.H.; Brennen, R.A.

    1997-04-01

    The fabrication of high-aspect-ratio and three-dimensional (3D) microstructures is of increasing interest in a multitude of applications in fields such as micromechanics, optics, and interconnect technology. Techniques and processes that enable lithography in thick materials differ from the planar technologies used in standard integrated circuit processing. Deep x-ray lithography permits extremely precise and deep proximity printing of a given pattern from a mask into a very thick resist. It requires a source of hard, intense, and well collimated x-ray radiation, as is provided by a synchrotron radiation source. The thick resist microstructures, so produced can be used as templates from which ultrahigh precision parts with high aspect ratios can be mass-produced out of a large variety of materials (metals, plastics, ceramics). This whole series of techniques and processes has been historically referred to as {open_quotes}LIGA,{close_quotes} from the German acronym for lithography, electroforming (Galvanoformung), and plastic molding (Abformung), the first development of the basic LIGA process having been performed at the Nuclear Research Center at Karlsruhe in Germany.

  5. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    DOE PAGES [OSTI]

    Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; et al

    2016-05-23

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.« less

  6. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  7. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGES [OSTI]

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  8. X-ray characterization of solid small molecule organic materials

    DOEpatents

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  9. Design aspects of X-ray grating interferometry

    SciTech Connect

    Weitkamp, Timm; Zanette, Irene; Pfeiffer, Franz; David, Christian

    2012-07-31

    Considerations are made for the design of X-ray grating interferometers in general and, in particular, for the case of a parallel beam with a high degree of spatial coherence. We specifically discuss the properties of different types of gratings and the interdependence of instrument parameters and performance characteristics.

  10. X-ray divergent-beam (Kossel) technique: A review

    SciTech Connect

    Lider, V. V.

    2011-03-15

    The development of the X-ray divergent-beam (Kossel) technique over the last 50 years is traced. The fundamentals of this technique and ways to implement it experimentally are considered, and its potential for studying the real structure of crystals is analyzed in detail.

  11. Measuring x-ray spectra of flash radiographic sources

    SciTech Connect

    Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr Lvovich; Webb, Timothy J

    2015-11-02

    The x-ray spectra of flash radiographic sources is difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.

  12. Data needs for X-ray astronomy satellites

    SciTech Connect

    Kallman, T.

    2013-07-11

    I review the current status of atomic data for X-ray astronomy satellites. This includes some of the astrophysical issues which can be addressed, current modeling and analysis techniques, computational tools, the limitations imposed by currently available atomic data, and the validity of standard assumptions. I also discuss the future: challenges associated with future missions and goals for atomic data collection.

  13. Crystal defect studies using x-ray diffuse scattering

    SciTech Connect

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  14. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  15. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  16. Scanning Transmission X-ray Microscope Control Program

    Energy Science and Technology Software Center

    2005-08-05

    User Interface and control software or C++ to run on specifically equipped computer running Windows Operating Systems. Program performs specific control functions required to operate Interferometer controlled scanning transmission X-ray microscopes at ALS beamlines 532 and 11.0.2. Graphical user interface facilitates control, display images and spectra.

  17. Operational properties of fluctuation X-ray scattering data

    DOE PAGES [OSTI]

    Malmerberg, Erik; Kerfeld, Cheryl A.; Zwart, Petrus H.

    2015-03-20

    X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point.more » In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.« less

  18. X-rays at Solid-Liquid Surfaces

    SciTech Connect

    Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

    2007-05-02

    Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

  19. Enhanced Electron Efficiency in an X-ray Diode

    SciTech Connect

    K. Sun, L. MacNeil

    2010-05-20

    The goal for this research is to optimize the XRD structure and usage configurations and increase the efficiency of the XRD. This research was successful in optimizing the XRD structure and usage configurations, thus creating a high efficiency XRD. Best efficiency occurs when there is an angle between the photocathode and incident X-rays.

  20. Compact X-ray Light Source Workshop Report

    SciTech Connect

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  1. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2016-07-12

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  2. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES [OSTI]

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; Mitchell, Stephen E.; Hock, Margaret C.

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  3. X-ray ablation measurements and modeling for ICF applications

    SciTech Connect

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths ({approx} micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  4. Multi-contrast 3D X-ray imaging of porous and composite materials

    SciTech Connect

    Sarapata, Adrian; Herzen, Julia; Ruiz-Yaniz, Maite; Zanette, Irene; Rack, Alexander; Pfeiffer, Franz

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  5. Template-based CTA to x-ray angio rigid registration of coronary arteries in frequency domain with automatic x-ray segmentation

    SciTech Connect

    Aksoy, Timur; Unal, Gozde; Demirci, Stefanie; Navab, Nassir; Degertekin, Muzaffer

    2013-10-15

    Purpose: A key challenge for image guided coronary interventions is accurate and absolutely robust image registration bringing together preinterventional information extracted from a three-dimensional (3D) patient scan and live interventional image information. In this paper, the authors present a novel scheme for 3D to two-dimensional (2D) rigid registration of coronary arteries extracted from preoperative image scan (3D) and a single segmented intraoperative x-ray angio frame in frequency and spatial domains for real-time angiography interventions by C-arm fluoroscopy.Methods: Most existing rigid registration approaches require a close initialization due to the abundance of local minima and high complexity of search algorithms. The authors' method eliminates this requirement by transforming the projections into translation-invariant Fourier domain for estimating the 3D pose. For 3D rotation recovery, template Digitally Reconstructed Radiographs (DRR) as candidate poses of 3D vessels of segmented computed tomography angiography are produced by rotating the camera (image intensifier) around the DICOM angle values with a specific range as in C-arm setup. The authors have compared the 3D poses of template DRRs with the segmented x-ray after equalizing the scales in three domains, namely, Fourier magnitude, Fourier phase, and Fourier polar. The best rotation pose candidate was chosen by one of the highest similarity measures returned by the methods in these domains. It has been noted in literature that frequency domain methods are robust against noise and occlusion which was also validated by the authors' results. 3D translation of the volume was then recovered by distance-map based BFGS optimization well suited to convex structure of the authors' objective function without local minima due to distance maps. A novel automatic x-ray vessel segmentation was also performed in this study.Results: Final results were evaluated in 2D projection space for patient data; and

  6. Automatic tool alignment in a backscatter X-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  7. Automatic tool alignment in a backscatter x-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  8. A mirror for lab-based quasi-monochromatic parallel x-rays

    SciTech Connect

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb

    2014-09-15

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  9. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  10. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  11. Proton-induced x-ray fluorescence CT imaging

    SciTech Connect

    Bazalova-Carter, Magdalena Xing, Lei; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Shirato, Hiroki; Umegaki, Kikuo; Matsuo, Yuto; Fahrig, Rebecca

    2015-02-15

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm{sup 2} CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R{sup 2} > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a

  12. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  13. A compact x-ray free electron laser

    SciTech Connect

    Barletta, W.A. . Center for Advanced Accelerators Physics Lawrence Livermore National Lab., CA ); Atac, M.; Cline, D.B.; Kolonko, J. . Center for Advanced Accelerators Physics); Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G. . Rocketdyne Div.); Gallardo

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x-rays in the range from 2--10 nm by passage through short period, high field strength wigglers as are being designed at Rocketdyne Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitablee for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  14. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE PAGES [OSTI]

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  15. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  16. X-ray mask and method for providing same

    DOEpatents

    Morales, Alfredo M.; Skala, Dawn M.

    2002-01-01

    The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

  17. Background-reducing X-ray multilayer mirror

    DOEpatents

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  18. Towards phasing using high X-ray intensity

    SciTech Connect

    Galli, Lorenzo; Son, Sang-Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  19. X-ray calibration of Kodak Direct Exposure film

    SciTech Connect

    Brown, D.B.; Burkhalter, P.G.; Rockett, P.D.; Bird, C.R.; Hailey, C.J.; Sullivan, D.

    1985-08-15

    Kodak Direct Exposure film (DEF) has replaced Kodak No-Screen film for use in x-ray diffraction analysis and in autoradiography. DEF is a double-emulsion film which has been found to have improved radio-graphic characteristics over No-Screen. A set of H-D curves has been generated for DEF at five photon energies: 0.930, 1.49, 1.74, 4.51/4.93, and 6.93 keV. The KMSF x-ray calibration facility was utilized to study the absolute sensitivity of this film over its full dynamic range. Physical examination of the film was followed by theoretical modeling, which adequately reproduced the measured curves.

  20. Towards phasing using high X-ray intensity

    SciTech Connect

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  1. X-ray mask and method for providing same

    DOEpatents

    Morales, Alfredo M. (Pleasanton, CA); Skala, Dawn M. (Fremont, CA)

    2004-09-28

    The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

  2. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  3. Chandra X-ray Observations of WZ Sge in Superoutburst

    SciTech Connect

    Wheatley, P J; Mauche, C W

    2004-10-13

    We present seven separate Chandra observations of the 2001 superoutburst of WZ Sge. The high-energy outburst was dominated by intense EUV emission lines, which we interpret as boundary layer emission scattered into our line of sight in an accretion disc wind. The direct boundary layer emission was hidden from view, presumably by the accretion disc. The optical outburst orbital hump was detected in the EUV, but the common superhump was not, indicating a geometric mechanism in the former and a dissipative mechanism in the latter. X-rays detected during outburst were not consistent with boundary layer emission and we argue that there must be a second source of X-rays in dwarf novae in outburst.

  4. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    SciTech Connect

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; Doeppner, T.; Meyerhofer, D. D.; Murphy, C. D.; Sangster, T. C.; Vorberger, J.

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  5. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, Charles J.; Ziock, Klaus-Peter

    1992-01-01

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

  6. Towards phasing using high X-ray intensity

    DOE PAGES [OSTI]

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  7. Type I X-ray burst simulation code

    Energy Science and Technology Software Center

    2007-07-01

    dAGILE is an astrophysical code that simulates accretion of matter onto a neutron star and the subsequent x-ray burst. It is a one-dimensional time-dependent spherically symmetric code with generalized nuclear reaction networks, diffusive radiation/conduction, realistic boundary conditions, and general relativistic hydrodynamics. The code is described in more detail in Astrophysical Journal 650(2006)332 and Astrophysical Journal Supplements 174(2008)261.

  8. Sensitivity in X-ray grating interferometry on compact systems

    SciTech Connect

    Thuering, Thomas; Modregger, Peter; Haemmerle, Stefan; Weiss, Stephan; Nueesch, Joachim; Stampanoni, Marco

    2012-07-31

    The optimization of compact X-ray grating interferometry systems is crucial for the progress of this technique in industrial devices. Here, an analytical formulation for the sensitivity of the phase contrast image acquisition is derived using previous results from noise analyses. Furthermore, experimental measurements of the sensitivity for different configurations are compared, providing further insight into the dependence on polychromatic radiation. Finally, strategies for the geometrical optimization are given.

  9. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  10. THz Pump and X-Ray Probe Development at LCLS

    SciTech Connect

    Fisher, Alan S; Durr, Hermann; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; Reis, David; Frisch, Josef; Loos, Henrik; Petree, Mark; Daranciang, Dan; Fuchs, Matthias; Ghimire, Shambhu; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  11. The hidden X-ray breaks in afterglow light curves

    SciTech Connect

    Curran, P. A.; Wijers, R. A. M. J.; Horst, A. J. van der; Starling, R. L. C.

    2008-05-22

    Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles.Here we address the issue of X-ray breaks which are possibly 'hidden' and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 and GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis.

  12. X-ray Thomson Scattering from Dense Plasmas

    SciTech Connect

    Glenzer, S

    2007-05-14

    Advances in the development of laser-produced x-ray sources have enabled a new class of high-energy density physics experiments. Powerful narrow-bandwidth x rays penetrate through short-lived hot dense states of matter and probe the physical properties with spectrally resolved x-ray scattering. Experiments from isochorically-heated plasmas with electron densities in the range of solid density and above have been demonstrated allowing for the first time exploration of the microscopic properties of dense matter regime close to strongly-coupled and Fermi degenerate conditions. Backscatter measurements have accessed the non-collective Compton scattering regime, which provides accurate diagnostic information on the temperature, density and ionization states. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions, quantum effects and detailed balance. In this talk, we will discuss new results important for applications of this technique for novel experiments in a wide range of research areas such as inertial confinement fusion, radiation-hydrodynamics, material science, and laboratory astrophysics.

  13. Automatic classification of time-variable X-ray sources

    SciTech Connect

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  14. Application of x-ray imaging to oil refinery processes

    SciTech Connect

    Gamblin, B.R.; Newton, D.; Smith, G.B.

    1996-12-31

    X-ray imaging is a non-intrusive method of visualizing the flow patterns of rapidly changing multiphase systems and is based on the variation in the absorbance of X-rays by the different phases. BP has applied the X-ray technique to a variety of problems encountered within the oil and petrochemical industries in which two or three phases are present e.g. Fluid Catalytic Cracking (riser, stripper, regenerator) and three phase systems such as slurry bubble column reactors. In general, to obtain the maximum productivity from these units it is essential to optimize the contacting between a catalyst and a process fluid or fluids. This work reports on laboratory experimental work in which full scale refinery components were visualized in order to characterize the existing designs. Modified designs were then tested and evaluated before implementation on the refinery unit. Economic assessments of some of the benefits which can be realized in an oil refinery as a result of such design improvements are also presented. 3 refs., 1 fig.

  15. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  16. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES [OSTI]

    Maiti, A.; Small, W.; Lewicki, J.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  17. Note: Electrochemical cell for in operando X-ray diffraction measurements on a conventional X-ray diffractometer

    SciTech Connect

    Hartung, Steffen; Bucher, Nicolas; Bucher, Ramona; Srinivasan, Madhavi

    2015-08-15

    Electrochemical in operando X-ray diffraction (XRD) is a powerful method to analyze structural changes of energy storage materials while inserting/de-inserting charge carriers, such as Li- or Na-ions, into/from a host structure. The design of an XRD in operando cell is presented, which enables the use of thin (6 μm) aluminum foil as X-ray window as a non-toxic alternative to conventional beryllium windows. Owing to the reduced thickness, diffraction patterns and their changes during cycling can be observed with excellent quality, which was demonstrated for two cathode materials for sodium-ion batteries in a half-cell set-up, P2-Na{sub 0.7}MnO{sub 2} and Na{sub 2.55}V{sub 6}O{sub 16} ⋅ 0.6H{sub 2}O.

  18. Predictions of x-ray scattering spectra in warm dense matter...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Report: Predictions of x-ray scattering spectra in warm dense matter Citation Details In-Document Search Title: Predictions of x-ray scattering spectra in warm dense ...

  19. The adaptive x-ray optics project at the Lawrence Livermore National...

    Office of Scientific and Technical Information (OSTI)

    The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence ...

  20. Nonlinear increase of X-ray intensities from thin foils irradiated...

    Office of Scientific and Technical Information (OSTI)

    increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser Citation Details In-Document Search Title: Nonlinear increase of X-ray intensities...

  1. XOP 2.1 - a new version of the x-ray optics software toolkit...

    Office of Scientific and Technical Information (OSTI)

    XOP 2.1 - a new version of the x-ray optics software toolkit. Citation Details In-Document Search Title: XOP 2.1 - a new version of the x-ray optics software toolkit. No abstract ...

  2. Magnetic imaging with full-field soft X-ray microscopies (Journal...

    Office of Scientific and Technical Information (OSTI)

    X-ray microscopies Citation Details In-Document Search Title: Magnetic imaging with full-field soft X-ray microscopies You are accessing a document from the Department of ...

  3. An Eulerian CFD Model and X-ray Radiography for Coupled Nozzle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Model and X-ray Radiography for Coupled Nozzle Flow and Spray in Internal Combustion Engines Title An Eulerian CFD Model and X-ray Radiography for Coupled Nozzle Flow and Spray in...

  4. The X-Ray Source Application (XRSA) Test Cassette for Radiation...

    Office of Scientific and Technical Information (OSTI)

    The X-Ray Source Application (XRSA) Test Cassette for Radiation Exposures at the OMEGA Laser Citation Details In-Document Search Title: The X-Ray Source Application (XRSA) Test ...

  5. A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON...

    Office of Scientific and Technical Information (OSTI)

    X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE GALACTIC NUCLEUS ABUNDANCE Citation Details In-Document Search Title: A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. ...

  6. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals Citation Details In-Document Search Title: Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals...

  7. Bright X-ray Stainless Steel K-shell Source Development at the...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Bright X-ray Stainless Steel K-shell Source Development at the National Ignition Facility Citation Details In-Document Search Title: Bright X-ray Stainless Steel K...

  8. In meso in situ serial X-ray crystallography of soluble and membrane...

    Office of Scientific and Technical Information (OSTI)

    In meso in situ serial X-ray crystallography of soluble and membrane proteins Citation Details In-Document Search Title: In meso in situ serial X-ray crystallography of soluble and ...

  9. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser ...

  10. X-ray tests of a two-dimensional stigmatic imaging scheme with...

    Office of Scientific and Technical Information (OSTI)

    X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications Citation Details In-Document Search Title: X-ray tests of a two-dimensional stigmatic imaging ...

  11. A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma Experiments on OMEGA Citation Details In-Document Search Title: A Versatile High-Resolution X-Ray ...

  12. Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX...

    Office of Scientific and Technical Information (OSTI)

    Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX Citation Details In-Document Search Title: Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX A variety ...

  13. Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation...

    Office of Scientific and Technical Information (OSTI)

    Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the Anisotropy Citation Details In-Document Search Title: Probing the Cosmic X-ray and MeV Gamma-ray ...

  14. Ultra Fast X-ray Streak Camera for TIM Based Platforms (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ultra Fast X-ray Streak Camera for TIM Based Platforms Citation Details In-Document Search Title: Ultra Fast X-ray Streak Camera for TIM Based Platforms You are accessing a ...

  15. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    Conference: Time-resolved x-ray diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction ...

  16. X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes for the National Ignition Facility Citation Details In-Document Search Title: X-Ray Line-Shape Diagnostics and ...

  17. Toward TW-Level, Hard X-Ray Pulses at LCLS (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Toward TW-Level, Hard X-Ray Pulses at LCLS Citation Details In-Document Search Title: Toward TW-Level, Hard X-Ray Pulses at LCLS You are accessing a document from the Department ...

  18. High-pressure X-ray diffraction, Raman, and computational studies...

    Office of Scientific and Technical Information (OSTI)

    High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: ... Citation Details In-Document Search Title: High-pressure X-ray diffraction, Raman, and ...

  19. X-ray line polarization spectroscopy of Li-like satellite line...

    Office of Scientific and Technical Information (OSTI)

    X-ray line polarization spectroscopy of Li-like satellite line spectra Citation Details In-Document Search Title: X-ray line polarization spectroscopy of Li-like satellite line ...

  20. A high-resolution imaging x-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas Citation Details In-Document Search Title: A high-resolution imaging x-ray crystal spectrometer ...