National Library of Energy BETA

Sample records for working gas volume

  1. Working Gas Capacity

    U.S. Energy Information Administration (EIA) (indexed site)

    5 2015 Working Gas Capacity (billion cubic feet) ≥ 100 75 to 99 U.S. Energy Information Administration | Natural Gas Annual Figure 15. Locations of existing natural gas underground storage fields in the United States, 2015 50 to 74 Source: Energy Information Administration (EIA), Form EIA-191, "Monthly Underground Gas Storage Report." Reservoir Type Sites = Depleted Field 329 = Salt Cav

  2. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  3. Managing natural gas volume analysis

    SciTech Connect (OSTI)

    Parker, J. ); Treat, R. ); Bergen, H. )

    1994-07-01

    In late 1992, Natural Gas Pipeline Co. of America and BMP Energy Systems began the joint development of a system for the automated verification and statistical correction of gas volume data captured at meter locations by flow computers. NGPL required a single system that would provide functionality for both chart processing and automated EFM data validation and correction. The pipeline company was looking for a vendor that would help develop a system to handle EFM data. The NGAS 4[trademark] system implemented at NGPL made the bridge from monthly to daily gas volume processing. The automated and rapid validation of flow data within the NGAS 4 system minimizes human intervention for validation and correction. NGPL has moved from reliance on paper chart processing to the EFM capability required in the evolving US gas market.

  4. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak

  5. Multiple volume compressor for hot gas engine

    SciTech Connect (OSTI)

    Stotts, R.E.

    1986-07-22

    An apparatus is described for pumping down a hot gas engine that includes: a multiple volume, single stage compressor having a plurality of axially aligned compression chambers, each chamber having a different capacity, piston means reciprocally mounted in each chamber, the piston means being joined together whereby they move in unison within the chambers, drive means connected to at least one of the piston means for reciprocating the piston means within the chambers, intake means for connecting an inlet in each chamber to the engine for pumping working gas from the engine, discharge means for connecting an outlet in each chamber to a gas supply reservoir for storing the gas, a bypass loop associated with each chamber for connecting the inlet and the outlet of each chamber in communication, and a positionable means in each loop selectively opening and closing the bypass loop whereby the capacity of the compressor can be changed.

  6. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  7. Virginia Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators Virginia Underground Natural ...

  8. New Mexico Natural Gas in Underground Storage (Working Gas) ...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New Mexico Underground Natural ...

  9. New York Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New York Underground Natural ...

  10. Pennsylvania Natural Gas Underground Storage Volume (Million...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  11. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  12. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the

  13. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph.

  14. North American Natural Gas Markets: Selected technical studies. Volume 3

    SciTech Connect (OSTI)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Washington Natural Gas in Underground Storage (Working Gas) ...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882...

  16. Kentucky Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 ...

  17. Indiana Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 ...

  18. Colorado Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 ...

  19. Illinois Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149 ...

  20. Iowa Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 ...

  1. Kansas Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 ...

  2. Oregon Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 ...

  3. Pennsylvania Natural Gas in Underground Storage (Working Gas...

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  4. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 ...

  5. New York Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) New York Natural Gas Underground Storage ... Underground Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  6. New Mexico Natural Gas Underground Storage Volume (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (Million Cubic Feet) New Mexico Natural Gas Underground Storage ... Underground Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  7. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate

  8. Natural gas annual 1992: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  9. Natural gas annual 1992. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies.

  10. North American Natural Gas Markets. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  12. East Region Natural Gas Underground Storage Volume (Million Cubic...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    East Region Natural Gas Underground Storage Volume (Million Cubic Feet) East Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  13. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Energy.gov (indexed) [DOE]

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  14. Working Gas Volume Change from Year Ago

    U.S. Energy Information Administration (EIA) (indexed site)

    West Virginia 5,456 18,992 25,179 21,224 26,766 34,404 1990-2016 Wyoming 173 1,291 872 -218 -200 1,161 1990-2016 AGA Producing Region 1994-2014 AGA Eastern Consuming Region ...

  15. Texas Natural Gas Underground Storage Volume (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Texas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 456,385 ...

  16. Tennessee Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 ...

  17. Mississippi Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  18. Kansas Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Kansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 245,145 ...

  19. Washington Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Washington Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  20. Iowa Natural Gas Underground Storage Volume (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Iowa Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 228,019 ...

  1. Virginia Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 ...

  2. Montana Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  3. Ohio Natural Gas Underground Storage Volume (Million Cubic Feet...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Ohio Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 439,384 ...

  4. Illinois Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Illinois Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  5. Arkansas Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  6. Oregon Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Oregon Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,996 ...

  7. California Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) California Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  8. Kentucky Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  9. Wyoming Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808 ...

  10. Louisiana Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  11. Alabama Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 ...

  12. Nebraska Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  13. Michigan Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Michigan Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  14. Colorado Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Colorado Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  15. Minnesota Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  16. Maryland Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  17. Oklahoma Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  18. Missouri Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Missouri Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  19. Indiana Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Indiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 96,943 ...

  20. Utah Natural Gas Underground Storage Volume (Million Cubic Feet...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 ...

  1. ,"Midwest Region Natural Gas Underground Storage Volume (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at ...dnavnghistn5030852m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  2. ,"U.S. Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Data 1","U.S. Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","22016" ...dnavnghistn5030us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  3. ,"East Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at ...dnavnghistn5030832m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  4. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    U.S. Energy Information Administration (EIA) (indexed site)

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  5. ,"Alabama Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  6. ,"Minnesota Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  7. ,"Missouri Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  8. ,"Utah Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  9. ,"Virginia Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  10. ,"Indiana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  11. ,"Maryland Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030md2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  12. ,"Iowa Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  13. ,"Louisiana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  14. ,"Colorado Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  15. ,"Washington Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030wa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  16. ,"Kansas Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  17. ,"Illinois Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030il2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  18. ,"Kentucky Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  19. ,"Michigan Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  20. ,"Mississippi Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  1. ,"Wyoming Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  2. ,"Arkansas Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  3. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Pacific Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 544,417 522,182 529,030 543,901 581,848 610,748 619,005 624,692 636,405 645,077 626,113 529,510 2014 456,688 373,776 363,397 402,887 459,189 507,932 533,461 561,487 576,755 604,676 598,236 581,556 2015 535,012 532,186 534,713 552,592 584,491 595,030 603,251 606,862 617,976 638,832 628,206 579,071 2016 535,527 521,897

  4. Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290

  5. Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616

  6. Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201

  7. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930

  8. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000

  9. California Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612

  10. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097

  11. Mountain Region Natural Gas in Underground Storage (Working Gas...

    Gasoline and Diesel Fuel Update

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 137,378 102,507 83,983 82,058 98,717 121,623 140,461 157,716 174,610 187,375...

  12. Pacific Region Natural Gas in Underground Storage (Working Gas...

    U.S. Energy Information Administration (EIA) (indexed site)

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 197,953 115,235 104,941 144,268 200,453 249,196 274,725 302,752 318,020...

  13. Coal liquefaction and gas conversion: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  14. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report

    levels. These are estimated from volume data provided by a sample of operators that report on Form EIA-912, "Weekly Underground Natural Gas Storage Report." The EIA first...

  15. Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303 1,142 2,247 2,979 5,536 6,593 8,693 11,353 13,788 15,025 12,900 11,909 1991 8,772 5,481 3,859 4,780 6,264 7,917 9,321 11,555 13,665 14,339 14,626 14,529 1992 9,672 4,736 2,075 1,178 4,484 7,172 8,993 11,380 13,446 14,695 15,205 13,098 1993 9,826 5,478 3,563 3,068 5,261 6,437 7,528 9,247 11,746 14,426 14,826

  16. Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235

  17. Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884

  18. Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073

  19. Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914

  20. Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 8,956 13,913 13,743 14,328 15,277 16,187 17,087 18,569 20,455 22,149 21,244 19,819 2014 20,043 19,668 20,566 20,447 20,705 22,252 22,508 23,254 23,820 23,714 24,272 24,997 2015 24,811 24,626 24,391 24,208 24,279 24,357 24,528 24,635 24,543 24,595 24,461 24,319 2016 24,295 24,790 25,241 26,682 28,639 30,108 32,084 34,081

  1. Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676 8,646 8,608 8,644 8,745 9,217 9,744 10,226 10,505 10,532 10,454 10,227 1991 8,296 7,930 7,609 7,414 7,545 7,884 8,371 8,385 8,385 8,385 7,756 7,093 1992 6,440 5,922 5,569 5,501 5,499 6,009 6,861 7,525 7,959 7,883 7,656 7,166 1993 6,541 5,752 5,314 5,204 4,696 4,969 4,969 4,969 4,969 4,897 4,421 3,711 1994 2,383

  2. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122

  3. First AEO2015 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) (indexed site)

    TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group ... to High Resource case * World oil price outlooks based on ...

  4. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815

  5. CRC handbook of laser science and technology. Volume 3. Gas lasers

    SciTech Connect (OSTI)

    Weber, M.J.

    1982-01-01

    This book describes the fundamentals of gas lasers. It provides information and data on neutral gas lasers, ionized gas lasers, and molecular gas lasers. Concluding this volume is an extensive table of all gas laser wavelengths.

  6. Constant volume gas cell optical phase-shifter

    DOE Patents [OSTI]

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  7. Alternative Fuels Data Center: How Do Natural Gas Cars Work?

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Cars Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Cars Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Natural ...

  8. Weekly Working Gas in Underground Storage

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas in Underground Storage (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 10/07/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History Total Lower 48 States 3,759 3,836 3,909 3,963 4,017 4,047 2010-2016 East 913 925 939 940 946 944 2010-2016 Midwest 1,071 1,093 1,115 1,130 1,148 1,155 2010-2016 Mountain 240 243 245 249 253 257 2010-2016 Pacific 323 325 326 326 327 328

  9. Philadelphia Gas Works: Who’s on First?

    Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

  10. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5

  11. Gas in developing countries: Volume 2, Country studies

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This volume contains detailed case-studies of the history and prospects for natural gas utilization in eight developing countries: Argentina, Egypt, Malaysia, Nigeria, Pakistan, Tanzania, Thailand and Tunisia. All of these countries have been visited by members of the research team, with the exception of Pakistan. Running through all the case-histories is the importance of defining a clear market for the gas. In some cases this can prove remarkably difficult, especially when the oil price is relatively low. In other cases a market does exist, but is very limited in relation to the size of available reserves. The other theme which recurs over and over again is the importance of the relationship between the government and its agencies, and the foreign oil companies which are involved in exploration and development of gas reserves. These two issues are addressed in detail in each case study. But it is also the case that each country highlights specific aspects of the gas story.

  12. ,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas...

    U.S. Energy Information Administration (EIA) (indexed site)

    Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  13. Two-tank working gas storage system for heat engine

    SciTech Connect (OSTI)

    Hindes, C.J.

    1987-04-07

    This patent describes a working gas control system for use in connection with a hot gas engine including a power controller for admitting the working gas to the engine to increase engine power and for releasing working gas from the engine to decrease engine power. A compressor compresses the working gas released from the engine. Storage vessels are included for storing the working gas received from the compressor and supplying the gas through the power controller to the engine. Each vessel stores the working gas at a different pressure. A valve means selectively couples the vessels to the controller and selectively couples the vessels to the compressor so that the selected vessel can supply the working gas to the engine or receive the gas from the compressor. Respective gas lines connect the valve means with the compressor and the power controller. The improvement described here is wherein the vessels include a high pressure vessel and a low pressure vessel. The valve means includes a low-pressure solenoid two-position valve on the line to the low pressure vessel, a first portion permitting flow of the gas in either direction, a second position permitting flow only in the direction towards the engine; and a high-pressure solenoid two-position valve on the line to the high-pressure vessel. One position permits flow of the gas in either direction; the other position permits flow only in the direction towards the high-pressure vessel.

  14. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  15. Two-tank working gas storage system for heat engine

    SciTech Connect (OSTI)

    Hindes, C.J.

    1987-04-07

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated. 6 figs.

  16. Virginia Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 ...

  17. Washington Natural Gas in Underground Storage - Change in Working...

    Gasoline and Diesel Fuel Update

    Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991...

  18. Washington Natural Gas in Underground Storage - Change in Working...

    Gasoline and Diesel Fuel Update

    Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  19. Philadelphia Gas Works- Residential and Commercial Construction Incentives Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Philadelphia Gas Works (PGW) provides incentives to developers, home builders and building owners that build new facilities or undergo gut-rehab projects to conserve gas beyond the level consumed...

  20. New York Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4...

  1. Oklahoma Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 ...

  2. Oklahoma Natural Gas in Underground Storage - Change in Working...

    Annual Energy Outlook

    Million Cubic Feet) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  3. New Mexico Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  4. New Mexico Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  5. Minnesota Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 ...

  6. Minnesota Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  7. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  8. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  9. Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  10. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Feet) Base Gas) (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 272,719 272,719 272,719 272,719 272,719 272,719 258,434 258,434 258,434 258,434 258,434 258,736 2014 258,736 258,541 258,456 258,619 258,736 258,736 258,736 258,736 258,736 259,036 259,036 259,036 2015 259,036 259,036 259,036 259,036 259,036 259,036 259,036 259,036 259,036 259,331 259,331 259,331 2016 259,331 259,331

  11. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  12. Pacific Region Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (Million Cubic Feet) Pacific Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 544,417 522,182 529,030 543,901 581,848 610,748 619,005 624,692 636,405 645,077 626,113 529,510 2014 456,688 373,776 363,397 402,887 459,189 507,932 533,461 561,487 576,755 604,676 598,236 581,556 2015 535,012 532,186 534,713 552,592 584,491 595,030 603,251 606,862 617,976 638,832 628,206 579,071 2016 535,527 521,897

  13. South Central Region Natural Gas Underground Storage Volume (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Underground Storage Volume (Million Cubic Feet) South Central Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,000,884 1,827,846 1,714,360 1,762,847 1,899,091 1,989,604 2,061,520 2,097,649 2,191,153 2,281,316 2,224,775 2,044,114 2014 1,719,230 1,501,862 1,386,639 1,476,237 1,609,924 1,719,264 1,809,652 1,864,897 1,989,374 2,150,785 2,144,710 2,104,699 2015 1,889,028 1,633,827 1,629,734 1,804,453 1,977,770

  14. Mountain Region Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (Million Cubic Feet) Mountain Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 596,220 571,001 555,330 550,911 560,785 573,145 586,231 605,322 623,662 636,750 632,304 595,336 2014 558,453 523,122 503,750 502,309 519,323 541,977 562,863 580,527 598,135 610,882 598,284 573,155 2015 552,277 537,185 537,004 539,816 558,882 578,300 595,505 610,816 626,924 638,383 633,170 611,934 2016 582,516 569,950

  15. AGA Eastern Consuming Region Natural Gas Underground Storage Volume

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 3,605,263 3,281,694 3,164,033 3,297,696 3,531,074 3,786,195 4,043,225 4,279,875 4,477,279 4,588,167 4,522,088 4,292,649 1995 3,905,789 3,514,201 3,360,765 3,369,823 3,576,559 3,812,014 3,968,751 4,159,006 4,362,855 4,483,271 4,279,539 3,905,710 1996 3,483,209 3,190,123 2,987,233

  16. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule (111.99 KB) More Documents & Publications Focus Series: Philadelphia Energyworks: In the City of Brotherly Love, Sharing Know-How Leads to Sustainability The Better Buildings Neighborhood View -- December 2013 Collaborating With Utilities on Residential Energy Efficiency

  17. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Together to Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support

  18. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  19. CASCADER: An M-chain gas-phase radionuclide transport and fate model. Volume 4 -- Users guide to CASCADR9

    SciTech Connect (OSTI)

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9.

  20. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion

  1. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  2. ,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  3. Mountain Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 27.80 31.30 31.00 27.50 21.90 18.00 - = No Data

  4. Pacific Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 -3.60 -2.20 -6.10 -6.00 -8.10 -9.60 - = No Data Reported;

  5. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) (indexed site)

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  6. Second AEO2016 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) (indexed site)

    April 8, 2016 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: MINDI FARBER-DEANDA ACTING TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2016 Oil and Gas Working Group Meeting Summary (presented on February 29, 2016) Attendees: Joseph Benneche (EIA) Katie Dyl (EIA) Terry Yen (EIA) Danya Murali (EIA) Laura Singer (EIA) Faouzi Aloulou (EIA) Dana

  7. AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) (indexed site)

    9 August 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2014 Oil and Gas Working Group Meeting Summary (presented on July 25, 2013) Attendees: Anas Alhajji (NGP)* Samuel Andrus (IHS)* Emil Attanasi (USGS)* Andre Barbe (Rice University) David J. Barden (self) Joseph

  8. Lower 48 States Natural Gas Working Underground Storage (Billion...

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value...

  9. Philadelphia Gas Works- Commercial and Industrial Efficient Building Grant Program

    Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Efficient Building Grant Program is part of PGW's EnergySense program. This program offers incentives up to $75,000 for multifamily,...

  10. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report

    Differences Between Monthly and Weekly Working Gas In Storage Latest update: November 3, 2016 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from January

  11. [Inspection of gas cylinders in storage at TA-54, Area L]. Volume 2, Final report

    SciTech Connect (OSTI)

    1994-06-23

    ERC sampled, analyzed, and rcontainerized when necessary gas cylinders containing various chemicals in storage at LANL TA-54 Area L. This report summarizes the operation. This is Volume 2 of five volumes.

  12. First AEO2017 Oil and Gas Working Group Meeting

    U.S. Energy Information Administration (EIA) (indexed site)

    DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE. September 12, 2016 MEMORANDUM FOR: Ian Mead Assistant Administrator for Energy Analysis FROM: John Staub Team Lead, Exploration and Production Analysis Mindi Farber-DeAnda Acting Team Lead, Natural Gas Markets Subject: First AEO2017 Oil and Gas Working Group Meeting held on August 25, 2016 The meeting began with an overview of the areas under focus for the AEO2017 in the Oil and Gas Supply Module (OGSM) and the Natural Gas Transmission and

  13. Gas in developing countries: Volume 1, Main report

    SciTech Connect (OSTI)

    Not Available

    1987-12-17

    When gas is discovered in a developing country, and there is either insufficient to justify an Liquified Natural Gas (LNG) export project, or a surplus over-and-above LNG requirements, what are the problems that hinder its development for the internal market in that country. Are there positive steps that can be taken to facilitate such development. The major focus of this study is therefore on the problems that arise in negotiating and implementing agreements between companies and governments. The asymmetries and differences between the behavior and perceptions of the two groups impinge on the conduct of negotiations and the nature of agreements reached between the parties. Objectives are examined for each group as well as the procedures they follow and the constraints under which they operate. The effect of differences on exploration contracts, on pricing and on fiscal regimes are examined and practical ways in which the different objectives of governments and companies can be reconciled to their mutual advantage are suggested. The report is divided into two parts. This Volume, Part One of the report, contains a synthesis of our views on the issues raised by research, and the main conclusions.

  14. South Central Region Natural Gas Working Underground Storage Capacity

    Gasoline and Diesel Fuel Update

    * * 17 9 1967-2015 Propane-Air 0 0 17 9 1980-201

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1973 1974 1975 View History Net Withdrawals -6 -27 46 1973-1975 Injections 48 80 70 1973-1975 Withdrawals 42 53 116 1973-197

    in Working Gas from Same Month Previous Year (Percent)

    Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous

  15. No-migration variance petition: Draft. Volume 4, Appendices DIF, GAS, GCR (Volume 1)

    SciTech Connect (OSTI)

    1995-05-31

    The Department of Energy is responsible for the disposition of transuranic (TRU) waste generated by national defense-related activities. Approximately 2.6 million cubic feet of the se waste have been generated and are stored at various facilities across the country. The Waste Isolation Pilot Plant (WIPP), was sited and constructed to meet stringent disposal requirements. In order to permanently dispose of TRU waste, the DOE has elected to petition the US EPA for a variance from the Land Disposal Restrictions of RCRA. This document fulfills the reporting requirements for the petition. This report is volume 4 of the petition which presents details about the transport characteristics across drum filter vents and polymer bags; gas generation reactions and rates during long-term WIPP operation; and geological characterization of the WIPP site.

  16. AGA Eastern Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243

  17. AGA Western Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116

  18. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect (OSTI)

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  19. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  20. CASCADER: An m-chain gas-phase radionuclide transport and fate model. Volume 2, User`s manual for CASCADR8

    SciTech Connect (OSTI)

    Cawlfield, D.E.; Been, K.B.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. This is volume two to the CASCADER series, titled CASCADR8. It embodies the concepts presented in volume one of this series. To properly understand how the CASCADR8 model works, the reader should read volume one first. This volume presents the input and output file structure for CASCADR8, and a set of realistic scenarios for buried sources of radon gas.

  1. ,"West Virginia Natural Gas Underground Storage Volume (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  2. Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 268 01/08 257 01/15 246 01/22 235 01/29 221 2010-Feb 02/05 211 02/12 197 02/19 193 02/26 184 2010-Mar 03/05 182 03/12 176 03/19 179 03/26 185 2010-Apr 04/02 189 04/09 193 04/16 199 04/23 209 04/30 220 2010-May

  3. Salt South Central Region Natural Gas Working Underground Storage (Billion

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 159 01/08 123 01/15 91 01/22 102 01/29 108 2010-Feb 02/05 95 02/12 85 02/19 71 02/26 70 2010-Mar 03/05 63 03/12 71 03/19 80 03/26 89 2010-Apr 04/02 101 04/09 112 04/16 120

  4. South Central Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 985 01/08 886 01/15 793 01/22 789 01/29 779 2010-Feb 02/05 719 02/12 658 02/19 592 02/26 566 2010-Mar 03/05 535 03/12 548 03/19 567 03/26 581 2010-Apr 04/02 612 04/09 649 04/16 679 04/23 710

  5. Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 900 01/08 820 01/15 750 01/22 710 01/29 661 2010-Feb 02/05 604 02/12 552 02/19 502 02/26 464 2010-Mar 03/05 433 03/12 422 03/19 419 03/26 410 2010-Apr 04/02 410 04/09 429 04/16 444 04/23 462 04/30 480 2010-May

  6. Mountain Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 195 01/08 185 01/15 176 01/22 171 01/29 164 2010-Feb 02/05 157 02/12 148 02/19 141 02/26 133 2010-Mar 03/05 129 03/12 127 03/19 126 03/26 126 2010-Apr 04/02 126 04/09 126 04/16 129 04/23 134 04/30 138

  7. Nonsalt South Central Region Natural Gas Working Underground Storage

    U.S. Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 826 01/08 763 01/15 702 01/22 687 01/29 671 2010-Feb 02/05 624 02/12 573 02/19 521 02/26 496 2010-Mar 03/05 472 03/12 477 03/19 487 03/26 492 2010-Apr 04/02

  8. Producing Region Natural Gas Working Underground Storage (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22

  9. Illinois Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 299,439 299,439 299,439 300,439 299,439 299,439 302,439 302,439 302,439 302,439 302,439 302,962 2013 302,962 302,962 302,962 302,962 302,962 302,962 303,312 303,312 303,312 303,312 303,312 303,312 2014 303,312 303,312 303,312 303,312 303,312 303,312 303,312 303,312 303,312 304,312

  10. Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 91,114 91,113 91,113 90,846 90,580 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2013 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2014 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2015 90,313 90,313 90,313 90,313

  11. Coal liquefaction and gas conversion: Proceedings. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Lower 48 Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Lower 48 Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0.1 2.3 -4.6 -11.1 -9.6 -7.7 -6.4 -4.2 -2.6 -1.2 2.0 11.3 2012 36.5 53.4 73.5 61.5 46.1 34.6 25.3 19.5 15.0 11.5 7.7 8.2 2013 -7.6 -14.8 -31.0 -29.5 -21.9 -15.7 -10.0 -6.2 -4.0 -3.4 -5.7 -15.9

  13. Volume II, Environment, Safety, and Health Special Review of Work Practices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 | Department of Energy Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 At the request of the Secretary of Energy, the U.S. Department of

  14. California Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    5,554 5,163 5,051 5,470 5,805 5,146 1978-2015 From Gas Wells 71 259 640 413 410 454 1978-2015 From Oil Wells 5,483 4,904 4,411 5,057 5,395 4,692 1978-2015 Repressuring 435 403 NA NA NA NA 1992-2015 Vented and Flared 0 0 NA NA NA NA 2003-2015 Nonhydrocarbon Gases Removed 0 0 NA NA NA NA 2003-2015 Marketed Production 5,120 4,760 5,051 5,470 5,805 5,146 1992-2015 Dry Production 5,051 5,952 5,139

    22,503 2,171 0 23 0 0 2007-2015 Import Price 4.76 3.57 -- 3.59 -- -- 2007-2015 Export Volume 43,278

  15. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  16. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    SciTech Connect (OSTI)

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

  17. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) (indexed site)

    and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis February 29, 2016| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview * Natural gas markets - Natural gas supply and delivered prices - Natural gas consumption - Pipeline imports/exports - LNG exports *

  18. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    SciTech Connect (OSTI)

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  19. Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 321,678 314,918 308,955 347,344 357,995 370,534 383,549 377,753 378,495 396,071 402,265 365,396 1991 279,362 271,469 271,401 289,226 303,895 323,545 327,350 329,102 344,201 347,984 331,821 316,648 1992 284,571 270,262 264,884 267,778 286,318 298,901 320,885 338,320 341,156 345,459 324,873 288,098 1993 165,226 149,367 141,472

  20. Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467 79,364 70,578 73,582 96,173 115,927 135,350 154,385 171,798 182,858 181,763 157,536 1991 120,038 97,180 81,448 90,583 109,886 132,661 147,602 165,801 180,656 188,600 175,740 148,929 1992 105,511 70,674 36,141 38,587 63,604 95,665 121,378 143,128 158,570 169,712 164,562 132,576 1993 93,544 49,298 14,332 16,953 43,536 75,177

  1. Lower 48 States Total Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,690,271 2,085,441 1,706,102 1,840,859

  2. Midwest Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Midwest Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -63,664 -102,296 -211,632 -235,463 -214,379 -166,660 -123,165 -100,408 -77,814 -65,919 -81,637 -181,602 2014 -243,074 -255,871 -209,941 -189,692 -156,914 -124,375 -83,035 -47,387 -33,755

  3. Mountain Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Mountain Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 12,014 6,758 -9,151 -16,380 -18,695 -22,708 -24,019 -20,476 -26,134 -26,039 -24,866 -34,136 2014 -32,861 -42,199 -45,053 -42,581 -35,771 -26,278 -21,654 -24,388 -26,437 -26,669 -34,817

  4. Pacific Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -6,428 -10,631 -3,098 -14,687 -15,553 -18,935 -5,226 21,508 26,741 10,233 -13,013 -77,412 2014 -73,745 -134,228 -151,370 -126,913 -108,676 -88,833 -85,846 -63,506 -59,951 -41,003 -28,478

  5. East Region Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) East Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 605,224 419,836 303,741 362,496 488,370 606,051 678,197 759,995 854,238 910,008 851,251 688,716 2014 451,335 271,801 167,715 213,475 349,739 474,624 580,937 689,328 805,733 892,328 831,398 742,486 2015 533,537 338,726 239,291 308,664 451,773 572,878 657,591 762,518 856,308 915,094 910,246 852,876 2016 629,905

  6. East Region Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) East Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -59,770 -101,657 -207,266 -202,799 -176,110 -131,033 -101,059 -80,666 -54,688 -45,655 -40,177 -105,210 2014 -153,889 -148,035 -136,025 -149,021 -138,631 -131,428 -97,260 -70,667 -48,505 -17,679

  7. U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,531,928 1,053,730 915,878 1,122,203 1,495,691 1,839,607 2,209,565 2,542,126 2,841,503 3,002,400 2,904,404 2,536,416 1995 1,972,316 1,477,193 1,273,311 1,313,255 1,594,809 1,935,579 2,225,266 2,431,646 2,721,269 2,908,317 2,644,778 2,081,635 1996 1,403,589 973,002 720,077 796,966 1,098,675 1,457,649 1,826,743

  8. U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000

  9. Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work?

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Cars Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Google Bookmark Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Delicious Rank Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Digg Find More places

  10. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842

  11. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  12. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) (indexed site)

    4: Oil and Gas Working Group AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 25, 2013 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Introduction/Background Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 25, 2013 DO NOT QUOTE OR CITE as results are

  13. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOEs National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETLs 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  14. Rapid gas hydrate formation processes: Will they work?

    DOE PAGES-Beta [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  15. ,"AGA Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2014" ,"Release Date:","10/31/2016" ,"Next Release

  16. ,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2014" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  17. ,"AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Western Consuming Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2014" ,"Release Date:","10/31/2016" ,"Next Release

  18. ,"Mountain Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mountain Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel

  19. ,"Pacific Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pacific Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel

  20. ,"South Central Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Central Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  1. U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 47,455 36,864 41,979 49,646 58,678 56,813 63,882 64,460 70,583 72,447 73,277 69,641 1995 72,965 64,476 58,510 66,025 73,529 78,437 76,026 63,026 80,949 87,711 83,704 71,638 1996 58,880 47,581 37,918 56,995 62,439 71,476 70,906 75,927 84,962 88,061 87,029 85,140 1997 57,054 49,490 55,865 58,039 73,265 79,811 65,589 66,536

  2. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133

  3. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -46,336 -12,518 16,386 37,537 39,350 53,475 75,155 66,399 51,354 56,272 78,572 103,458 1991 37,515 32,421 33,438 66,819 45,861 39,009 20,626 -3,335 -36,217 -14,370 -61,674 -66,823 1992 -28,428 -40,296 -82,921 -108,640 -91,199 -80,473 -64,200 -42,476

  4. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437

  5. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3,131 -3,119 -3,529 -3,306 -1,630 -1,017 244 -266 -458 -1,071 -1,072 157 1992 482 508 1,184 660 -762 -277 2,037 3,311 3,592 3,600 1,413 350 1993 -1,474 -2,431 -3,424 -3,068 -1,752 -1,058 -532 116 439 -49,834 -49,012 -47,951 1994 -47,626 -48,394 -47,215

  6. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 11,087 5,754 6,824 6,119 5,428 6,065 5,421 4,685 3,365 1,565 3,028 5,179 2015 4,768 4,958 3,824 3,761 3,574 2,105 2,020 1,381 723 881 189 -679 2016 -515 164 850 2,474 4,360 5,751 7,556 9,446 - = No Data Reported; -- =

  7. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 123.8 41.4 49.7 42.7 35.5 37.5 31.7 25.2 16.5 7.1 14.3 26.1 2015 23.8 25.2 18.6 18.4 17.3 9.5 9.0 5.9 3.0 3.7 0.8 -2.7 2016 -2.1 0.7 3.5 10.2 18.0 23.6 30.8 38.3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -925 -513 -486 -557 -855 -813 -453 -125 98 112 82 297 1991 -381 -716 -999 -1,230 -1,199 -1,333 -1,373 -1,840 -2,119 -2,147 -2,697 -3,134 1992 -1,855 -2,008 -2,040 -1,913 -2,046 -1,875 -1,510 -861 -426 -502 -100 73 1993 100 -170 -256 -297 -803 -1,041

  9. California Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600

  10. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967

  11. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 184 1999 197 189 118 122 119 262 235 178 169 171 125 68 2000 34 -17 51 68 53 -90 -197 -274 -377 -433 -377 -236 2001 -68 48 38 32 153 266 298 360 407 420 65 -22 2002 24 85 159 228 100 -16 -60 -126 -176

  12. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525

  13. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  14. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520

  15. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993

  16. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160

  17. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854

  18. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418

  19. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  20. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000

  1. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  2. Kakira Sugar Works (1985) Limited, Kakira biomass cogeneration: Volume 3 -- Final report. Export trade information

    SciTech Connect (OSTI)

    1998-06-01

    This report, conducted by John H. Payne, Inc., was funded by the US Trade and Development Agency. The study concerns the technical and financial feasibility of the Kakira Sugar Works Limited to increase its capacity to 5,000 TCD and to sell its surplus power to the Uganda Electricity Board. This is Volume 3, the Purchase Energy Contract between Kakira Cogeneration Company Limited and Uganda Electricity Board.

  3. ,"California Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030ca2m.xls"

  4. ,"Montana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030mt2m.xls"

  5. ,"Nebraska Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030ne2m.xls"

  6. ,"New Mexico Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030nm2m.xls"

  7. ,"New York Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030ny2m.xls"

  8. ,"Ohio Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030oh2m.xls"

  9. ,"Oklahoma Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030ok2m.xls"

  10. ,"Pennsylvania Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030pa2m.xls"

  11. ,"Tennessee Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030tn2m.xls"

  12. ,"Texas Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5030tx2m.xls"

  13. Midwest Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    May 2003 1 Despite a national economic slowdown and a 4.9 percent drop in overall U.S. natural gas consumption in 2001, 1 more than 3,571 miles of pipeline and a record 12.8 billion cubic feet per day (Bcf/d) of natural gas pipeline capacity were added to the national pipeline network during 2002 (Table 1). The estimated cost was $4.4 billion. Overall, 54 natural gas pipeline projects were completed during 2002 (Figure 1, Table 2). 2 Of these, 34 were expansions of existing pipeline systems or

  14. Alabama Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1 (Million Cubic Feet)

    Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  15. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) (indexed site)

    Assumptions and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis December 1, 2015| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE We welcome feedback on our assumptions and documentation * The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/

  16. Assumptions and Expectations for Annual Energy Outlook 2017: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil and Gas Working Group AEO2017 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 25, 2016| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview * "Short" AEO2017 with extension of model projection period to 2050 * World oil prices * Upstream - Offshore Gulf of Mexico and Alaska - Feedback on AEO2016 results *

  17. Managing and controlling gas volume analysis in the post FERC 636 environment

    SciTech Connect (OSTI)

    Treat, R.; Bergen, H.; Parker, J.

    1995-12-31

    Late in 1992, Natural Gas Pipeline Company of America (NGPL) and BMP Energy Systems (BMP) initiated a project to jointly develop a system for the automated verification and statistical correction of electronic flow measurement data. When NGPL and BMP began their original discussions, the primary purpose was for NGPL to evaluate the possibility of using BMP`s NGAS (Natural Gas Accounting System) software for handling Electronic Flow Meter (EFM) data. During these discussions, it became apparent that there was a unique opportunity to provide a business solution for both NGPL and BMP. NGPL faced the challenge of re-engineering their monthly chart processing organization to a daily volume analysis organization. BMP faced the challenge of re-engineering its chart processing system to a volume process system. The paper describes the challenges, the existing system, the decision process, and cost justification.

  18. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0

  19. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8

  20. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8

  1. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0

  2. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0

  3. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5

  4. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1

  5. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  6. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3

  7. California Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1 24.7 4.3 3.5 3.8 10.1 15.1 15.0 9.7 1.5 -1.7 9.7 1992 -4.9 -18.0 -19.6 -21.6 -18.0 -16.9 -15.6 -10.6 -1.5 3.8 2.4 -16.7 1993 -15.0 -19.6 8.1 2.5 3.1 -2.6 3.4 1.5 1.3 1.5 0.5 17.0 1994 13.4 -12.0 -24.5 -13.5 -10.9 -5.7 -8.4 -8.0 -4.2 -3.3 -6.0 -2.0 1995 7.4 63.0 54.5 20.8 14.6

  8. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6

  9. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0

  10. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -0.1 1991 53.6 99.8 77.4 -30.5 -38.2 -24.2 -10.4 -2.9 1.3 3.3 4.2 8.6 1992 1.6 -10.3 -10.3 11.6 40.4 25.3 14.2 10.7 6.8 4.4 -9.9 -11.9 1993 -21.1 -25.4 -8.3 -9.2 -3.5 -7.0 -5.9 -4.7 -2.9 1.1 6.4 -1.1 1994 12.9 27.1 26.3 -67.7 -49.1 -32.2 -25.7 -21.5 -18.6 -20.3 -18.4 -14.3 1995 -25.9 -14.7

  11. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6

  12. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3

  13. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  14. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Percent) Percent) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7.1 -3.2 -1.4 0.2 -3.4 -3.9 -4.7 -8.2 -10.5 -10.3 -16.6 -21.9 1992 -15.1 -26.4 -59.0 -61.0 -43.3 -36.0 -27.0 -19.0 -14.7 -8.4 -5.4 18.6 1993 28.7 15.6 28.7 37.5 46.9 48.1 35.0 30.1 32.3 24.3 19.9 -9.9 1994 -36.1 -44.0 -50.4 -9.9 -20.6 -12.2 -4.3 -1.7 -1.2 -1.0 2.5 8.2 1995

  15. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8

  16. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0

  17. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3

  18. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3

  19. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7

  20. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  1. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9

  2. Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    8-2015 From Gas Wells 27,421 23,791 15,953 13,650 10,902 9,055 1978-2015 From Oil Wells 1,153 0 552 386 298 266 1978-2015 From Shale Gas Wells 0 0 0 2012-2015 From Coalbed Wells 0 0 0 2012-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared 0 0 0 0 NA NA 2003-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA NA 2003-2015 Marketed Production 28,574 23,791 16,506 14,036 11,200 9,321 1992-2015 Dry Production 16,506 11,222 8,887 2012

    Propane-Air 1981-2005 Refinery Gas 1981-2005 Other

  3. AGA Producing Region Natural Gas Working Underground Storage Capacity

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,700,245 2,697,308 2,696,823 2,698,489 2,699,802 2,699,840 2,700,331 2,701,227 2,701,285 2,702,703 2,702,571 2,703,149 1995 2,699,674 2,699,575 2,696,880 2,695,400 2,726,268 2,726,255 2,668,312 2,671,818 2,672,399 2,672,258 2,671,362 2,672,808 1996 2,670,906 2,670,070 2,646,056 2,654,836

  4. Western Consuming Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 11 2010's 80 192 345 498 869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production West Virginia Shale Gas Proved Reserves, Reserves Changes,

  5. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect (OSTI)

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  6. Government works with technology to boost gas output/usage

    SciTech Connect (OSTI)

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  7. On stability of self-sustained volume discharge in working mixtures of non-chain electrochemical HF laser

    SciTech Connect (OSTI)

    Belevtsev, A A; Kazantsev, S Yu; Konov, I G; Lebedev, A A; Podlesnykh, S V; Firsov, K N

    2011-08-31

    Burning voltage of a self-sustained volume discharge (SSVD) is studied as a function of the specific energy deposition in SF{sub 5} with C{sub 2}-H{sub 6} and H{sub 2} mixtures, which are working media of a non-chain electrochemical HF laser. It is established that the voltage rises linearly with increasing the specific energy deposition, the relative voltage rise in the SF{sub 6}-C{sub 2}H{sub 6} mixtures being noticeably higher than in pure SF{sub 6} and SF{sub 6}-H{sub 2} mixtures. An assumption is suggested and substantiated on determining the role of molecule dissociation by the electron impact leading to the observed voltage rise. From experimental data we have found approximate energy expenditures of producing dissociation fragments including atomic fluorine in a discharge in pure SF{sub 6}: E-tilde {sub d}(F)= 5{+-}1 eV. The values of E{sub d} well agree with literature data obtained by other experimental methods. A conclusion is drawn that the dissociation process is the main mechanism limiting the current density, which implies SSVD realisation without preliminary gas ionisation in working mixtures of a non-chain HF laser and determines a higher stability of the volume discharge in mixtures of SF{sub 6} with hydrocarbons (deuterocarbons) as compared to mixtures with hydrogen (deuterium). A method is suggested and substantiated for numerical estimation of the limitation effect of the current density and its influence on the SSVD stability. (control of radiation parameters)

  8. Lower 48 States Working Natural Gas Total Underground Storage Capacity

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,853 41,928 100,660 271,236 466,627 439,390 372,472

  9. Salt Producing Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update

    Energy Technology Laboratory Ken Kern Strategic Energy Analysis and Planning Division National Energy Technology Lab, Pittsburgh, PA June 16, 2015 Coal Baseload Asset Aging, Evaluating Impacts on Capacity Factors Workshop on Coal Fleet Aging and Performance, EIA Post-Conference Meeting, Renaissance Hotel, Washington D.C. Generation by fuel "As natural gas prices increase in the AEO2013 Reference case, the utilization rate of coal-fired generators returns to previous historical levels and

  10. Indiana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    1 5 1 6 69 78 1967-2015 Propane-Air 1 5 1 6 69 78 1980-2015 Refinery Gas 1980-200

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming

  11. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Checklists and work instructions

    SciTech Connect (OSTI)

    1998-05-01

    This is volume two of the ORNL old hydrofracture facility tanks contents removal action operations plan. This volume contains checklists and work instructions.

  12. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  13. Pennsylvania Working Natural Gas Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    4 2 2 3 20 28 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 4 2 2 3 20 28 1980-2015 Refinery Gas 1980-2005

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming

  14. Lower 48 States Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (Million Cubic Feet) Lower 48 States Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6,608,635 6,024,215 5,879,115 6,092,050 6,491,219 6,831,426 7,075,486 7,319,424 7,716,989 8,105,566 8,142,609 7,763,772 2012 7,219,136 6,758,315 6,794,584 6,936,421 7,219,444 7,453,546 7,588,106 7,753,994 8,044,851 8,294,299 8,171,574 7,785,322 2013 7,060,122 6,455,260 6,074,255 6,207,882 6,625,168 6,996,862

  15. U.S. Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (Million Cubic Feet) U.S. Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 4,898,000 1974 NA NA NA NA NA NA NA NA NA 5,445,000 NA 4,962,000 1975 NA NA NA NA NA NA NA NA 5,553,000 5,706,000 5,691,000 5,374,000 1976 4,817,000 4,617,000 4,496,000 4,607,000 4,827,000 5,116,000 5,412,000 5,698,000 5,946,000 5,966,000 5,713,000 5,250,000 1977 4,580,000 4,446,000 4,501,000

  16. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  17. Feasibility study for the construction of a new LNG receiving terminal. Turkey. Volume 1. Export trade information. [LNG (liquified natural gas)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 1 is divided into the following sections: (1) Introduction; (2) Summary and Conclusions; (3) Design Basis; (4) Site Evaluation; (5) LNG Terminal Design; (6) Major Equipment and Instrumentation; (7) Marine Operations; (8) Safety Considerations; (9) Environmental Review; (10) Preliminary Project Execution Strategy; (11) Cost Estimates; (12) Project Master Schedule; (13) Economic Analysis; (14) Financing; (15) Future Work.

  18. Michigan Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    1998 Other 1980-1998

    1,365 15,193 11,630 8,521 21,248 10,985 1982-2015 Import Price 4.73 4.38 2.88 4.02 8.34 2.87 1989-2015 Export Volume 721,075 876,267 872,620 684,510 554,675 486,675 1982-2015 Export Price 4.85 4.44 3.12 4.07 6.26 3.19 1989

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania

  19. Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    2 20 9 22 66 10 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 12 20 9 22 66 1

    451,405 548,686 406,327 243,805 328,610 233,011 1982-2015 Import Price 4.49 4.15 2.87 3.87 5.60 2.89 1989-2015 Export Volume 0 3,975 11,768 16,209 5,474 5,245 1999-2015 Export Price -- 3.90 3.46 3.83 11.05 3.34 199

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York

  20. Montana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    706,201 679,848 754,058 719,176 541,135 534,807 1982-2015 Import Price 4.13 3.75 2.45 3.23 4.39 2.40 1989-2015 Export Volume 9,437 6,826 4,332 2,353 891 35 1982-2015 Export Price 4.05 3.82 2.40 3.43 5.38 12.54 198

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee

  1. New York Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    2 0 0 0 0 0 1967-2015 Synthetic 1980-2005 Propane-Air 2 1980-2010 Biomass 1993-2005 Other 1980-200

    434,526 324,474 278,422 233,453 200,394 190,194 1982-2015 Import Price 5.43 4.96 3.83 5.59 8.60 4.98 1989-2015 Export Volume 0 38,783 68,843 184,071 201,691 188,634 1982-2015 Export Price -- 4.69 3.61 4.29 5.56 3.06 199

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New

  2. Washington Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    332,358 313,922 312,236 333,050 359,348 429,653 1982-2015 Import Price 4.22 3.96 2.72 3.62 4.32 2.36 1989-2015 Export Volume 7,769 9,768 6,016 10,409 3,547 5,333 1982-2015 Export Price 4.81 4.47 3.87 4.02 5.05 2.34 1998

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina

  3. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  4. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  5. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  6. Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    8-2015 From Gas Wells 63,222 64,448 67,801 70,015 54,080 47,609 1978-2015 From Oil Wells 6,614 6,778 5,443 7,735 7,243 5,508 1978-2015 Repressuring 116 120 NA NA NA NA 1992-2015 Vented and Flared 146 149 NA NA NA NA 1999-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2015 Marketed Production 69,574 70,957 73,244 77,750 61,322 53,117 1992-2015 Dry Production 68,145 58,077 48,945 2012

    249 435 553 560 517 478 2007-2015 Biomass 249 435 553 560 517 478 201

    90,867 60,554 20,132

  7. Maryland Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    115 89 116 107 809 818 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 115 89 116 107 809 818 1980-2015 Refinery Gas 1980-2005 Other 0 0 0 1980

    43,431 13,981 2,790 5,366 11,585 12,091 1999-2015 Import Price 5.37 5.30 13.82 15.29 8.34 4.91 199

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Net Withdrawals 2,292 -1,721 2,383 -811 556

  8. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) (indexed site)

    5: Oil and Gas Working Group AEO2015 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 7, 2014 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Changes in release cycles for EIA's AEO and IEO * To focus more resources on rapidly changing energy markets and how they might evolve over the next few years, the U.S. Energy Information

  9. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  10. Alaska Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    From Gas Wells 42,034 36,202 32,875 27,149 22,653 16,462 1978-2015 From Oil Wells 328,114 328,500 274,431 305,253 342,482 354,196 1978-2015 Repressuring 310,329 301,516 269,203 272,772 324,092 329,820 1992-2015 Vented and Flared 2,139 1,690 2,525 1,549 776 640 1992-2015 Marketed Production 57,680 61,496 35,577 58,081 40,267 40,197 1992-2015 Dry Production 35,577 40,269 40,197 2012

    2004-2015

    30,100 16,398 9,342 0 13,310 16,519 1982-2015 Export Price 12.19 12.88 15.71 -- 15.74 7.49

  11. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

  12. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging, structural cross section, graph of production history, porosity vs. natural log permeability plots, detailed core log, paragenetic sequence, and reservoir characterization sheet for the following fields in southwest Alabama: North Smiths Church oil field; North Wallers Creek oil field; Northeast Barnett oil field; Northwest Range oil field; Pace Creek oil field; Palmers Crossroads oil field; Perdido oil field; Puss Cuss Creek oil field; Red Creek gas condensate field; Robinson Creek oil field; Silas oil field; Sizemore Creek gas condensate field; Smiths Church gas condensate field; South Burnt Corn Creek oil field; South Cold Creek oil field; South Vocation oil field; South Wild Fork Creek gas condensate field; South Womack Hill oil field; Southeast Chatom gas condensate field; Southwest Barrytown oil field; and Souwilpa Creek gas condensate field.

  13. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  14. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect (OSTI)

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  15. South Central Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) South Central Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -101,888 -155,544 -335,881 -301,038 -208,037 -149,650 -71,958 -32,654 -17,109 -7,023 -55,429 -144,477 2014 -281,823 -324,789 -326,968 -286,719 -287,056 -272,324 -254,513

  16. ,"Weekly East Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    East Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly East Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  17. ,"Weekly Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  18. ,"Weekly Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  19. ,"Weekly Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  20. ,"Weekly Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  1. ,"Weekly South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next

  2. DEVELOPMENT OF A NATURAL GAS SYSTEMS ANALYSIS MODEL (GSAM) VOLUME I - SUMMARY REPORT VOLUME II - USER'S GUIDE VOLUME IIIA - RP PROGRAMMER'S GUIDE VOLUME IIIB - SRPM PROGRAMMER'S GUIDE VOLUME IIIC - E&P PROGRAMMER'S GUIDE VOLUME IIID - D&I PROGRAMMER'S GUIDE

    SciTech Connect (OSTI)

    Unknown

    2001-02-01

    This report summarizes work completed on DOE Contract DE-AC21-92MC28138, Development of a Natural Gas Systems Analysis Model (GSAM). The products developed under this project directly support the National Energy Technology Laboratory (NETL) in carrying out its natural gas R&D mission. The objective of this research effort has been to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas market. GSAM has been developed to explicitly evaluate components of the natural gas system, including the entire in-place gas resource base, exploration and development technologies, extraction technology and performance parameters, transportation and storage factors, and end-use demand issues. The system has been fully tested and calibrated and has been used for multiple natural gas metrics analyses at NETL in which metric associated with NETL natural gas upstream R&D technologies and strategies under the direction of NETL has been evaluated. NETL's Natural Gas Strategic Plan requires that R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced natural gas. GSAM provides the capability to assess potential and on-going R&D projects using a full fuel cycle, cost-benefit approach. This method yields realistic, market-based assessments of benefits and costs of alternative or related technology advances. GSAM is capable of estimating both technical and commercial successes, quantifying the potential benefits to the market, as well as to other related research. GSAM, therefore, represents an integration of research activities and a method for planning and prioritizing efforts to maximize benefits and minimize costs. Without an analytical tool like GSAM, NETL natural gas upstream R&D activities cannot be appropriately ranked or focused on the most important aspects of natural gas extraction efforts or utilization considerations.

  3. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  4. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  5. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: DWP Summary, Volume 1

    SciTech Connect (OSTI)

    Project Integration

    2005-09-26

    This detailed work plan provides the scope, cost, and schedule for the Fiscal Year 2006 activities required to support River Corridor cleanup objectives within the directed guidance.

  6. Hot-gas filter manufacturing assessments: Volume 5. Final report, April 15, 1997

    SciTech Connect (OSTI)

    Boss, D.E.

    1997-12-31

    The development of advanced filtration media for advanced fossil-fueled power generating systems is a critical step in meeting the performance and emissions requirements for these systems. While porous metal and ceramic candle-filters have been available for some time, the next generation of filters will include ceramic-matrix composites (CMCs), intermetallic alloys, and alternate filter geometries. The goal of this effort was to perform a cursory review of the manufacturing processes used by 5 companies developing advanced filters from the perspective of process repeatability and the ability for their processes to be scale-up to production volumes. It was found that all of the filter manufacturers had a solid understanding of the product development path. Given that these filters are largely developmental, significant additional work is necessary to understand the process-performance relationships and projecting manufacturing costs. While each organization had specific needs, some common among all of the filter manufacturers were access to performance testing of the filters to aide process/product development, a better understanding of the stresses the filters will see in service for use in structural design of the components, and a strong process sensitivity study to allow optimization of processing.

  7. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOE Patents [OSTI]

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

  8. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 452,287 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Working

  9. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  10. Proceedings of the natural gas RD&D contractors review meeting, Volume I

    SciTech Connect (OSTI)

    Malone, R.D.

    1995-04-01

    This report contains papers which were presented at the natural gas contractors review meeting held on April 4-6, 1995. Topics were concerned with resource and reserves, low permeability reservoir characterization, natural fracture detection, drilling, completion, and stimulation, and natural gas upgrading. Individual papers were processed separately for the United States Department of Energy databases.

  11. High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

  12. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    SciTech Connect (OSTI)

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  13. Manned Mars Missions. Working group papers, volume 1, section 1-4

    SciTech Connect (OSTI)

    Duke, M.B.; Keaton, P.W.

    1986-05-01

    The papers presented by the working group on Manned Mars Missions are given. The purpose is to update earlier Mars missions study data, to examine the impact of new and emerging technologies on Mars mission capabilities, and to identify technological issues that would be useful in projecting scientific and engineering research in the coming decades. The papers are grouped into nine sections, which are: (1) rationale; (2) transportation trades and issues; (3) mission and configuration concepts; (4) surface infrastructure; (5) science investigations and issues; (6) life science/medical issues; (7) subsystems and technology development requirements; (8) political and economic issues; and (9) impact on other programs.

  14. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  15. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 3,854,408 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  16. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 493,976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  17. ,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. ,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  19. ,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  20. ,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  1. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 1

    SciTech Connect (OSTI)

    Underkoffler, V.S.

    1986-12-01

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Optimum operating parameters for zinc ferrite such as temperatures, gas compositions, and space velocities are discussed. From the test results, salient features of zinc ferrite were derived and discussed in regard to system implications, issues raised, and technical requirements. 47 refs., 53 figs., 41 tabs.

  2. Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to

  3. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    1998-06-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were

  4. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect (OSTI)

    Not Available

    1994-05-24

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  5. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect (OSTI)

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  6. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  7. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-09-01

    The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  8. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  9. Huge natural gas reserves central to capacity work, construction plans in Iran

    SciTech Connect (OSTI)

    Not Available

    1994-07-11

    Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India. But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans.

  10. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect (OSTI)

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  11. Feasibility study for the construction of a new LNG receiving terminal, turkey. Volume 2. Appendix. Export trade information. [LNG (liquified natural gas)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 2 contains the following appendices: LNG Storage Tanks; Vaporizers; Compressors; Pumps; Loading Arms; Marine Installations; Shipping; and Seismic Study.

  12. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect (OSTI)

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  13. ,"Weekly Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release

  14. ,"Weekly Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016"

  15. Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I

    SciTech Connect (OSTI)

    Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

    1995-07-01

    In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

  16. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  17. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  18. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  19. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  20. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  1. Rate and peak concentrations of off-gas emissions in stored wood pellets sensitivities to temperature, relative humidity, and headspace volume

    SciTech Connect (OSTI)

    Kuang, Xingya; Shankar, T.J.; Bi, X.T.; Lim, C. Jim; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-08-01

    Wood pellets emit CO, CO2, CH4 and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture and storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-liter plastic containers were used to study the effects of headspace ratio (25%, 50%, and 75% of container volume) and temperatures (10-50oC). Another eight containers were set in uncontrolled storage relative humidity and temperature. Concentrations of CO2, CO and CH4 were measured by a gas chromatography (GC). The results showed that emissions of CO2, CO and CH4 from stored wood pellets are most sensitive to storage temperature. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen for pellet decomposition. Increased relative humidity in the enclosed container increases the rate of off-gas emissions of CO2, CO and CH4 and oxygen depletion.

  2. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  3. Fundamentals of gas measurement II

    SciTech Connect (OSTI)

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  4. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  5. McGraw Hill encyclopedia of science and technology. An international reference work in fifteen volumes including an index

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This extensively revised and updated 5th Edition features contributions by 3000 distinguished experts - including 16 Nobel Prize winners - working with an international advisory board and 60 consulting editors. Thorough coverage is devoted to 75 separate disciplines in science and technology, from acoustics and biochemistry through fluid mechanics and geophysics to thermodynamics and vertebrate zoology. Detailed entries examine not only the physical and natural sciences, but also all engineering disciplines, discussing both the basic and the most recent theories, concepts, terminology, discoveries, materials, methods, and techniques. All of the new developments and technical advances that have occurred during the last five years - in each of the 75 disciplines - have been added to the encyclopedia and are explored in depth. Completely new material deals with such timely and newsworthy subjects as genetic engineering, artificial intelligence, nuclear medicine, desertification, psycholinguistics, industrial robots, and immunoassay. Also covered in extensive entries are such current topics as video disk recording, metallic glasses, acoustic levitation, magnetic bubble memory, gluons, and computerized tomography. The encyclopedia includes more than 15,000 photographs, drawings, maps, charts, and diagrams, shown in full-color, two-color, or black-and-white reproductions.

  6. High Volume--High Volume Usage of Flue Gas Desulfurization (FGD) By-Products in Underground Mines. Quarterly report, July 1-September 31, 1996

    SciTech Connect (OSTI)

    1997-12-31

    The focus of activity for this quarter was the final selection and preparation of a mine site for the grout emplacement field demonstration. The site chosen is located in Floyd County, Kentucky and is owned by the Sunny Ridge Mining Company. Specifically, a northeast-trending highwall was selected that contains numerous auger holes of 31 inch diameter and varying depth. The coal has been deep- mined beyond the auger holes thus limiting their length. Access to the site is good, and the overlying strata are relatively un- weathered and competent. Preparation of the site involved culling a road to the highwall, followed by uncovering the auger holes which had previously been partially filled and graded with rock. The auger holes were then extensively characterized in the context of overall dimensions, condition, and extent of communication between holes. For this portion of the work, several types of apparatus were obtained, and constructed. Selection of a grout emplacement method was also completed. It was decided that concrete trucks will transport the dry FBC flyash to the site whereupon a specified amount of water will be added. This grout will then be transferred to a concrete pumping truck that will be used to inject the material into the auger holes. In this quarter, the arrangements necessary to complete the emplacement have been made.

  7. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 9, Formation and stability of gas hydrates of the Middle America Trench

    SciTech Connect (OSTI)

    Finley, P.; Krason, J.

    1986-12-01

    This report presents a geological description of the Pacific margin of Mexico and Central America, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, and distribution of hydrates within the sediments are also included in this report. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 150 refs., 84 figs., 17 tabs.

  8. Confined zone dispersion flue gas desulfurization demonstration. Volume 1, Quarterly report No. 4, August 1, 1991--October 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-27

    The confined zone dispersion (CZD) process involves flue gas post-treatment, physically located between a boiler`s outlet and its particulate collector, which in the majority of cases is an electrostatic precipitator. The features that distinguish this process from other similar injection processes are: Injection of an alkaline slurry directly into the duct, instead of injection of dry solids into the duct ahead of a fabric filter. Use of an ultrafine calcium/magnesium hydroxide, type S pressure-hydrated dolomitic lime. This commercial product is made from plentiful, naturally occurring dolomite. Low residence time, made possible by the high effective surface area of the Type S lime. Localized dispersion of the reagent. Slurry droplets contact only part of the gas while the droplets are drying, to remove up to 50 percent of the S0{sub 2} and significant amounts of NO{sub x}. The process uses dual fluid rather than rotary atomizers. Improved electrostatic precipitator performance via gas conditioning from the increased water vapor content, and lower temperatures. Supplemental conditioning with S0{sub 3} is not believed necessary for satisfactory removal of particulate matter.

  9. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  10. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 4

    SciTech Connect (OSTI)

    Kopasaka-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D; Hall, D.R.

    1992-06-01

    This volume contains maps, well log correlated to lithology, porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plots; detailed core log, porosity vs. natural permeability plot for one lithofacies, paragenetic sequence and reservoir characterization sheet for the following fields in southwest Alabama: Stave Creek oil field; Sugar Ridge oil field; Toxey oil field, Turkey Creed oil field; Turnerville oil field, Uriah oil field; Vocation oil field; Wallace oil field; Wallers Creek oil field; West Appleton oil field; West Barrytown oil field; West Bend oil field; West Okatuppa Creed oil field; Wild Fork Creek oil field; Wimberly oil field; Womack Hill oil field; and Zion Chapel oil field. (AT)

  11. Total Working Gas Capacity

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669 4,800,671 2008-2015 Alaska 67,915 67,915 67,915 2013-2015 Alabama 25,150 27,350 27,350 27,350 33,150 33,150 2008-2015 Arkansas 13,898 12,036 12,178 12,178 12,178 12,178 2008-2015 California 311,096 335,396 349,296 374,296 374,296 375,496

  12. FY 2013 Volume 2

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Volume 2 f Department of Energy FY 2013 Congressional B d R Budget Request Other Defense Activities Departmental Administration Inspector General Working Capital F nd Working Capital Fund Safeguards and Security Crosscut Pensions February 2012 Office of Chief Financial Officer Volume 2 DOE/CF-0072 Volume 2 f Department of Energy FY 2013 Congressional B d R Budget Request Other Defense Activities Departmental Administration Inspector General Working Capital F nd Working Capital Fund Safeguards

  13. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect (OSTI)

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  14. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect (OSTI)

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  15. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  16. Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  17. North American Natural Gas Markets: Selected technical studies

    SciTech Connect (OSTI)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. FY 2012 Volume 2

    Energy.gov (indexed) [DOE]

    8 Volume 2 f Department of Energy FY 2012 Congressional B d R Budget Request Other Defense ... and Hospitals Working Capital Fund Energy Information Administration Safeguards and ...

  19. FY 2007 Volume 4

    Office of Environmental Management (EM)

    4 DOECF-005 Volume 4 Science Nuclear waste disposal Defense nuclear waste disposal Departmental administration Inspector general Working capital fund Department of Energy FY 2007 ...

  20. FY 2008 Volume 4

    Office of Environmental Management (EM)

    4 DOECF-017 Volume 4 Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Loan Guarantee Program Working Capital Fund ...

  1. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  2. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  3. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    SciTech Connect (OSTI)

    Not Available

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  4. Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report

    SciTech Connect (OSTI)

    Wolcott, Joanne; Shayegi, Sara

    1997-01-13

    Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

  5. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M.

    1995-12-01

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  6. Investigation of cold fusion phenomena in deuterated metals. Final report, Volume 1. Overview, executive summary, chemistry, physics, gas reactions, metallurgy. Technical information series

    SciTech Connect (OSTI)

    Anderson, L.; Barrowes, S.C.; Bergeson, H.E.; Bourgeois, F.; Cedzynska, K.

    1991-06-01

    The March 1989 announcement by Pons and Fleischmann stimulated worldwide interest in the cold fusion phenomenon. In Utah the legislature appropriated $5 million to support cold fusion research and development. As cold fusion inquiries continue worldwide, this interim report has been written to document the scientific and legal work that has been funded by the Utah legislature. Partial contents include these titles of papers: Cold Fusion Studies in a High-Pressure Sealed Cell; Tritium and Neutron Generation in Palladium Cathodes with High Deuterium Loading; Deuterium-Gas Phase Reactions on Palladium; Excess Heat Estimation with the Kalman Filter; Ultrasonic Energy Effects on Palladium Electrodes in Cold Fusion Cells; Nuclear Measurements on Deuterium-Loaded Palladium and Titanium.

  7. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) (indexed site)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of ...

  8. Volume I

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DOENVl 0630-I 1 Volume I November 1990 . . . . . . ..A- "'asf NEVADA TEST SITE ANNUAL ... Volume I DOENVl 0630-l 1 Volume I NEVADA TEST SITE ANNUAL SITE ENVIRONMENTAL REPORT - ...

  9. The influence of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers

    SciTech Connect (OSTI)

    Pershyn, Yuriy; Gullikson, Erik; Artyukov, Igor; Kondratenko, Valeriy; Sevryukova, Victoriya; Voronov, Dmitriy; Zubarev, Evgeniy; Vinogradov, Alexander

    2011-08-08

    Impact of Ar gas pressure (1-4 mTorr) on the growth of amorphous interlayers in Mo/Si multilayers deposited by magnetron sputtering was investigated by small-angle x-ray scattering ({lambda} = 0.154 nm) and methods of cross-sectional transmission electron microscopy. Some reduction of thickness of the amorphous inter-layers with Ar pressure increase was found, while composition of the layers was enriched with molybdenum. The interface modification resulted in raise of EUV reflectance of the Mo/Si multilayers.

  10. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  11. Industrial Gas Turbines

    Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  12. Energy Department Authorizes Additional Volume at Proposed Freeport...

    Energy Savers

    Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export ...

  13. Montana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) (indexed site)

    Withdrawals 264 2,609 3,670 4,406 2,112 1,418 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,239 3,471 3,197 3,391 4,649 5,247 1990-2016 Percent 9.4 17.3 ...

  14. FY 2011 Volume 2

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE/CF-0048 Volume 2 Other Defense Activities Departmental Administration Inspector General Advanced Technology Vehicles Manufacturing Loan Program Title 17 Innovative Technology Loan Guarantee Program Working Capital Fund Energy Information Administration Safeguards and Security Crosscut Domestic Utility Fee Pensions Department of Energy FY 2011 Congressional Budget Request February 2010 Office of Chief Financial Officer Volume 2 DOE/CF-0048 Volume 2 Other Defense Activities Departmental

  15. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    over the next few days. To avoid penalties, Northwest requested that customers stay within their scheduled volumes, and asked customers who owe gas to Northwest north of...

  17. Natural Gas Weekly Update

    Annual Energy Outlook

    delivery volumes. Northern Natural Gas Company issued a system overrun limitation (SOL) for all market-area zones for gas day February 21, 2008. The SOL was the result of...

  18. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M.

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  19. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    SciTech Connect (OSTI)

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  20. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  1. An Independent Scientific Assessment of Well Stimulation in California Volume II

    SciTech Connect (OSTI)

    Jane C.S. Long; Laura C. Feinstein; Corinne E. Bachmann; Birkholzer, Jens T.; Camarillo, Mary Kay; Jeremy K. Domen; Foxall, William; Houseworth, James; Jin, Ling; Preston D. Jordan; Randy L. Maddalena; Thomas E. McKone; Dev E. Millstein; Matthew T. Reagan; Whitney L. Sandelin; William T. Stringfellow; Varadharajan, Charuleka; Cooley, Heather; Donnelly, Kristina; Matthew G. Heberger; Hays, Jake; Seth B.C. Shonkoff; Brandt, Adam; Jacob G. Englander; Hamdoun, Amro; Sascha C.T. Nicklisch; Robert J. Harrison; Zachary S. Wettstein; Banbury, Jenner; Brian L. Cypher; Scott E. Phillips

    2015-07-01

    This study is issued in three volumes. Volume I, issued in January 2015, describes how well stimulation technologies work, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II, the present volume, discusses how well stimulation could affect water, atmosphere, seismic activity, wildlife and vegetation, and human health. Volume II reviews available data, and identifies knowledge gaps and alternative practices that could avoid or mitigate these possible impacts. Volume III, also issued in July 2015, presents case studies that assess environmental issues and qualitative risks for specific geographic regions. A final Summary Report summarizes key findings, conclusions and recommendations of all three volumes.

  2. An Independent Scientific Assessment of Well Stimulation in California Volume III

    SciTech Connect (OSTI)

    Jane C.S. Long; Laura C. Feinstein; Birkholzer, Jens; Foxall, William; Houseworth, James; Jordan, Preston; Lindsey, Nathaniel; Maddalena, Randy; McKone, Thomas; Stringfellow, William; Ulrich, Craig; Heberger, Matthew; Shonkoff, Seth; Brandt, Adam; Ferrar, Kyle; Gautier, Donald; Phillips, Scott; Greenfield, Ben; Jerrett, Michael L.B.

    2015-07-01

    This study is issued in three volumes. Volume I, issued in January 2015, describes how well stimulation technologies work, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II, issued in July 2015, discusses how well stimulation could affect water, atmosphere, seismic activity, wildlife and vegetation, and human health. Volume II reviews available data, and identifies knowledge gaps and alternative practices that could avoid or mitigate these possible impacts. Volume III, this volume, presents case studies that assess environmental issues and qualitative risks for specific geographic regions. The Summary Report summarizes key findings, conclusions and recommendations of all three volumes.

  3. Fischer-Tropsch synthesis from a low HH/sub 2/:CO gas in a dry fluidized-bed system. Volume 1. Project summary. Final technical report, October 1, 1986. [Heat tray

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.

    1986-10-01

    The objective of this project is to experimentally develop and demonstrate a dry fluidized-bed reactor system (called ''heat tray'') for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of an iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. The project has been carried out in two key tasks: (1) development of a microreactor system for unsteady-state Fischer-Tropsch synthesis, simulating the life history of an iron catalyst particle in a ''heat-tray'' reactor; and (2) supporting fluidization studies. The present Volume I summarizes the key conclusions and recommendations from this project, and the accompanying Volumes II and III describes the details of experimental investigations and results. 12 refs., 8 figs., 2 tabs.

  4. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes. Volume 2, Duct spray drying: Final report

    SciTech Connect (OSTI)

    Jozewicz, W.; Rochelle, G.T.

    1992-01-29

    Removal of sulfur dioxide (SO{sub 2}) from the flue gas of coal- burning power plants can be achieved by duct spray drying using calcium hydroxide [Ca(OH){sub 2}] slurries. A primary objective of this research was to discover the aspects of mass transfer into Ca(OH){sub 2} slurries which limit SO{sub 2} absorption. A bench- scale stirred tank reactor with a flat gas/liquid interface was used to simulate SO{sub 2} absorption in a slurry droplet. The absorption rate of SO{sub 2} from gas concentrations of 500 to 5000 ppm was measured at 55{degrees}C in clear solutions and slurries of Ca(OH){sub 2} up to 1.0 M (7 wt percent). Results are reported in terms of the enhancement factor, {O}. This research will allow prediction of conditions where the absorption of SO{sub 2} in Ca(OH){sub 2} slurries can be enhanced by changes to liquid phase constituents (under which SO{sub 2} absorption is controlled by liquid film mass transfer). Experiments in the stirred tank have shown that SO{sub 2} absorption in a 1.0 M Ca(OH){sub 2} slurry was completely dominated by gas film mass transfer with a large excess of Ca(OH){sub 2} but becomes controlled by liquid film resistance at greater than 50 percent Ca(OH){sub 2} utilization. (VC)

  5. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * ...

  6. Working Gas Capacity of Aquifers

    U.S. Energy Information Administration (EIA) (indexed site)

    64,228 363,521 367,108 453,054 452,044 452,287 2008-2015 Alabama 0 0 0 2012-2015 Arkansas 0 0 0 2012-2015 California 0 10,000 10,000 10,000 2009-2015 Colorado 0 0 0 2012-2015 Illinois 216,132 215,017 215,594 291,544 292,544 291,845 2008-2015 Indiana 19,437 19,479 19,215 19,215 19,215 20,048 2008-2015 Iowa 90,613 91,113 90,313 90,313 90,313 90,313 2008-2015 Kansas 0 0 0 2012-2015 Kentucky 6,629 6,629 6,629 6,629 4,619 4,619 2008-2015 Louisiana 0 0 0 2012-2015 Michigan 0 0 0 2012-2015 Minnesota

  7. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    SciTech Connect (OSTI)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  8. Volume Comparison

    Annual Energy Outlook

    Beginning with data for August 2010, natural gas consumption for the residential and commercial sectors was derived from the total system sendout reported by local distribution ...

  9. Total Natural Gas Underground Storage Capacity

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  10. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 3. Heat transfer between a supernatant gas and a flowing shallow fluidized bed of solids. Final technical report, October 1, 1986

    SciTech Connect (OSTI)

    Boyd, J.H.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Volume II describes the details of heat-transfer studies in a dry fluidized-bed system (called ''heat tray''), which has been proposed for heat recovery from hot gases and for heat management in exothermic reactions. In particular, this report presents the results of bench-scale and pilot-scale experimental studies which quantify heat transfer between a hot supernatant gas (S-gas) and a flowing shallow fluidized bed of solids. A fractional-factorial design of experiments has been performed on two heat-tray systems using three different solids. The results show that fine fluid cracking catalyst (FCC) particles out-perform larger alumina spheres as a fluidized solid. Heat transfer coefficients between the supernatant gas and the shallow fluidized bed approaches 440 W/m/sup 2/-K using FCC with a heat-exchange area of 0.124 m/sup 2/. Various S-gas inlet nozzle configurations have been studied, with a nozzle height equal to one-half of the static bed height (0.051 m) giving the best results. The study shows that short heat-tray lengths (< 0.8 m) are desirable and that S-gas redistributors are needed to compartmentalize the unit. An economic analysis shows that the proposed heat tray would be economically feasible for adaption as a boiler feedwater preheater in a small steam-generation facility, using boiler combustion gases as the S-gas. The payback time for the system would be as short as 1.9 years when used continuously. The heat transfer results from a supernatant gas to a flowing shallow fluidized bed represent the only data reported thus far, and have led to a better understanding of the heat management in the proposed ''heat-tray'' reactor for Fischer-Tropsch synthesis. 20 refs., 46 figs., 15 tabs.

  11. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  12. Viability Assessment Volume 4

    SciTech Connect (OSTI)

    DOE

    1998-12-01

    Volume 4 provides the DOE plan and cost estimate for the remaining work necessary to proceed from completing this VA to submitting an LA to NRC. This work includes preparing an EIS and evaluating the suitability of the site. Both items are necessary components of the documentation required to support a decision in 2001 by the Secretary of Energy on whether or not to recommend that the President approve the site for development as a repository. If the President recommends the site to Congress and the site designation becomes effective, then DOE will submit the LA to NRC in 2002 for authorization to construct the repository. The work described in Volume 4 constitutes the last step in the characterization of the Yucca Mountain site and the design and evaluation of the performance of a repository system in the geologic setting of this site. The plans in this volume for the next 4 years' work are based on the results of the previous 15 years' work, as reported in Volumes 1, 2, and 3 of this VA. Volume 1 summarizes what DOE has learned to date about the Yucca Mountain site. Volume 2 describes the current, reference repository design, several design options that might enhance the performance of the reference design, and several alternative designs that represent substantial departures from the reference design. Volume 2 also summarizes the results of tests of candidate materials for waste packages and for support of the tunnels into which waste would be emplaced. Volume 3 provides the results of the latest performance assessments undertaken to evaluate the performance of the design in the geologic setting of Yucca Mountain. The results described in Volumes 1, 2, and 3 provide the basis for identifying and prioritizing the work described in this volume. DOE believes that the planned work, together with the results of previous work, will be sufficient to support a site suitability evaluation for site recommendation and, if the site is recommended and designated, a

  13. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  14. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  15. OMAE 1993: Proceedings. Volume 5: Pipeline technology

    SciTech Connect (OSTI)

    Yoon, M.; Murray, A.; Thygesen, J.

    1993-01-01

    This volume of conference proceedings is volume five of a five volume series dealing with offshore and arctic pipeline, marine riser, platforms, and ship design and engineering. This volume is a result of increased use of pipeline transportation for oil, gas, and liquid products and the resultant need for lower design and operating costs. Papers in this conference cover topics on environmental considerations, pipeline automation, computer simulation techniques, materials testing, corrosion protection, permafrost problems, pipeline integrity, geotechnical concerns, and offshore engineering problems.

  16. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  17. Multi-cylinder hot gas engine

    SciTech Connect (OSTI)

    Corey, J.A.

    1985-06-11

    A multi-cylinder hot gas engine is described having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block. 11 figs.

  18. Multi-cylinder hot gas engine

    DOE Patents [OSTI]

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  19. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J.; Fearnside, P.M.

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  20. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  1. Natural gas monthly

    SciTech Connect (OSTI)

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    (April 11). The first weekly report of the traditional injection season brought natural gas volumes in underground storage to 1,592 Bcf as of Friday, April 6, which is 28.4...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    7 (next release 2:00 p.m. on November 3) Natural gas spot prices increased sharply this week (Wednesday-Wednesday, October 19-26), as a large volume of production continued to be...

  4. Gas-separation process

    DOE Patents [OSTI]

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  5. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 1, Laboratory investigations. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    1995-03-01

    Research under Subtask 2.2, Chemical and Mineralogical Characterization, included further refinement of mineralogical transformation and the initiation of a kinetic study. The expansion of the FGD materials during moisturizing is attributable to three reactions: the hydration of portlandite to slaked lime; the formation of ettringite from fly ash and anhydrite, and; the formation of gypsum from anhydrite. The sequence of these reactions are being examined in a kinetic study. Completion of the first 15 days of study finds the steady decrease in anhydrite with concomitant formation of ettringite (on fly ash surfaces) and gypsum (pore and crack in-fillings). Geotechnical characterization (Subtask 2.3) focused on swell experiments which will model in situ emplacement. Specimens of FGD material have been stored in 3-inch diameter pipe and, after 39 days, 0.5% of axial swell has been recorded with material strengths of 600 to 1,000 psi. Experiments to determine the amount of moisture loss due to the heat of hydration indicate about 9 to 10% of the water is lost. Confined swell tests are also underway with pressures of 15 to 20 psi recorded at 25 days. Work performed under Task 4 (Background for Phase II) included determination of the compressive strengths for the experimental mine roof rock. Values in the 5,000 to 7,500 psi range were found, which is typical for this type of strata in the region. Work on the hydrologic monitoring program (Subtask 4.2) included completion of the hydraulic conductivity assessment of the strata, as well as completion of the monitoring well plan. The highest hydraulic conductivity was found for the Princess No. 3 coal seam with values of 1{times}10{sup {minus}3} feet/min. The weathered sandstone over the coal had conductivities in the 10{sup {minus}4} to 10{sup {minus}5} feet/min. range.

  6. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    1995-03-01

    Research under Subtask 2.2, Chemical and Mineralogical Characterization, included further refinement of mineralogical transformation and the initiation of a kinetic study. The expansion of the FGD materials during moisturizing is attributable to three reactions: the hydration of portlandite to slaked lime; the formation of ettringite from fly ash and anhydrite, and; the formation of gypsum from anhydrite. The sequence of these reactions are being examined in a kinetic study. Completion of the first 15 days of study finds the steady decrease in anhydrite with concomitant formation of ettringite (on fly ash surfaces) and gypsum (pore and crack in-fillings). Geotechnical characterization (Subtask 2.3) focused on swell experiments which will model in situ emplacement. Specimens of FGD material have been stored in 3-inch diameter pipe and, after 39 days, 0.5% of axial swell has been recorded with material strengths of 600 to 1,000 psi. Experiments to determine the amount of moisture loss due to the heat of hydration indicate about 9 to 10% of the water is lost. Confined swell tests are also underway with pressures of 15 to 20 psi recorded at 25 days. Work performed under Task 4 (Background for Phase 11) included determination of the compressive strengths for the experimental mine roof rock. Values in the 5,000 to 7,500 psi range were found, which is typical for this type of strata in the region. Work on the hydrologic monitoring program (Subtask 4.2) included completion of the hydraulic conductivity assessment of the strata, as well as completion of the monitoring well plan. The highest hydraulic conductivity was found for the Princes No. 3 coal seam with values of 1x10{sup -3} feet/min. The weathered sandstone over the coal had conductivities in the 10{sup -4} to 10{sup -5} feet/min range.

  7. Natural Gas Transmission and Distribution Module

    U.S. Energy Information Administration (EIA) (indexed site)

    July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO ...

  8. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 Opportunities for Micropower and Fuel CellGas Turbine ...

  9. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume II (Appendices), January 2000 Opportunities for Micropower and Fuel CellGas Turbine Hybrid ...

  10. Natural Gas Weekly Update

    Annual Energy Outlook

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  12. Natural Gas Weekly Update

    Annual Energy Outlook

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  13. Natural Gas Weekly Update

    Annual Energy Outlook

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  14. Natural Gas Weekly Update

    Annual Energy Outlook

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  15. Natural Gas Weekly Update

    Annual Energy Outlook

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories...

  18. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  19. Natural Gas Weekly Update

    Annual Energy Outlook

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  2. Natural Gas Weekly Update

    Annual Energy Outlook

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  3. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  4. Viability Assessment Volume 5

    SciTech Connect (OSTI)

    DOE,

    1998-12-01

    This volume presents a management summary of the cost estimate to complete the design, and to license, construct, operate, monitor, close, and decommission a Monitored Geologic Repository at Yucca Mountain in Nevada. This volume summarizes the scope, estimating methodologies, and assumptions used in development of the Monitored Geologic Repository-VA cost estimate. It identifies the key features necessary to understand the summary costs presented herein. This cost summary derives from a larger body of documented cost analysis. Volume 5 is organized to reflect this structured approach to cost estimation and contains the following sections: Section 1, Cost Elements. This section briefly defines the components of each major repository cost element. Section 2, Project Phases. This section presents the definition, as used in the estimate, of five project phases (Licensing, Pre-emplacement Construction, Emplacement Operations, Monitoring, and Closure and Decommissioning) and the schedule dates for each phase. It also contains major milestone dates and a bar chart schedule. Section 3, Major Assumptions. This section identifies key high-level assumptions for the cost estimate basis. Additional detailed assumptions are included in the appendices. Section 4, Integrated Cost Summary. This section presents a high-level roll-up of the VA costs resulting from the estimating work. The tables and figures contained in this section were compiled from the more detailed cost estimates in the appendices. Section 5, References. This section identifies the references that support this cost volume. Appendices. For each major repository cost element, Appendices B-F [B, C, D, E, F] presents additional information on the scope of cost elements, identifies methodologies used to develop the cost estimates, lists underlying cost assumptions, and tabulates summary results. Appendix A contains a glossary to assist the reader in understanding the terminology in Volume 5. Appendix G presents costs

  5. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  6. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  7. ,"Oregon Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    ... 39828,23034 39859,22212 39887,20643 39918,20643 39948,22959 39979,24685 40009,26262 40040,27761 40071,28618 40101,29307 40132,29805 40162,25053 40193,24034 40224,23018 ...

  8. ,"Alaska Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Excel File Name:","ngmepg0satsakmmcfm.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistngmepg0satsakmmcfm.htm" ,"Source:","Energy Information ...

  9. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume III. Data repository and reports published during fiscal year 1979-1980: production, unsponsored research

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This document consists of the following papers: inorganic geochemistry studies of the Eastern Kentucky Gas Field; lithology studies of upper Devonian well cuttings in the Eastern Kentucky Gas Field; possible effects of plate tectonics on the Appalachian Devonian black shale production in eastern Kentucky; preliminary depositional model for upper Devonian Huron age organic black shale in the Eastern Kentucky Gas Field; the anatomy of a large Devonian black shale gas field; the Cottageville (Mount Alto) Gas Field, Jackson County, West Virginia: a case study of Devonian shale gas production; the Eastern Kentucky Gas Field: a geological study of the relationships of Ohio Shale gas occurrences to structure, stratigraphy, lithology, and inorganic geochemical parameters; and a statistical analysis of geochemical data for the Eastern Kentucky Gas Field.

  10. Natural Gas Weekly Update

    Annual Energy Outlook

    on December 9, falling from somewhat higher intraweek levels. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage dropped 64 Bcf during the...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  12. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, E.D.

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  13. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  14. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, Elmer D.

    1985-01-01

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  15. Rehab guide: Roofs. Volume 3

    SciTech Connect (OSTI)

    1999-03-01

    Nine volumes will eventually make up The Rehab Guide in its entirety, and they are listed on the back cover of this volume. Each one is devoted to distinct elements of the house, and within each volume is a range of issues that are common to that element of home rehabilitation work. This volume, Roofs, for example, covers the major roofing systems including framing and sheathing; protective strategies such as underlayments and flashing; energy and air infiltration issues; roofing materials; and gutters and down-spouts. Each volume addresses a wide range techniques, materials, and tools, and recommendations based on regional differences around the country. Throughout The Rehab Guide, special attention is given to issues related to energy efficiency, sustainability, and accessibility.

  16. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  17. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency is key 3 State of the Art Pre-ARES Engines Characterized by the following: Limited investment in natural gas engines, based on derivatives of larger volume ...

  18. Natural Gas Annual Respondent Query System

    Gasoline and Diesel Fuel Update

    (Volumes in Thousand Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Form EIA-176 * User Guide * Definitions, Sources, & Notes Natural Gas Deliveries (2011 - 2014)...

  19. Babb, MT Natural Gas Export to Canada

    U.S. Energy Information Administration (EIA) (indexed site)

    0 20 0 0 122 0 1996-2015 Pipeline Prices -- 3.39 -- -- 4.90 -- 1996-2015 Liquefied Natural Gas Volumes 0 5 2014-2015 Liquefied Natural Gas Prices -- 12.95 2014

  20. Natural gas monthly, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Natural gas monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, September 1995

    SciTech Connect (OSTI)

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  3. Natural gas monthly, April 1995

    SciTech Connect (OSTI)

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  4. Natural gas monthly: September 1996

    SciTech Connect (OSTI)

    1996-09-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

  5. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) (indexed site)

    ...,"N5020NM2","N5070NM2","N5050NM2","N5060NM2" "Date","New Mexico Natural Gas Underground Storage Volume (MMcf)","New Mexico Natural Gas in Underground Storage (Base Gas) ...

  6. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation PDF icon RCC Workplan NGV.PDF More Documents & Publications REGULATORY COOPERATION COUNCIL - WORK PLANNING ...

  7. Energy Department Authorizes Additional Volume at Proposed Freeport LNG

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facility to Export Liquefied Natural Gas | Department of Energy Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 15, 2013 - 3:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export

  8. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas monthly, March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  10. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  12. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  13. Gas-Saving Tips

    Alternative Fuels and Advanced Vehicles Data Center

    Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed number, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to several factors, including how the vehicle is driven, the vehicle's mechanical condition, and the environment in which it is driven. Fortunately, you may be able to improve your vehicle's gas mileage through proper maintenance and driving habits. Studies suggest the average driver can improve his/her fuel economy by

  14. Mountain Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) (indexed site)

    570,852 578,589 603,180 623,304 635,601 646,974 2013-2016 Base Gas 426,050 426,104 426,133 426,165 426,157 426,145 2013-2016 Working Gas 144,803 152,484 177,047 197,139 209,444 220,828 2013-2016 Net Withdrawals -910 -7,610 -24,696 -20,024 -12,418 -11,103 2013-2016 Injections 16,189 15,107 27,298 22,765 17,788 18,160 2013-2016 Withdrawals 15,279 7,497 2,602 2,741 5,370 7,057 2013-2016 Change in Working Gas from Same Period Previous Year Volume 31,462 36,352 41,855 42,528 37,629 33,712 2013-2016

  15. East Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) (indexed site)

    1,548,115 1,573,767 1,667,782 1,766,857 1,847,563 1,917,286 2013-2016 Base Gas 1,111,752 1,111,114 1,111,399 1,112,116 1,112,301 1,112,465 2013-2016 Working Gas 436,363 462,653 556,383 654,741 735,262 804,821 2013-2016 Net Withdrawals 53,638 -26,243 -93,997 -99,152 -80,674 -69,715 2013-2016 Injections 35,986 68,951 108,757 110,810 100,101 90,867 2013-2016 Withdrawals 89,624 42,709 14,761 11,657 19,426 21,151 2013-2016 Change in Working Gas from Same Period Previous Year Volume 197,072 153,989

  16. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  17. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2009-10-06

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  18. Film Collection Volume One

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  19. Volume One Disc Two

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  20. FY 2012 Volume 4

    Energy.gov (indexed) [DOE]

    Department of Energy FY 2012 Congressional Budget Request Science Science February 2011 Office of Chief Financial Officer Volume 4 DOECF-0060 Volume 4 Department of Energy FY 2012 ...

  1. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  2. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  3. Detection of gas leakage

    DOE Patents [OSTI]

    Thornberg, Steven; Brown, Jason

    2012-06-19

    A method of detecting leaks and measuring volumes as well as an apparatus, the Power-free Pump Module (PPM), that is a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement, where the invention is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr), perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  4. Detection of gas leakage

    SciTech Connect (OSTI)

    Thornberg, Steven M; Brown, Jason

    2015-02-17

    A method of detecting leaks and measuring volumes as well as a device, the Power-free Pump Module (PPM), provides a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement. The PPM is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr) using a venturi pump, perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  5. Design of pellet surface grooves for fission gas plenum

    SciTech Connect (OSTI)

    Carter, T.J.; Jones, L.R.; Macici, N.; Miller, G.C.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMP heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM.

  6. Existing technology transfer report: analytical capabilities. Appendix B. Volume 3

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. This volume contains Appendix B with the following attachments: solvent separation procedure A; Wilsonville solvent separation procedure, distillation separation procedure; solvent separation modified Wilsonville Procedure W; statistical comparison of 3 solvent separation procedures; methods development for column chromatography, and application of gas chromatography to characterization of a hydrogen donor solvent; and high performance liquid chromatographic procedure.

  7. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  8. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  9. Updates on the Interagency Task Force on Natural Gas Storage...

    Energy Savers

    Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with Stakeholders Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with ...

  10. Volume, Number of Shipments Surpass Goals

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Volume Comparison Data for August 2016 | Release Date: October 31, 2016 | Complete XLS File Beginning with data for August 2010, natural gas consumption for the residential and commercial sectors was derived from the total system sendout reported by local distribution companies on Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries." The new methodology was designed to yield estimates that more closely reflect calendar month consumption patterns. Total system sendout

  11. FY 2007 Volume 5

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 DOE/CF-006 Volume 5 Environmental management Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer Volume 5 DOE/CF-006 Volume 5 Printed with soy ink on recycled paper Environmental management Department of Energy/ Environmental Management FY 2007 Congressional Budget Volume 5 Table of Contents Page Appropriation Account Summary .........................................................................................................3

  12. FY 2008 Volume 5

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 DOE/CF-018 Volume 5 Environmental Management Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Volume 5 DOE/CF-018 Volume 5 Environmental Management Printed with soy ink on recycled paper Department of Energy/ Environmental Management FY 2008 Congressional Budget Volume 5 Table of Contents Page Appropriation Account Summary.............................................................................................................3

  13. Gas-separation process

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  14. Natural gas monthly, December 1996

    SciTech Connect (OSTI)

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  15. Natural gas monthly, August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  16. Natural gas monthly, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  17. Natural gas monthly, March 1997

    SciTech Connect (OSTI)

    1997-03-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

  18. Natural gas monthly, May 1997

    SciTech Connect (OSTI)

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  19. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  20. Natural gas monthly, November 1996

    SciTech Connect (OSTI)

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  1. Natural Gas Monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  2. Natural gas monthly, December 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  3. Natural gas monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  4. Natural gas monthly, August 1995

    SciTech Connect (OSTI)

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  5. Work Plan

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S. ...

  6. Natural gas monthly, February 1996

    SciTech Connect (OSTI)

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  7. Natural gas monthly, October 1995

    SciTech Connect (OSTI)

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  8. Natural gas monthly, May 1995

    SciTech Connect (OSTI)

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  10. Natural gas monthly, March 1998

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  11. State energy price system. Volume II: data base development

    SciTech Connect (OSTI)

    Fang, J.M.; Nieves, L.A.; Sherman, K.L.; Hood, L.J.

    1982-06-01

    This volume documents the entire data development process in sufficient detail to permit critical assessment of the data base. However, since a methodological discussion is included in Chapter 3 of Volume I, it is not repeated here. The data base development process was conducted in a fuel-by-fuel fashion, following the general sequence of electricity, natural gas, coal, distillate fuel, motor gasoline, diesel, kerosene, jet fuel, residual fuel, and liquefied petroleum gas. For each of the fuels, a detailed data source review was conducted, which included a preliminary screening against criteria set up for this purpose. After this first screening, the data sources that met most of the review criteria were evaluated in more detail. If one data source met all the criteria, that data source was recommended for use, with minimal change or imputation. If there were substantial gaps in the available data series, then alternative imputation procedures were developed and compared, and recommendations were formulated. This entire procedure was then documented in a draft working paper for review and discussion. To the extent reasonable and practical, comments from the formal EIA reviews were then incorporated into the final recommendations and the data base was developed.

  12. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  13. Top Value Added Chemicals from Biomass: Volume I--Results of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals from Biomass: Volume I--Results ...

  14. Philadelphia Gas Works- Home Rebates Program

    Energy.gov [DOE]

    PGW’s Home Rebate program is available for residential customers within the PGW service territory. To participate in the program, the homeowner must first obtain a discounted home energy audit from...

  15. Working Gas Capacity of Depleted Fields

    Annual Energy Outlook

    296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Colorado 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Illinois 51,418 87,368 87,368 87,368 11,768 11,768...

  16. Working Natural Gas in Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) (indexed site)

    Alabama 23,276 24,493 24,742 19,955 20,669 20,992 1995-2016 Alaska 24,595 24,461 24,319 24,295 24,790 25,241 2013-2016 Arkansas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 ...

  17. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update

    Storage-test (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 031816 032516 ...

  18. Working Gas Capacity of Salt Caverns

    Gasoline and Diesel Fuel Update

    271,785 312,003 351,017 488,268 455,729 488,698 2008-2014 Alabama 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Arkansas 0 0 2012-2014 California 0 0 2012-2014 Colorado 0 0...

  19. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update

    7/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History Total Lower 48 States 3,759 3,836 3,909 3,963 4,017 4,047 2010-2016 East 913 925 939 940 946 944 2010-2016 Midwest 1,071 1,093 1,115 1,130 1,148 1,155 2010-2016 Mountain 240 243 245 249 253 257 2010-2016 Pacific 323 325 326 326 327 328 2010-2016 South Central 1,212 1,250 1,284 1,318 1,343 1,363 2010-2016 Salt 305 330 352 374 385 394 2010-2016 Nonsalt 907 920 931 944 958 969 2010-2016 - = No Data Reported; -- = Not Applicable; NA =

  20. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update

    Jan Stuart +1-212-713-1074 jan.stuart@ubs.com Outline: EIA oil data on Wall Street, the UBS case ¨ Part A - Why we care - What we use the data for - Fundamentals more than anything else push oil prices around - What's even scarcer than oil is good timely data ¨ Part B - Quibbles - Year-over-year comparisons, growth rates or levels - "Revisions" - Filling-in-the-blanks ¨ Part C - I wish - Weekly crude oil imports by source - Inclusion of other federal stats driving oil demand 2 Jan