National Library of Energy BETA

Sample records for working gas levels

  1. Working Gas Capacity

    Energy Information Administration (EIA) (indexed site)

    5 2015 Working Gas Capacity (billion cubic feet) ≥ 100 75 to 99 U.S. Energy Information Administration | Natural Gas Annual Figure 15. Locations of existing natural gas underground storage fields in the United States, 2015 50 to 74 Source: Energy Information Administration (EIA), Form EIA-191, "Monthly Underground Gas Storage Report." Reservoir Type Sites = Depleted Field 329 = Salt Cav

  2. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate

  3. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  4. Virginia Natural Gas in Underground Storage (Working Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators Virginia Underground Natural ...

  5. New Mexico Natural Gas in Underground Storage (Working Gas) ...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New Mexico Underground Natural ...

  6. New York Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New York Underground Natural ...

  7. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak

  8. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  9. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the

  10. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph.

  11. Washington Natural Gas in Underground Storage (Working Gas) ...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882...

  12. Kentucky Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 ...

  13. Indiana Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 ...

  14. Colorado Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 ...

  15. Illinois Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update

    Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149 ...

  16. Iowa Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 ...

  17. Kansas Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook

    Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 ...

  18. Oregon Natural Gas in Underground Storage (Working Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 ...

  19. Pennsylvania Natural Gas in Underground Storage (Working Gas...

    Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  20. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 ...

  1. Philadelphia Gas Works- Residential and Commercial Construction Incentives Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Philadelphia Gas Works (PGW) provides incentives to developers, home builders and building owners that build new facilities or undergo gut-rehab projects to conserve gas beyond the level consumed...

  2. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Energy.gov [DOE] (indexed site)

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  3. Natural gas inventories at record levels

    Annual Energy Outlook

    Natural gas inventories at record levels U.S. natural gas inventories at the end of October tied the all-time record high and inventories could climb to 4 trillion cubic feet in ...

  4. Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290

  5. Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616

  6. Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201

  7. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930

  8. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000

  9. California Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612

  10. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097

  11. Mountain Region Natural Gas in Underground Storage (Working Gas...

    Gasoline and Diesel Fuel Update

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 137,378 102,507 83,983 82,058 98,717 121,623 140,461 157,716 174,610 187,375...

  12. Pacific Region Natural Gas in Underground Storage (Working Gas...

    Energy Information Administration (EIA) (indexed site)

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 197,953 115,235 104,941 144,268 200,453 249,196 274,725 302,752 318,020...

  13. Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303 1,142 2,247 2,979 5,536 6,593 8,693 11,353 13,788 15,025 12,900 11,909 1991 8,772 5,481 3,859 4,780 6,264 7,917 9,321 11,555 13,665 14,339 14,626 14,529 1992 9,672 4,736 2,075 1,178 4,484 7,172 8,993 11,380 13,446 14,695 15,205 13,098 1993 9,826 5,478 3,563 3,068 5,261 6,437 7,528 9,247 11,746 14,426 14,826

  14. Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235

  15. Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884

  16. Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073

  17. Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914

  18. Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 8,956 13,913 13,743 14,328 15,277 16,187 17,087 18,569 20,455 22,149 21,244 19,819 2014 20,043 19,668 20,566 20,447 20,705 22,252 22,508 23,254 23,820 23,714 24,272 24,997 2015 24,811 24,626 24,391 24,208 24,279 24,357 24,528 24,635 24,543 24,595 24,461 24,319 2016 24,295 24,790 25,241 26,682 28,639 30,108 32,084 34,081

  19. Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676 8,646 8,608 8,644 8,745 9,217 9,744 10,226 10,505 10,532 10,454 10,227 1991 8,296 7,930 7,609 7,414 7,545 7,884 8,371 8,385 8,385 8,385 7,756 7,093 1992 6,440 5,922 5,569 5,501 5,499 6,009 6,861 7,525 7,959 7,883 7,656 7,166 1993 6,541 5,752 5,314 5,204 4,696 4,969 4,969 4,969 4,969 4,897 4,421 3,711 1994 2,383

  20. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122

  1. First AEO2015 Oil and Gas Working Group Meeting Summary

    Energy Information Administration (EIA) (indexed site)

    TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group ... to High Resource case * World oil price outlooks based on ...

  2. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815

  3. Alternative Fuels Data Center: How Do Natural Gas Cars Work?

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Cars Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Cars Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Natural ...

  4. Weekly Working Gas in Underground Storage

    Energy Information Administration (EIA) (indexed site)

    Working Gas in Underground Storage (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 10/07/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History Total Lower 48 States 3,759 3,836 3,909 3,963 4,017 4,047 2010-2016 East 913 925 939 940 946 944 2010-2016 Midwest 1,071 1,093 1,115 1,130 1,148 1,155 2010-2016 Mountain 240 243 245 249 253 257 2010-2016 Pacific 323 325 326 326 327 328

  5. Philadelphia Gas Works: Who’s on First?

    Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

  6. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5

  7. ,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas...

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  8. Two-tank working gas storage system for heat engine

    SciTech Connect

    Hindes, C.J.

    1987-04-07

    This patent describes a working gas control system for use in connection with a hot gas engine including a power controller for admitting the working gas to the engine to increase engine power and for releasing working gas from the engine to decrease engine power. A compressor compresses the working gas released from the engine. Storage vessels are included for storing the working gas received from the compressor and supplying the gas through the power controller to the engine. Each vessel stores the working gas at a different pressure. A valve means selectively couples the vessels to the controller and selectively couples the vessels to the compressor so that the selected vessel can supply the working gas to the engine or receive the gas from the compressor. Respective gas lines connect the valve means with the compressor and the power controller. The improvement described here is wherein the vessels include a high pressure vessel and a low pressure vessel. The valve means includes a low-pressure solenoid two-position valve on the line to the low pressure vessel, a first portion permitting flow of the gas in either direction, a second position permitting flow only in the direction towards the engine; and a high-pressure solenoid two-position valve on the line to the high-pressure vessel. One position permits flow of the gas in either direction; the other position permits flow only in the direction towards the high-pressure vessel.

  9. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  10. Two-tank working gas storage system for heat engine

    SciTech Connect

    Hindes, C.J.

    1987-04-07

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated. 6 figs.

  11. Virginia Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 ...

  12. Washington Natural Gas in Underground Storage - Change in Working...

    Gasoline and Diesel Fuel Update

    Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991...

  13. Washington Natural Gas in Underground Storage - Change in Working...

    Gasoline and Diesel Fuel Update

    Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  14. New York Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4...

  15. Oklahoma Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 ...

  16. Oklahoma Natural Gas in Underground Storage - Change in Working...

    Annual Energy Outlook

    Million Cubic Feet) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  17. New Mexico Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  18. New Mexico Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  19. Minnesota Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 ...

  20. Minnesota Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  1. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  2. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  3. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  4. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Feet) Base Gas) (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 272,719 272,719 272,719 272,719 272,719 272,719 258,434 258,434 258,434 258,434 258,434 258,736 2014 258,736 258,541 258,456 258,619 258,736 258,736 258,736 258,736 258,736 259,036 259,036 259,036 2015 259,036 259,036 259,036 259,036 259,036 259,036 259,036 259,036 259,036 259,331 259,331 259,331 2016 259,331 259,331

  5. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  6. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule (111.99 KB) More Documents & Publications Focus Series: Philadelphia Energyworks: In the City of Brotherly Love, Sharing Know-How Leads to Sustainability The Better Buildings Neighborhood View -- December 2013 Collaborating With Utilities on Residential Energy Efficiency

  7. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Together to Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support

  8. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report

    levels. These are estimated from volume data provided by a sample of operators that report on Form EIA-912, "Weekly Underground Natural Gas Storage Report." The EIA first...

  9. DOE Handbook: Implementing Activity-level Work Planning & Control...

    Office of Environmental Management (EM)

    Handbook: Implementing Activity-level Work Planning & Control at Nuclear Facilities DOE Handbook: Implementing Activity-level Work Planning & Control at Nuclear Facilities May 16, ...

  10. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion

  11. ,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf...

    Energy Information Administration (EIA) (indexed site)

    1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  12. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Pacific Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 544,417 522,182 529,030 543,901 581,848 610,748 619,005 624,692 636,405 645,077 626,113 529,510 2014 456,688 373,776 363,397 402,887 459,189 507,932 533,461 561,487 576,755 604,676 598,236 581,556 2015 535,012 532,186 534,713 552,592 584,491 595,030 603,251 606,862 617,976 638,832 628,206 579,071 2016 535,527 521,897

  13. Mountain Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 27.80 31.30 31.00 27.50 21.90 18.00 - = No Data

  14. Pacific Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 -3.60 -2.20 -6.10 -6.00 -8.10 -9.60 - = No Data Reported;

  15. Second AEO2014 Oil and Gas Working Group Meeting Summary

    Energy Information Administration (EIA) (indexed site)

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  16. Second AEO2016 Oil and Gas Working Group Meeting Summary

    Energy Information Administration (EIA) (indexed site)

    April 8, 2016 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: MINDI FARBER-DEANDA ACTING TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2016 Oil and Gas Working Group Meeting Summary (presented on February 29, 2016) Attendees: Joseph Benneche (EIA) Katie Dyl (EIA) Terry Yen (EIA) Danya Murali (EIA) Laura Singer (EIA) Faouzi Aloulou (EIA) Dana

  17. AEO2014 Oil and Gas Working Group Meeting Summary

    Energy Information Administration (EIA) (indexed site)

    9 August 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2014 Oil and Gas Working Group Meeting Summary (presented on July 25, 2013) Attendees: Anas Alhajji (NGP)* Samuel Andrus (IHS)* Emil Attanasi (USGS)* Andre Barbe (Rice University) David J. Barden (self) Joseph

  18. Lower 48 States Natural Gas Working Underground Storage (Billion...

    Energy Information Administration (EIA) (indexed site)

    Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value...

  19. Philadelphia Gas Works- Commercial and Industrial Efficient Building Grant Program

    Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Efficient Building Grant Program is part of PGW's EnergySense program. This program offers incentives up to $75,000 for multifamily,...

  20. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report

    Differences Between Monthly and Weekly Working Gas In Storage Latest update: November 3, 2016 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from January

  1. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update

    Jan Stuart +1-212-713-1074 jan.stuart@ubs.com Outline: EIA oil data on Wall Street, the UBS case ¨ Part A - Why we care - What we use the data for - Fundamentals more than anything else push oil prices around - What's even scarcer than oil is good timely data ¨ Part B - Quibbles - Year-over-year comparisons, growth rates or levels - "Revisions" - Filling-in-the-blanks ¨ Part C - I wish - Weekly crude oil imports by source - Inclusion of other federal stats driving oil demand 2 Jan

  2. Natural gas inventories at record level for start of winter

    Annual Energy Outlook

    Natural gas inventories at record level for start of winter U.S. natural gas inventories are on track to reach near-record levels at the start of the winter heating season. In its ...

  3. Natural gas inventories heading to record levels at start of...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural gas inventories heading to record levels at start of winter heating season U.S. natural gas inventories are expected to be at record levels to start the winter heating ...

  4. First AEO2017 Oil and Gas Working Group Meeting

    Energy Information Administration (EIA) (indexed site)

    DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE. September 12, 2016 MEMORANDUM FOR: Ian Mead Assistant Administrator for Energy Analysis FROM: John Staub Team Lead, Exploration and Production Analysis Mindi Farber-DeAnda Acting Team Lead, Natural Gas Markets Subject: First AEO2017 Oil and Gas Working Group Meeting held on August 25, 2016 The meeting began with an overview of the areas under focus for the AEO2017 in the Oil and Gas Supply Module (OGSM) and the Natural Gas Transmission and

  5. South Central Region Natural Gas Working Underground Storage Capacity

    Gasoline and Diesel Fuel Update

    * * 17 9 1967-2015 Propane-Air 0 0 17 9 1980-201

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1973 1974 1975 View History Net Withdrawals -6 -27 46 1973-1975 Injections 48 80 70 1973-1975 Withdrawals 42 53 116 1973-197

    in Working Gas from Same Month Previous Year (Percent)

    Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous

  6. AGA Eastern Consuming Region Natural Gas in Underground Storage (Working

    Energy Information Administration (EIA) (indexed site)

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243

  7. AGA Western Consuming Region Natural Gas in Underground Storage (Working

    Energy Information Administration (EIA) (indexed site)

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116

  8. Effect of Increased Levels of Liquefied Natural Gas Exports on...

    Energy Saver

    Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets October 2014 ... such as supply disruptions, policy changes, and technological breakthroughs. ...

  9. Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 268 01/08 257 01/15 246 01/22 235 01/29 221 2010-Feb 02/05 211 02/12 197 02/19 193 02/26 184 2010-Mar 03/05 182 03/12 176 03/19 179 03/26 185 2010-Apr 04/02 189 04/09 193 04/16 199 04/23 209 04/30 220 2010-May

  10. Salt South Central Region Natural Gas Working Underground Storage (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 159 01/08 123 01/15 91 01/22 102 01/29 108 2010-Feb 02/05 95 02/12 85 02/19 71 02/26 70 2010-Mar 03/05 63 03/12 71 03/19 80 03/26 89 2010-Apr 04/02 101 04/09 112 04/16 120

  11. South Central Region Natural Gas Working Underground Storage (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 985 01/08 886 01/15 793 01/22 789 01/29 779 2010-Feb 02/05 719 02/12 658 02/19 592 02/26 566 2010-Mar 03/05 535 03/12 548 03/19 567 03/26 581 2010-Apr 04/02 612 04/09 649 04/16 679 04/23 710

  12. Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 900 01/08 820 01/15 750 01/22 710 01/29 661 2010-Feb 02/05 604 02/12 552 02/19 502 02/26 464 2010-Mar 03/05 433 03/12 422 03/19 419 03/26 410 2010-Apr 04/02 410 04/09 429 04/16 444 04/23 462 04/30 480 2010-May

  13. Mountain Region Natural Gas Working Underground Storage (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 195 01/08 185 01/15 176 01/22 171 01/29 164 2010-Feb 02/05 157 02/12 148 02/19 141 02/26 133 2010-Mar 03/05 129 03/12 127 03/19 126 03/26 126 2010-Apr 04/02 126 04/09 126 04/16 129 04/23 134 04/30 138

  14. Nonsalt South Central Region Natural Gas Working Underground Storage

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 826 01/08 763 01/15 702 01/22 687 01/29 671 2010-Feb 02/05 624 02/12 573 02/19 521 02/26 496 2010-Mar 03/05 472 03/12 477 03/19 487 03/26 492 2010-Apr 04/02

  15. Producing Region Natural Gas Working Underground Storage (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22

  16. Illinois Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 299,439 299,439 299,439 300,439 299,439 299,439 302,439 302,439 302,439 302,439 302,439 302,962 2013 302,962 302,962 302,962 302,962 302,962 302,962 303,312 303,312 303,312 303,312 303,312 303,312 2014 303,312 303,312 303,312 303,312 303,312 303,312 303,312 303,312 303,312 304,312

  17. Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 91,114 91,113 91,113 90,846 90,580 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2013 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2014 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 90,313 2015 90,313 90,313 90,313 90,313

  18. Lower 48 Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Lower 48 Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0.1 2.3 -4.6 -11.1 -9.6 -7.7 -6.4 -4.2 -2.6 -1.2 2.0 11.3 2012 36.5 53.4 73.5 61.5 46.1 34.6 25.3 19.5 15.0 11.5 7.7 8.2 2013 -7.6 -14.8 -31.0 -29.5 -21.9 -15.7 -10.0 -6.2 -4.0 -3.4 -5.7 -15.9

  19. Salt Producing Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update

    Energy Technology Laboratory Ken Kern Strategic Energy Analysis and Planning Division National Energy Technology Lab, Pittsburgh, PA June 16, 2015 Coal Baseload Asset Aging, Evaluating Impacts on Capacity Factors Workshop on Coal Fleet Aging and Performance, EIA Post-Conference Meeting, Renaissance Hotel, Washington D.C. Generation by fuel "As natural gas prices increase in the AEO2013 Reference case, the utilization rate of coal-fired generators returns to previous historical levels and

  20. Memorandum, NNSA Activity Level Work Planning & Control Processes, January 2006

    Energy.gov [DOE]

    January 23, 2006 Memorandum from Thomas P. D’Agostino, Assistant Deputy Administrator for Program Integration, Action: Revitalizing Integrated Safety Management; Site Office Action Plans for Improving Activity Level Work Planning and Control Processes.

  1. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Energy Information Administration (EIA) (indexed site)

    and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis February 29, 2016| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview * Natural gas markets - Natural gas supply and delivered prices - Natural gas consumption - Pipeline imports/exports - LNG exports *

  2. Analysis of Integrated Safety Management at the Activity Level: Work

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planning and Control, Final Report | Department of Energy Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report May 15, 2013 Presenter: Stephen L. Domotor, Director, Office of Analysis, Office of Health, Safety and Security Topic: On August 28, 2012, the Defense Nuclear Facilities Safety Board (DNFSB or "Board") wrote to the

  3. Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 321,678 314,918 308,955 347,344 357,995 370,534 383,549 377,753 378,495 396,071 402,265 365,396 1991 279,362 271,469 271,401 289,226 303,895 323,545 327,350 329,102 344,201 347,984 331,821 316,648 1992 284,571 270,262 264,884 267,778 286,318 298,901 320,885 338,320 341,156 345,459 324,873 288,098 1993 165,226 149,367 141,472

  4. Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467 79,364 70,578 73,582 96,173 115,927 135,350 154,385 171,798 182,858 181,763 157,536 1991 120,038 97,180 81,448 90,583 109,886 132,661 147,602 165,801 180,656 188,600 175,740 148,929 1992 105,511 70,674 36,141 38,587 63,604 95,665 121,378 143,128 158,570 169,712 164,562 132,576 1993 93,544 49,298 14,332 16,953 43,536 75,177

  5. Lower 48 States Total Natural Gas in Underground Storage (Working Gas)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,690,271 2,085,441 1,706,102 1,840,859

  6. Midwest Region Natural Gas in Underground Storage - Change in Working Gas

    Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Midwest Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -63,664 -102,296 -211,632 -235,463 -214,379 -166,660 -123,165 -100,408 -77,814 -65,919 -81,637 -181,602 2014 -243,074 -255,871 -209,941 -189,692 -156,914 -124,375 -83,035 -47,387 -33,755

  7. Mountain Region Natural Gas in Underground Storage - Change in Working Gas

    Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Mountain Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 12,014 6,758 -9,151 -16,380 -18,695 -22,708 -24,019 -20,476 -26,134 -26,039 -24,866 -34,136 2014 -32,861 -42,199 -45,053 -42,581 -35,771 -26,278 -21,654 -24,388 -26,437 -26,669 -34,817

  8. Pacific Region Natural Gas in Underground Storage - Change in Working Gas

    Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -6,428 -10,631 -3,098 -14,687 -15,553 -18,935 -5,226 21,508 26,741 10,233 -13,013 -77,412 2014 -73,745 -134,228 -151,370 -126,913 -108,676 -88,833 -85,846 -63,506 -59,951 -41,003 -28,478

  9. East Region Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) East Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 605,224 419,836 303,741 362,496 488,370 606,051 678,197 759,995 854,238 910,008 851,251 688,716 2014 451,335 271,801 167,715 213,475 349,739 474,624 580,937 689,328 805,733 892,328 831,398 742,486 2015 533,537 338,726 239,291 308,664 451,773 572,878 657,591 762,518 856,308 915,094 910,246 852,876 2016 629,905

  10. East Region Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) East Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -59,770 -101,657 -207,266 -202,799 -176,110 -131,033 -101,059 -80,666 -54,688 -45,655 -40,177 -105,210 2014 -153,889 -148,035 -136,025 -149,021 -138,631 -131,428 -97,260 -70,667 -48,505 -17,679

  11. U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,531,928 1,053,730 915,878 1,122,203 1,495,691 1,839,607 2,209,565 2,542,126 2,841,503 3,002,400 2,904,404 2,536,416 1995 1,972,316 1,477,193 1,273,311 1,313,255 1,594,809 1,935,579 2,225,266 2,431,646 2,721,269 2,908,317 2,644,778 2,081,635 1996 1,403,589 973,002 720,077 796,966 1,098,675 1,457,649 1,826,743

  12. U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000

  13. Effect of Increased Levels of Liquefied Natural Gas Exports on...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, ...

  14. Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work?

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Cars Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Google Bookmark Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Delicious Rank Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Cars Work? on Digg Find More places

  15. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842

  16. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  17. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    Energy Information Administration (EIA) (indexed site)

    4: Oil and Gas Working Group AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 25, 2013 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Introduction/Background Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 25, 2013 DO NOT QUOTE OR CITE as results are

  18. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOEs National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETLs 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  19. Rapid gas hydrate formation processes: Will they work?

    DOE PAGES [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  20. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  1. Flammable gas tank waste level reconcilliation for 241-SX-102

    SciTech Connect

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

  2. U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 47,455 36,864 41,979 49,646 58,678 56,813 63,882 64,460 70,583 72,447 73,277 69,641 1995 72,965 64,476 58,510 66,025 73,529 78,437 76,026 63,026 80,949 87,711 83,704 71,638 1996 58,880 47,581 37,918 56,995 62,439 71,476 70,906 75,927 84,962 88,061 87,029 85,140 1997 57,054 49,490 55,865 58,039 73,265 79,811 65,589 66,536

  3. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    Energy Information Administration (EIA) (indexed site)

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  4. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133

  5. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -46,336 -12,518 16,386 37,537 39,350 53,475 75,155 66,399 51,354 56,272 78,572 103,458 1991 37,515 32,421 33,438 66,819 45,861 39,009 20,626 -3,335 -36,217 -14,370 -61,674 -66,823 1992 -28,428 -40,296 -82,921 -108,640 -91,199 -80,473 -64,200 -42,476

  6. Montana Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437

  7. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3,131 -3,119 -3,529 -3,306 -1,630 -1,017 244 -266 -458 -1,071 -1,072 157 1992 482 508 1,184 660 -762 -277 2,037 3,311 3,592 3,600 1,413 350 1993 -1,474 -2,431 -3,424 -3,068 -1,752 -1,058 -532 116 439 -49,834 -49,012 -47,951 1994 -47,626 -48,394 -47,215

  8. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 11,087 5,754 6,824 6,119 5,428 6,065 5,421 4,685 3,365 1,565 3,028 5,179 2015 4,768 4,958 3,824 3,761 3,574 2,105 2,020 1,381 723 881 189 -679 2016 -515 164 850 2,474 4,360 5,751 7,556 9,446 - = No Data Reported; -- =

  9. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 123.8 41.4 49.7 42.7 35.5 37.5 31.7 25.2 16.5 7.1 14.3 26.1 2015 23.8 25.2 18.6 18.4 17.3 9.5 9.0 5.9 3.0 3.7 0.8 -2.7 2016 -2.1 0.7 3.5 10.2 18.0 23.6 30.8 38.3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -925 -513 -486 -557 -855 -813 -453 -125 98 112 82 297 1991 -381 -716 -999 -1,230 -1,199 -1,333 -1,373 -1,840 -2,119 -2,147 -2,697 -3,134 1992 -1,855 -2,008 -2,040 -1,913 -2,046 -1,875 -1,510 -861 -426 -502 -100 73 1993 100 -170 -256 -297 -803 -1,041

  11. California Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600

  12. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967

  13. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 184 1999 197 189 118 122 119 262 235 178 169 171 125 68 2000 34 -17 51 68 53 -90 -197 -274 -377 -433 -377 -236 2001 -68 48 38 32 153 266 298 360 407 420 65 -22 2002 24 85 159 228 100 -16 -60 -126 -176

  14. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525

  15. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  16. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520

  17. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993

  18. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160

  19. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854

  20. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418

  1. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  2. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000

  3. Midwest Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    May 2003 1 Despite a national economic slowdown and a 4.9 percent drop in overall U.S. natural gas consumption in 2001, 1 more than 3,571 miles of pipeline and a record 12.8 billion cubic feet per day (Bcf/d) of natural gas pipeline capacity were added to the national pipeline network during 2002 (Table 1). The estimated cost was $4.4 billion. Overall, 54 natural gas pipeline projects were completed during 2002 (Figure 1, Table 2). 2 Of these, 34 were expansions of existing pipeline systems or

  4. Alabama Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1 (Million Cubic Feet)

    Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  5. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Energy Information Administration (EIA) (indexed site)

    Assumptions and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis December 1, 2015| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE We welcome feedback on our assumptions and documentation * The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/

  6. Assumptions and Expectations for Annual Energy Outlook 2017: Oil and Gas Working Group

    Energy Information Administration (EIA) (indexed site)

    Oil and Gas Working Group AEO2017 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 25, 2016| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview * "Short" AEO2017 with extension of model projection period to 2050 * World oil prices * Upstream - Offshore Gulf of Mexico and Alaska - Feedback on AEO2016 results *

  7. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0

  8. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8

  9. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8

  10. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0

  11. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0

  12. Montana Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5

  13. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1

  14. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  15. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3

  16. California Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1 24.7 4.3 3.5 3.8 10.1 15.1 15.0 9.7 1.5 -1.7 9.7 1992 -4.9 -18.0 -19.6 -21.6 -18.0 -16.9 -15.6 -10.6 -1.5 3.8 2.4 -16.7 1993 -15.0 -19.6 8.1 2.5 3.1 -2.6 3.4 1.5 1.3 1.5 0.5 17.0 1994 13.4 -12.0 -24.5 -13.5 -10.9 -5.7 -8.4 -8.0 -4.2 -3.3 -6.0 -2.0 1995 7.4 63.0 54.5 20.8 14.6

  17. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6

  18. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0

  19. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -0.1 1991 53.6 99.8 77.4 -30.5 -38.2 -24.2 -10.4 -2.9 1.3 3.3 4.2 8.6 1992 1.6 -10.3 -10.3 11.6 40.4 25.3 14.2 10.7 6.8 4.4 -9.9 -11.9 1993 -21.1 -25.4 -8.3 -9.2 -3.5 -7.0 -5.9 -4.7 -2.9 1.1 6.4 -1.1 1994 12.9 27.1 26.3 -67.7 -49.1 -32.2 -25.7 -21.5 -18.6 -20.3 -18.4 -14.3 1995 -25.9 -14.7

  20. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6

  1. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3

  2. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  3. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    Energy Information Administration (EIA) (indexed site)

    from Same Month Previous Year (Percent) Percent) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7.1 -3.2 -1.4 0.2 -3.4 -3.9 -4.7 -8.2 -10.5 -10.3 -16.6 -21.9 1992 -15.1 -26.4 -59.0 -61.0 -43.3 -36.0 -27.0 -19.0 -14.7 -8.4 -5.4 18.6 1993 28.7 15.6 28.7 37.5 46.9 48.1 35.0 30.1 32.3 24.3 19.9 -9.9 1994 -36.1 -44.0 -50.4 -9.9 -20.6 -12.2 -4.3 -1.7 -1.2 -1.0 2.5 8.2 1995

  4. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8

  5. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0

  6. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3

  7. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3

  8. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7

  9. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  10. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9

  11. Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    8-2015 From Gas Wells 27,421 23,791 15,953 13,650 10,902 9,055 1978-2015 From Oil Wells 1,153 0 552 386 298 266 1978-2015 From Shale Gas Wells 0 0 0 2012-2015 From Coalbed Wells 0 0 0 2012-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared 0 0 0 0 NA NA 2003-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA NA 2003-2015 Marketed Production 28,574 23,791 16,506 14,036 11,200 9,321 1992-2015 Dry Production 16,506 11,222 8,887 2012

    Propane-Air 1981-2005 Refinery Gas 1981-2005 Other

  12. AGA Producing Region Natural Gas Working Underground Storage Capacity

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,700,245 2,697,308 2,696,823 2,698,489 2,699,802 2,699,840 2,700,331 2,701,227 2,701,285 2,702,703 2,702,571 2,703,149 1995 2,699,674 2,699,575 2,696,880 2,695,400 2,726,268 2,726,255 2,668,312 2,671,818 2,672,399 2,672,258 2,671,362 2,672,808 1996 2,670,906 2,670,070 2,646,056 2,654,836

  13. Western Consuming Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 11 2010's 80 192 345 498 869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production West Virginia Shale Gas Proved Reserves, Reserves Changes,

  14. Government works with technology to boost gas output/usage

    SciTech Connect

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  15. Lower 48 States Working Natural Gas Total Underground Storage Capacity

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,853 41,928 100,660 271,236 466,627 439,390 372,472

  16. Indiana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    1 5 1 6 69 78 1967-2015 Propane-Air 1 5 1 6 69 78 1980-2015 Refinery Gas 1980-200

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming

  17. Pennsylvania Working Natural Gas Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    4 2 2 3 20 28 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 4 2 2 3 20 28 1980-2015 Refinery Gas 1980-2005

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming

  18. California Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    5,554 5,163 5,051 5,470 5,805 5,146 1978-2015 From Gas Wells 71 259 640 413 410 454 1978-2015 From Oil Wells 5,483 4,904 4,411 5,057 5,395 4,692 1978-2015 Repressuring 435 403 NA NA NA NA 1992-2015 Vented and Flared 0 0 NA NA NA NA 2003-2015 Nonhydrocarbon Gases Removed 0 0 NA NA NA NA 2003-2015 Marketed Production 5,120 4,760 5,051 5,470 5,805 5,146 1992-2015 Dry Production 5,051 5,952 5,139

    22,503 2,171 0 23 0 0 2007-2015 Import Price 4.76 3.57 -- 3.59 -- -- 2007-2015 Export Volume 43,278

  19. Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    8-2015 From Gas Wells 63,222 64,448 67,801 70,015 54,080 47,609 1978-2015 From Oil Wells 6,614 6,778 5,443 7,735 7,243 5,508 1978-2015 Repressuring 116 120 NA NA NA NA 1992-2015 Vented and Flared 146 149 NA NA NA NA 1999-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2015 Marketed Production 69,574 70,957 73,244 77,750 61,322 53,117 1992-2015 Dry Production 68,145 58,077 48,945 2012

    249 435 553 560 517 478 2007-2015 Biomass 249 435 553 560 517 478 201

    90,867 60,554 20,132

  20. Maryland Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    115 89 116 107 809 818 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 115 89 116 107 809 818 1980-2015 Refinery Gas 1980-2005 Other 0 0 0 1980

    43,431 13,981 2,790 5,366 11,585 12,091 1999-2015 Import Price 5.37 5.30 13.82 15.29 8.34 4.91 199

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Net Withdrawals 2,292 -1,721 2,383 -811 556

  1. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Energy Information Administration (EIA) (indexed site)

    5: Oil and Gas Working Group AEO2015 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 7, 2014 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Changes in release cycles for EIA's AEO and IEO * To focus more resources on rapidly changing energy markets and how they might evolve over the next few years, the U.S. Energy Information

  2. Operating Experience Level 3, Safe Practices for Working with...

    Energy Saver

    This Operating Experience Level 3 makes the Department of Energy (DOE) nanotechnology community aware of a new publication as it relates to DOE's nanoscale safety...

  3. Alaska Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    From Gas Wells 42,034 36,202 32,875 27,149 22,653 16,462 1978-2015 From Oil Wells 328,114 328,500 274,431 305,253 342,482 354,196 1978-2015 Repressuring 310,329 301,516 269,203 272,772 324,092 329,820 1992-2015 Vented and Flared 2,139 1,690 2,525 1,549 776 640 1992-2015 Marketed Production 57,680 61,496 35,577 58,081 40,267 40,197 1992-2015 Dry Production 35,577 40,269 40,197 2012

    2004-2015

    30,100 16,398 9,342 0 13,310 16,519 1982-2015 Export Price 12.19 12.88 15.71 -- 15.74 7.49

  4. South Central Region Natural Gas in Underground Storage - Change in Working

    Energy Information Administration (EIA) (indexed site)

    Gas from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) South Central Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -101,888 -155,544 -335,881 -301,038 -208,037 -149,650 -71,958 -32,654 -17,109 -7,023 -55,429 -144,477 2014 -281,823 -324,789 -326,968 -286,719 -287,056 -272,324 -254,513

  5. ,"Weekly East Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    East Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly East Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  6. ,"Weekly Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  7. ,"Weekly Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  8. ,"Weekly Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  9. ,"Weekly Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next Release

  10. ,"Weekly South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016" ,"Next

  11. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    SciTech Connect

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

  12. Status Update on Action 2a: Implementation Handbook for Activity-level Work Planning and Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slide Presentation by James Winter, NA-00-10. DOE Handbook: Implementing Activity-Level Work Planning & Control at Nuclear Facilities. Project Justification Statement submitted 1-29-13, with focus upon improved implementation of WP&C and activity-level work. Provides the background, project plan, and key elements of a new DOE handbook on implementing activity-level work planning and control at DOE nuclear facilities.

  13. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  14. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  15. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  16. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOEpatents

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

  17. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 452,287 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Working

  18. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  19. Working with SRNL - Our Facilities- Ultra Low-Level Underground Counting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facility Ultra Low-Level Underground Counting Facility Working with SRNL Our Facilities - Ultra Low-Level Underground Counting Facility The Ultra Low-Level Underground Counting Facility is the only facility of its kind in the country. This facility is located 50 feet below ground level, and has four-inch thick walls of pre-nuclear weapons era steel. This allows highly sensitive measurements of ultra-low amounts of environmental radioactivity, free from interference by background radiatio

  20. Analysis of ISM Activity-level Work Planning and Control Within DOE |

    Office of Environmental Management (EM)

    Department of Energy Analysis of ISM Activity-level Work Planning and Control Within DOE Analysis of ISM Activity-level Work Planning and Control Within DOE May 15, 2013 Presenter: Stephen L. Domotor, Office of Analysis, Office of Health, Safety and Security Topics Covered: There are five main categories of deficiencies symptomatic of management system weaknesses in WP&C, as follows: Hazard Identification and Hazard Control Procedures and Documents Supervision and Management

  1. Operating Experience Level 3, Ergonomically Correct Equipment Can Decrease the Risk for Work Station Injuries

    Energy.gov [DOE]

    OE-3 2016-02: This Operating Experience Level 3 (OE-3) document provides information that managers and workers at Department of Energy (DOE) facilities can use to improve productivity and comfort, while also decreasing the risk for musculoskeletal disorders (MSDs) and injuries when working at or around a computer work station for extended periods.

  2. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 3,854,408 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  3. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 493,976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  4. ,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  5. ,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  6. ,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  7. ,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  8. Draft Level 1 Remedial Investigation Work Plan: 316-3 waste disposal trenches

    SciTech Connect

    Not Available

    1987-09-01

    This work plan describes the work to be performed for the initial level of site characterization for the 316.3 Trenches at the Hanford Site. This initial site characterization effort will include a review of existing environmental contamination data for the 300 Area as well as collection and analysis of environmental samples to better characterize subsurface contamination at the site. 7 refs., 10 figs., 7 tabs.

  9. Lesson Learned by Environmental Management Complex-wide Activity-level Work

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planning and Control | Department of Energy Environmental Management Complex-wide Activity-level Work Planning and Control Lesson Learned by Environmental Management Complex-wide Activity-level Work Planning and Control May 31, 2013 Presenter: Roger M. Claycomb, DOE Idaho Operations Office Topics Covered: EM Headquarters WP&C Oversight EM HQ Participation on Field Office Reviews URS WP&C Standard and EFCOG WP&C Guideline EM HQ Evaluation of Field Office Annual ISMS Declarations

  10. Leveling the Playing Field for Women: Work at the Energy Department |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Leveling the Playing Field for Women: Work at the Energy Department Leveling the Playing Field for Women: Work at the Energy Department August 15, 2012 - 1:40pm Addthis Karl Fraiser, a member of the Savannah River Special Emphasis Planning Committee, meets with Dot Harris at the site’s Women’s Equality Day Celebration. | Photo by Rob Davis, Savannah River Site. Karl Fraiser, a member of the Savannah River Special Emphasis Planning Committee, meets with Dot

  11. Activity-level Work Planning and Control in the Hanford Site Worker Evaluation Tool

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slide Presentation by Ted Giltz, Volpentest HAMMER Federal Training Center. Hanford Site Worker Eligibility Tool, Verifying Activity-Level Worker Medical Clearance and Training. The Hanford Site Worker Eligibility Tool (HSWET) provides line management an easy to use tool to determine if workers are medically cleared and trained to perform work safely.

  12. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  13. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  14. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect

    Siskind, B.

    1992-04-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  15. Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage

    SciTech Connect

    Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.; Lim, C. Jim; Bi, X.T.; Melin, Staffan

    2009-10-01

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

  16. Review of Monitoring Plans for Gas Bubble Disease Signs and Gas Supersaturation Levels on the Columbia and Snake Rivers.

    SciTech Connect

    Fidler, Larry; Elston, Ralph; Colt, John

    1994-07-01

    Montgomery Watson was retained by the Bonneville Power Administration to evaluate the monitoring program for gas bubble disease signs and dissolved gas supersaturation levels on the Columbia and Snake rivers. The results of this evaluation will provide the basis for improving protocols and procedures for future monitoring efforts. Key study team members were Dr. John Colt, Dr. Larry Fidler, and Dr. Ralph Elston. On the week of June 6 through 10, 1994 the study team visited eight monitoring sites (smolt, adult, and resident fish) on the Columbia and Snake rivers. Additional protocol evaluations were conducted at the Willard Field Station (National Biological Survey) and Pacific Northwest Laboratories at Richland (Battelle). On June 13 and 14, 1994, the study team visited the North Pacific Division office of the U.S. Corps of Engineers and the Fish Passage Center to collect additional information and data on the monitoring programs. Considering the speed at which the Gas Bubble Trauma Monitoring Program was implemented this year, the Fish Passage Center and cooperating Federal, State, and Tribal Agencies have been doing an incredible job. Thirty-one specific recommendations are presented in this report and are summarized in Section 14.

  17. Huge natural gas reserves central to capacity work, construction plans in Iran

    SciTech Connect

    Not Available

    1994-07-11

    Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India. But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans.

  18. Natural Gas Weekly Update

    Annual Energy Outlook

    on December 9, falling from somewhat higher intraweek levels. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage dropped 64 Bcf during the...

  19. Impact of Natural Gas Appliances on Pollutant Levels in California Homes

    SciTech Connect

    Mullen, Nasim A.; Li, Jina; Singer, Brett C.

    2012-12-01

    This report presents results from the first year of a 2-year study, investigating associations of five air pollutants (CO, NO2, NOX, formaldehyde and acetaldehyde) with the presence of natural gas appliances in California homes. From November 2011 to March 2012, pollutant concentration and occupant activity data were collected in 155 homes for 6-day periods. The sample population included both single-family (68%) and multi-family (32%) dwellings, with 87% having at least one gas appliance and 77% having an unvented gas cooking appliance. The geometric mean (GM) NO2 levels measured in the kitchen, bedroom and outside of homes were similar at values of 15, 12 and 11 ppb, respectively. In contrast, the GM NOx levels measured in the kitchen and bedroom of homes were much higher than levels measured outdoors, at levels of 42 and 41 ppb, compared to 19 ppb, respectively. Roughly 10% of sampled homes had 6-day average NO2 levels that exceeded the outdoor annual average limit set by the California Ambient Air Quality Standards (CAAQS) (30 ppb). The GMs of the highest 1-h and 8-h CO level measured in homes were 2.5 and 1.1 ppm, respectively. Four homes had a 1-h or 8-h concentration that exceeded the outdoor limits set by the CAAQS. The GM formaldehyde and acetaldehyde concentrations measured in homes were 15 and 7 ppb, respectively. Roughly 95% of homes had average formaldehyde levels indoors that exceeded the Chronic Reference Exposure Level set by the California EPA (7 ppb). Concentrations of NO2 and NOx, and to a lesser extent CO were associated with use of gas appliances, particularly unvented gas cooking appliances. Based on first principles, it is expected that effective venting of cooking pollutant emissions at the source will lead to a reduction of pollutant concentrations. However, no statistical association was detected between kitchen exhaust fan use and pollutant concentrations in homes in this study where gas cooking occurred frequently. The lack of

  20. Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance: Midwest Energy Efficiency Alliance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building America Webinar Series Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance: Midwest Energy Efficiency Alliance Scott Yee March 19 th , 2014 1 Midwest Energy Efficiency Alliance (MEEA) Midwest Energy Efficiency Alliance 2 MEEA is a collaborative network whose purpose is to advance energy efficiency to support sustainable economic development and environmental preservation. Partnership for Advanced Residential Retrofit (PARR) Midwest Energy Efficiency

  1. Audience/Panel Discussion: Sites Lesson Learned about Activity-level Work Planning and Control Using EFCOG Work Planning and Control Guideline

    Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Deputy Dept Mgr for Planning & Integration, Lawrence Livermore National Laboratory. Lawrence Livermore National Laboratory work planning and control lessons learned and audience/panel discussion on site's lessons learned about Activity-level Work Planning and Control using EFCOG Work Planning and Control Guideline Document.

  2. ,"Weekly Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release

  3. ,"Weekly Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet)",1,"Weekly","11/11/2016" ,"Release Date:","11/17/2016"

  4. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  5. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  6. Ramsey interferometry with a two-level generalized Tonks-Girardeau gas

    SciTech Connect

    Mousavi, S. V.; Campo, A. del; Lizuain, I.; Muga, J. G. [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain) and Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)

    2007-09-15

    We propose a solvable generalization of the Tonks-Girardeau model that describes a coherent one-dimensional (1D) gas of cold two-level bosons which interact with two external fields in a Ramsey interferometer. They also interact among themselves by idealized, infinitely strong contact potentials, with interchange of momentum and internal state. We study the corresponding Ramsey fringes and the quantum projection noise which, essentially unaffected by the interactions, remains that for ideal bosons. The dual system of this gas, an ideal gas of two-level fermions coupled by the interaction with the separated fields, produces the same fringes and noise fluctuations. The cases of time-separated and spatially separated fields are studied. For spatially separated fields the fringes may be broadened slightly by increasing the number of particles, but only for large particle numbers far from present experiments with Tonks-Girardeau gases. The uncertainty in the determination of the atomic transition frequency diminishes, essentially with the inverse root of the particle number. The difficulties to implement the model experimentally and possible shortcomings of strongly interacting 1D gases for frequency standards and atomic clocks are discussed.

  7. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  8. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  9. Investigation of Flammable Gas Releases from High Level Waste Tanks during Periodic Mixing

    SciTech Connect

    Swingle, R.F.

    1999-01-07

    The Savannah River Site processes high-level radioactive waste through precipitation by the addition of sodium tetraphenylborate in a large (approximately 1.3 million gallon) High Level Waste Tank. Radiolysis of water produces a significant amount of hydrogen gas in this slurry. During quiescent periods the tetraphenylborate slurry retains large amounts of hydrogen as dissolved gas and small bubbles. When mixing pumps start, large amounts of hydrogen release due to agitation of the slurry. Flammability concerns necessitate an understanding of the hydrogen retention mechanism in the slurry and a model of how the hydrogen releases from the slurry during pump operation. Hydrogen concentration data collected from the slurry tank confirmed this behavior in the full-scale system. These measurements also provide mass transfer results for the hydrogen release during operation. The authors compared these data to an existing literature model for mass transfer in small, agitated reactors and developed factors to scale this existing model to the 1.3 million gallon tanks in use at the Savannah River Site. The information provides guidance for facility operations.

  10. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  11. Lesson Learned by Environmental Management Complex-wide Activity-level Work Planning and Control

    Energy.gov [DOE]

    Slide Presentation by Roger Claycomb, Work Control Program Manager, DOE Idaho Operations Office. Office of Environmental Management Work Planning and Control Oversight. Contractor Good Practices and DOE EM Good Practices.

  12. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  13. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    MEACHAM JE

    2009-10-26

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  14. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    MEACHAM JE

    2008-11-17

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  15. Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project

    SciTech Connect

    Mann, F.M.

    1995-06-07

    The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000.

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    was 62 percent below the level reported last year at this time. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,013 Bcf as of...

  17. Penetration of gas delivery systems in the United States: A state-level data analysis

    SciTech Connect

    Guldmann, J.M. . Environmental Assessment and Information Sciences Div. Ohio State Univ., Columbus, OH )

    1990-02-01

    The purpose of this study is to assess the degree to which the gas delivery infrastructure penetrates US regions and states and to pinpoint those areas in which the lack of a sufficient infrastructure impedes the expansion of the natural gas market. Regions and states are ranked according to several indicators developed with data published by the American Gas Association, the US Department of Energy/Energy Information Administration, and the US Bureau of the Census. These include the numbers of gas customers and gas deliveries by sector, mileages of distribution and transmission pipelines, underground storage capacities and operating characteristics, heating degree-days, populations and numbers of households, and areal measures of states and metropolitan areas. The market penetration of gas distribution systems is measured by two indicators: (1) the ratio of the number of residential gas customers to the number of households in 1985 and (2) the distribution pipeline density, measured by the ratio of the 1985 distribution mileage divided by the number of households, while accounting for the effect of urban population density (using earlier econometric results). 11 refs., 1 fig., 27 tabs.

  18. Total Working Gas Capacity

    Energy Information Administration (EIA) (indexed site)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669 4,800,671 2008-2015 Alaska 67,915 67,915 67,915 2013-2015 Alabama 25,150 27,350 27,350 27,350 33,150 33,150 2008-2015 Arkansas 13,898 12,036 12,178 12,178 12,178 12,178 2008-2015 California 311,096 335,396 349,296 374,296 374,296 375,496

  19. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    SciTech Connect

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

  20. Taking Oil & Gas Pumping to a New Level | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pumping Technology for Unconventional Oil and Gas Wells Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) New Pumping Technology for Unconventional Oil and Gas Wells Jeremy Van Dam 2014.04.16 About a year ago at this time, I introduced you to a few of the technologies we're developing at GE Global Research to support our

  1. Damage structure in Nimonic PE16 alloy ion bombarded to high doses and gas levels

    SciTech Connect

    Farrell, K.; Packan, N.H.

    1981-01-01

    The Nimonic PE16 alloy in solution-treated-and-aged condition was bombarded simultaneously with nickel ions and ..cap alpha.. and deuteron beams at 625/sup 0/C to doses of 80 to 313 dpa at He/dpa = 10 and D/dpa = 25. Microstructural changes consisted of the introduction of dislocations and of cavities, and the redistribuion of ..gamma..' precipitates to these defects. Cavitational swelling remained below 1%. Cavities were represented by several distinct size classes, the smaller ones believed to be gas bubbles, and some larger ones associated with preferred growth of precipitate. Formation of bubbles at grain boundaries, and large cavities at incoherent twins intensified the possibility of mechanical separation of interfaces under high-gas irradiation conditions.

  2. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  3. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect

    HU, T.A.

    2003-09-30

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail

  4. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    Reports and Publications

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  5. Levels in N12 via the N14 (p, t) reaction using the JENSA gas-jet target

    DOE PAGES [OSTI]

    Chipps, K. A.; Pain, S. D.; Greife, U.; Kozub, R. L.; Bardayan, D. W.; Blackmon, J. C.; Kontos, A.; Linhardt, L. E.; Matos, M.; Pittman, S. T.; et al

    2015-09-25

    As one of a series of physics cases to demonstrate the unique benefit of the new Jet Experiments in Nuclear Structure and Astrophysics gas-jet target for enabling next-generation transfer reaction studies, the ¹⁴N (p, t)¹²N reaction was studied for the first time, using a pure jet of nitrogen, in an attempt to resolve conflicting information on the structure of ¹²N. A new level at 4.561-MeV excitation energy in ¹²N was found.

  6. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    to replenish inventory levels of natural gas held in storage. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 3,052...

  8. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    working gas stocks are at their second-highest level for the report week in the 11-year history of the weekly natural gas storage database. The implied net injection during the...

  9. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M.

    1995-12-01

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  10. Low-Level waste phase 1 melter testing off gas and mass balance evaluation

    SciTech Connect

    Wilson, C.N.

    1996-06-28

    Commercially available melter technologies were tested during 1994-95 as part of a multiphase program to test candidate technologies for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of Hanford Site tank wastes. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. Various feed material samples, product glass samples, and process offgas streams were characterized to provide data for evaluation of process decontamination factors and material mass balances for each vitrification technology. This report describes the melter mass balance evaluations and results for six of the Phase 1 LLW melter vendor demonstration tests.

  11. Lessons Learned at the Nevada National Security Site Implementing the EFCOG Activity-level Work Planning and Control Guide

    Energy.gov [DOE]

    Slide Presentation by Steele Coddington, Work Planning Manager, National Security Technologies, Nevada National Security Site. Lessons Learned Implementing Work Planning & Control. 6 Step Process for improving WP&C.

  12. Natural gas monthly, August 1996

    SciTech Connect

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  13. Status Update on Action 2c: Criteria Review and Approach Document (CRAD) for Performing Assessments of Activity-level Work Planning and Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slide Presentation by Bradley K. Davy, Director, Office of Worker Safety and Health Assistance, HS. Criteria Review and Approach Document (CRAD) for Performing Assessments of Activity- Level Work Planning and Control. DOE CRAD Development Approach.

  14. Natural Gas Underground Storage Capacity (Summary)

    Energy Information Administration (EIA) (indexed site)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of ...

  15. The influence of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers

    SciTech Connect

    Pershyn, Yuriy; Gullikson, Erik; Artyukov, Igor; Kondratenko, Valeriy; Sevryukova, Victoriya; Voronov, Dmitriy; Zubarev, Evgeniy; Vinogradov, Alexander

    2011-08-08

    Impact of Ar gas pressure (1-4 mTorr) on the growth of amorphous interlayers in Mo/Si multilayers deposited by magnetron sputtering was investigated by small-angle x-ray scattering ({lambda} = 0.154 nm) and methods of cross-sectional transmission electron microscopy. Some reduction of thickness of the amorphous inter-layers with Ar pressure increase was found, while composition of the layers was enriched with molybdenum. The interface modification resulted in raise of EUV reflectance of the Mo/Si multilayers.

  16. Status Update on Action 2b: Revision of DOE G 226.1-2 with new Guidance for Activity-level Work Planning and Control

    Energy.gov [DOE]

    Slide Presentation by Roger Claycomb, Work Control Program Manager, DOE Idaho Operations Office. Strengthen guidance and formality associated with contractor implementation and Federal monitoring of activity-level WP&C. Develop a DOE Guide on Federal oversight and evaluation of the effectiveness of Activity-Level WP&C.

  17. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    SciTech Connect

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  18. Industrial Gas Turbines

    Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  19. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  20. Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)

    SciTech Connect

    Calmus, R.B., Westinghouse Hanford

    1996-12-17

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

  1. Completion of Level 4 Milestone M4AT-15OR2301039 for the Johnson Noise Thermometry for Drift-free Temperature Measurements Work Package AT-15OR230103

    SciTech Connect

    Britton Jr, Charles L.

    2015-09-14

    This memorandum constitutes our September 2015 level 4 milestone for the project entitled “Johnson Noise Thermometry for Drift-free Temperature Measurements” and satisfies the Milestone/Activity (Conclude HFIR field demonstration of JNT prototype). The progress summary describes the work performed to complete the subject milestone.

  2. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  3. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * ...

  4. Working Gas Capacity of Aquifers

    Energy Information Administration (EIA) (indexed site)

    64,228 363,521 367,108 453,054 452,044 452,287 2008-2015 Alabama 0 0 0 2012-2015 Arkansas 0 0 0 2012-2015 California 0 10,000 10,000 10,000 2009-2015 Colorado 0 0 0 2012-2015 Illinois 216,132 215,017 215,594 291,544 292,544 291,845 2008-2015 Indiana 19,437 19,479 19,215 19,215 19,215 20,048 2008-2015 Iowa 90,613 91,113 90,313 90,313 90,313 90,313 2008-2015 Kansas 0 0 0 2012-2015 Kentucky 6,629 6,629 6,629 6,629 4,619 4,619 2008-2015 Louisiana 0 0 0 2012-2015 Michigan 0 0 0 2012-2015 Minnesota

  5. Historical Natural Gas Annual

    Annual Energy Outlook

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  6. Historical Natural Gas Annual

    Energy Information Administration (EIA) (indexed site)

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  7. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  8. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  9. Total Natural Gas Underground Storage Capacity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  10. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  11. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    and continued increases in demand over 2002 levels. Cold temperatures this past winter led to a record drawdown of storage stocks. By the end of March, estimated working gas...

  12. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  13. Natural Gas Transmission and Distribution Module

    Energy Information Administration (EIA) (indexed site)

    July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO ...

  14. Natural Gas Weekly Update

    Annual Energy Outlook

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  16. Natural Gas Weekly Update

    Annual Energy Outlook

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  17. Natural Gas Weekly Update

    Annual Energy Outlook

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  18. Natural Gas Weekly Update

    Annual Energy Outlook

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  19. Natural Gas Weekly Update

    Annual Energy Outlook

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  3. Natural Gas Weekly Update

    Annual Energy Outlook

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  6. Natural Gas Weekly Update

    Annual Energy Outlook

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  7. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51 eV and E{sub HOMO}: 1.35 eV) and Ti (E{sub LUMO}: 2.19 eV and E{sub HOMO}: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  8. Historical Natural Gas Annual 1999

    Annual Energy Outlook

    1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  9. Gas hydrates

    SciTech Connect

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  11. Breathable gas distribution apparatus

    DOEpatents

    Garcia, E.D.

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  12. Reversible Acid Gas Capture

    ScienceCinema

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  13. Breathable gas distribution apparatus

    DOEpatents

    Garcia, Elmer D.

    1985-01-01

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  14. Natural Gas Issues and Trends - Record winter withdrawals create summer

    Gasoline and Diesel Fuel Update

    storage challenges - Energy Information Administration Record winter withdrawals create summer storage challenges Released: June 12, 2014 On June 6, a net natural gas storage injection of 107 billion cubic feet (Bcf) brought natural gas working inventories in the contiguous United States to 1,606 Bcf. Strong injections over the past five weeks raised storage levels well above where they were on May 2, when a 74-Bcf injection ended seven consecutive weeks of storage levels that were less than

  15. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation PDF icon RCC Workplan NGV.PDF More Documents & Publications REGULATORY COOPERATION COUNCIL - WORK PLANNING ...

  16. Work plan for the identification of techniques for in-situ sensing of layering/interfaces of Hanford high level waste tank

    SciTech Connect

    Vargo, G.F. Jr.

    1995-06-16

    The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.

  17. Natural Gas Weekly Update

    Annual Energy Outlook

    average, the general price level in the natural gas market has shown surprising resilience over the past few weeks. After an extended price decline since mid December, spot...

  18. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  19. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  20. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  1. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  2. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  3. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  4. Updates on the Interagency Task Force on Natural Gas Storage...

    Energy Saver

    Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with Stakeholders Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with ...

  5. Comparison of Natural Gas Storage Estimates from the EIA and AGA

    Reports and Publications

    1997-01-01

    The Energy Information Administration (EIA) has been publishing monthly storage information for years. In order to address the need for more timely information, in 1994 the American Gas Association (AGA) began publishing weekly storage levels. Both the EIA and the AGA series provide estimates of the total working gas in storage, but use significantly different methodologies.

  6. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  7. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  8. Work Plan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S. ...

  9. Historical Natural Gas Annual - 1930 Through 2000

    Annual Energy Outlook

    2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  10. Philadelphia Gas Works- Home Rebates Program

    Energy.gov [DOE]

    PGW’s Home Rebate program is available for residential customers within the PGW service territory. To participate in the program, the homeowner must first obtain a discounted home energy audit from...

  11. Working Gas Capacity of Depleted Fields

    Annual Energy Outlook

    296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Colorado 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Illinois 51,418 87,368 87,368 87,368 11,768 11,768...

  12. Working Natural Gas in Underground Storage (Summary)

    Energy Information Administration (EIA) (indexed site)

    Alabama 23,276 24,493 24,742 19,955 20,669 20,992 1995-2016 Alaska 24,595 24,461 24,319 24,295 24,790 25,241 2013-2016 Arkansas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 ...

  13. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update

    Storage-test (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 031816 032516 ...

  14. Working Gas Capacity of Salt Caverns

    Gasoline and Diesel Fuel Update

    271,785 312,003 351,017 488,268 455,729 488,698 2008-2014 Alabama 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Arkansas 0 0 2012-2014 California 0 0 2012-2014 Colorado 0 0...

  15. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update

    7/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History Total Lower 48 States 3,759 3,836 3,909 3,963 4,017 4,047 2010-2016 East 913 925 939 940 946 944 2010-2016 Midwest 1,071 1,093 1,115 1,130 1,148 1,155 2010-2016 Mountain 240 243 245 249 253 257 2010-2016 Pacific 323 325 326 326 327 328 2010-2016 South Central 1,212 1,250 1,284 1,318 1,343 1,363 2010-2016 Salt 305 330 352 374 385 394 2010-2016 Nonsalt 907 920 931 944 958 969 2010-2016 - = No Data Reported; -- = Not Applicable; NA =

  16. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    68.6 47.3 29.6 20.4 13.5 6.2 1973-2016 Alaska 3.5 10.2 18.0 23.6 30.8 38.3 2013-2016 Lower 48 States 69.7 47.8 29.7 20.3 13.4 6.0 2011-2016 Alabama 163.9 67.0 26.8 15.0 -4.6 -10.7 1996-2016 Arkansas -40.3 -34.0 -28.2 -25.9 -12.7 -4.4 1991-2016 California -3.3 -2.8 -7.1 -7.7 -10.5 -11.3 1991-2016 Colorado 10.8 14.3 13.5 7.7 7.2 4.4 1991-2016 Illinois 15.1 8.8 2.0 3.4 -0.3 -0.7 1991-2016 Indiana 56.6 45.0 34.1 23.1 14.8 4.5 1991-2016 Iowa 10.2 2.7 -9.5 -20.0 -20.3 -13.7 1991-2016 Kansas 52.9 59.7

  17. Working Gas % Change from Year Ago

    Energy Information Administration (EIA) (indexed site)

    Washington -0.6 -10.8 -20.6 -8.7 -21.2 -20.7 1991-2016 West Virginia 2.7 10.1 16.0 21.3 45.6 87.6 1991-2016 Wyoming 0.6 4.3 3.1 -0.8 -0.8 5.1 1991-2016 AGA Producing Region ...

  18. Working Gas Volume Change from Year Ago

    Energy Information Administration (EIA) (indexed site)

    West Virginia 5,456 18,992 25,179 21,224 26,766 34,404 1990-2016 Wyoming 173 1,291 872 -218 -200 1,161 1990-2016 AGA Producing Region 1994-2014 AGA Eastern Consuming Region ...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    a decrease of about 0.36, or 6.9 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage totaled 2,213 Bcf as...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    by 0.409 or 8 percent per MMBtu to 4.850 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,796 Bcf as of...

  1. Natural Gas Weekly Update

    Annual Energy Outlook

    supply disruptions during the remainder of the hurricane season. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage was 2,461 Bcf as of Friday,...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    (August 5) and the low price of 2.804 (August 21) per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,323 Bcf as of...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    2009 contract, which closed at 12.987 per MMBtu on May 28. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,701 Bcf as of...

  4. Natural Gas Weekly Update

    Annual Energy Outlook

    7.02 per MMBtu, an increase of about 0.24 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 3,488 Bcf as of...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    5.06 per MMBtu, a decrease of only 0.01 per MMBtu on the week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,762...

  6. Natural Gas Weekly Update

    Annual Energy Outlook

    a decrease of about 0.09, or 1.7 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,737 Bcf as of...

  7. Natural Gas Weekly Update

    Annual Energy Outlook

    decreasing about 0.23, or 4.4 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,840...

  8. Natural Gas Weekly Update

    Annual Energy Outlook

    MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

  9. Natural Gas Weekly Update

    Annual Energy Outlook

    fell 31 cents, from 5.554 last Wednesday to 5.239 yesterday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,165...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    expectations of robust storage inventories in the coming months. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,886 Bcf as of...

  11. Natural Gas Weekly Update

    Annual Energy Outlook

    38 cents per MMBtu, or about 7 percent, during the report week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,996 Bcf as of...

  12. Natural Gas Weekly Update

    Annual Energy Outlook

    January 2009 contract, which closed at 12.74 per MMBtu on May 14. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,529 Bcf as of...

  13. Natural Gas Weekly Update

    Annual Energy Outlook

    2009 to September 2009 posting declines of more than 30 cents. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,116 Bcf as of...

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    a decrease of about 0.25, or 5.1 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,823 Bcf as of...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    since last week, ending trading yesterday at 5.084 per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 2,089 Bcf as of...

  16. Natural Gas Weekly Update

    Annual Energy Outlook

    at 7.39 per MMBtu, which is 76 cents lower than last week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,198 Bcf as of...

  17. Natural Gas Weekly Update

    Annual Energy Outlook

    9.08 per MMBtu, an increase of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,757 Bcf as of...

  18. Natural Gas Weekly Update

    Annual Energy Outlook

    per MMBtu, 22 cents or 4.3 percent lower than last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,615 Bcf as of...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    2009 contract, which closed at 13.84 per MMBtu on June 25. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,033 Bcf as of...

  20. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    response was somewhat more pronounced (down 5.3 percent) with the September 2011 natural gas contract losing ground over the week, closing at 4.090 per MMBtu on Wednesday. Working...

  1. Natural Gas Weekly Update

    Annual Energy Outlook

    since last Wednesday in every region of the country except in the West. Working gas in storage was 623 Bcf as of April 11, which was 49 percent below the previous 5-year...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    a large estimate of net injections of working gas into storage put downward pressure on spot and futures prices. Some parts of New England saw high temperatures only in the 70s for...

  3. Natural Gas Weekly Update

    Annual Energy Outlook

    9.34 per MMBtu, a decrease of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,517 Bcf as of...

  4. Midwest Region Natural Gas in Underground Storage (Working Gas...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 449,673 237,999 142,513 179,338 317,901 471,765 625,764 788,930 935,822 1,047,609 972,803 854,545 2015 617,716 345,091 ...

  5. West Virginia Natural Gas in Underground Storage (Working Gas...

    Energy Information Administration (EIA) (indexed site)

    72,781 96,991 120,021 128,965 146,728 161,226 138,140 98,925 1996 58,862 28,134 5,245 ... 41,617 73,760 112,584 144,708 167,434 191,226 201,322 193,811 151,497 2004 93,076 59,499 ...

  6. Utah Natural Gas in Underground Storage (Working Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    19,120 11,915 6,118 7,419 9,193 10,977 15,226 20,591 26,089 27,689 23,281 16,335 1992 ... 20,126 22,061 29,069 34,478 40,280 42,226 45,097 47,826 46,870 38,220 2011 25,127 ...

  7. How Carbon Capture Works | Department of Energy

    Energy.gov [DOE] (indexed site)

    How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost...

  8. Natural Gas Weekly Update

    Annual Energy Outlook

    levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and...

  9. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for the March contract ended the week up almost 5 cents at 2.191 per MMBtu. Natural gas stocks remained well above last year's level as estimated net withdrawals were 82 Bcf...

  10. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    last Wednesday's level, to 5.097 per MMBtu at yesterday's close of trading. Natural gas stocks as of Friday, March 21 stood at 643 Bcf, which is 47.4 percent less than the...

  11. Natural gas annual 1997

    SciTech Connect

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  12. Working Copy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    At DOE Working At DOE Working At DOE Only Here...Will you Define the Future of Energy The people of DOE are engaged in a wide range of challenging and innovative work - from participating in groundbreaking international initiatives like the Global Nuclear Partnership, to solar power demonstration projects, to projects that convert captured carbon dioxide (CO2) emissions from industrial sources into fuel, plastics, and fertilizers. Only here can the diversity of activities throughout our

  13. Working Copy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... manual containing the DOE legal and regulatory requirements for work in radiological ... exposure. Standards, operating guides, and procedures (including revisions and ...

  14. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  15. Emergency Preparedness Working

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    August 24, 2015 Emergency Preparedness Working Group (EPWG) Grant * Nevada Field Office funds the EPWG grant based on .50 per cubic foot of low-levelmixed low-level waste ...

  16. Gas venting

    DOEpatents

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  17. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  18. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  19. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  20. PREDICTING MERGER-INDUCED GAS MOTIONS IN ?CDM GALAXY CLUSTERS

    SciTech Connect

    Nagai, Daisuke; Lau, Erwin T.; Avestruz, Camille; Rudd, Douglas H.; Nelson, Kaylea

    2013-11-10

    In the hierarchical structure formation model, clusters of galaxies form through a sequence of mergers and continuous mass accretion, which generate significant random gas motions especially in their outskirts where material is actively accreting. Non-thermal pressure provided by the internal gas motions affects the thermodynamic structure of the X-ray emitting intracluster plasma and introduces biases in the physical interpretation of X-ray and Sunyaev-Zeldovich effect observations. However, we know very little about the nature of gas motions in galaxy clusters. The ASTRO-H X-ray mission, scheduled to launch in 2015, will have a calorimeter capable of measuring gas motions in galaxy clusters at the level of ?< 100 km s{sup 1}. In this work, we predict the level of merger-induced gas motions expected in the ?CDM model using hydrodynamical simulations of galaxy cluster formation. We show that the gas velocity dispersion is larger in more massive clusters, but exhibits a large scatter. We show that systems with large gas motions are morphologically disturbed, while early forming, relaxed groups show a smaller level of gas motions. By analyzing mock ASTRO-H observations of simulated clusters, we show that such observations can accurately measure the gas velocity dispersion out to the outskirts of nearby relaxed galaxy clusters. ASTRO-H analysis of merging clusters, on the other hand, requires multi-component spectral fitting and enables unique studies of substructures in galaxy clusters by measuring both the peculiar velocities and the velocity dispersion of gas within individual sub-clusters.

  1. Water-saving liquid-gas conditioning system

    DOEpatents

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  2. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  3. CFCC working group meeting: Proceedings

    SciTech Connect

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  4. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  5. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  6. Fundamentals of gas measurement II

    SciTech Connect

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  7. Stand-Level Gas-Exchange Responses to Seasonal Drought in Very Young Versus Old Douglas-fir Forests of the Pacific Northwest, USA

    SciTech Connect

    Wharton, S; Schroeder, M; Bible, K; Falk, M; Paw U, K T

    2009-02-23

    This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral stands (ES) (0-15 years old) and an old-growth (OG) ({approx} 450-500) forest in the Wind River Experiment Forest, Washington, USA. We use eddy covariance flux measurements of carbon dioxide (F{sub NEE}), latent energy ({lambda}E) and sensible heat (H) to derive evapotranspiration rate (E{sub T}), bowen ratio ({beta}), water use efficiency (WUE), canopy conductance (G{sub c}), the Priestley-Taylor coefficient ({alpha}) and a canopy decoupling factor ({Omega}). The canopy and bulk parameters are examined to see how ecophysiological responses to water stress, including changes in available soil water ({theta}{sub r}) and vapor pressure deficit ({delta}e) differ among the two forest successional-stages. Despite very different rainfall patterns in 2006 and 2007, we observed distinct successional-stage relationships between E{sub T}, {alpha}, and G{sub c} to {delta}e and {theta}{sub r} during both years. The largest stand differences were (1) higher morning G{sub c} (> 10 mm s{sup -1}) at the OG forest coinciding with higher CO{sub 2} uptake (F{sub NEE} = -9 to -6 {micro}mol m{sup -2} s{sup -1}) but a strong negative response in G{sub c} to moderate {delta}e later in the day and a subsequent reduction in E{sub T}, and (2) higher E{sub T} at the ES stands because midday canopy conductance did not decrease until very low water availability levels (<30%) were reached at the end of the summer. Our results suggest that early seral stands are more likely than mature forests to experience declines in production if the summer drought becomes longer or intensifies because water conserving ecophysiological responses were only observed at the very end of the seasonal drought period in the youngest stands.

  8. Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Los Angeles Public Works Fleet Converts to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural Gas on Google Bookmark Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural

  9. Tennessee Underground Natural Gas Storage - All Operators

    Annual Energy Outlook

    340 340 340 340 340 340 1997-2015 Base Gas 340 340 340 340 340 340 1997-2015 Working Gas 1997-2011 Net Withdrawals 1998-2006 Injections 1997-2005 Withdrawals 1997-2006 Change in...

  10. Gas Swimming Pool Heaters | Department of Energy

    Energy.gov [DOE] (indexed site)

    and pool use, they may not be the most energy-efficient option when compared to heat pump and solar pool heaters. How They Work Gas pool heaters use either natural gas or...

  11. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1995-10-24

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  12. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  13. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  14. Nebraska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update

    www.eia.gov Joe Benneche July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT QUOTE OR CITE Overview 2 Joe Benneche, Washington, DC, July 31, 2012 * Replace regional natural gas wellhead price projections with regional spot price projections * Pricing of natural gas vehicles fuels (CNG and LNG) * Methodology for modeling exports of LNG * Assumptions on charges related

  15. Hydrogen gas relief valve

    DOEpatents

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  16. Method of Liquifying a gas

    DOEpatents

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  17. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  18. Dissolution of inert gas in a metal alloy

    DOEpatents

    Flinn, John E.; Korth, Gary E.; Wright, Richard N.; Clark, Denis E.; Loop, Richard B.

    1988-01-01

    A metal powder is produced by inert gas atomization processes. The atomizon process is regulated to provide a preselected level of inert gas alloyed in the metal.

  19. Navigating the Numbers: Greenhouse Gas Data and International...

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Data and International Climate Policy1 Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies...

  20. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  1. Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage ...

  2. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  3. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  4. GAS PHOTOTUBE CIRCUIT

    DOEpatents

    Richardson, J.H.

    1958-03-01

    This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

  5. Gas-phase chemical dynamics

    SciTech Connect

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  6. Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks...

    Alternative Fuels and Advanced Vehicles Data Center

    Liquefied Natural Gas Trucks Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks Work? on Facebook Tweet about Alternative Fuels ...

  7. Total Natural Gas Underground Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources ...

  8. AEO2012 Preliminary Assumptions: Oil and Gas Supply

    Energy Information Administration (EIA) (indexed site)

    3 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 31, 2012 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Assumptions and Expectations for Annual Energy Outlook 2013: Oil and Gas Working Group Overview 2 Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 31, 2012 DO NOT QUOTE OR CITE as results are subject to

  9. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect

    Steinfield, G.; Sanderson, R.

    1998-02-01

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  12. How Fuel Cells Work | Department of Energy

    Energy.gov [DOE] (indexed site)

    0 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can ...

  13. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  14. Unconventional Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 21 Exhibit 1-9 U.S. oil- and gas-producing ... for natural gas extraction (NETL, 2014) ... shale gas, tight gas sands, and coalbed methane resources. ...

  15. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update

    Renewable Electricity: State-level Issues and Perspectives July 12, 2016 2 40% Reduction in GHG emissions from 1990 levels Reducing greenhouse gas (GHG) emissions from the energy sector- power generation, industry, buildings, and transportation-is critical to protecting the health and welfare of New Yorkers and reaching the longer term goal of decreasing total carbon emissions 80% by 2050. 50% Generation of electricity from renewable energy sources Renewable resources, including solar, wind,

  16. Gas hydrates: technology status report

    SciTech Connect

    Not Available

    1986-01-01

    The DOE Morgantown Energy Technology Center (METC) implemented a gas hydrates R and D program that emphasized an understanding of the resource through (1) an assessment of current technology, (2) the characterization of gas hydrate geology and reservoir engineering, and (3) the development of diagnostic tools and methods. Recovery of natural gas from gas hydrates will be made possible through (1) improved instrumentation and recovery methods, (2) developing the capability to predict production performance, and (3) field verification of recovery methods. Gas hydrates research has focused primarily on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for detailed investigation. A Geologic Analysis System (GAS) was developed. GAS contains approximately 30 software packages and can manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. The system also contains all well information currently available from the Alaskan North Slope area. Laboratory research on gas hydrates includes the characterization of the physical system, which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran (THF), consolidated rock cores, frost base mixtures, water/ice-base mixtures, and water-base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by DOE/METC. More recently, natural hydrate samples acquired from the Gulf of Mexico are being tested. Modeling and systems analysis work has focused on the development of GAS and preliminary gas hydrate production models. 23 refs., 18 figs., 6 tabs.

  17. Hot-gas conditioning of biomass derived synthesis gas

    SciTech Connect

    Paisley, M.A.; Litt, R.D.

    1993-12-31

    Battelle has tested selected catalysts to evaluate the potential for hot-gas conditioning of biomass gasifier product gas to modify the product gas to produce a gas suitable for methanol synthesis. The Battelle Process Research Unit (PRU) gasifier was utilized as a source of a stable supply of product gas that contained all of the trace constituents that might be present in a commercial scale gasification system. One goal of alternate fuel generation with renewable biomass fuels is the production of a liquid transportation fuel such as methanol. The hot-gas conditioning tests run were planned to evaluate commercial catalysts that would crack hydrocarbons and provide water gas shift activity to adjust the product gas composition for methanol synthesis. During the test program, a novel, low cost catalyst, was identified that showed high levels of activity and stability. The composition of this catalyst is such that it has the potential to be a disposable catalyst and is free from hazardous materials. The initial tests with this catalyst showed high levels of water gas shift activity superior to, and hydrocarbon cracking activity nearly as high as, a commercial cracking catalyst tested.

  18. How NIF Works

    ScienceCinema

    None

    2016-07-12

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  19. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells ... Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and ...

  20. New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas ... Natural Gas Gross Withdrawals from Shale Gas Wells New Mexico Natural Gas Gross ...

  1. Drilling and production statistics for major US coalbed methane and gas shale reservoirs. Topical report, June-August 1995

    SciTech Connect

    Kelso, B.S.; Lombardi, T.E.; Kuuskraa, J.A.

    1995-12-01

    The objective of this work is to provide GRI with a review and analysis of the oil and gas industry`s activity level and associated production from the major coalbed methane and gas shale reservoirs in the U.S. The authors specifically focused on the pre- and post-Section 29 qualifying deadline of December 1992 for unconventional gas Tax Credits. The primary plays investigated include the coalbed methane reservoirs in the San Juan, Warrier, Appalachian, Uinta, Powder River, and Pieceance basins and the gas shale plays in the Michigan, Fort Worth, Appalachian, Denver, and Illinois basins. A projection for future activity and production levels is made based on historic trends for each of the reservoir types. Telephone surveys were conducted with numerous operators to determine current activity status and to assist in projecting future activity of the two gas resources.

  2. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  3. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  4. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  5. Site clearance working group

    SciTech Connect

    1997-03-01

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  6. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  7. DOE - Office of Legacy Management -- Morgantown Ordnance Works...

    Office of Legacy Management (LM)

    NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Morgantown Ordnance Works Historical ...

  8. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  9. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  10. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  11. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  12. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    SciTech Connect

    SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati

  13. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  14. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  15. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    in September and range between $4.37 and $4.58 per MMBtu in the last 3 months of 2003 (Short-Term Energy Outlook, September 2003). Spot prices at the Henry Hub have fallen somewhat from the unusually high levels that prevailed in the first half of the year and most of July, as mild summer weather in many areas of the country has reduced cooling demand and allowed record storage refill rates. As of September 5, working gas levels were only 5.5 percent below the 5-year average and, barring any

  16. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    7 per MMBtu during the last 3 months of 2003 and increase to $4.32 in January 2004 (Short-Term Energy Outlook, October 2003). Prices have fallen somewhat from the unusually high levels that prevailed in the first half of the year and most of July, as mild summer weather and reduced industrial demand allowed record storage refill rates. As of October 3, 2003, working gas levels were only 1 percent below the 5-year average and, barring any disruptions, are on target to reach 3 Tcf by the end of

  17. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    8 per MMBtu during the last 2 months of 2003 and increase to $4.36 in January 2004 (Short-Term Energy Outlook, November 2003). Prices have fallen in the past few months as mild weather and reduced industrial demand have allowed record storage refill rates. As of October 31, 2003, working gas levels had reached 3,155 Bcf, which is about 3 percent higher than the 5-year average and the first time since October 2002 that stocks exceeded the year-earlier levels. With the improved storage situation,

  18. Coke oven gas injection to blast furnaces

    SciTech Connect

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  19. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  20. AEO2015 Liquid Fuels Markets Working Group Presentation

    Energy Information Administration (EIA) (indexed site)

    Independent Statistics & Analysis Assumptions for Annual Energy Outlook 2015: Liquid Fuels Markets Working Group AEO2015 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 17, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington

  1. Gas treating alternatives for LNG plants

    SciTech Connect

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  2. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  3. Natural Gas Weekly Update

    Annual Energy Outlook

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  4. Natural Gas Applications

    Annual Energy Outlook

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  5. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  6. New York Natural Gas in Underground Storage (Base Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  7. Shale gas is natural gas trapped inside

    Energy.gov [DOE] (indexed site)

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of ...

  8. GAS SEAL

    DOEpatents

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  9. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    economic incentive to inject natural gas into underground storage. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,943 Bcf as of...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage increased to 3,254 Bcf as of Friday,...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in underground storage was 2,521 Bcf as of June...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  1. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage totaled 2,347 Bcf as of Friday,...

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  3. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories increased to 1,904 Bcf as of Friday,...

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    Office of Oil and Gas. Storage: Estimated working gas in underground storage was 3,299 Bcf as of November 26, which is 11.2 percent, or 331 Bcf, above the 5-year average...

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  6. AGA Producing Region Natural Gas in Underground Storage - Change...

    Energy Information Administration (EIA) (indexed site)

    Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas ... Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 ...

  7. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    Energy Information Administration (EIA) (indexed site)

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  8. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    SciTech Connect

    Harry Bonner; Roger Malmquist

    2003-11-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (Stripper Gas Water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program was intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research was to determine appropriate guidelines for field trials by

  9. Steady State Dense Gas Dispersion

    Energy Science and Technology Software Center

    1995-03-01

    SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.

  10. Dry Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic ...

  11. Natural gas 1995: Issues and trends

    SciTech Connect

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  12. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  13. Betting on the Future: The authors compare natural gas forecaststo futures buys

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2006-01-20

    On December 12, 2005, the reference case projections from Annual Energy Outlook 2006 (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market. The goal is better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. Below is a discussion of our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this article we update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words

  14. Students Innovate to Address Gas Shortages Following Hurricane Sandy |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Ian Kalin Director of the Energy Data Initiative What are the key

  15. Natural Gas Basics

    SciTech Connect

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  16. Gas hydrates: Technology status report

    SciTech Connect

    Not Available

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  17. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70

  18. Ensuring Safe and Reliable Underground Natural Gas Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2016 Ensuring Safe and Reliable Underground Natural Gas Storage Final Report of the Interagency Task Force on Natural Gas Storage Safety About the Cover: Relief well at the SoCalGas Aliso Canyon Gas Storage Facility well Standard Sesnon 25 (SS-25) (February 2016) i Message from the Secretary of Energy Earlier this year, Congress and the Administration worked together to establish a Federal Task Force to analyze California's Aliso Canyon natural gas leak and make recommendations on how to

  19. The Compelling Case for Natural Gas Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Compelling Case for Natural Gas Vehicles The Compelling Case for Natural Gas Vehicles Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more. Download the The Compelling Case for Natural Gas Vehicles presentation. (2.92 MB) More Documents & Publications QER - Comment of American Gas Association 3 Growth of the NGV Market: Lessons Learned

  20. Work Force Retention Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Work force Retention Work Group is established to support the Department’s critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE’s national security mission are reaching retirement age.

  1. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  2. Financial Review of the Global Oil and Natural Gas Industry 2015

    Energy Information Administration (EIA) (indexed site)

    operations. * Capital expenditure fell below 2009 levels, and 2016 spending is likely to decline again. ... gas oil and natural gas production year-over-year change Markets and ...

  3. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  4. Nebraska Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 20,031 22,197 22,197 22,197 22,197 22,197 1990-2016 Working Gas 13,797 11,418 10,438 8,645 8,093 8,192 1990-2016 Net Withdrawals -1,193 212 979 1,788 549 -103 1990-2016 ...

  5. Oklahoma Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 185,345 185,530 183,624 183,624 183,624 183,624 1990-2016 Working Gas 173,608 169,454 162,995 136,212 126,100 131,961 1990-2016 Net Withdrawals -13,483 3,951 8,250 26,725 ...

  6. Pennsylvania Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 344,161 343,997 343,965 343,818 343,699 336,838 1990-2016 Working Gas 380,696 386,683 375,251 287,921 225,614 212,465 1990-2016 Net Withdrawals -31,589 -5,821 11,466 ...

  7. Missouri Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,341 6,537 6,493 6,045 6,198 6,063 1990-2016 Net Withdrawals -268 -212 28 433 -168 119 1990-2016 Injections 268 ...

  8. Michigan Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Gas 394,117 394,117 394,117 386,427 387,027 385,038 1990-2015 Working Gas 241,221 323,709 398,647 488,022 563,188 622,544 1990-2015 Net Withdrawals -82,150 -82,493 -74,938...

  9. Arkansas Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 10,841 11,213 11,664 11,664 11,652 11,652 1990-2016 Working Gas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 Net Withdrawals -212 -283 -127 434 328 438 1990-2016 Injections ...

  10. Texas Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 297,441 297,427 293,580 294,440 294,891 295,519 1990-2016 Working Gas 470,258 471,593 469,012 411,431 386,432 405,225 1990-2016 Net Withdrawals -41,913 -2,086 6,424 56,721 ...

  11. Description of Work for Drilling at the 183-DR Site in Support of the In Situ Gaseous Reduction Test

    SciTech Connect

    Thornton, Edward C.; Olsen, Khris B.; Schalla, Ronald

    2000-06-26

    In Situ Gaseous Reduction is a technology currently being developed by DOE for the remediation of soil waste sites contaminated with hexavalent chromium. Prior work suggests that a candidate for application of this approach is the 183-DR site at Hanford. However, deep vadose zone drilling is needed to verify the presence of a hexavalent chromium source and to determine the concentration levels and spatial distribution of contamination. This document presents the requirements associated with drilling one to two vadose zone boreholes at the 183-DR site to obtain this information. If hexavalent chromium is determined to be present at levels of at least 10 ppm in the vadose zone in one of the initial boreholes, this hole will be completed for gas injection and six additional gas extraction boreholes will be drilled and completed. This network will be used as a flowcell for performing a gas treatment test at the site.

  12. Liquid level controller

    DOEpatents

    Mangus, J.D.; Redding, A.H.

    1975-07-15

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

  13. Control apparatus for hot gas engine

    SciTech Connect

    Stotts, R.E.

    1986-07-22

    This patent describes an apparatus for controlling the operation of a hot gas engine that includes a hot gas engine having a positionable power controller for adding working gas to the engine from a supply line to increase engine power and releasing working gas from the engine to an outlet line to decrease engine power, a plurality of tanks for supplying gas stored therein to the supply line, each tank being at a different pressure, a plurality of compressor units each having an inlet that is connected to the engine outlet for pumping released gas from the engine and a discharge that is connected to the supply line to return the released gas to one of the tanks, a first selector means for opening a selected one of the tanks to the supply line whereby gas can be added to the engine from the open tank or returned to the open tank from the compressor means, and a second selector means for activating at least one of the compressor units to pump gas from the engine and return the gas to a selected one of the tanks.

  14. Weekly Natural Gas Storage Report - EIA

    Weekly Natural Gas Storage Report

    August 14, 2015 | Released: August 20, 2015 at 10:30 a.m. | Next Release: August 27, 2015 Working gas in underground storage, Lower 48 states Summary text CSV JSN Historical...

  15. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  16. Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks...

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Class 8 Trucks Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks Work? on Facebook Tweet about Alternative Fuels Data ...

  17. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  18. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    SciTech Connect

    SD Rassat; CW Stewart; BE Wells; WL Kuhn; ZI Antoniak; JM Cuta; KP Recknagle; G Terrones; VV Viswanathan; JH Sukamto; DP Mendoza

    2000-01-26

    Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate how added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant stratification

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  20. ,"U.S. Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  1. The Office of Fossil Energy Natural Gas Regulatory Activities

    Energy Saver

    ... fire and gas detection, and the supervision of refrigeration compressors installation. ... Train 4 worked on completing the refrigeration compressor table top foundation and ...

  2. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE will continue to work together to ensure safe, sustainable offshore production of oil and natural gas. August 7, 2013 Energy Department Authorizes Third Proposed Facility to...

  3. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  4. Natural gas inventories end the winter at a record high

    Annual Energy Outlook

    Natural gas inventories end the winter at a record high U.S. natural gas inventories finished the winter heating season at their highest level ever. In its new monthly forecast, ...

  5. Mississippi Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    8,335 13,283 2009 13,864 4,222 12,013 22,839 24,117 25,695 29,900 29,138 34,146 21,818 24,358 7,096 2010 4,902 1,262 6,394 7,350 10,135 7,975 1,284 1,863 7,042 14,373 9,281...

  6. Wyoming Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 ... 6,038 2,848 1,207 1,398 2010 -5,857 -11,471 -12,279 -11,921 -10,771 -10,354 -10,157 ...

  7. East Region Natural Gas Working Underground Storage (Billion...

    Energy Information Administration (EIA) (indexed site)

    2010-Jan 0101 769 0108 703 0115 642 0122 616 0129 582 2010-Feb 0205 523 0212 471 0219 425 0226 390 2010-Mar 0305 349 0312 341 0319 334 0326 336 2010-Apr 0402 333 ...

  8. New York Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992...

  9. Louisiana Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 ...

  10. Virginia Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 ...

  11. Eastern Consuming Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update

    11 11 10 9 9 1982-2016 Operating 10 8 10 9 9 9 1982-2016 Idle 4 3 1 1 0 0 1982-2016 Atmospheric Crude Oil Distillation Capacity Operable (Barrels per Calendar Day) 1,617,500 1,188,200 1,293,200 1,296,500 1,268,500 1,277,500 1982-2016 Operating 1,205,000 1,010,200 1,265,200 1,268,500 1,236,500 1,245,500 1982-2016 Idle 412,500 178,000 28,000 28,000 32,000 32,000 1982-2016 Operable (Barrels per Stream Day) 1,708,500 1,254,700 1,361,700 1,364,000 1,332,000 1,353,000 1982-2016 Operating 1,273,500

  12. Oregon Natural Gas in Underground Storage - Change in Working...

    Energy Information Administration (EIA) (indexed site)

    -221 -204 -131 -374 -387 -356 -231 86 454 -69 1994 587 858 640 -1,359 -1,793 -1,593 ... 3,325 3,229 2002 3,447 4,923 3,026 2,188 -454 167 551 811 1,460 1,970 2,121 2,495 2003 ...

  13. South Central Region Natural Gas in Underground Storage (Working...

    Annual Energy Outlook

    Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 668,540 452,778 337,592 426,793 560,429 666,015 755,579 806,418 929,012 1,090,604 1,084,413 1,044,833 2015 831,268 576,019 574,918...

  14. Underground Working Natural Gas in Storage - All Operators

    Annual Energy Outlook

    Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 ...

  15. U.S. Working Natural Gas Total Underground Storage Capacity ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 4,491,557 4,491,226 4,491,596 4,502,901 4,514,569 4,526,987 4,530,486 4,540,575 4,567,586 4,577,649 4,575,112 4,576,356 ...

  16. Michigan Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    1998 Other 1980-1998

    1,365 15,193 11,630 8,521 21,248 10,985 1982-2015 Import Price 4.73 4.38 2.88 4.02 8.34 2.87 1989-2015 Export Volume 721,075 876,267 872,620 684,510 554,675 486,675 1982-2015 Export Price 4.85 4.44 3.12 4.07 6.26 3.19 1989

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania

  17. Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    2 20 9 22 66 10 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 12 20 9 22 66 1

    451,405 548,686 406,327 243,805 328,610 233,011 1982-2015 Import Price 4.49 4.15 2.87 3.87 5.60 2.89 1989-2015 Export Volume 0 3,975 11,768 16,209 5,474 5,245 1999-2015 Export Price -- 3.90 3.46 3.83 11.05 3.34 199

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York

  18. Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    0 5,774 0 0 0 0 2007-2015 Import Price -- 12.93 -- -- -- -- 2007

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East

  19. Missouri Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    8 * * * 172 * 1967-2015 Synthetic 0 0 0 0 0 * 2007-2015 Propane-Air 18 0 172

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming

  20. Montana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    706,201 679,848 754,058 719,176 541,135 534,807 1982-2015 Import Price 4.13 3.75 2.45 3.23 4.39 2.40 1989-2015 Export Volume 9,437 6,826 4,332 2,353 891 35 1982-2015 Export Price 4.05 3.82 2.40 3.43 5.38 12.54 198

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee