National Library of Energy BETA

Sample records for wind total wood

  1. Woods Hole Research Center Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  2. Total

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  3. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  4. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  5. Total............................................................

    Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  6. Total

    Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  7. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  8. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  9. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  10. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  11. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  12. Total................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  13. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  14. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  15. Total.........................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  16. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  17. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  18. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  19. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  20. Logs Wood Chips Straw Corn Switchgrass

    Energy.gov [DOE] (indexed site)

    Clean energy can come from the sun. The energy in wind can make electricity. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use ...

  1. Qualifying Wood Stove Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Total cost, exclusive of taxes, interest and other finance charges Summary This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a ...

  2. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  3. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    WindExchange

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  4. Category:Wind Farms | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in category "Wind Farms" The following 5 pages are in this category, out of 5 total. F Foote Creek Rim Wind Farm M Mountain Wind R Rock River LLC Wind Farm Rolling Hills Wind...

  5. Wood pellet production

    SciTech Connect

    Moore, J.W.

    1983-08-01

    Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

  6. Category:Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    category. Subcategories This category has the following 2 subcategories, out of 2 total. W Wind Farms 5 pages Wind turbine 1 pages Pages in category "Wind" The...

  7. Wood energy system design

    SciTech Connect

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  8. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  9. STEO October 2012 - wood

    Energy Information Administration (EIA) (indexed site)

    More U.S. households burning wood this winter to stay warm, reversing two-decade decline Burning wood as the primary heating source in U.S. households has risen over the last 10 years, reversing the decline seen in the 1980s and 1990s. About 2.6 million households out of 115 million will rely on wood as the main way to warm their homes this winter. That's up 3 percent from last year, according to the U.S. Energy Information Administration's new winter fuels forecast. The West will have the most

  10. Generating power with waste wood

    SciTech Connect

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  11. James F. Wood

    Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  12. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Capacity Nearing 1 GW Distributed wind cumulative capacity has reached a total of 906 MW from nearly 74,000 wind turbines. In 2014, 23 states added 63.6 MW of new distributed ...

  13. Transportation fuels from wood

    SciTech Connect

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  14. District of Columbia Renewable Electric Power Industry Statistics

    Annual Energy Outlook

    - - Hydro Conventional - - Solar - - Wind - - WoodWood Waste - - MSWLandfill Gas - ... Total Renewable Net Generation - - Geothermal - - Hydro Conventional - - Solar - - Wind - ...

  15. Precision wood particle feedstocks

    DOEpatents

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  16. West Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Wood Heat * Non-Profit Consortium of Ten Tribal ... Forestry, Fire Management, Self- Governance, ... coordination's across organizations 2 boilers and one ...

  18. Wind Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  19. Daniel Wood | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Daniel Wood About Us Daniel Wood - Data Visualization and Cartographic Specialist, Office of Public Affairs Daniel Wood Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy Department's vast array of data. You can check out some of his work here. Prior to joining the Energy.gov team, Daniel worked at a large PR firm in Washington, D.C, doing web development

  20. Prairie Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Wind Farm Growth Through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Farm Growth Through the Years Wind Farm Growth Through the Years August 6, 2013 - 8:32am Addthis 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes Data provided by the EIA. The number of homes powered is estimated through conversion factors provided by the EIA. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs As we publish the 2012 Wind Technologies Market Report, we are excited

  2. Wood3 Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wood3 Resources Jump to: navigation, search Name: Wood3 Resources Place: Houston, Texas Zip: 77056-2409 Product: Wood3 Resources is an energy project development firm run by former...

  3. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect

    James T. Cobb Jr.

    2005-02-10

    gasification project at its site. Throughout much of this total project the Principal Investigator has counseled two small businesses in developing a waxed cardboard pellet business. A recent test burn of this biofuel appears successful and a purchase contract is anticipated soon. During the past two months a major tree-trimming firm has shown an active interest in entering the wood-chip fuel market in the Pittsburgh area and has contacted the NBP, among others, as potential customers. The NBP superintendent is currently in discussion with the facilities management of the Bruceton Research Center about resuming their interest in cofiring this renewable fuel to the stoker there.

  4. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  5. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Energy.gov [DOE] (indexed site)

    Oil cost per year for school 210,000 Fuel cost for electrical generation 1.4 M Cord Wood 275 - 300 per cord Kwh 0.77 (rate increase coming) Propane 203.89 per 100 ...

  6. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fort Yukon Wood Energy Program: Wood Boiler Deployment Department of Energy Tribal Program Review Golden, Colorado March 26, 2014 Presented by: Kelda Britton CATG Department of Natural Resources Please contact me for a full list of citations. kelda@catg.org CATG is a consortium of 10 Gwich'in and Koyukon Athabascan tribes located throughout the Yukon Flats. Arctic Village, Beaver, Birch Creek, Canyon Village, Chalkyitsik, Circle, Fort Yukon, Rampart, Stevens Village and Venetie are the remote

  7. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  8. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Saver

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of ...

  9. Wind Simulation

    Energy Science and Technology Software Center

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  10. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  11. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  12. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  13. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Wind-turbine blade growth continues to have the largest impact on energy capture and ...

  14. Wind Resource Assessment | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and ...

  15. Wooden wind turbine blade manufacturing process

    DOEpatents

    Coleman, Clint

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  16. Distributed Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  17. Stanford - Woods Institute for the Environment | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  18. Council of Athabascan Tribal Governments - Wood Energy Program...

    Office of Environmental Management (EM)

    - Diesel Biomass - Wood diesel hybrid power plant CHP - still dreaming for 200-700 Kwh technology Wood Harvest Company * Harvests wood from GZ lands summer and winter - start ...

  19. Wood energy in Georgia: a five-year progress report

    SciTech Connect

    Not Available

    1982-01-01

    An increasing number of industrial plants and public and residential facilities in Georgia are using wood, Georgia's greatest renewable energy source, to replace gas, oil, coal, and electricity. All wood systems described in this report are or will soon be in operation in schools, prisons, hospitals, and other state facilities, and are producing substantial financial savings. The economic values from increased markets and jobs are important in all areas of the state, with total benefits projected at $2.9 million a year for state taxpayers. 2 figures.

  20. Offshore Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A photo of several rows of wind turbines standing in the ocean with the sun overhead. Capabilities NREL's offshore wind turbine research capabilities focus on critical areas that ...

  1. Wood and Pellet Heating Basics | Department of Energy

    Energy Saver

    Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or ... Modern, centralized wood heaters use wood gasification technology that burns both the wood ...

  2. Marcia A. Wood | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Marcia A. Wood Group Leader, Information Solutions and Technology Assurance B.S. Computer Science, University of St. Francis Telephone 630.252.4656 Fax 630.252.6866 E-mail wood@anl.gov

  3. Wood To Fuel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    To Fuel LLC Jump to: navigation, search Name: Wood To Fuel LLC Place: Lackawana, New York Zip: 14208 Product: Wood fuelproduct supplier. Coordinates: 41.401932, -75.637848...

  4. Processes change the look of wood fuel

    SciTech Connect

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed, these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  5. Processes change the look of wood fuel

    SciTech Connect

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed; these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  6. Wanda Woods | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wanda Woods Budget & Resource Administrator Wanda Woods Argonne National Laboratory 9700 South Cass Avenue Building 240 - Wkstn. 1C9 Argonne, IL 60439 630-252-1353 wwoods@alcf.anl.gov

  7. Duffield Wood Pellets | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Duffield Wood Pellets Jump to: navigation, search Name: Duffield Wood Pellets Place: North Yorkshire, United Kingdom Zip: HG4 5JB Product: A Yorkshire-based, family-run producer of...

  8. Kenneth L. Wood | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kenneth L. Wood Senior Engineering Specialist Telephone (630) 252-3971 E-mail klw@hep.anl

  9. Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  10. Category:Wind power in China | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind power in China Jump to: navigation, search Category: Wind Power in China Pages in category "Wind power in China" The following 2 pages are in this category, out of 2 total. C...

  11. Cisco Wind Energy Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  13. Wind Farm

    Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  14. Wind Easements

    Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  15. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1

  16. 2013 Wind Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Wind Report 2013 Wind Report 1 of 9 #DidYouKnow: The U.S. ranks 2nd in the world for installed wind capacity, equal to nearly 4.5 percent of its total electrical demand. | Photo courtesy of Ruth Baranowski, NREL. 2 of 9 Last year, the wind industry invested $1.8 billion in America's clean energy future, bringing the total of wind energy investments to $125 billion since the 1980s. | Photo courtesy of Casey Joyce, RMT, Inc. 3 of 9 The price of wind energy for new contracts signed in 2013 is at

  17. 2013 Wind Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Wind Week 2013 Wind Week Addthis 1 of 9 #DidYouKnow: The U.S. ranks 2nd in the world for installed wind capacity, equal to nearly 4.5 percent of its total electrical demand. | Photo courtesy of Ruth Baranowski, NREL. 2 of 9 Last year, the wind industry invested $1.8 billion in America's clean energy future, bringing the total of wind energy investments to $125 billion since the 1980s. | Photo courtesy of Casey Joyce, RMT, Inc. 3 of 9 The price of wind energy for new contracts signed in 2013 is

  18. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    By: Karonhiakta'tie Bryan Maracle and Bill Wall - Council of Athabascan Tribal Governments (CATG) - Consortia of 10 Tribal Governments of Interior Alaska - Gwitchyaa Zhee Corporation (GZ Corp) - Alaska Native Claims Settlement Act Village Corporation - Alaska Village Initiatives (AVI) - Rural Alaska economic development organization - First off grid, off road system biomass CHP in the world - 8 miles north of the Arctic Circle - New Power House - Wood Chip Boiler - District Heating loop

  19. 2014 Distributed Wind Market Report

    SciTech Connect

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  20. Wind farm array wake losses

    SciTech Connect

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  1. Densified fuels from wood waste

    SciTech Connect

    Pickering, W.H.

    1995-11-01

    Wood compressed to a specific gravity of about 1.2 constitutes an excellent clean burning fuel. {open_quotes}Prestologs{close_quotes} were marketed before 1940, but in the past ten years a much larger and growing market is densified pellet fuel has developed. The market for pellet fuel is about 90% residential, using special pellet burning stoves. Initial sales were almost entirely in the northwest, but sales in other parts of the country are now growing rapidly. Approximately 300,000 stoves are in use. Note that this industry developed from the private sector with little or no support from federal or state governments. Densified fuel is manufactured by drying and compressing sawdust feedstock. Combustion is different than that of normal wood. For example, wood pellets require ample supplies of air. They then burn with a hot flame and very low particulate emissions. Volatile organic compounds are burned almost completely and carbon monoxide can also be kept very low. Stoves burning pellets easily meet EPA standards. This paper discusses technical and economic factors associated with densified fuel and considers the future of the industry.

  2. Total Imports

    Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  3. Table 8.11a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts)

    Energy Information Administration (EIA) (indexed site)

    a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000

  4. Wind Energy Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  5. Wind Power Forecasting Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  6. Table N5.2. Selected Wood and Wood-Related Products in Fuel...

    Energy Information Administration (EIA) (indexed site)

    ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ... "Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: ...

  7. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  8. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  9. Offshore Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  10. wind turbines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  11. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  12. Wind Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  13. District of Columbia Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    " Hydro Conventional","-","-" " Solar","-","-" " Wind","-","-" " WoodWood ... " Hydro Conventional","-","-" " Solar","-","-" " Wind","-","-" " WoodWood ...

  14. Wind Power Partners '94 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Wethersfield Wind Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  16. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  17. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  18. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  19. Stetson Wind Expansion Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  20. Arbuthnott Wood Pellets Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scotland, United Kingdom Zip: AB30 1PA Product: Wood pellet producer. Coordinates: 56.932781, -2.42531 Show Map Loading map... "minzoom":false,"mappingservice":"googlema...

  1. Grant F. Wood | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grant F. Wood Consultant - Project Management 9700 S. Cass Avenue Building 240 Wkstn. 3D18 Argonne, IL 60439 630-252-5315 gfwood

  2. Wood, Wisconsin: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wood, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.568752, -90.330887 Show Map Loading map... "minzoom":false,"mappingservice"...

  3. NREL: Wind Research - Offshore Wind Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  4. NREL: Wind Research - Offshore Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens ... NREL's offshore wind turbine research capabilities focus on critical areas that reflect ...

  5. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  6. NREL: Wind Research - Wind Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special ... to anticipate wind generation levels and adjust the ...

  7. Danielson Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  8. Kawailoa Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  9. Palouse Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  10. Harbor Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  11. Kahuku Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  12. Wiota Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  13. Bravo Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  14. Auwahi Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  15. Traer Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  16. Sheffield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Rollins Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. 2014 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  19. Engineering innovation to reduce wind power COE

    SciTech Connect

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  20. 2015 Distributed Wind Market Report Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Capacity Continues to Grow Distributed wind cumulative capacity now totals 934 MW from over 75,000 turbines. In 2015, 28 states added 28 MW of new distributed wind capacity, representing just over 1,700 turbines and a $102 million investment. U.S. Small Wind Manufacturers Double Exports to 21.5 MW In 2015, U.S. manufacturers dominated domestic sales of small wind turbines (up through 100 kW) and doubled exports from 2014 to 2015. Between 2012 and 2015, U.S.-based small wind turbine

  1. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  2. Rachel Woods-Robinson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rachel Woods-Robinson About Us Rachel Woods-Robinson - Guest Blogger, Cycle for Science Most Recent Rain or Shine: We Cycle for Science July 2 Mountains, and Teachers, and a Bear, Oh My! June 2 Sol-Cycle: Biking Across America for Science Education May

  3. Flash pyrolysis products from beech wood

    SciTech Connect

    Beaumont, O.

    1985-04-01

    Flash pyrolysis products from beech wood obtained in an original pyrolysis apparatus were analyzed. The analytical procedure is described, and the composition of pyrolytic oil presented with more than 50 compounds. Comparison of pyrolytic products of cellulose, hemicellulose, and wood indicates the origin of each product. 19 references.

  4. Offshore Wind Power USA

    Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  5. Method of making a wooden wind turbine blade

    DOEpatents

    Coleman, Clint

    1984-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  6. Method of making a wooden wind turbine blade

    DOEpatents

    Coleman, C.

    1984-08-14

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

  7. Lake of the Woods County, Minnesota: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  8. Council of Athabascan Tribal Governments - Wood Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company -...

  9. Compound and Elemental Analysis At Little Valley Area (Wood,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  10. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  11. Offshore Wind Potential Tables

    WindExchange

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  12. WINDExchange: Selling Wind Power

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  13. Solvolytic liquefaction of wood under mild conditions

    SciTech Connect

    Yu, S.M.

    1982-04-01

    Conversion of wood to liquid products requires cleavage of bonds which crosslink the wood structure. This study examines a low-severity wood solubilization process utilizing a solvent medium consisting of a small amount of sulfuric acid and a potentially wood-derivable alcohol. In one half hour of reaction time at 250/sup 0/C under 15 psia starting nitrogen pressure, over 95% of the wood (maf) was rendered acetone-soluble. The product is a soft, black, bitumen-like solid at room temperature but readily softens at 140/sup 0/C. Between 25 and 50% of the original wood oxygen, depending on alcohol used, was removed as water. Approximately 2 to 17% of the alcohols were retained in the product. Gel permeation chromatography showed that the product's median molecular weight is around 300. Based on experimental and literature results, a mechanism for wood solubilization is proposed. This involves protonation of the etheric oxygen atoms, leading to subsequent bond scission to form carbonium ions which are stabilized by solvent alkoxylation. At severe conditions, polymerization and condensation reactions result in acetone-insoluble materials.

  14. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook

    Solar Therm al PV Wind Total Waste Wood and Derived Fuels 3 State Hydroelectric ... Wood and Derived Fuels 3 State Hydroelectric Conventional NonHydroelectric Total Biom ass ...

  15. Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

  16. Grid Integration of Offshore Wind | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  17. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  18. Quality of Wood Pellets Produced in British Columbia for Export

    SciTech Connect

    J. S. Tumuluru; S. Sokhansanj; C. J. Lim; T. Bi; A. Lau; S. Melin; T. Sowlati; E. Oveisi

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  19. QUALITY OF WOOD PELLETS PRODUCED IN BRITISH COLUMBIA FOR EXPORT

    SciTech Connect

    Tumuluru, J.S.; Sokhansanj, Shahabaddine; Lim, C. Jim; Bi, X.T.; Lau, A.K.; Melin, Staffan; Oveisi, E.; Sowlati, T.

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  20. Wind Measurement Buoy Advances Offshore Wind Energy | Department...

    Energy Saver

    Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind ...

  1. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  2. Wood fuel in fluidized bed boilers

    SciTech Connect

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  3. Michigan Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  4. Metro Wind LLC Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. JD Wind 6 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. JD Wind 7 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. Garnet Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  8. Lime Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  9. Fairhaven Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  10. Scituate Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  11. Pacific Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  12. Galactic Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  13. Rockland Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  14. Greenfield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  15. Willmar Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  16. Wind Program News

    SciTech Connect

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  17. Energy 101: Wind Turbines

    ScienceCinema

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  18. Energy 101: Wind Turbines

    SciTech Connect

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  19. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Woods to the Refinery CORRIM Life Cycle Analyses of Woody Feedstocks Dr. Steve Kelley ... composition, sugar types, residue fuel value * TC models are sensitive to MC, much less ...

  20. Wood Fuel LP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    77034 Region: Texas Area Sector: Biomass Product: Wood by-products consulting and marketing Website: www.woodfuel.com Coordinates: 29.6221328, -95.1872605 Show Map Loading...

  1. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to avoid overheating, which wastes fuel and is one of the biggest causes of air pollution. ... urban and rural areas, smoke from wood burning is a major contributor to air pollution. ...

  2. Marin County- Wood Stove Replacement Rebate Program

    Energy.gov [DOE]

    Homes in the San Geronimo Valley (Forest Knolls, Lagunitas, San Geronimo, and Woodacre) can receive a rebate of $1,500 for the removal and replacement of non-certified wood burning appliances with...

  3. Wood Energy Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Ltd Jump to: navigation, search Name: Wood Energy Ltd Place: Devon, United Kingdom Zip: EX16 9EU Product: Specialises in the design, installation and service of automatic...

  4. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  5. Wind Turbine Control Systems | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL is researching new control methodologies for both land-based wind turbines and offshore wind turbines. A photo of a wind turbine against blue sky with white blades on their ...

  6. NREL: Wind Research - Site Wind Resource Characteristics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  7. 2015 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 News Below are news stories related to Wind. RSS Learn about RSS. December 17, 2015 Inventive Thinkers at NREL Reach Record Number Researchers register ideas on everything from wave power to methane use. December 9, 2015 2014 Data Book Shows Increased Use of Renewable Electricity The 2014 Renewable Energy Data Book shows that U.S. renewable electricity grew to 15.5 percent of total installed capacity and 13.5 percent of total electricity generation. Published annually by the National Renewable

  8. DOE Wind Vision Community | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    content Wind technology roadmap Total Cost Per MwH for all common large scale power generation sources If I generate 20 percent of my national electricity from wind and solar...

  9. Foote Creek Rim Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Edit History Foote Creek Rim Wind Farm Jump to: navigation, search The Foote Creek Rim Wind Farm is in Carbon County, Wyoming. It consists of 133 turbines and has a total...

  10. Category:Wind Power in China | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "Wind Power in China" The following 2 pages are in this category, out of 2 total. G Guangdong Baolihua New Energy Corporation S Sinovel Wind Group Co. Retrieved from...

  11. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  12. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  13. Offshore Wind Resource Characterization | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization NREL scientists and engineers are leading efforts in ... and development, and forecasting that are essential for the development of offshore wind. ...

  14. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  15. NREL: Wind Research - Wind Energy Videos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  16. NREL: Wind Research - Small Wind Turbine Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in ... Testing included power performance, safety and function, noise, and partial loads tests. ...

  17. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    SciTech Connect

    James T. Cobb Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2004-04-08

    An Environmental Questionnaire for the demonstration at the Bellefield Boiler Plant (BBP) was submitted to the national Energy Technology Laboratory. An R&D variance for the air permit at the BBP was sought from the Allegheny County Health Department (ACHD). R&D variances for the solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS) were sought from the Pennsylvania Department of Environmental Protection (PADEP). Construction wood was acquired from Thompson Properties and Seven D Corporation. Verbal authorizations were received in all cases. Memoranda of understanding were executed by the University of Pittsburgh with BBP, JARC and ETS. Construction wood was collected from Thompson Properties and from Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were hammer milled at ETS and half of the product delivered to MVTC. Blends of wood and coal, produced at MVTC by staff of JARC and MVTC, were shipped by rail to BBP. The experimental portion of the project was carried out at BBP in late March and early April 2001. Several preliminary tests were successfully conducted using blends of 20% and 33% wood by volume. Four one-day tests using a blend of 40% wood by volume were then carried out. Problems of feeding and slagging were experienced with the 40% blend. Light-colored fly ash was observed coming from the stack during all four tests. Emissions of SO{sub 2}, NOx and total particulates, measured by Energy Systems Associates, decreased when compared with combusting coal alone. A procedure for calculating material and energy balances on BBP's Boiler No.1 was developed, using the results of an earlier compliance test at the plant. Material and energy balances were then calculated for the four test periods. Boiler efficiency was found to decrease slightly when the fuel was shifted from coal

  18. 2014 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Wind Technologies Market Report 2014 Wind Technologies Market Report A photo of the cover of the 2014 Wind Technologies Market Report. According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW

  19. JD Wind 1 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  20. North Dakota Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Venture Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. MinWind I & II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  4. JD Wind 5 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  5. JD Wind 4 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  6. Mass transport parameters of aspen wood chip beds via stimulus-response tracer techniques

    SciTech Connect

    Hradil, G.; Calo, J.M.; Wunderlich, T.K. Jr. )

    1993-02-05

    A stimulus-response tracer technique has been used to characterize packed beds of untreated, as well as acid prehydrolyzed, and enzymatically hydrolyzed aspen wood chips. Glucose was used as the trace. Bulk liquid phase dispersion, interphase mass transfer, and intraparticle diffusion coefficients were determined for these materials as well as effective porosities and tortuosities. The untreated and prehydrolyzed aspen wood chips were found to have effective void fractions of ca. 0.8, while the enzymatically hydrolyzed wood chips exhibited a void fraction of 0.37. Intraparticle diffusion was approximately twice as rapid in the prehydrolyzed and enzymatically hydrolyzed wood chips as in the untreated wood chips. Also, under the current experimental conditions, intraparticle diffusional transport resistance accounted for roughly half of the total tracer pulse dispersion. It is demonstrated that stimulus-response tracer techniques can be useful and convenient probes for beds of lignocellulosic, or other porous materials, which vary in character with extent of conversion and/or treatment.

  7. Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model

    SciTech Connect

    Blair, N.; Hand, M.; Short, W.; Sullivan, P.

    2008-06-01

    In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

  8. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    SciTech Connect

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observers visual fi eld should also be assessed.

  9. Validation of Power Output for the WIND Toolkit

    SciTech Connect

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  10. Grid Integration of Wind Energy | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Wind Energy Researchers study grid integration of wind energy to better understand how variable generation resources such as wind energy impact the grid and how to increase the percentage of wind generation in the United States' energy portfolio. A photo of three wind turbines with transmission lines in the background. Capabilities NREL's grid integration analysts work with the U.S. Department of Energy, university researchers, independent system operators, and regional

  11. Wind Data and Tools | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Data and Tools Learn more about wind energy through these NREL data and tools. A photo of two men silhouetted against a computer-generated simulation with white and blue rows illustrating wind plant aerodynamics. NWTC Information Portal This open-source library houses NREL's wind and water power simulation and modeling software and data, including computer-aided engineering tools and integrated system design and analysis tools. All software is available for download. Wind-Wildlife Impacts

  12. GL Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  13. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  14. Wind energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  15. WINDExchange: Potential Wind Capacity

    WindExchange

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  16. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  17. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  18. Brazos Wind Ranch Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  19. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  20. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  1. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Saver

    2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, ...

  2. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  3. International Trade of Wood Pellets (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  4. New England Wood Pellet LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pellet LLC Jump to: navigation, search Name: New England Wood Pellet LLC Place: Jaffrey, New Hampshire Zip: NH 03452 Product: New England Wood Pellet LLC is a manufacturer and...

  5. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  6. Genomics of wood-degrading fungi (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Genomics of wood-degrading fungi Prev Next Title: Genomics of wood-degrading fungi Authors: Ohm, Robin A. ; Riley, Robert ; Salamov, Asaf ; Min, Byoungnam ; Choi, In-Geol ; ...

  7. City of Wood River, Nebraska (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    City of Wood River, Nebraska (Utility Company) Jump to: navigation, search Name: Wood River Municipal Power Place: Nebraska Phone Number: 308.583-2515; 308-583-2066 Website:...

  8. Wood County Electric Coop, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wood County Electric Coop, Inc Jump to: navigation, search Name: Wood County Electric Coop, Inc Place: Texas Phone Number: 1-866-415-2951 Website: www.wcec.org Facebook: https:...

  9. National Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  10. Solar Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  11. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  12. Horn Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  13. Royal Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  14. Coriolis Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  15. Jasper Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  16. WINDExchange: Siting Wind Turbines

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  17. Special Assessment for Wind Energy Systems

    Energy.gov [DOE]

    *The law states that up to 79% of the total property may be assigned salvage value. Salvage value of a pollution control facility, of which a wind turbine is considered for assessment purposes, is...

  18. Study Shows Active Power Controls from Wind May Increase Revenues...

    Energy.gov [DOE] (indexed site)

    Researchers examined how the contribution of wind power providing active power controls (APC) could benefit the total power system economics, increase revenue streams, and improve ...

  19. Offshore Wind Jobs and Economic Development Impacts in the United...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... development due to the substantial offshore wind resource, with Virginia, North Carolina, South Carolina, and Georgia representing 45% of the total East Coast resource (DOE 2008). ...

  20. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002

    Energy Information Administration (EIA) (indexed site)

    6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " ","

  1. An Exploration of Wind Energy & Wind Turbines

    Education - Teach & Learn

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  2. Danish know-how rests on solid footings. [Wind turbine

    SciTech Connect

    Gipe, P.

    1983-01-01

    Twenty Danish companies are building 35 licensed wind machines. Such a level of activity would be surprising for a small country were it not for the fact that the Danes were first to use windmills to generate electricity. The design of the Riisager turbine and a new turbine using glass reinforced plastic rather than laminated wood is described. Danish manufacturers are hoping to spread their distinctive turbines across the United States.

  3. Fast Curing of Composite Wood Products

    SciTech Connect

    Dr. Arthur J. Ragauskas

    2006-04-26

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An

  4. Wood and Wood Waste - Energy Explained, Your Guide To Understanding Energy

    Energy Information Administration (EIA) (indexed site)

    - Energy Information Administration Wood and Wood Waste Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  5. Crow Lake Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  6. Wildcat Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  7. Radial Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  8. Effect of species and wood to bark ratio on pelleting of southern woods

    SciTech Connect

    Bradfield, J.; Levi, M.P.

    1984-01-01

    Six common southern hardwoods and loblolly pine were pelleted in a laboratory pellet mill. The pellet furnishes were blended to test the effect of different wood to bark ratios on pellet durability and production rate. Included was a ratio chosen to simulate the wood to bark ratio found in whole-tree chips. This furnish produced good quality pellets for all species tested. Pelleting of the pure wood of hardwoods was not successful; furnish routinely blocked the pellet mill dies. Pure pine wood, however, did produce acceptable pellets. It was noted that, as lignin and extractive content increased above a threshold level, the precentage of fines produced in a pellet durability test increased. Thus, all pine and tupelo wood/bark mixes produces high fines. This reduces the desirability of the pellets in the marketplace. Further research is necessary to confirm this relationship. This study suggests that both tree species and wood/bark ratio affect the durability of pellets and the rate with which they can be produced in a laboratory pellet mill. 9 references.

  9. NREL: Wind Research - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  10. Wind Power Today

    SciTech Connect

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  11. Wind Power Today

    SciTech Connect

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  12. Model Wind Ordinance

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  13. Solar and Wind Easements

    Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  14. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report 2014 Distributed Wind Market Report The cover of the 2014 Distributed Wind Market Report. According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment

  15. Impacts | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impacts Read about NREL's impacts on innovations in wind energy research. Photo of four men in hard hats standing on top of a large wind turbine overlooking several other wind turbines in the distance. Fact Sheets Wind Energy Benefits thumbnail Wind Energy Benefits Screenshot of the cover of the national wind technology brochure. 35 Years of Innovation: Leading the Way to a Clean Energy Future JEDI: Jobs and Economic Development Impact Model thumbnail JEDI: Jobs and Economic Development Impact

  16. Distributed Wind Ordinances: Slides

    WindExchange

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  17. Wind Energy Integration: Slides

    WindExchange

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  18. 2009 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 News Below are news stories related to Wind. RSS Learn about RSS. September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance

  19. Wind Power Reliability Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power Reliability Research The U.S. wind power industry is well established, with nearly 75 gigawatts of installed capacity across the United States. Given this large base of ...

  20. Wind Energy Modeling and Simulation | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Modeling and Simulation Wind turbines are unique devices that are typically anchored to the ground but operate in the atmosphere, which subjects them to a variety of ...

  1. Wind Vision Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  2. Alaska Wind Update

    Energy Saver

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  3. @NWTC Newsletter | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from the Energy Department's National Wind Technology Center (NWTC) at the National ... an essential partner for the technical development and deployment of wind and water power. ...

  4. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  5. vertical axis wind turbine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    vertical axis wind turbine - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  6. Enabling Wind Power Nationwide

    Energy.gov [DOE] (indexed site)

    Enabling Wind Power Nationwide May 2015 This report is being disseminated by the U.S. ... ordering: ntis.govordering.htm Enabling Wind Power Nationwide Primary Authors Jose ...

  7. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  8. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  9. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative ...

  10. Market Acceleration | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's team also offers energy and economic analysis, maps, forecasting, workforce development, and education. An aerial photo of three wind turbines at the National Wind ...

  11. Wind Turbine Tribology Seminar

    Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  12. NREL: Wind Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some ...

  13. Sandia Energy Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  14. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  15. Small Wind Conference 2015

    Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  16. Wind for Schools (Poster)

    SciTech Connect

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  17. Wind energy bibliography

    SciTech Connect

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  18. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  19. WINDExchange: Distributed Wind

    WindExchange

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  20. Cherokee Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  1. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  2. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  3. Hull Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  4. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  5. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  6. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  7. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  8. Wood Energy Scenarios and Southern Markets

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WOOD ENERGY SCENARIOS AND SOUTHERN MARKETS PRAKASH NEPAL 1 , KAREN ABT 2 , KEN SKOG 3 , ROBERT ABT 1 1 DEPARTMENT OF FORESTRY & ENVIRONMENTAL RESOURCES, NORTH CAROLINA STATE UNIVERSITY 2 USDA FOREST SERVICE, SOUTHERN RESEARCH STATION, RESEARCH TRIANGLE PARK 3 USDA FOREST SERVICE, FOREST PRODUCTS LABORATORY, MADISON, WI (RETIRED) Photo: Juergen Henkelmann, Alamy Photo: conserve-energy-future.com Photo: Duke University BACKGROUND  Previous billion ton reports did not explicitly consider

  9. 2016 ASI Annual Review UTK Wood Final

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Review Meeting Development and Demonstration of a Model Based Assessment Process for Qualification of Embedded Digital Devices in Nuclear Power Applications Richard Wood The University of Tennessee NEET Project No.: 15-8097 October 12-13, 2016 2 Project Overview nProject Goal Develop an effective approach to resolve concerns about common-cause failure (CCF) vulnerabilities in embedded digital devices (EDDs) nFocus Address the challenge of establishing high levels of safety and reliability

  10. Pennsylvanian and Permian paleogeography of south-central Idaho: The Wood River basin

    SciTech Connect

    Mahoney, J.B. ); Burton, B.R. ); O'Brien, J.P.; Link, P.K. )

    1991-02-01

    The Sun Valley Assemblage (Wood River, Dollarhide, and Grand Prize formations) was deposited in the Wood Rover basin in what is now south-central Idaho, north of the Snake River Plain, from the Atokan to Wolfcampian and Leonardian( ). Atokan and Des Moinesian deposition occurred in braided deltas and overlying clear water carbonate shoals. The rocks of this depositional system vary in thickness from tens to several hundreds of meters reflecting irregularities in the erosional surface on the underlying foundered Antler highland. This basal unconformity has been sheared during Mesozoic and Paleogene deformation. Significant regional subsidence of the Wood River basin began in the Des Moinesian, was most rapid in the Virgilian, and slowed in the Wolfcampian, resulting in total thickness of over 2,000 m for each of the three formations. In the central part of the basin (Wood River Formation) a sub-wave-base ramp system with southeastern paleoslope was fed by turbidite flows of mixed carbonate-siliciclastic fine-grained sediment that had been thoroughly mixed on a shelf area to the north and east. The carbonate fraction may have been derived from the Snaky Canyon Formation carbonate platform to the east. To the north, a siliciclastic fan or ramp system (Grand Prize Formation) was present. Virgilian and Wolfcampian strata represent highstand systems tracts and a lowstand tract is present in strata deposited near the Virgilian-Wolfcampian boundary.

  11. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  12. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnel testing, vertical axis turbines, wind turbine generators, aerodynamics, airfoils, wind loads, Darrieus rotors, economics, legislation, regulations, environmental impacts, national and international programs, fatigue testing, and horizontal axis turbines.

  13. NREL: Innovation Impact - Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  14. Energy from the wind

    SciTech Connect

    Not Available

    1987-07-01

    This document provides a brief description of the use of wind power. Windmills from the 18th century are described. Modern wind turbines and wind turbine arrays are discussed. Present and future applications of wind power in the US are explained. (JDH)

  15. Your wind driven generator

    SciTech Connect

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  16. Wind Energy Benefits: Slides

    WindExchange

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  17. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  18. ARM - Wind Chill Calculations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  19. Wind Power Outlook 2004

    SciTech Connect

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  20. WINDExchange: Collegiate Wind Competition

    WindExchange

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  1. WINDExchange: Wind Energy Ordinances

    WindExchange

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  2. 2006 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 News Below are news stories related to Wind. RSS Learn about RSS. December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen.

  3. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  4. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  5. National Wind Assessments formerly Romuld Wind Consulting | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  6. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  7. NREL: Wind Research - Small and Distributed Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small and Distributed Wind Turbine Research A distributed wind farm in Wisconsin at ... Standards: The suite of tests conducted on small wind turbines includes acoustic noise ...

  8. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  9. Massachusetts Schools Switch to Wood Pellets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Massachusetts Schools Switch to Wood Pellets Massachusetts Schools Switch to Wood Pellets August 20, 2015 - 5:22pm Addthis Art created by a student at John Briggs Elementary School as part of their recent Green Ceremony. John Briggs Elementary is one of the Massachusetts schools switching their heating fuel source from petroleum based fuels to wood pellets. Art created by a student at John Briggs Elementary School as part of their recent Green Ceremony. John Briggs Elementary is one of the

  10. From the Woods to the Refinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    From the Woods to the Refinery From the Woods to the Refinery Breakout Session 2D-Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University kelley_biomass_2014.pdf (1.77 MB) More Documents & Publications GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Biomass Program Peer Review Sustainability

  11. Wood Energy Scenarios and Southern Markets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wood Energy Scenarios and Southern Markets Wood Energy Scenarios and Southern Markets Breakout Session 1A: Assessing America's Biomass Potential (2016 Billion-Ton Report) Wood Energy Scenarios and Southern Markets Prakash Nepal, Research Assistant Professor, U.S. Department of Agriculture and North Carolina State University nepal_bioenergy_2016.pdf (1.96 MB) More Documents & Publications Bioenergy Demand in a Market Driven Forest Economy (U.S. South) U.S. Billion-Ton Update: Biomass Supply

  12. Potential role of lignin in tomorrow's wood utilization technologies

    SciTech Connect

    Glasser, W.G.

    1981-03-01

    Low-grade timber supplies and wood processing residues are presently converted into paper products, used for fuel, or remain totally unused. Competition for this resource will continue to mount, particularly when manufacturers of chemicals and liquid fuels enter the market with new technologies now under development. The type of technology that concentrates on depolymerization of carbohydrates will generate large quantities of lignin-rich residues. The potential of these lignins to contribute to the economic feasibility of new chemical wood process technologies may involve degradative depolymerization to phenols and benzene, or polymer conversion into a wide variety of dispersants, binders, reinforcing and antioxidizing agents, etc. Where lignin's fuel value lies around 3 to 4 cents/lb. (fall of 1979), its raw material value for phenol is reported to be almost 5 cents/lb., and the value of the polymeric materials is estimated to be between 6 and 20 cents/lb. At the lower end of this range of raw material values are ligninsulfonates, which contribute nearly 98 percent to the approximately 1.5 billion lb./yr. U.S. market for lignin products. Kraft lignins are located at the opposite end of this range. Novel bioconversion-type lignins are expected to be more similar in structure and properties to kraft than to sulfite lignins. Whereas application of the dispersant properties of ligninsulfonates in tertiary oil recovery operations is expected to constitute the most significant use of lignin in terms of volume, adhesive and resin applications hold the greatest promise in terms of value. Both utilization schemes seem to require pretreatments in the form of either polymeric fractionation or chemical modification. Potential savings from the use of polymeric lignins in material systems are great.

  13. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  14. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  15. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  16. Delaware Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    " Hydro Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood ... " Hydro Conventional","-","-" " Solar","-","-" " Wind",3,"*" " WoodWood ...

  17. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  18. Building America Case Study: Retrofit Measure for Embedded Wood...

    Energy Saver

    Existing Homes Building America Case Study Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls Lawrence, Massachusetts PROJECT INFORMATION Project Name: The...

  19. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass...

    Office of Scientific and Technical Information (OSTI)

    ...cofiring of Biomass and Coal Citation Details In-Document Search Title: Thermal Pretreatment of Wood for Cogasificationcofiring of Biomass and Coal Utilization of biomass as a ...

  20. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  1. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

  2. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  3. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  4. Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton...

  5. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  6. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  7. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  8. Water Sampling At Heber Area (Wood, 2002) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area...

  9. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...

  10. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  11. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  12. Title: Ames Blue Alert- Wood Cabinet Falls Apart

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ames Blue Alert- Wood Cabinet Falls Apart Lessons Learned Statement- Cumulative damage can cause a loss of structural integrity. When furnishings are repeatedly exposed to water,...

  13. Energy and environmental innovations for chemically-preserved wood wastes

    SciTech Connect

    NREL

    2000-04-10

    This report is a fact sheet written for the Inventions and Innovation Program about a new method of disposing of chemically treated wood wastes.

  14. International WoodFuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maine Zip: 4101 Product: Maine-based pellet producer and installer of commercial wood pellet heating systems. Coordinates: 45.511795, -122.675629 Show Map Loading map......

  15. Star Point Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Gulf Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  17. Stetson Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. Zirbel Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Beebe Community Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  20. Woodstock Municipal Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  1. Winona County Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  2. Story City Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  3. Palmetto Wind Research Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  4. Tillamook Offshore Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  5. Deepwater Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  6. Galveston Offshore Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  7. Montfort Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. Wildcat 1 Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Springview II Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  10. Shiloh Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Fenton Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Madison Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Somerset Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Desert Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  15. Moraine Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Adams Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Blue Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Tuana Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  19. Thousand Springs Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. First State Marine Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  1. Minco Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Dunlap Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  3. Baseline Wind Energy Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  4. Howard Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  5. Cape Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  6. Wales Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  7. Wyoming Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Vantage Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Bayonne Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  10. Gary Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  11. Havoco Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  12. Oliver Wind Energy Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Flat Water Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Gray County Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  15. Hopkins Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Luther College Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  17. Williams Stone Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  18. Portsmouth Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  19. Charlestown Wind Turbine | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Fenner Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Shane Cowell Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Antelope Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Locust Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Rosiere Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Paynes Ferry Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Marengo Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  7. Stoney Corners Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Marshall Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Laredo Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Nine Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  11. Casper Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  12. Wallys Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Cassia Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Hatchet Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Cedar Point Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  16. Allegheny Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  17. Greensburg Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Wheatfield Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Ewington Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Uilk Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  1. Octotillo Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Don Sneve Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Spring Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Green Mountain Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Red Canyon Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Kansas/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Idaho/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Nevada/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Iowa/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Small Wind Guidebook | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Maine/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Hawaii/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Oregon/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Alaska/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Olsen Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. Sigel Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Minden Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Fossil Gulch Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Criterion Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Golden Valley Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Condon Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Turkey Track Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Spanish Fork Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Wind Power (pbl/generation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  5. AWEA Wind Energy Fall Symposium

    Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  6. Modular Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  7. Wind 7 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Wind 7 Place: Eckernfoerde, Schleswig-Holstein, Germany Zip: 24340 Sector: Wind energy Product: Eckernfoerde-based company that develops & operates wind power projects in...

  8. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    SciTech Connect

    Bankaitis, H

    1982-03-01

    Several concepts of lightning accommodation systems for wind-driven turbine rotor blades were evaluated by submitting them to simulated lightning tests. Test samples representative of epoxy-fiberglass and wood-epoxy composite structural materials were submitted to a series of high-voltage and high-current damage tests. The high-voltage tests were designed to determine the strike points and current paths through the sample and the need for, and the most proper type of, lightning accommodation. The high-current damage tests were designed to determine the capability of the potential lightning accommodation system to sustain the 200-kA lightning current without causing damage to the composite structure. The observations and data obtained in the series of tests of lightning accommodation systems clearly led to the conclusions that composite-structural-material rotor blades require a lightning accommodation system; that the concepts tested prevent internal streamering; and that keeping discharge currents on the blade surface precludes structure penetration. Induced voltage effects or any secondary effects on the integral components of the total system could not be addressed. Further studies should be carried out to encompass effects on the total system design.

  9. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  10. Wind Power Career Chat

    SciTech Connect

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  11. Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research During the past 35 years of wind research and development, NREL has pioneered many of the components and systems that have taken wind energy technologies to new heights. Through its expertise and one-of-a-kind assets, the research performed at NREL has become a guiding force, advancing wind technologies from initial concepts to deployment. A photo of six megawatt-scale wind turbines at various heights on a flat field. Land-Based Wind A photo of a singular wind turbine on a yellow

  12. See the Wind

    Education - Teach & Learn

    The goal of this activity is to help students see the difference in the speed and smoothness of the wind at different altitudes above the earth. This is important for wind engineers as they seek to place their wind turbines in the fastest and smoothest winds possible. It is also a major reason that wind turbines are getting larger and higher in the sky, and is why we are starting to see wind turbines in the plains and out in the ocean near the coast. Teacher background and assessment sheets are provided.

  13. Wind ripple analysis

    SciTech Connect

    Akins, R.E.

    1981-01-01

    Efficient and economical utilization of wind power will require the ability to measure and ultimately predict the effects fluctuations in the incident wind will have on a wind turbine. In order to quantitatively assess these effects, experimental techniques have been developed which allow analysis of full-scale performance of wind turbines with particular emphasis on the effects caused by turbulence in the incident wind. Examples of these techniques are presented using data from the DOE/Sandia Vertical Axis Wind Turbine (VAWT) program.

  14. Wind energy information guide

    SciTech Connect

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  15. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  16. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  17. Hurricane Katrina Wind Investigation Report

    SciTech Connect

    Desjarlais, A. O.

    2007-08-15

    ; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof

  18. Wind Vision: A New Era for Wind Power

    Energy.gov [DOE] (indexed site)

    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives The U.S. Department of Energy's (DOE's) Wind and Water Power Technologies Office has ...

  19. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Saver

    % Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  20. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Energy Saver

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  1. Ion-driven instabilities in the solar wind: Wind observations...

    Office of Scientific and Technical Information (OSTI)

    Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005 Citation Details In-Document Search Title: Ion-driven instabilities in the solar wind: Wind ...

  2. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  3. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  4. Collegiate Wind Competition Wind Tunnel Specifications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of Energy Collegiate Wind Competition must design a prototype wind turbine that fits inside the wind tunnel created to test the performance of each team's project. The tunnel has a "draw down" configuration, introduced by the fan, that sucks air through the box. There are two debris filters, one at

  5. 2016 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2016 News Below are news stories related to Wind. RSS Learn about RSS. September 13, 2016 Survey Reveals Projections for Lower Wind Energy Costs The cost of producing electricity ...

  6. ARM - Measurement - Horizontal wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    wind ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal ...

  7. 2012 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 News Below are news stories related to Wind. RSS Learn about RSS. September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American ...

  8. 2010 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 News Below are news stories related to Wind. RSS Learn about RSS. October 27, 2010 Offshore Wind Energy Poised to Play a Vital Role in Future U.S. Energy Markets A new report ...

  9. DOE Wind Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Program Update March 2007 P.J. Dougherty Wind and Hydropower Technologies Program Since the 1970's, DOE has spent just over 1B in developing a market, which will reach over ...

  10. 2011 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 News Below are news stories related to Wind. RSS Learn about RSS. December 9, 2011 Saving Farmland One Wind Energy Project at a Time Rich VanderVeen, president of Mackinaw Power, ...

  11. WINDExchange: Learn About Wind

    WindExchange

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  12. WindWaveFloat

    SciTech Connect

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  13. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  14. Renaissance for wind power

    SciTech Connect

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  15. Research Facilities | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of five wind turbines of varying sizes in the background and an office building in the foreground. Field Test Sites A photo of two people wearing hard hats in front of a wind ...

  16. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... How Wind Turbines Work U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Photo of a girl and a boy standing beneath a large wind turbine. Students can ...

  17. Distributed Wind 2015

    Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  18. NREL: Wind Research - Events

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  19. See the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Engineers are also concerned about wind shear and turbulence as this can cause a great deal of stress on their gearbox and bearings in their turbines. Characterizing Shear and Wind ...

  20. Distributed Wind Energy Workshop

    Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  1. Three DOE Reports Analyze U.S. Wind Energy Growth | Department...

    Energy.gov [DOE] (indexed site)

    The 2013 Wind Technologies Market Report found that the total wind power capacity in the United States grew to 61,110 MW in 2013. A number of states in particular stood out: ...

  2. Wind Vision | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power ...

  3. WIND ENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WIND ENERGY WIND ENERGY WIND ENERGY POSTER (3.22 MB) More Documents & Publications WIND ENERGY Download LPO's Illustrated Poster Series LPO Financial Performance Report DOE-LPO_Email-Update_001_Through_1

  4. 2007 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 News Below are news stories related to Wind. RSS Learn about RSS. June 27, 2007 U.S., Danish laboratories to cooperate on wind energy research NREL and Denmark's Risø National Laboratory, Technical University of Denmark (DTU), have signed an agreement to cooperate closely on improving wind energy technologies. June 25, 2007 Large Wind Turbine Blade Test Facilities to be in Mass., Texas NREL will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to

  5. DOE/EIA-0035(93/05) Energy R*y

    Gasoline and Diesel Fuel Update

    wind, photovoltaic, and solar b Production and consumption totals exclude wood, waste, geothermal, thermal energy; and net imports of electricity and coal coke. wind,...

  6. DOE/EIA-0035(93/07) Monthly Energy Review W S. IRA W,

    Gasoline and Diesel Fuel Update

    wind, photovoltaic, and solar b Production and consumption totals exclude wood, waste, geothermal, thermal energy; and net imports of electricity and coal coke. wind,...

  7. DOE/EIA-003353/06)

    Annual Energy Outlook

    wind, photovoltaic, and solar b Production and consumption totals exclude wood, waste, geothermal, thermal energy; and net imports of electricity and coal coke. wind,...

  8. Wind Energy Markets, 2. edition

    SciTech Connect

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  9. Total Crude by Pipeline

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  10. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  11. Wind power outlook 2006

    SciTech Connect

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  12. Wind Economic Development (Postcard)

    SciTech Connect

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  13. Wind power soars

    SciTech Connect

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  14. Fuels for Schools Program Uses Leftover Wood to Warm Buildings

    Energy.gov [DOE]

    In parts of this country, wood seems like the outsider in the biomass family. New ethanol plants that grind down millions of bushels of corn in the Midwest and breakthroughs in algae along the coasts always garner the most attention. But in states like Montana, a place with over 70 million acres of forest, wood is the biofuel of choice.

  15. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  16. Wind for Schools Curriculum Brief

    SciTech Connect

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  17. WINDExchange: Wind Maps and Data

    WindExchange

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  18. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  19. NREL: Wind Research - Winds of Change Blowing for Wind Farm Research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Simulation from SOWFA that shows a number of wind turbines and how the wind is flowing between them, with the ...

  20. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  1. Wind energy applications guide

    SciTech Connect

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  2. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  3. Wood fuel technologies and group-oriented Timber Stand Improvement Program: model for waste wood utilization and resource renewal

    SciTech Connect

    Not Available

    1980-01-01

    Progress is reported on the following: educating and assisting landowners in the most efficient and profitable use of wood resources; developing local timber resources as energy alternatives by representing collective interests to Consumers Power, the woodchip industry, firewood retailers, country residents, and woodlot owners; and providing public information on the economics and methods of wood heat as a supplemental energy source. (MHR)

  4. Arkansas/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  5. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  6. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  7. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  8. Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-07-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

  9. Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOEpatents

    Dooley, James H; Lanning, David N

    2014-05-27

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.

  10. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  11. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  12. Feasibility for Wood Heat - Collaborative Integrated Wood Energy Program for Yukon Flats Villages

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Wood Heat * Non-Profit Consortium of Ten Tribal Governments within the Yukon Flats. * CATG Administers several Tribal Programs on behalf of the Tribes. * CATG also applies for and administers several other grants. - IHS, Regional Clinic (Fort Yukon), Health Aids in Each Village, drug and alcohol programs, and other health related programs. - Natural Resources, EPA/IGAP, ANA (Traditional Land use Planning and Mapping), GIS, USDA RC&D, Contracts/Compacts with the USF&W (first tribal

  13. Dynamics of Wood Chip Storage: Task I

    SciTech Connect

    Sworden, P. G.

    1982-08-01

    The purpose of this report is to document Dow Corning's decision making process in establishing a fuelwood supply and procurement system with emphasis on how this relates to private forest landowners. The report will provide background on the decision to investigate wood energy systems and key management questions in that decision process. Information used to answer the key management questions will be high-lighted and its usefulness documented, including resource assessment and requirements. The report will discuss the development and implementation of the landowner assistance program and supplier-producer program. At the end of the report, Dow Corning's experiences will be summarized and some conclusions drawn concerning the success of the program.

  14. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  15. WINDExchange: Where Is Wind Power?

    WindExchange

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  16. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  17. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  18. Small Wind Guidebook/Is Wind Energy Practical for Me | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind GuidebookIs Wind Energy Practical for Me < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook...

  19. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  20. DOE/NREL supported wind energy activities in Indonesia

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  1. Wood chips: an exploration of problems and opportunities. Final report

    SciTech Connect

    Not Available

    1985-01-01

    This report evaluates the current use of and potential market for wood chips as a fuel in the Northeast. This study covers the residential, commercial, and light industrial sectors and addresses cost, reliability, marketing systems, and technology improvements. A review of the available equipment for wood chip harvesting, processing, handling, drying, and transport is included. Three representative strategic business guides for different chip suppliers are presented. There is also a recommended action plan for future programs with initiatives that could facilitate the development of the wood chip market. 25 refs., 8 figs., 11 tabs.

  2. Wood-Polymer composites obtained by gamma irradiation

    SciTech Connect

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  3. An economical and market analysis of Canadian wood pellets.

    SciTech Connect

    Peng, J.

    2010-08-01

    This study systematically examined the current and future wood pellet market, estimated the cost of Canadian torrefied pellets, and compared the torrefied pellets with the conventional pellets based on literature and industrial data. The results showed that the wood pellet industry has been gaining significant momentum due to the European bioenergy incentives and the rising oil and natural gas prices. With the new bioenergy incentives in USA, the future pellets market may shift to North America, and Canada can potentially become the largest pellet production centre, supported by the abundant wood residues and mountain pine beetle (MPB) infested trees.

  4. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  5. ARM - Lesson Plans: Winds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Winds Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Winds Objective The objective of this activity is to investigate how pressure differences create wind. Materials Each student or group of students will need the following: Balloon (long balloons or round ones) Bicycle pump

  6. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  7. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  8. Research Staff | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Staff Learn more about the expertise and technical skills of the wind energy research team and staff at NREL by reading their biographical information. Photo of Daniel Laird Daniel Laird Center Director Dr. Daniel Laird is director of the National Wind Technology Center (NWTC). Laird also serves as an executive committee member of the U.S. Department of Energy's (DOE's) Atmosphere to Electrons Wind Plant Optimization Initiative and provides leadership in the focus areas of high-fidelity

  9. 2014 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 News Below are news stories related to Wind. RSS Learn about RSS. November 12, 2014 NREL Research Facilitates Several Multi-Party Collaborations in Advanced Controls NREL's two Advanced Controls Research Turbines are providing the basis for several collaborative research projects involving multiple partners to advance the state-of-the-art wind turbine controls. November 6, 2014 NREL Analyzes Floating Offshore Wind Technology for Statoil NREL engineers traveled to Oslo, Norway, to meet with

  10. Energy in the Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced

  11. WINDExchange: Buying Wind Power

    WindExchange

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  12. Wind Energy Impacts: Slides

    WindExchange

    help to alleviate common misconceptions about wind energy. Wind Energy Impacts Photo from Invenergy LLC, NREL 14371 Wildlife impacts vary by location,* and new developments have helped to reduce these effects. Photo from LuRay Parker, NREL 17429 Wind Energy Impacts Pre- and post-development studies, educated siting, and curtailment during high-activity periods have decreased wildlife impacts.** Additional strategies are being researched to better understand and further decrease impacts.

  13. Silver Star Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Star Wind Farm Jump to: navigation, search Name Silver Star Wind Farm Facility Silver Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. University of Delaware Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  15. West Stevens Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name West Stevens Wind Facility West Stevens Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Developer...

  16. Brown County Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric...

  17. Kingdom Community Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Kingdom Community Wind Facility Kingdom Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Green Mountain...

  18. Wing River Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River...

  19. Osage Municipal Utilities Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  20. Wessington Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...