National Library of Energy BETA

Sample records for wind structures cxs

  1. Structural Testing Laboratory | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Structural Testing Laboratory NREL's structural test facilities enable the characterization and validation of wind turbine blades and components. A photo of a wind turbine blade inside a testing room with sensors mounted to the surface of the blade. The extreme operating loads experienced by blades during field operation and accelerated fatigue lifetime loading can be simulated and tested in one of three laboratories at the National Wind Technology Center (NWTC). Facilities are capable of

  2. NREL: Wind Research - Structural Testing Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and improve new blade designs, analyze blade structural properties, and improve their manufacturing processes. As wind turbines grow in size and their blades become longer and...

  3. Wind Turbine Structural Health Monitoring

    Energy Innovation Portal

    2011-02-08

    LANL researchers are developing unique sensors in tandem with proprietary high-fidelity finite element models as well as the LANL WindBlade modeling and simulation capability that couples aeroelastic dynamic force loads with atmospheric wind conditions and system environment. The LANL Intelligent Wind Turbine Program is seeking dialogue with potential industrial collaborators to discuss long-term partnership opportunities....

  4. Nonlinear Development of Shocklike Structure in the Solar Wind...

    Office of Scientific and Technical Information (OSTI)

    Nonlinear Development of Shocklike Structure in the Solar Wind Citation Details In-Document Search Title: Nonlinear Development of Shocklike Structure in the Solar Wind We report ...

  5. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-05-01

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  6. Structural health monitoring of wind turbines

    SciTech Connect (OSTI)

    Simmermacher, T.; James, G.H. III.; Hurtado, J.E.

    1997-09-01

    To properly determine what is needed in a structural health monitoring system, actual operational structures need to be studied. We have found that to effectively monitor the structural condition of an operational structure four areas must be addressed: determination of damage-sensitive parameters, test planning, information condensation, and damage identification techniques. In this work, each of the four areas has been exercised on an operational structure. The structures studied were all be wind turbines of various designs. The experiments are described and lessons learned will be presented. The results of these studies include a broadening of experience in the problems of monitoring actual structures as well as developing a process for implementing such monitoring systems.

  7. Wind Turbine Structural Health Monitoring - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    couples aeroelastic dynamic force loads with atmospheric wind conditions and system environment. The LANL Intelligent Wind Turbine Program is seeking dialogue with potential ...

  8. Structural dynamic response characteristics of Darrieus vertical axis wind turbines

    SciTech Connect (OSTI)

    Sullivan, W.N.

    1981-01-01

    A brief summary of the efforts now underway in the area of the structural dynamics of vertical axis wind turbines is given. The emphasis is on discussing the status of analytical tools, the quantity and quality of existing experimental confirmation data, and the implications structural dynamic issues have on rotor design.

  9. Understanding of solar wind structure might be wrong

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar wind structure misunderstood Understanding of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a river-like stream. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  10. A Review of Wind Project Financing Structures in the USA

    SciTech Connect (OSTI)

    Bolinger, Mark A; Harper, John; Karcher, Matthew

    2008-09-24

    The rapid pace of wind power development in the U.S. over the last decade has outstripped the ability of most project developers to provide adequate equity capital and make efficient use of project-related tax benefits. In response, the sector has created novel project financing structures that feature varying combinations of equity capital from project developers and third-party tax-oriented investors, and in some cases commercial debt. While their origins stem from variations in the financial capacity and business objectives of wind project developers, as well as the risk tolerances and objectives of equity and debt providers, each structure is, at its core, designed to manage project risk and allocate federal tax incentives to those entities that can use them most efficiently. This article surveys the six principal financing structures through which most new utility-scale wind projects (excluding utility-owned projects) in the U.S. have been financed from 1999 to the present. These structures include simple balance-sheet finance, several varieties of all-equity special allocation partnership 'flip' structures, and two leveraged structures. In addition to describing each structure's mechanics, the article also discusses its rationale for use, the types of investors that find it appealing and why, and its relative frequency of use in the market. The article concludes with a generalized summary of how a developer might choose one structure over another.

  11. Impact of Electric Industry Structure on High Wind Penetration...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Relevant Characteristics of Wind Power for System Operators Wind power itself has four principal characteristics important to power system planning and operations: the wind ...

  12. Simulation of period doubling of recurrent solar wind structures

    SciTech Connect (OSTI)

    Whang, Y.C. ); Burlaga, L.F. )

    1990-12-01

    In 1974, IMP, Pioneer 11 and Pioneer 10 observed a recurrent solar wind structure over five consecutive solar rotations at three different trajectories between 1 and 6 AU. Using MHD simulations and input functions generated from plasma and magnetic field data observed from Pioneer 11. The authors study the continuing evolution of this solar wind structure between 5 and 20 AU. This simulation uses the shock interactions model which treats MHD shocks as discontinuity surfaces with zero thickness and which uses the exact Rankine-Hugoniot relations to describe the jump conditions. The model can calculate the collision and merging of shocks and the dynamical evolution of the solar wind in the outer heliosphere. The simulation result shows that between 5 and 10 AU there is an evolution from two corotating interaction regions per solar rotation to one merged interaction region (MIR) per solar rotation near 10 AU, i.e., period doubling has occurred. Each MIR was bounded by a forward and a reverse shock and additional weaker shocks may exist inside the MIR. Between 10 and 20 AU the structure of one MIR per solar rotation appears as a very persistent structure.

  13. Structural health and prognostics management for offshore wind turbines :

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  14. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  15. Modal Dynamics of Large Wind Turbines with Different Support Structures

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2008-07-01

    This paper presents modal dynamics of floating-platform-supported and monopile-supported offshore wind turbines.

  16. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  17. SMART Wind Consortium Support Structures Subgroup Virtual Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design November 18, 2015 2:30PM to 4:00PM EST Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term...

  18. High-R Walls for New Construction Structural Performance. Wind Pressure Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  19. Modal testing of a very flexible 110 m wind turbine structure

    SciTech Connect (OSTI)

    Carne, T.G.; Lauffer, J.P.; Gomez, A.J.; Benjannet, Hassine

    1988-01-01

    Modal Testing of immense and very flexible structures poses a number of problems. It requires innovative excitation techniques since the modal frequencies of these stuctures can be quite low. Also, substantial energy must be input to the structure to obtain reasonable levels of response. In this paper, results are presented from a modal test of the 110 m tall EOLE wind turbine which had four modal frequencies below 1.0 Hz. Step-relaxation and wind were used to excite the structure. 5 refs., 14 figs., 2 tabs.

  20. THE SPATIALLY RESOLVED H{alpha}-EMITTING WIND STRUCTURE OF P CYGNI

    SciTech Connect (OSTI)

    Balan, Aurelian; Tycner, C.; Zavala, R. T.; Benson, J. A.; Hutter, D. J.; Templeton, M. E-mail: c.tycner@cmich.ed E-mail: jbenson@nofs.navy.mi E-mail: matthewt@aavso.or

    2010-06-15

    High spatial resolution observations of the H{alpha}-emitting wind structure associated with the luminous blue variable star P Cygni were obtained with the Navy Prototype Optical Interferometer. These observations represent the most comprehensive interferometric data set on P Cyg to date. We demonstrate how the apparent size of the H{alpha}-emitting region of the wind structure of P Cyg compares between the 2005, 2007, and 2008 observing seasons and how this relates to the H{alpha} line spectroscopy. Using the data sets from 2005, 2007, and 2008 observing seasons, we fit a circularly symmetric Gaussian model to the interferometric signature from the H{alpha}-emitting wind structure of P Cyg. Based on our results, we conclude that the radial extent of the H{alpha}-emitting wind structure around P Cyg is stable at the 10% level. We also show how the radial distribution of the H{alpha} flux from the wind structure deviates from a Gaussian shape, whereas a two-component Gaussian model is sufficient to fully describe the H{alpha}-emitting region around P Cyg.

  1. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  2. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  3. Microsoft Word - Increased Strength in Wind Turh Innovative Structural...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the design optimization. The resulting system-driven design includes several innovative structural features such as flat-back airfoils, a constant thickness carbon spar-cap, and...

  4. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect (OSTI)

    Claytor, Thomas N; Ammerman, Curtt N; Park, Gyu Hae; Farinholt, Kevin M; Farrar, Charles R; Atterbury, Marie K

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  5. Structural design of the Sandia 34-meter Vertical-Axis Wind Turbine

    SciTech Connect (OSTI)

    Berg, D.E.

    1985-04-01

    Sandia National Laboratories, as the lead Department of Energy laboratory for Vertical-Axis Wind Turbine development, is currently designing a 34-m diameter Darrieus-type vertical-axis wind turbine. This turbine will be a research test bed that provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. This design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. This report describes the analytic tools being used, summarizes the conceptual design procedure, and presents portions of the detailed design as it existed in September 1984.

  6. Coherent structures and turbulent spectrum in solar wind plasmas

    SciTech Connect (OSTI)

    Sharma, R. P.; Yadav, N.; Kumari, Anju

    2013-08-15

    The present paper investigates the localization of a uniform plane kinetic Alfvn wave (KAW) due to the coupling with the density/magnetic field fluctuations associated with a magnetosonic wave propagating in the transverse direction, i.e., perpendicular to the background magnetic field. To gain the physical insight into this evolution, a simplified analytical model based on the Mathieu equation has also been studied. Numerical method has also been used to analyse the evolution of KAW. The magnetic fluctuation spectrum follows Kolmogorovian scaling above the proton gyroradius scalelength, which is regarded as the inertial range. Below this scale, a steepened spectrum has been obtained in the dispersive range with power law index ??2.5, which continues up to the dissipation range. Our results reveal that the proposed mechanism may be an interesting physical mechanism for transferring the energy from larger lengthscales to smaller lengthscales in the solar wind plasmas. Relevance of the present study with Cluster spacecraft observations has also been discussed.

  7. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  8. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    SciTech Connect (OSTI)

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  9. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  10. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    SciTech Connect (OSTI)

    Berg, D.E.

    1985-01-01

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. This paper describes the analytic tools we are using, summarizes the conceptual design procedure and presents portions of our detailed design as it exists in September 1984.

  11. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect (OSTI)

    Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

    2011-01-03

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  12. Structure and dynamics of the accretion process and wind in TW Hya

    SciTech Connect (OSTI)

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Berlind, P.; Strader, Jay; Smith, Graeme H.

    2014-07-01

    Time-domain spectroscopy of the classical accreting T Tauri star, TW Hya, covering a decade and spanning the far UV to the near-infrared spectral regions can identify the radiation sources, the atmospheric structure produced by accretion, and properties of the stellar wind. On timescales from days to years, substantial changes occur in emission line profiles and line strengths. Our extensive time-domain spectroscopy suggests that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as some absorption from infalling material. Stable absorption features appear in H?, apparently caused by an accreting column silhouetted in the stellar wind. Inflow of material onto the star is revealed by the near-IR He I 10830 line, and its free-fall velocity correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. However, the predictions of hydrogen line profiles based on accretion stream models are not well-matched by these observations. Evidence of an accelerating warm to hot stellar wind is shown by the near-IR He I line, and emission profiles of C II, C III, C IV, N V, and O VI. The outflow of material changes substantially in both speed and opacity in the yearly sampling of the near-IR He I line over a decade. Terminal outflow velocities that range from 200 km s{sup 1} to almost 400 km s{sup 1} in He I appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind. Calculations of the emission from realistic post-shock regions are needed.

  13. Structural-dynamic-response characteristics of Darrieus vertical-axis wind turbines

    SciTech Connect (OSTI)

    Sullivan, W.N.

    1981-01-01

    Operational experience at Sandia National Laboratories (SNL) with Darrieus-type vertical axis wind turbines (VAWTs) has indicated that a variety of dynamic issues can affect structural performance of the system. The observation and analysis of structural dynamic responses in the VAWT have been divided among three major aspects of the system; namely rotor vibrations, torsional response of the drive train, and transverse vibrations of the cables. This division is not arbitrary, but is rather because the response of these subsystems can be accurately decoupled from each other in most circumstances. This paper will present only a brief summary of the efforts now underway at SNL in the area of structural dynamics. The emphasis will be on discussing the status of our analytical tools, the quantity and quality of existing experimental confirmation data, and the implications structural dynamic issues have on rotor design.

  14. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    DOE PAGES-Beta [OSTI]

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymore » developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less

  15. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    SciTech Connect (OSTI)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies by developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  16. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C.

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  17. Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    SciTech Connect (OSTI)

    Sullivan, W.N.

    1982-01-01

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major strucural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  18. Inverse Load Calculation of Wind Turbine Support Structures - A Numerical Verification Using the Comprehensive Simulation Code FAST: Preprint (Revised)

    SciTech Connect (OSTI)

    Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.

    2012-11-01

    Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.

  19. Corotating solar wind structures and recurrent trains of enhanced diurnal variation in galactic cosmic rays

    SciTech Connect (OSTI)

    Yeeram, T.; Ruffolo, D.; Siz, A.; Kamyan, N.; Nutaro, T. E-mail: david.ruf@mahidol.ac.th E-mail: p_chang24@hotmail.com

    2014-04-01

    Data from the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with a vertical cutoff rigidity of 16.8 GV, were utilized to determine the diurnal anisotropy (DA) of Galactic cosmic rays (GCRs) near Earth during solar minimum conditions between 2007 November and 2010 November. We identified trains of enhanced DA over several days, which often recur after a solar rotation period (?27 days). By investigating solar coronal holes as identified from synoptic maps and solar wind parameters, we found that the intensity and anisotropy of cosmic rays are associated with the high-speed streams (HSSs) in the solar wind, which are in turn related to the structure and evolution of coronal holes. An enhanced DA was observed after the onset of some, but not all, HSSs. During time periods of recurrent trains, the DA was often enhanced or suppressed according to the sign of the interplanetary magnetic field B, which suggests a contribution from a mechanism involving a southward gradient in the GCR density, n, and a gradient anisotropy along B ?n. In one non-recurrent and one recurrent sequence, an HSS from an equatorial coronal hole was merged with that from a trailing mid-latitude extension of a polar coronal hole, and the slanted HSS structure in space with suppressed GCR density can account for the southward GCR gradient. We conclude that the gradient anisotropy is a source of temporary changes in the GCR DA under solar minimum conditions, and that the latitudinal GCR gradient can sometimes be explained by the coronal hole morphology.

  20. Air gap winding method and support structure for a super conducting generator and method for forming the same

    DOE Patents [OSTI]

    Hopeck, James Frederick

    2003-11-25

    A method of forming a winding support structure for use with a superconducting rotor wherein the method comprises providing an inner support ring, arranging an outer support ring around the inner support ring, coupling first and second support blocks to the outer support ring and coupling a lamination to the first and second support blocks. A slot is defined between the support blocks and between the outer support ring and the lamination to receive a portion of a winding. An RTV fills any clearance space in the slot.

  1. IS ETA CARINAE A FAST ROTATOR, AND HOW MUCH DOES THE COMPANION INFLUENCE THE INNER WIND STRUCTURE?

    SciTech Connect (OSTI)

    Groh, J. H.; Weigelt, G.; Madura, T. I.; Owocki, S. P.; Hillier, D. J.

    2010-06-20

    We analyze interferometric measurements of the luminous blue variable Eta Carinae with the goal of constraining the rotational velocity of the primary star and probing the influence of the companion. Using two-dimensional radiative transfer models of latitude-dependent stellar winds, we find that prolate-wind models with a ratio of the rotational velocity (v{sub rot}) to the critical velocity (v{sub crit}) of W = 0.77-0.92, inclination angle of i = 60{sup 0}-90{sup 0}, and position angle (P.A.) =108{sup 0}-142{sup 0} reproduce simultaneously K-band continuum visibilities from VLTI/VINCI and closure phase measurements from VLTI/AMBER. Interestingly, oblate models with W = 0.73-0.90 and i = 80{sup 0}-90{sup 0} produce similar fits to the interferometric data, but require P.A. =210{sup 0}-230{sup 0}. Therefore, both prolate and oblate models suggest that the rotation axis of the primary star is not aligned with the Homunculus polar axis. We also compute radiative transfer models of the primary star allowing for the presence of a cavity and dense wind-wind interaction region created by the companion star. We find that the wind-wind interaction has a significant effect on the K-band image mainly via free-free emission from the compressed walls and, for reasonable model parameters, can reproduce the VLTI/VINCI visibilities taken at {phi}{sub vb03} = 0.92-0.93. We conclude that the density structure of the primary wind can be sufficiently disturbed by the companion, thus mimicking the effects of fast rotation in the interferometric observables. Therefore, fast rotation may not be the only explanation for the interferometric observations. Intense temporal monitoring and three-dimensional modeling are needed to resolve these issues.

  2. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  3. Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer

    SciTech Connect (OSTI)

    Nuijens, Louise; Medeiros, Brian; Sandu, Irina; Ahlgrimm, Maike

    2015-11-06

    We present patterns of covariability between low-level cloudiness and the trade-wind boundary layer structure using long-term measurements at a site representative of dynamical regimes with moderate subsidence or weak ascent. We compare these with ECMWF’s Integrated Forecast System and 10 CMIP5 models. By using single-time step output at a single location, we find that models can produce a fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratification at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the tradewind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing the observed behavior in all respects. As a result, these findings suggest that climate models do not realistically represent the physical processes that underlie the coupling between trade-wind clouds and their environments in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.

  4. Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer

    DOE PAGES-Beta [OSTI]

    Nuijens, Louise; Medeiros, Brian; Sandu, Irina; Ahlgrimm, Maike

    2015-11-06

    We present patterns of covariability between low-level cloudiness and the trade-wind boundary layer structure using long-term measurements at a site representative of dynamical regimes with moderate subsidence or weak ascent. We compare these with ECMWF’s Integrated Forecast System and 10 CMIP5 models. By using single-time step output at a single location, we find that models can produce a fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratificationmore » at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the tradewind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing the observed behavior in all respects. As a result, these findings suggest that climate models do not realistically represent the physical processes that underlie the coupling between trade-wind clouds and their environments in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.« less

  5. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  6. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  7. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    SciTech Connect (OSTI)

    Desmond, M.; Hughes, S.; Paquette, J.

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  8. Materials and innovations for large blade structures : research opportunities in wind energy technology.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.

    2009-05-01

    The significant growth in wind turbine installations in the past few years has fueled new scenarios that envision even larger expansion of U.S. wind electricity generation from the current 1.5% to 20% by 2030. Such goals are achievable and would reduce carbon dioxide emissions and energy dependency on foreign sources. In conjunction with such growth are the enhanced opportunities for manufacturers, developers, and researchers to participate in this renewable energy sector. Ongoing research activities at the National Renewable Energy Laboratory and Sandia National Laboratories will continue to contribute to these opportunities. This paper focuses on describing the current research efforts at Sandia's wind energy department, which are primarily aimed at developing large rotors that are lighter, more reliable and produce more energy.

  9. West Winds Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations

    SciTech Connect (OSTI)

    Bush, B.; Jenkin, T.; Lipowicz, D.; Arent, D. J.; Cooke, R.

    2012-01-01

    Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions.

  11. SMART Wind Consortium Support Structures Subgroup Virtual Meeting: Tower and Foundation Design

    Energy.gov [DOE]

    Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term and mid-term plans needed to increase cost competitiveness of U.S....

  12. NREL: Wind Research - Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing ... Power performance, noise, loads, and power quality testing: NREL is one of only two ...

  13. Wind Integration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  14. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies. Structural health and prognostics management for offshore O&M

    DOE PAGES-Beta [OSTI]

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymoredeveloping an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.less

  15. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect (OSTI)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  16. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Sixth ASME wind energy symposium

    SciTech Connect (OSTI)

    Thresher, R.W.

    1987-01-01

    This book presents the papers given at a symposium on wind turbines. Topics considered at the symposium included aerodynamics, mechanical structures, wind loads, design methods, turbine blades, load management, Darrieus rotors, wind power plants, acoustic measurements, utility interfaces, wind turbine arrays, performance testing, airfoils, and commercialization.

  18. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  19. Structural Health and Prognostics Management for Offshore Wind Plants; Final Report of Sandia R&D Activities.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2015-04-01

    This final report is a compilation of resear ch efforts - funded by the US Department of Energy Wind and Water Power Technolog ies Office over a four-year period from FY11 through FY14. The goals of this re search program were to develop and evaluate technical innovati ons with promise for maxi mizing revenues and reducing levelized cost of energy (LCOE) for offs hore wind plants - more specifically the goals of the Structural H ealth and Prognostics Management (SHPM) program were to reduce O&M costs and increase energy capture through use of SHPM-based technologies. A technology roadmap was deve loped at the start of the project to guide the research efforts. This roadmap identified and outlined six major research thrust areas each having five stages of ma turity. Research was conducted in each of these thrust areas, as documented throughout this report, although a major focus was on development of damage detection strategi es for the most frequent blade damage conditions and damage mitigation and life-exte nsion strategies via changes in turbine operations (smart loads management). Th e work summarized in this compilation report is the product of the work of many researchers. A summary of the major findings, status of the SHPM Technology Ro admap and recommendations for future work are also provided.

  20. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of ...

  1. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

    SciTech Connect (OSTI)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Kopp, A.; Heber, B.; Kissmann, R.

    2014-06-10

    The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

  2. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  3. Wind Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  4. Wind News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  5. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  6. Wind News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Wind-turbine blade growth continues to have the largest impact on energy capture and ...

  7. Wind Resource Assessment | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and ...

  8. Distributed Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  9. Offshore Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A photo of several rows of wind turbines standing in the ocean with the sun overhead. Capabilities NREL's offshore wind turbine research capabilities focus on critical areas that ...

  10. RESOLVING THE CLUMPY STRUCTURE OF THE OUTFLOW WINDS IN THE GRAVITATIONALLY LENSED QUASAR SDSS J1029+2623

    SciTech Connect (OSTI)

    Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina

    2014-10-20

    We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z {sub em} ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.

  11. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect (OSTI)

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  12. Simulator for Wind Farm Applications

    Energy Science and Technology Software Center (OSTI)

    2012-01-06

    A modular tool for simulating wind plant aerodynamics with computational fluid dynamics and turbine structural and control response to the incoming flow.

  13. Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  14. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Wind Power

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  16. Wind Farm

    Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  17. Wind Easements

    Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  18. Coherent structure in solar wind C{sup 6+}/C{sup 4+} ionic composition data during the quiet-sun conditions of 2008

    SciTech Connect (OSTI)

    Edmondson, J. K.; Lepri, S. T.; Zurbuchen, T. H.; Lynch, B. J.

    2013-11-20

    This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in situ for 13 quiet-Sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C{sup 6+}/C{sup 4+} measured in situ by ACE/SWICS for 2 hr and 12 minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data to a resolution of 24 minutes. We analyze each wavelet power spectrum for transient coherency and global periodicities resulting from the superposition of repeating coherent structures. From the significant wavelet power spectra, we find evidence for a general upper limit on individual transient coherency of ?10 days. We find evidence for a set of global periodicities between 4-5 hr and 35-45 days. We find evidence for the distribution of individual transient coherency scales consisting of two distinct populations. Below the ?2 day timescale, the distribution is reasonably approximated by an inverse power law, whereas for scales ?2 days, the distribution levels off, showing discrete peaks at common coherency scales. In addition, by organizing the transient coherency scale distributions by wind type, we find that these larger, common coherency scales are more prevalent and well defined in coronal hole wind. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field.

  19. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  20. Winning the Future: Chaninik Wind Group Pursues Innovative Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CWG community members review structural plans as part of their wind turbine training in Kwigillingok, AK. Photo from Intelligent Energy Systems, NREL 29205 Wind turbines installed ...

  1. NREL: National Wind Technology Center Home Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL: National Wind Technology Center National Wind Technology Center The National Wind Technology Center (NWTC) at NREL is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power

  2. Intelligent Wind Turbine Program - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Energy Wind Energy Find More Like This Return to Search Intelligent Wind Turbine Program Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryA unique LANL research team composed of world experts in structural health monitoring, modeling and simulation, and prognostic decision making has established a strong capability in wind energy research. The intelligent wind-turbine project has resulted in a U.S. patent application and copyrighted software,

  3. Wind Energy Projects | Department of Energy

    Energy.gov (indexed) [DOE]

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  4. Wind Power Forecasting Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  5. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  6. Wind News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  7. Offshore Wind

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  8. wind turbines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  9. Wind Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  10. Wind Workshop

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  11. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  13. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  14. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  15. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  16. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  17. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  18. NREL: Wind Research - Offshore Wind Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  19. NREL: Wind Research - Offshore Wind Turbine Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens ... NREL's offshore wind turbine research capabilities focus on critical areas that reflect ...

  20. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  1. NREL: Wind Research - Wind Resource Assessment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special ... to anticipate wind generation levels and adjust the ...

  2. Vertical-axis wind-turbine program

    SciTech Connect (OSTI)

    Braasch, R.H.

    1981-01-01

    During the interval since the Fourth Biennial Wind Energy Conference, the vertical axis wind turbine program has experienced significant progress. The purpose of this paper is to review that progress in aerodynamics research, structural dynamics research, and machine development.

  3. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  4. Danielson Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  5. Kawailoa Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  6. Palouse Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  7. Harbor Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  8. Kahuku Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  9. Wiota Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  10. Bravo Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  11. Auwahi Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  12. Traer Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  13. Sheffield Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  14. Rollins Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  15. LOOKING DEEP INTO THE CAT'S EYE: STRUCTURE AND ROTATION IN THE FAST WIND OF THE PN CENTRAL STAR OF NGC 6543

    SciTech Connect (OSTI)

    Prinja, R. K.; Massa, D. L.; Cantiello, M.

    2012-11-10

    We present HST/STIS time-series spectroscopy of the central star of the 'Cat's Eye' planetary nebula NGC 6543. Intensive monitoring of the UV lines over a 5.8 hr period reveals well-defined details of large-scale structure in the fast wind, which are exploited to provide new constraints on the rotation rate of the central star. We derive characteristics of the line profile variability that support a physical origin due to corotating interaction regions (CIRs) that are rooted at the stellar surface. The recurrence time of the observed spectral signatures of the CIRs is used to estimate the rotation period of the central star and, adopting a radius between 0.3 and 0.6 R{sub Sun} constrains the rotational velocity to the range 54 km s{sup -1} {<=} v{sub rot} {<=} 108 km s{sup -1}. The implications of these results for single star evolution are discussed based on models calculated here for low-mass stars. Our models predict a subsurface convective layer in NGC 6543 which we argue to be causally connected to the occurrence of structure in the fast wind.

  16. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  17. Offshore Wind Power USA

    Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  18. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  19. WINDExchange: Selling Wind Power

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  20. Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications

    SciTech Connect (OSTI)

    Alonso, Juan J.; Iaccarino, Gianluca

    2013-08-25

    solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

  1. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  2. Grid Integration of Offshore Wind | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  3. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kutcher, H.R.

    1984-05-15

    A Darrieus-type vertical axis wind turbine is disclosed which includes a vertically extending rotor tube mounted on a support structure with two or three rotor blades of troposkein configuration on the rotor tube for rotating the tube in response to wind energy and thereby drive a generator to produce electrical power. The turbine includes an erection hinge which permits assembly of the rotor tube and blades at close to ground level followed by upward hinging of the rotor assembly to a vertical position. It also includes a system for automatically lubricating the top bearing upon erection and a system for visually tensioning the guy cables.

  4. Wind Measurement Buoy Advances Offshore Wind Energy | Department...

    Energy Savers

    Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind ...

  5. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  6. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of

  7. Wind Spires as an Alternative Energy Source

    SciTech Connect (OSTI)

    Majid Rashidi, Ph.D., P.E.

    2012-10-30

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  8. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  9. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Garnet Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  13. Lime Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  14. Fairhaven Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  15. Scituate Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  16. Pacific Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  17. Galactic Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  18. Rockland Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  19. Greenfield Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  20. Willmar Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  1. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  2. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  3. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  4. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  5. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  6. VLBA OBSERVATIONS OF SUB-PARSEC STRUCTURE IN Mrk 231: INTERACTION BETWEEN A RELATIVISTIC JET AND A BAL WIND

    SciTech Connect (OSTI)

    Reynolds, Cormac; Punsly, Brian; Kharb, Preeti; O'Dea, Christopher P.; Wrobel, Joan E-mail: brian.punsly@comdev-usa.co

    2009-11-20

    We report on the first high-frequency very long baseline interferometry observations of the nearby broad absorption line quasar, Mrk 231. Three epochs of observations were achieved at 15 GHz and 22 GHz, two of these included 43 GHz observations as well. The nuclear radio source is resolved as a compact double. The core component experienced a strong flare in which the flux density at 22 GHz increased by >150% (45 mJy) in three months. Theoretical models of the flare imply that the emission is likely enhanced by very strong Doppler boosting of a highly relativistic ejecta with a kinetic energy flux, Q approx 3 x 10{sup 43} erg s{sup -1}. Combining our data with two previous epochs of 15 GHz data shows marginal evidence for the slow advance of the secondary component (located approx0.97 pc from the core) over a 9.4 year span. We estimate that the long-term time averaged kinetic energy flux of the secondary at Q-barapprox1-{sup 42} erg s{sup -1}. Low-frequency very long baseline array observations indicate that the secondary is seen through a shroud of free-free absorbing gas with an emission measure of approx10{sup 8} cm{sup -6}. The steep spectrum secondary component appears to be a compact radio lobe that is associated with a working surface between the ram pressure confined jet and a dense medium that is likely to be the source of the free-free absorption. The properties of the dense gas are consistent with the temperatures, displacement from the nucleus, and the column density of total hydrogen commonly associated with the BAL wind.

  7. Wind Turbine Control Systems | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL is researching new control methodologies for both land-based wind turbines and offshore wind turbines. A photo of a wind turbine against blue sky with white blades on their ...

  8. NREL: Wind Research - Site Wind Resource Characteristics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  9. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  10. Offshore Wind Resource Characterization | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Resource Characterization NREL scientists and engineers are leading efforts in ... and development, and forecasting that are essential for the development of offshore wind. ...

  11. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  12. NREL: Wind Research - Wind Energy Videos

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  13. NREL: Wind Research - Small Wind Turbine Development

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in ... Testing included power performance, safety and function, noise, and partial loads tests. ...

  14. A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig; Farouqi, Khalil; Mller, Peter E-mail: kfarouqi@lsw.uni-heidelberg.de

    2014-09-01

    Attempts to explain the source of r-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and ?-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ?-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A ? 110 and {sup 209}Bi, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  15. Session: Wind industry project development

    SciTech Connect (OSTI)

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  16. Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model

    SciTech Connect (OSTI)

    Blair, N.; Hand, M.; Short, W.; Sullivan, P.

    2008-06-01

    In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

  17. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  18. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  2. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  3. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  4. Grid Integration of Wind Energy | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Grid Integration of Wind Energy Researchers study grid integration of wind energy to better understand how variable generation resources such as wind energy impact the grid and how to increase the percentage of wind generation in the United States' energy portfolio. A photo of three wind turbines with transmission lines in the background. Capabilities NREL's grid integration analysts work with the U.S. Department of Energy, university researchers, independent system operators, and regional

  5. Wind Data and Tools | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Data and Tools Learn more about wind energy through these NREL data and tools. A photo of two men silhouetted against a computer-generated simulation with white and blue rows illustrating wind plant aerodynamics. NWTC Information Portal This open-source library houses NREL's wind and water power simulation and modeling software and data, including computer-aided engineering tools and integrated system design and analysis tools. All software is available for download. Wind-Wildlife Impacts

  6. GL Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  7. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  8. Wind energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  9. WINDExchange: Potential Wind Capacity

    WindExchange

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  10. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  11. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  12. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  13. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  14. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers

    2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, ...

  15. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  16. National Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  17. Solar Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  18. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  19. Horn Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  20. Royal Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  1. Coriolis Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  2. Jasper Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  3. Coalescing Wind Turbine Wakes

    DOE PAGES-Beta [OSTI]

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  4. Coalescing Wind Turbine Wakes

    SciTech Connect (OSTI)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  5. WINDExchange: Siting Wind Turbines

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  6. Economical wind protection - underground

    SciTech Connect (OSTI)

    Kiesling, E.W.

    1980-01-01

    Earth-sheltered buildings inherently posess near-absolute occupant protection from severe winds. They should sustain no structural damage and only minimal facial damage. Assuming that the lower-hazard risk attendant to this type of construction results in reduced insurance-premium rates, the owner accrues economic benefits from the time of construction. Improvements to aboveground buildings, in contrast, may not yield early economic benefits in spite of a favorable benefit-to-cost ratio. This, in addition to sensitivity to initial costs, traditionalism in residential construction, and lack of professional input to design, impede the widespread use of underground improvements and the subsequent economic losses from severe winds. Going underground could reverse the trend. 7 references.

  7. Wind energy systems: program summary

    SciTech Connect (OSTI)

    1980-05-01

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  8. An Exploration of Wind Energy & Wind Turbines

    Education Teach & Learn

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  9. Crow Lake Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  10. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  11. Radial Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  12. NREL: Wind Research - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  13. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  14. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  15. Model Wind Ordinance

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  16. Solar and Wind Easements

    Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  17. Impacts | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Impacts Read about NREL's impacts on innovations in wind energy research. Photo of four men in hard hats standing on top of a large wind turbine overlooking several other wind turbines in the distance. Fact Sheets Wind Energy Benefits thumbnail Wind Energy Benefits Screenshot of the cover of the national wind technology brochure. 35 Years of Innovation: Leading the Way to a Clean Energy Future JEDI: Jobs and Economic Development Impact Model thumbnail JEDI: Jobs and Economic Development Impact

  18. Distributed Wind Ordinances: Slides

    WindExchange

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  19. Wind Energy Integration: Slides

    WindExchange

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  20. 2009 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 News Below are news stories related to Wind. RSS Learn about RSS. September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance

  1. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  2. Wind Power Reliability Research | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Power Reliability Research The U.S. wind power industry is well established, with nearly 75 gigawatts of installed capacity across the United States. Given this large base of ...

  3. Wind Energy Modeling and Simulation | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Energy Modeling and Simulation Wind turbines are unique devices that are typically anchored to the ground but operate in the atmosphere, which subjects them to a variety of ...

  4. Wind Vision Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  5. Alaska Wind Update

    Energy Savers

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  6. @NWTC Newsletter | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    from the Energy Department's National Wind Technology Center (NWTC) at the National ... an essential partner for the technical development and deployment of wind and water power. ...

  7. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  8. vertical axis wind turbine

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    vertical axis wind turbine - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  9. Enabling Wind Power Nationwide

    Energy.gov (indexed) [DOE]

    Enabling Wind Power Nationwide May 2015 This report is being disseminated by the U.S. ... ordering: ntis.govordering.htm Enabling Wind Power Nationwide Primary Authors Jose ...

  10. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  11. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  12. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative ...

  13. Market Acceleration | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL's team also offers energy and economic analysis, maps, forecasting, workforce development, and education. An aerial photo of three wind turbines at the National Wind ...

  14. Wind Turbine Tribology Seminar

    Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  15. NREL: Wind Research - Publications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some ...

  16. Sandia Energy Wind News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  17. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  18. Small Wind Conference 2015

    Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  19. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  20. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  1. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  2. WINDExchange: Distributed Wind

    WindExchange

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  3. Cherokee Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  4. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  5. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  6. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  7. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  8. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  9. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  10. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  11. Wind power 85

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  12. Wind power 85

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnel testing, vertical axis turbines, wind turbine generators, aerodynamics, airfoils, wind loads, Darrieus rotors, economics, legislation, regulations, environmental impacts, national and international programs, fatigue testing, and horizontal axis turbines.

  13. NREL: Innovation Impact - Wind

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  14. Energy from the wind

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This document provides a brief description of the use of wind power. Windmills from the 18th century are described. Modern wind turbines and wind turbine arrays are discussed. Present and future applications of wind power in the US are explained. (JDH)

  15. Your wind driven generator

    SciTech Connect (OSTI)

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  16. Wind Energy Benefits: Slides

    WindExchange

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  17. ARM - Wind Chill Calculations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  18. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  19. WINDExchange: Collegiate Wind Competition

    WindExchange

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  20. WINDExchange: Wind Energy Ordinances

    WindExchange

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  1. 2006 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    6 News Below are news stories related to Wind. RSS Learn about RSS. December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen.

  2. CX-010215: Categorical Exclusion Determination

    Energy.gov [DOE]

    Laufer Wind Group National Wind Technology Center Structure Lighting Tests CX(s) Applied: B1.31, B5.15 Date: 05/30/2013 Location(s): Colorado Offices(s): Golden Field Office

  3. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    WindExchange

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  4. Wind Gallery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gallery Wind Gallery Addthis 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator. Nacelle: 5 of 17 Nacelle:

  5. National Wind Assessments formerly Romuld Wind Consulting | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  6. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  7. NREL: Wind Research - Small and Distributed Wind Turbine Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Small and Distributed Wind Turbine Research A distributed wind farm in Wisconsin at ... Standards: The suite of tests conducted on small wind turbines includes acoustic noise ...

  8. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Information (Open El) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  9. Wind energy: A review of technical and market issues

    SciTech Connect (OSTI)

    Garrad, A.D.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. The paper is divided into three sections: the market, the technology, and general conclusions. The market section compares European and US wind energy growth and contributing factors and barriers to growth. A technology overview discusses wind turbine concepts, mass reduction, blade structural flexibility, and growth in machine size. Political decisions, economic aspects, public acceptance, and technology limitations are assessed for their influence on the growth of wind energy. 11 figs.

  10. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  11. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M.; Loose, R.R.; Cadogon, J.B.

    1994-07-01

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  12. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  13. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  14. Star Point Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Gulf Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  16. Stetson Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Zirbel Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Beebe Community Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  19. Woodstock Municipal Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  20. Winona County Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  1. Story City Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  2. Palmetto Wind Research Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  3. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  4. Deepwater Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  5. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  6. Montfort Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  7. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Springview II Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  9. Shiloh Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Fenton Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Madison Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Somerset Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Desert Wind Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  14. Moraine Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Adams Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Blue Creek Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  18. Thousand Springs Wind Park | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. First State Marine Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  20. Minco Wind Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  2. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  3. Howard Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  4. Cape Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  5. Wales Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  6. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Vantage Wind Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Bayonne Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  9. Gary Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  10. Havoco Wind Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  11. Oliver Wind Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Flat Water Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Gray County Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  14. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Luther College Wind Turbine | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  16. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  17. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  18. Charlestown Wind Turbine | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Fenner Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Rosiere Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Marengo Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Marshall Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  10. Casper Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. Wallys Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Cassia Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Cedar Point Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  15. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  16. Greensburg Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Wheatfield Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Ewington Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Uilk Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  20. Octotillo Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Don Sneve Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Green Mountain Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Red Canyon Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Kansas/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Idaho/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Nevada/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Iowa/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Small Wind Guidebook | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Maine/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Hawaii/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Oregon/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Alaska/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Olsen Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Sigel Wind Park | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. Minden Wind Park | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Criterion Wind Park | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Golden Valley Wind Park | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Condon Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Turkey Track Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  4. Enhanced Efficiency of Wind-Diesel Power Generation in Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... CWG community members review structural plans as part of their wind turbine training in ... Solutions to Native Alaska Energy Challenges USDA Helps Reduce High Energy Costs ...

  5. Investigating Aeroelastic Performance of Multi-Mega Watt Wind...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    In this work, a high fidelity Computational Fluid Dynamics (CFD) methodology is presented for performing fully coupled Fluid-Structure Interaction (FSI) simulations of wind turbine ...

  6. Wind Power (pbl/generation)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  7. AWEA Wind Energy Fall Symposium

    Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  8. Modular Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  9. Wind 7 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: Wind 7 Place: Eckernfoerde, Schleswig-Holstein, Germany Zip: 24340 Sector: Wind energy Product: Eckernfoerde-based company that develops & operates wind power projects in...

  10. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  11. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  12. Research | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research During the past 35 years of wind research and development, NREL has pioneered many of the components and systems that have taken wind energy technologies to new heights. Through its expertise and one-of-a-kind assets, the research performed at NREL has become a guiding force, advancing wind technologies from initial concepts to deployment. A photo of six megawatt-scale wind turbines at various heights on a flat field. Land-Based Wind A photo of a singular wind turbine on a yellow

  13. See the Wind

    Education Teach & Learn

    The goal of this activity is to help students see the difference in the speed and smoothness of the wind at different altitudes above the earth. This is important for wind engineers as they seek to place their wind turbines in the fastest and smoothest winds possible. It is also a major reason that wind turbines are getting larger and higher in the sky, and is why we are starting to see wind turbines in the plains and out in the ocean near the coast. Teacher background and assessment sheets are provided.

  14. Wind ripple analysis

    SciTech Connect (OSTI)

    Akins, R.E.

    1981-01-01

    Efficient and economical utilization of wind power will require the ability to measure and ultimately predict the effects fluctuations in the incident wind will have on a wind turbine. In order to quantitatively assess these effects, experimental techniques have been developed which allow analysis of full-scale performance of wind turbines with particular emphasis on the effects caused by turbulence in the incident wind. Examples of these techniques are presented using data from the DOE/Sandia Vertical Axis Wind Turbine (VAWT) program.

  15. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  16. Wind Vision: A New Era for Wind Power

    Energy.gov (indexed) [DOE]

    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives The U.S. Department of Energy's (DOE's) Wind and Water Power Technologies Office has ...

  17. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers

    % Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  18. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Energy Savers

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  19. Ion-driven instabilities in the solar wind: Wind observations...

    Office of Scientific and Technical Information (OSTI)

    Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005 Citation Details In-Document Search Title: Ion-driven instabilities in the solar wind: Wind ...

  20. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  1. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    Open Energy Information (Open El) [EERE & EIA]

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  2. Collegiate Wind Competition Wind Tunnel Specifications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of Energy Collegiate Wind Competition must design a prototype wind turbine that fits inside the wind tunnel created to test the performance of each team's project. The tunnel has a "draw down" configuration, introduced by the fan, that sucks air through the box. There are two debris filters, one at

  3. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in

  4. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  5. 2016 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2016 News Below are news stories related to Wind. RSS Learn about RSS. September 13, 2016 Survey Reveals Projections for Lower Wind Energy Costs The cost of producing electricity ...

  6. ARM - Measurement - Horizontal wind

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    wind ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal ...

  7. 2012 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 News Below are news stories related to Wind. RSS Learn about RSS. September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American ...

  8. 2010 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 News Below are news stories related to Wind. RSS Learn about RSS. October 27, 2010 Offshore Wind Energy Poised to Play a Vital Role in Future U.S. Energy Markets A new report ...

  9. DOE Wind Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Program Update March 2007 P.J. Dougherty Wind and Hydropower Technologies Program Since the 1970's, DOE has spent just over 1B in developing a market, which will reach over ...

  10. 2011 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 News Below are news stories related to Wind. RSS Learn about RSS. December 9, 2011 Saving Farmland One Wind Energy Project at a Time Rich VanderVeen, president of Mackinaw Power, ...

  11. WINDExchange: Learn About Wind

    WindExchange

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  12. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  13. Renaissance for wind power

    SciTech Connect (OSTI)

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  14. Research Facilities | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photo of five wind turbines of varying sizes in the background and an office building in the foreground. Field Test Sites A photo of two people wearing hard hats in front of a wind ...

  15. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... How Wind Turbines Work U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Photo of a girl and a boy standing beneath a large wind turbine. Students can ...

  16. Distributed Wind 2015

    Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  17. NREL: Wind Research - Events

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  18. See the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Engineers are also concerned about wind shear and turbulence as this can cause a great deal of stress on their gearbox and bearings in their turbines. Characterizing Shear and Wind ...

  19. Distributed Wind Energy Workshop

    Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  20. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  1. Characteristics study of Transmission Line Mechanical Research Center (TLMRC) wind tower data. Notes on field-wind loading experiments

    SciTech Connect (OSTI)

    Shan, L.

    1992-10-01

    To initiate and develop EPRI`s wind loading research program, an experimental wind tower was erected at the TLMRC site. A number of anemometers were placed at different elevation levels of the wind tower. Strain gages were also mounted on the leg posts of the tower. The purposes of this experiment were to establish the wind characteristics at the TLMRC site, and to gain experience using different types of instrumentation and data acquisition techniques in field-wind loading experiments. Three sets of wind data collected from the TLMRC wind tower were validated and analyzed in this study. Since the characteristics of wind and response data can be described in different terms and by various methods, the study describes the concept, Identifies the focal point, and discusses the results of each method used in this report. In addition, some comments are provided on how to conduct the field-wind loading experiments as well as how to analyze the wind and response data. The results of this study show that: (1) the magnitudes of wind velocity and direction can vary considerably during a short period of time; (2) the mean vertical wind profile does not hold constant as usually assumed; (3) the turbulence intensity and the gust factor increase as the height above ground decreases; (4) the averaging time can greatly influence the results of wind data analysis; (5) although wind contains lime energy beyond 1 Hz, structural responses above 1 Hz can be excited; (6) strong relationships exist between the wind velocity and the responses in the leg posts of the wind tower. System identification, a tool for establishing models of dynamic systems based in observed data, is successfully used in a trial application which estimates the relationship between the wind velocity and the responses in the wind tower.

  2. Wind Vision | Department of Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power ...

  3. WIND ENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WIND ENERGY WIND ENERGY WIND ENERGY POSTER (3.22 MB) More Documents & Publications WIND ENERGY Download LPO's Illustrated Poster Series LPO Financial Performance Report DOE-LPO_Email-Update_001_Through_1

  4. 2007 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 News Below are news stories related to Wind. RSS Learn about RSS. June 27, 2007 U.S., Danish laboratories to cooperate on wind energy research NREL and Denmark's Risø National Laboratory, Technical University of Denmark (DTU), have signed an agreement to cooperate closely on improving wind energy technologies. June 25, 2007 Large Wind Turbine Blade Test Facilities to be in Mass., Texas NREL will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to

  5. Wind Energy Markets, 2. edition

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  6. Hurricane Katrina Wind Investigation Report

    SciTech Connect (OSTI)

    Desjarlais, A. O.

    2007-08-15

    ; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof

  7. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  8. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  9. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  10. Wind power soars

    SciTech Connect (OSTI)

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  11. Wind loading on solar concentrators: some general considerations

    SciTech Connect (OSTI)

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  12. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  13. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  14. WINDExchange: Wind Maps and Data

    WindExchange

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  15. NREL: Wind Research - Winds of Change Blowing for Wind Farm Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Simulation from SOWFA that shows a number of wind turbines and how the wind is flowing between them, with the ...

  16. Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Native Alaska Energy Challenges | Department of Energy Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to Native Alaska Energy Challenges Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to Native Alaska Energy Challenges March 13, 2014 - 12:42pm Addthis CWG community members review structural plans as part of their wind turbine training in Kwigillingok, AK. Photo from Intelligent Energy Systems, NREL 29205 CWG community members review structural

  17. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  18. Wind Energy Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  19. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  20. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  1. Kansas Wind Energy Consortium

    SciTech Connect (OSTI)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  2. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  3. WINDExchange: Where Is Wind Power?

    WindExchange

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  4. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  5. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  6. Small Wind Guidebook/Is Wind Energy Practical for Me | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Wind GuidebookIs Wind Energy Practical for Me < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook...

  7. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the

  8. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  9. SERI Wind Energy Program

    SciTech Connect (OSTI)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  10. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect (OSTI)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  11. ARM - Lesson Plans: Winds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Winds Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Winds Objective The objective of this activity is to investigate how pressure differences create wind. Materials Each student or group of students will need the following: Balloon (long balloons or round ones) Bicycle pump

  12. Enabling Wind Power Nationwide

    SciTech Connect (OSTI)

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  13. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  14. Research Staff | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Staff Learn more about the expertise and technical skills of the wind energy research team and staff at NREL by reading their biographical information. Photo of Daniel Laird Daniel Laird Center Director Dr. Daniel Laird is director of the National Wind Technology Center (NWTC). Laird also serves as an executive committee member of the U.S. Department of Energy's (DOE's) Atmosphere to Electrons Wind Plant Optimization Initiative and provides leadership in the focus areas of high-fidelity

  15. 2014 News | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4 News Below are news stories related to Wind. RSS Learn about RSS. November 12, 2014 NREL Research Facilitates Several Multi-Party Collaborations in Advanced Controls NREL's two Advanced Controls Research Turbines are providing the basis for several collaborative research projects involving multiple partners to advance the state-of-the-art wind turbine controls. November 6, 2014 NREL Analyzes Floating Offshore Wind Technology for Statoil NREL engineers traveled to Oslo, Norway, to meet with

  16. Energy in the Wind

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced

  17. WINDExchange: Buying Wind Power

    WindExchange

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  18. Wind Energy Impacts: Slides

    WindExchange

    help to alleviate common misconceptions about wind energy. Wind Energy Impacts Photo from Invenergy LLC, NREL 14371 Wildlife impacts vary by location,* and new developments have helped to reduce these effects. Photo from LuRay Parker, NREL 17429 Wind Energy Impacts Pre- and post-development studies, educated siting, and curtailment during high-activity periods have decreased wildlife impacts.** Additional strategies are being researched to better understand and further decrease impacts.

  19. Silver Star Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Star Wind Farm Jump to: navigation, search Name Silver Star Wind Farm Facility Silver Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. University of Delaware Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  1. West Stevens Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name West Stevens Wind Facility West Stevens Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Developer...

  2. Brown County Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric...

  3. Kingdom Community Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name Kingdom Community Wind Facility Kingdom Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Green Mountain...

  4. Wing River Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River...

  5. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  6. Wessington Springs Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Junction Hilltop Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned...

  8. Franklin County Wind LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name Franklin County Wind LLC Facility Franklin County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Franklin...

  9. MWRA Deer Island Wind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name MWRA Deer Island Wind Facility MWRA Deer Island Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Deer...

  10. Barton Chapel Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name Barton Chapel Wind Farm Facility Barton Chapel Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola...

  11. Wolverine Creek Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Wapsipinicon Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name Wapsipinicon Wind Project Facility Wapsipinicon Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  13. Silver Sage Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sage Wind Farm Jump to: navigation, search Name Silver Sage Wind Farm Facility Silver Sage Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Ashtabula II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Ashtabula II Wind Farm Facility Ashtabula II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Marengo II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Marengo II Wind Farm Facility Marengo II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. Klondike II Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Klondike II Wind Farm Jump to: navigation, search Name Klondike II Wind Farm Facility Klondike II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Harvest Wind Farm II | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Jump to: navigation, search Name Harvest Wind Farm II Facility Harvest Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  18. Kotzebue Wind Project II | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Jump to: navigation, search Name Kotzebue Wind Project II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Tatanka Wind Project II | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    II Jump to: navigation, search Name Tatanka Wind Project II Facility Tatanka Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Crownbutte Wind Power LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  1. Northwestern Wind Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power Jump to: navigation, search Name: Northwestern Wind Power Place: Wasco, Oregon Zip: OR 97065 Sector: Wind energy Product: US-based wind project developer. Coordinates:...

  2. Daqing Longjiang Wind Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

  3. Laizhou Luneng Wind Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Laizhou Luneng Wind Power Jump to: navigation, search Name: Laizhou Luneng Wind Power Place: Laizhou, Shandong Province, China Sector: Wind energy Product: A wind project...

  4. Clear Wind Renewable Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  5. Padoma Wind Power LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  6. Evergreen Wind Power LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  7. Hardscrabble Wind Power Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  8. Heilongjiang Lishu Wind Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

  9. TS Wind Power Developers | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

  10. Bluewater Wind Rhode Island | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates...

  11. Wind Integration National Dataset Toolkit | Grid Modernization...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Integration National Dataset Toolkit The Wind Integration National Dataset (WIND) Toolkit is an update and expansion of the Eastern Integration Data Set and Western Wind ...

  12. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Articles about Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. October 1,...

  14. Camp Springs Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Hot Springs Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  16. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Midwest Wind Finance LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name: Midwest Wind Finance LLC Place: Minnesota Sector: Wind energy Product: Wind project equity finance provider. References: Midwest Wind Finance...

  18. Idaho Wind Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Jump to: navigation, search Name: Idaho Wind Energy Place: Tetonia, Idaho Zip: 83452 Sector: Geothermal energy, Wind energy Product: A geothermal and wind project...

  19. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  20. Texas/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TexasWind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >> Small...

  1. Illinois Wind Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Jump to: navigation, search Name: Illinois Wind Energy Place: Chicago, Illinois Zip: IL 60606 Sector: Wind energy Product: Developer of wind power generating facilities...

  2. Weatherford Wind Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Weatherford Wind Energy Center Jump to: navigation, search Name Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial...

  3. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  4. Han Wind Energy Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Corporation Jump to: navigation, search Name: Han Wind Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Wind energy Product: Han Wind...

  5. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  6. Highmore Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale...

  7. German Wind Energy Association | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    German Wind Energy Association Place: Osnabrck, Germany Zip: 49074 Sector: Wind energy Product: Assocation for the promotion of wind energy in Germany. References: German Wind...

  8. Stateline Wind Energy Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  10. CAES Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Project Jump to: navigation, search Name CAES Wind Project Facility CAES Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.522243, -112.053963...

  11. Prairie Wind Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Prairie Wind Energy LLC Place: Lamar, Colorado Zip: 81052 Sector: Wind energy Product: Developer and owner of Prairie wind farm....

  12. Geronimo Wind Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geronimo Wind Energy Jump to: navigation, search Name: Geronimo Wind Energy Place: Edina, Minnesota Zip: 55436 Sector: Wind energy Product: Based in Minnesota, this wind energy...

  13. Utah/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  14. Navajo Wind Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Navajo Wind Energy Jump to: navigation, search Name: Navajo Wind Energy Place: Atlanta, Georgia Zip: 30318 Sector: Wind energy Product: Atalanta-based but China-focused wind...

  15. Freedom Wind Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Freedom Wind Energy LLC Place: Tampa, Florida Zip: 33623 Sector: Wind energy Product: Develops and manages wind farms in north...

  16. Tholen & Petersen Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Tholen & Petersen Wind Farm Jump to: navigation, search Name Tholen & Petersen Wind Farm Facility Tholen & Petersen Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Highland Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Highland Wind Project Facility Highland Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Chamberlain Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name Chamberlain Wind Project Facility Chamberlain Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Stateline Expansion Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind...

  20. Enron Wind Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Enron Wind Corporation Jump to: navigation, search Name: Enron Wind Corporation Place: Houston, Texas Zip: 77251-1188 Sector: Wind energy Product: Former Enron Wind, which still...

  1. Murray Various Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Various Wind Farm Jump to: navigation, search Name Murray Various Wind Farm Facility Murray Various Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Noble Bellmont Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Noble Bellmont Wind Farm Jump to: navigation, search Name Noble Bellmont Wind Farm Facility Noble Bellmont Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  3. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  4. Sweetwater 5 Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    5 Wind Farm Jump to: navigation, search Name Sweetwater 5 Wind Farm Facility Sweetwater 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Juhl Wind Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Juhl Wind Inc. Place: Woodstock, Minnesota Zip: 57186 Sector: Wind energy Product: Juhl Wind is a company that develops community wind projects and was formed via...

  6. American Wind Capital | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Capital Jump to: navigation, search Name: American Wind Capital Place: Essex, Connecticut Zip: 64260 Sector: Wind energy Product: Connecticut-based American Wind Capital buys wind...

  7. Conception Wind Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital GroupJohn Deere Capital Developer Wind Capital GroupJohn Deere Capital Energy...

  8. Howden Wind Turbines Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

  9. Whirlwind Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Whirlwind Wind Farm Jump to: navigation, search Name Whirlwind Wind Farm Facility Whirlwind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Federated Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Federated Wind Farm Jump to: navigation, search Name Federated Wind Farm Facility Federated Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Hilltop Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hilltop Wind Farm Jump to: navigation, search Name Hilltop Wind Farm Facility Hilltop Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Calverton Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Calverton Wind Farm Jump to: navigation, search Name Calverton Wind Farm Facility Calverton Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Long...

  13. Bitworks Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Bitworks Wind Farm Jump to: navigation, search Name Bitworks Wind Farm Facility Bitworks Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bitworks...

  14. Ridgewind Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ridgewind Wind Farm Jump to: navigation, search Name Ridgewind Wind Farm Facility Ridgewind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Beaulieu Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Beaulieu Wind Farm Jump to: navigation, search Name Beaulieu Wind Farm Facility Beaulieu Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Private...

  16. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Crofton Hills Wind Farm Jump to: navigation, search Name Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Cottonwood Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cottonwood Wind Farm Jump to: navigation, search Name Cottonwood Wind Farm Facility Cottonwood Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. SMUD Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    SMUD Wind Farm Jump to: navigation, search Name SMUD Wind Farm Facility SMUD Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  19. Glenrock Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Glenrock Wind Farm Jump to: navigation, search Name Glenrock Wind Farm Facility Glenrock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Anacacho Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Anacacho Wind Farm Jump to: navigation, search Name Anacacho Wind Farm Facility Anacacho Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...