National Library of Energy BETA

Sample records for wind resource area

  1. Wind speed forecasting in the central California wind resource area

    SciTech Connect

    McCarthy, E.F.

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  2. Avian use of Norris Hill Wind Resource Area, Montana

    SciTech Connect

    Harmata, A.; Podruzny, K.; Zelenak, J.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  3. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  4. Wind Resource Assessment | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and ...

  5. Wind Energy Resource Atlas of the Philippines

    SciTech Connect

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  6. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    SciTech Connect

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  7. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    WindExchange

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  8. Philippines Wind Energy Resource Atlas Development

    SciTech Connect

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  9. NREL: Wind Research - Wind Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special ... to anticipate wind generation levels and adjust the ...

  10. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  11. Offshore Wind Resource Characterization | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization NREL scientists and engineers are leading efforts in ... and development, and forecasting that are essential for the development of offshore wind. ...

  12. A GIS-assisted approach to wide-area wind resource assessment and site selection for the state of Colorado

    SciTech Connect

    Brower, M.C.; Hurley, P.; Simon, R.

    1996-12-31

    This paper describes the methodology and results of a wide-area wind resource assessment and site selection in Colorado. This was the first phase in a three-part assessment and monitoring program conducted for the State of Colorado Office of Energy Conservation and several collaborating utilities. The objective of this phase was to identify up to 20 candidate sites for evaluation and possible long-term monitoring. This was accomplished using a geographic information system (GIS), which takes into account such factors as topography, existing wind resource data, locations of transmission lines, land cover, and land use. The resulting list of sites recommended for evaluation in Phase 2 of the study includes locations throughout Colorado, but most are in the eastern plains. The GIS wind siting model may be modified and updated in the future as additional information becomes available. 3 figs., 1 tab.

  13. NREL: Wind Research - Site Wind Resource Characteristics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  14. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection

  15. Fort Carson Wind Resource Assessment

    SciTech Connect

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  16. Kansas/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Idaho/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. Nevada/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Iowa/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Maine/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Hawaii/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Oregon/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Alaska/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. False Pass Wind Resource Report

    Energy Saver

    False Pass Wind Resource Report False Pass meteorological tower, view to the east, D. ... Eagle River, Alaska D r a f t 1 False Pass Wind Resource Report P a g e | 2 Summary The ...

  5. NWTC Helps Chart the World's Wind Resource Potential

    SciTech Connect

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  6. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  7. WINDExchange: Wind Economic Development Resources and Tools

    WindExchange

    Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 11/10/2016 News Agricultural Econ. Dev. Turning to Turbines: As Commodity Prices Remain Low, Wind Energy Leases Offer a Welcome Source of Income for Farmers 10/24/2016 MD

  8. Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report

    SciTech Connect

    Makarov, Yuri V.; Lu, Shuai

    2008-07-15

    This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of the dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.

  9. Texas/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TexasWind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >> Small...

  10. Utah/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  11. Georgia/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Minnesota/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Delaware/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Maryland/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Indiana/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Nebraska/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Oklahoma/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. Connecticut/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Virginia/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Missouri/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Louisiana/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Wyoming/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Tennessee/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. Pennsylvania/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Washington/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Colorado/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Arkansas/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. California/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Massachusetts/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Alabama/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Mississippi/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Michigan/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Florida/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Vermont/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Kentucky/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Nikolski, Alaska, Wind Resource Report

    Energy Saver

    Nikolski, Alaska Wind Resource Report Report written by: Douglas Vaught, P.E., V3 Energy ... Roughness Class 1.77 (few trees) Power law exponent 0.174 (moderate wind shear) ...

  17. NREL: Renewable Resource Data Center - Wind Resource Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research website. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical

  18. Arkansas/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  19. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered

  20. AWEA Wind Resource & Project Energy Assessment

    Energy.gov [DOE]

    Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will...

  1. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Characterization Projects | Department of Energy Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014. Wind Integration, Transmission, and Resource Assessment and Characterization Projects (3.35

  2. Wind Energy Resource Atlas of Armenia

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    G. Scott, S. Haymes, D. Heimiller, R. George National Renewable Energy Laboratory Wind Energy Resource Atlas of Armenia July 2003 * NRELTP-500-33544 Wind Energy Resource...

  3. NREL: Learning - Student Resources on Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources can provide you ...

  4. NANA Wind Resource Assessment Program Final Report

    SciTech Connect

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  5. Wind/solar resource in Texas

    SciTech Connect

    Nelson, V.; Starcher, K.; Gaines, H.

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  6. Afghanistan Pakistan High Resolution Wind Resource - Datasets...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pakistan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However, the data is...

  7. Nevada/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Association Nevada Wind Resources NV Energy Wind Projects Nevada Governor's Office of Energy AWEA State Wind Energy Statistics: Nevada Four Corners Wind Resource Center...

  8. Idaho/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Working Group Boise State University Wind for Schools Program Idaho Governor's Office of Energy resources AWEA State Wind Energy Statistics: Idaho Northwest Wind Resource...

  9. Wind Resource Assessment of Gujarat (India)

    SciTech Connect

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  10. WINDExchange: Resources and Tools for Siting Wind Turbines

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 7/19/2016 News Siting Global Partners Launch

  11. Category:State Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Wind Resources Jump to: navigation, search Category containing State Wind Resources Pages in category "State Wind Resources" The following 100 pages are in this category, out...

  12. WINDExchange: Wind Energy Regional Resource Centers

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting Wind Energy Regional Resource Centers The U.S. Department of Energy's Regional Resource Centers provide unbiased wind energy information to communities and decision makers to help them evaluate wind energy potential and learn about wind power's benefits and impacts in their regions. During their first year of operations, the Regional Resource Centers impacted more than 12,000

  13. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    OpenEI (Open Energy Information) [EERE & EIA]

    * Engage with Neighbors * Conduct a Wind Resource Estimate * Research Interconnecting behind Your Meter * Research Project Economics & Financing * Select the Final Design &...

  14. Wind Resource Atlas of Oaxaca | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas...

  15. Hawaii/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Hawaii Wind Resources Hawaii State Energy Office AWEA State Wind Energy Statistics: Hawaii Islanded Grid Resource Center References ...

  16. Utah/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  17. Indiana/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Indiana Wind Resources Indiana Office of Energy Development Purdue Extension: Wind Energy AWEA State Wind Energy Statistics:...

  18. North Carolina/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> North Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. South Dakota/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. New York/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> New York Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. North Dakota/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Rhode Island/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. New Jersey/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> New Jersey Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. South Carolina/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> South Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. West Virginia/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> West Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. New Hampshire/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    >> New Hampshire Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Solar and Wind Energy Resource Assessment (SWERA)

    OpenEI (Open Energy Information) [EERE & EIA]

    Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.....

  8. Wind Resource Assessment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Databases Global Renewable Energy Database Power Technologies Energy Data Book Solar and Wind Energy Resource Assessment (SWERA) System Advisor Model (SAM) Transparent Cost...

  9. Calwind Resources Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Status In Service Developer CalWind Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665, -118.25529 Show Map Loading map......

  10. MOWII Webinar: Wind Development Cultural Resource Management

    Energy.gov [DOE]

    During the planning stages, wind energy development can be affected by the regulatory process relative to cultural resource management issues. Section 106 of the National Historic Preservation Act ...

  11. United States Wind Resource Map: Annual Average Wind Speed at 80 Meters

    WindExchange

    80 m 01-APR-2011 2.1.1 Wind Speed m/s >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http://www.windnavigator.com | http://www.awstruepower.com. Spatial resolution of wind resource data: 2.5 km. Projection: Albers Equal Area WGS84. ¶

  12. Colorado/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Colorado Wind Resources Colorado Energy Office AWEA State Wind Energy Statistics: Colorado Colorado Center for Renewable Energy...

  13. Nebraska/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Nebraska Wind Resources Nebraska Energy Office AWEA State Wind Energy Statistics: Nebraska References "U.S. Census Bureau. 2010...

  14. China Resources Wind Power Development Co Ltd Hua Run | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  15. Characterizing wind power resource reliability in southern Africa...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Characterizing wind power resource reliability in southern Africa Title: Characterizing wind power resource reliability in southern...

  16. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  17. Wind Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Assessment and Characterization Wind Resource Assessment and Characterization A crucial factor in the development, siting, and operation of a wind farm is the ability to assess and characterize available wind resources. The Wind Program supports efforts to accurately define, measure, and forecast the nation's land-based and offshore wind resources. More accurate prediction and measurement of wind speed and direction allow wind farms to supply clean, renewable power to businesses and

  18. United States Wind Resource Map: Annual Average Wind Speed at 30 Meters

    WindExchange

    30 m 21-FEB-2012 2.1.1 Wind Speed m/s >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC. Web: http://www.awstruepower.com. Map developed by NREL. Spatial resolution of wind resource data: 2.0 km. Projection: Albers Equal Area WGS84. The average wind speeds indicated on this map are model-derived estimates that may not represent the true wind resource at any given location. Small terrain features, vegetation,

  19. NREL: International Activities - Philippines Wind Resource Maps and Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A map depicting wind resources at 100 meters of the republic of the Philippines. Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Philippines Wind Viewer Tutorial Learn how to navigate, display, query and download Philippines data in the Wind Prospector. Philippines Geospatial Toolkit EXE 926.5 MB Philippines Wind Resource Maps and Data In 2014, under the Enhancing Capacity for Low

  20. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  1. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  2. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  3. Wind energy resource atlas. Volume 4. The Northeast region

    SciTech Connect

    Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-09-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

  4. Wind Monitoring Report for Fort Wainwright's Donnelly Training Area

    SciTech Connect

    Orrell, Alice C.; Dixon, Douglas R.

    2011-01-18

    Using the wind data collected at a location in Fort Wainwright’s Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models’ standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

  5. NREL GIS Data: Bhutan High Resolution Wind Resource - Datasets...

    OpenEI (Open Energy Information) [EERE & EIA]

    NREL GIS Data: Bhutan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However,...

  6. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Energy.gov [DOE] (indexed site)

    This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to ...

  7. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications U.S. Virgin Islands Wind Resources Update 2014 The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term ...

  8. Wind Integration, Transmission, and Resource Assessment and Characterization Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Program’s Wind Integration, Transmission, and Resource Assessment and Characterization Projects from FY 2006 to FY 2014.

  9. Solar and Wind Resource Assessments for Afghanistan and Pakistan

    SciTech Connect

    Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

    2007-01-01

    The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

  10. Wind resource assessment: A three year experience

    SciTech Connect

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N.

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  11. Nebraska wind resource assessment first year results

    SciTech Connect

    Hurley, P.J.F.; Vilhauer, R.; Stooksbury, D.

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  12. SWERA/Wind Resource Information | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    wind resources are depicted as average wind speed (meters per second) or wind power density (watts per square meter) at a specified height above the ground (nominally 50 m)....

  13. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Releases New Land-BasedOffshore Wind Resource Map Energy Department Releases New Land-BasedOffshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the ...

  14. Wind resource quality affected by high levels of renewables

    DOE PAGES [OSTI]

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  15. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  16. Solar and Wind Energy Resource Assessment Programme's Renewable...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentsolar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  17. Wind Career Map: Resource List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Career Map: Resource List Wind Career Map: Resource List The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers. Competencies for Careers in Renewable Energy Together with the Department of Labor, the Office of Energy Efficiency and Renewable Energy developed a comprehensive Renewable Energy Competency Model that includes wind energy job skills and knowledge as one of

  18. Massachusetts/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Massachusetts Wind Resources Massachusetts Clean Energy Center Massachusetts Office of Energy and Environmental Affairs University of Massachusetts Clean Energy Center:...

  19. AWEA Wind Resource & Project Energy Assessment Seminar 2014

    Energy.gov [DOE]

    Wind resource assessment from the outside looking in: How are we doing, what are we delivering, and is it working?

  20. Iowa Tribe of Oklahoma - Assessment of Wind Resource on Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to local utilities and neighboring communities. Excerpted from the Tribe's INTERGRATED RESOURCES MANAGEMENT PLAN: RESOURCE MANAGEMENT: WIND ENERGY PROGRAM Management goals: 1). ...

  1. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy.gov [DOE]

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of...

  2. Energy Department Announces Funding to Access Higher Quality Wind Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Lower Costs | Department of Energy Funding to Access Higher Quality Wind Resources and Lower Costs Energy Department Announces Funding to Access Higher Quality Wind Resources and Lower Costs January 30, 2014 - 1:06pm Addthis The Energy Department today announced $2 million to help efficiently harness wind energy using taller towers. These projects will help strengthen U.S. wind turbine component manufacturing, reduce the cost of clean and renewable wind energy, and expand the geographic

  3. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Characterizations March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Resource Characterization Inflow Characterization Tasks-Patrick Moriarty, National Renewable Energy Laboratory An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment-R.J. Barthelmie, Indiana University Improving Atmospheric Models for Offshore Wind Resource Mapping and Prediction Using LIDAR, Aircraft, and In-Ocean Observations- Brian A. Colle, Stony Brook University

  4. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  5. Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010

    SciTech Connect

    Brower, M.

    2009-12-01

    The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

  6. Wind resource assessment: San Nicolas Island, California

    SciTech Connect

    McKenna, E.; Olsen, T.L.

    1996-01-01

    San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

  7. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  8. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    SciTech Connect

    DNV Renewables Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  9. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and

  10. Wind power in Eritrea, Africa: A preliminary resource assessment

    SciTech Connect

    Garbesi, K.; Rosen, K.; Van Buskirk, R.

    1997-12-31

    The authors preliminary assessment of Eritrean wind energy potential identified two promising regions: (1) the southeastern Red Sea coast and (2) the mountain passes that channel winds between the coastal lowlands and the interior highlands. The coastal site, near the port city of Aseb, has an exceptionally good resource, with estimated average annual wind speeds at 10-m height above 9 m/s at the airport and 7 m/s in the port. Furthermore, the southern 200 km of coastline has offshore WS{sub aa} > 6 m/s. This area has strong potential for development, having a local 20 MW grid and unmet demand for the fishing industry and development. Although the highland sites contain only marginal wind resources ({approximately} 5 m/s), they warrant further investigation because of their proximity to the capital city, Asmera, which has the largest unmet demand and a larger power grid (40 MW with an additional 80 MW planned) to absorb an intermittent source without storage.

  11. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Web Application Link: en.openei.orgappsSWERA OpenEI Keyword(s): Featured Language: English The Solar and Wind Energy Resource Assessment (SWERA) initiative brings together...

  12. Category:Wind for Schools Portal Other Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Community Login | Sign Up Search Category Edit History Category:Wind for Schools Portal Other Resources Jump to: navigation, search This category currently contains no pages...

  13. Mexico-NREL Wind Resource Assessments | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NREL Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives AgencyCompany Organization National Renewable Energy...

  14. Wind energy resources atlas. Volume 1. Northwest region

    SciTech Connect

    Elliott, D.L.; Barchet, W.R.

    1980-04-01

    Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

  15. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  16. Wind Resource Assessment Handbook: Fundamentals for Conducting...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... viability of selected wind turbines * Screen for potential wind turbine installation sites. ... Both prevent ambient electrical noise from affecting your measurements. Normal ...

  17. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  18. AWEA Wind Resource & Project Energy Assessment Conference | Department...

    Office of Environmental Management (EM)

    Resource & Project Energy Assessment Conference AWEA Wind Resource & Project Energy Assessment Conference September 27, 2016 8:00AM CDT to September 28, 2016 5:00PM CDT ...

  19. Geothermal br Resource br Area Geothermal br Resource br Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  20. Wind Resource Map: Mexico | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    span two power densities. For example, Wind Power Class 3 represents the Wind Power Density range between 150 watt (W) per square meter (m2) and 200 Wm2. The offset cells in...

  1. Wind Energy Resource Basics | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of producing ...

  2. Wind energy resource atlas. Volume 7. The south central region

    SciTech Connect

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  3. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  4. U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization

    SciTech Connect

    Schreck, S.; Lundquist, J.; Shaw, W.

    2008-06-01

    This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

  5. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect

    Jimenez, A. C.

    2013-12-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  6. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to

  7. Making Offshore Wind Areas Available for Leasing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Making Offshore Wind Areas Available for Leasing Making Offshore Wind Areas Available for Leasing October 1, 2013 - 3:31pm Addthis This is an excerpt from the Third Quarter 2013 ...

  8. An assessment of the available windy land area and wind energy potential in the contiguous United States

    SciTech Connect

    Elliott, D.L.; Wendell, L.L.; Gower, G.L.

    1991-08-01

    Estimates of land areas with various levels of wind energy resource and resultant wind energy potential have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some windy lands as a result of environmental and land-use considerations. Despite these exclusions, the amount of wind resource estimated over the contiguous United States is surprisingly large and has the potential to supply a substantial fraction of the nation's energy needs, even with the use of today's wind turbine technology. Although this study shows that, after exclusions, only about 0.6% of the land area in the contiguous United States is characterized by high wind resource (comparable to that found in windy areas of California where wind energy is being cost-effectively developed), the wind electric potential that could be extracted with today's technology from these areas across the United States is equivalent to about 20% of the current US electric consumption. Future advances in wind turbine technology will further enhance the potential of wind energy. As advances in turbine technology allow areas of moderate wind resource to be developed, more than a tenfold increase in the wind energy potential is possible. These areas, which cover large sections of the Great Plains and are widely distributed throughout many other sections of the country, have the potential of producing more than three times the nation's current electric consumption. 9 refs., 12 figs., 13 tabs.

  9. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  10. Offshore Wind Resource Characterization Buoy “Open-Hatch” Exposition

    Energy.gov [DOE]

    Please join the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy for an “Open-Hatch” as one of the nation’s most advanced offshore wind resource characterization buoys...

  11. Wind Energy Resource Atlas of the Dominican Republic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    October 2001 * NRELTP-500-27602 Wind Energy Resource Atlas of the Dominican Republic D. Elliott M. Schwartz R. George S. Haymes D. Heimiller G. Scott National Renewable Energy...

  12. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool...

  13. Distributed Wind Resource Assessment Workshop | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Resource Assessment Workshop Jump to: navigation, search Contents 1 Introduction 1.1 Workshop Purpose 1.2 Workshop Goals 1.3 Workshop Objective 2 Panel Session 1:...

  14. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  15. NREL: Wind Research - Data and Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Through this growing community, users can view, edit, add, and download data. Wind Energy Basics The turbines in use around the world today are nothing like the windmills used in ...

  16. Preliminary results of Aruba wind resource assessment

    SciTech Connect

    Guda, M.H.

    1996-12-31

    As part of a project to assess the possibilities for wind energy utilitization in the Dutch Antilles islands, windspeed and -direction data were collected in Aruba for two years, from March 1992 to February 1994. Five sites that were estimated to be representative for the islands` wind regimes, were monitored during this period: two sites on the windward coast, one east and one west; two inland sites, again one east and one west, and one site topping the cliffs overlooking the eastern windward coast. Additionally, twenty years worth of data were analyzed for the reference site at the airport, which is in the middle part of the island, on the leeward coast. Correlation calculations between these data and the data for the project sites were performed, in order to establish a methodology for estimating the long-term behavior of the wind regimes at these sites. 8 figs., 3 tabs.

  17. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  18. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    SciTech Connect

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  19. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  20. Geothermal resource area 11, Clark County area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  1. Wind Resource Assessment Overview | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and...

  2. Ohio/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * Web Resources * Publications * Case Studies * Podcasts * Webinars * Presentations Ohio...

  3. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association Team roster: Dan Paikowsky, Management; Christian Bain, Entrepreneurship; Noah Meunier, Mechanical Engineering &

  4. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  5. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  6. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  7. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  8. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  9. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  10. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  11. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  12. Second Wind Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Region: Greater Boston Area Sector: Wind energy Product: Provides systems for wind measurement and wind resource assessment Website: www.secondwind.com Coordinates:...

  13. Wind Resource Assessment of St. George, Alaska

    Energy Saver

    ... 3,463,546 Annual kWhm2 1,299 1,312 863 1,173 1,515 1,482 1,482 1,688 1,825 1,996 Table 10 also lists the annual energy production per square meter of swept area (kWhm 2 ). ...

  14. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  15. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGES [OSTI]

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  16. U.S. Virgin Islands Wind Resources Update 2014 (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    U.S. Virgin Islands Wind Resources Update 2014 Citation Details In-Document Search Title: U.S. Virgin Islands Wind Resources Update 2014 This report summarizes the data collected...

  17. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  18. New Wind Energy Resource Potential Estimates for the United States (Presentation)

    SciTech Connect

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

    2011-01-01

    This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

  19. Natural Gas Resources of the Greater Green River and Wind River...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Natural Gas Resources of the Greater Green River and Wind River Basins ... Resource Type: Technical Report Research Org: National Energy Technology Laboratory, ...

  20. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  1. Distributed Wind Resource Assessment: State of the Industry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed Wind Resource Assessment: State of the Industry Jason Fields, Heidi Tinnesand, and Ian Baring-Gould National Renewable Energy Laboratory Technical Report NREL/TP-5000-66419 June 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  2. NREL-International Wind Resource Maps | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenyang 50m Wind Power China Tianjin 50m Wind Power China Yinchuan 50m Wind Power East China Map Reference Eastern Visayas Philippines Wind Speed 100m-01 NREL-30m-US-Wind...

  3. WINDExchange: Where Is Wind Power?

    WindExchange

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  4. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    WindExchange

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  5. Rhode Island High Resolution Wind Resource - Datasets - OpenEI...

    OpenEI (Open Energy Information) [EERE & EIA]

    Detailed license and usage information for this dataset Preview Download 50m GIS NREL Rhode Island energy high resoltuion renewable shapefile wind wind data wind...

  6. NWTC Helps Chart the World's Wind Resource Potential (Fact Sheet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    All markets for wind turbines require an estimate of how much wind energy is available at potential development sites. Correctly estimating the energy available in the wind can ...

  7. Iowa Tribe of Oklahoma's Assessment of Wind Resources on Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... on wind data and wind turbine performance data. (Completed for Site 1 for commercial scale. ... and avian considerations that may be impacted by wind turbines' noise and visibility. ...

  8. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    SciTech Connect

    Whissel, John C.; Piche, Matthew

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  9. Assessment of Offshore Wind Energy Resources for the United States

    WindExchange

    Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical

  10. Assessment of Offshore Wind Energy Resources for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    00-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-500-45889 June

  11. U.S. Virgin Islands Wind Resources Update 2014 Roberts, J. O...

    Office of Scientific and Technical Information (OSTI)

    Virgin Islands Wind Resources Update 2014 Roberts, J. O.; Warren, A. 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 24 POWER TRANSMISSION AND DISTRIBUTION U.S. VIRGIN...

  12. Modelling renewable electric resources: A case study of wind

    SciTech Connect

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D.

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  13. Energy Department Releases New Land-Based/Offshore Wind Resource Map |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Releases New Land-Based/Offshore Wind Resource Map Energy Department Releases New Land-Based/Offshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. The Energy Department recently released a new wind resource map compiled by the National Renewable Energy Laboratory (NREL) and AWS Truepower that combines land-based with offshore resources. The new combined map, posted on the

  14. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore ...

  15. Wind Resources by Class and Country At 50m - Datasets - OpenEI...

    OpenEI (Open Energy Information) [EERE & EIA]

    high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States)...

  16. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  17. Category:Geothermal Resource Areas | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Resource Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Areas page? For detailed information on...

  18. Wind for Schools Portal Developer Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Support Software & Downloads Wind Industry Careers Data, APIs, and Visualizations: Introduction for Aspiring Developers Are you looking to get raw data from Wind for Schools...

  19. Wind Energy Resources for Teachers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    educational materials called "Energy Quest" that includes Energy Story: Wind Energy, Science Project: Building a Wind Gauge, and Science Project: Make an Anemometer (a device to...

  20. Small Wind Guidebook/Web Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and policies that promote renewable energy and energy efficiency. Distributed Wind Energy Association DWEA provides info about distributed and community wind, including a...

  1. Revealing the Impact of Climate Variability on the Wind Resource Using Data Mining Techniques (Poster)

    SciTech Connect

    Clifton, A.; Lundquist, J.

    2011-12-01

    A data mining technique called 'k-means clustering' can be used to group winds at the NWTC into 4 major clusters. The frequency of some winds in the clusters is correlated with regional pressure gradients and climate indices. The technique could also be applied to wind resource assessment and selecting scenarios for flow modeling.

  2. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  3. New Mexico/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Small Wind Turbine? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the...

  4. Wind Resources on Tribal Land. Iowa Tribe of Oklahoma

    SciTech Connect

    Holiday, Michelle

    2015-03-27

    Final project report submitted by the Iowa Tribe of Oklahoma for the Department of Energy Wind Energy Grant

  5. Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint

    SciTech Connect

    Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

    2004-03-01

    Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

  6. Geothermal resource evaluation of the Yuma area

    SciTech Connect

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  7. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  8. Finding Large Aperture Fractures in Geothermal Resource Areas Using A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis | Department of Energy Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Fining Large Aperture Fractures in Geothermal Resource Areas Using A

  9. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic ...

  10. Vermont Agency of Natural Resources Flood Hazard Area & River...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Agency of Natural Resources Flood Hazard Area & River Corridor...

  11. Wade Hampton Census Area, Alaska: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wade Hampton Census Area, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 62.1458336, -162.8919191 Show Map Loading map......

  12. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect

    Deola, Regina Anne

    2010-01-01

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  13. The impact of climate change on the U.S. wind energy resource

    SciTech Connect

    Daniel Kirk-Davidoff; Daniel Barrie

    2013-03-19

    The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

  14. U.S. Virgin Islands Wind Resources Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... the wind measurement equipment and helping ensure accurate data were collected. ... MIDC Measurement and Instrumentation Data Center MW megawatt NREL National Renewable ...

  15. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Singapore. Argonne Nat. Lab; Invited lecturer at von Karman Institute for Fluid Dynamics. 12 | Wind and Water Power Technologies Office eere.energy.gov Project Plan & ...

  16. Wind for Schools Portal Educational Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    WINDExchange website provides a page dedicated to links to Wind Energy Curricula and Teaching Materials. Retrieved from "http:en.openei.orgwindex.php?titleWindforSchoolsPo...

  17. NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)

    SciTech Connect

    Not Available

    2010-10-01

    How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

  18. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  19. Offshore Wind Resource Characterization Buoy "Open-Hatch" Exposition...

    Energy.gov [DOE] (indexed site)

    the nuts and bolts of the WindSentinel, open its hatch, and learn more about its advanced research equipment. Throughout the Day Energy Department Staff Will be Available to Answer...

  20. Recent Wind Resource Characterization Activities at the National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREUCP-440-23095 * UC Category: 1210 Recent Wind Reso Characterization A at the National Ren Energy Labora Dennis L. Elliott Marc N. Schwartz Presented at Windpower '97 Austin,...

  1. Oklahoma/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City, OK 73104-3234 Phone: 800-879-6552 E-mail: info@okcommerce.gov State Energy Office Jennifer Jenkins Distributed Wind Energy Association PO Box 1861 Flagstaff, AZ 86002...

  2. Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters

    WindExchange

    % % % % % % % % % % % % % % % % % % % % % 19-JUN-2007 1.1.1 U.S. Department of Energy National Renewable Energy Laboratory Puerto Rico and U.S. Virgin Islands - 50 m Wind Power Mayaguez 20 0 20 40 60 80 100 Kilometers 20 0 20 40 60 Miles Ponce San Juan Charlotte Amalie Cruz Bay PUERTO RICO VIRGIN ISLANDS Wind Power Class 1 2 3 4 5 Resource Potential Poor Marginal Fair Good Excellent Wind Power Density at 50 m W/m 0 - 200 200 - 300 300 - 400 400 - 500 500 - 600 2 Wind Speed at 50 m m/s 0.0 - 5.9

  3. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  4. Mccallum study area: resource and potential reclamation evaluation. Final report

    SciTech Connect

    Not Available

    1983-09-01

    The purpose of this investigation was to collect baseline data for establishing reclamation objectives and lease stipulations. The report includes data on climate, biological and cultural resources, physiography, geology, coal resources, soil overburden, vegetation, and hydrology. The study area is within Moffat County in Colorado.

  5. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface ...

  6. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    SciTech Connect

    Drapeau, C.L.

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  7. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  8. The Economics of Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Organization: European Wind Energy Association Sector: Energy Focus Area: Renewable Energy, Wind Topics: Market analysis Resource Type: Publications Website: www.ewea.org...

  9. U.S. Virgin Islands Wind Resources Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. The report leverages previous feasibility studies conducted at NREL, including Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Analysis.

  10. U.S. Virgin Islands Wind Resources Update 2014

    SciTech Connect

    Roberts, J. O.; Warren, A.

    2014-12-01

    This report summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. These results are an update to the previous feasibility study; the collected data are critical to the successful development of a wind project at either site.

  11. Wind Resource Estimation and Mapping at the National Renewable...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Estimation and Mapping at the National Renewable Energy Laboratory April 1999 * NRELCP-500-26245 M. Schwartz Presented at the ASES Solar '99 Conference Portland, Maine...

  12. Mineral resources and mineral resource potential of the Panamint Dunes Wilderness Study Area, Inyo County, California

    SciTech Connect

    Kennedy, G.L.; Kilburn, J.E.; Conrad, J.E.; Leszcykowski, A.M.

    1984-01-01

    This report presents the results of a mineral survey of the Panamint Dunes Wilderness Study Area (CDCA-127), California Desert Conservation Area, Inyo County, California. The Panamint Dunes Wilderness Study Area has an identified volcanic cinder resource and few areas with mineral resource potential. Hydrothermal deposits of lead-zinc-silver occur in veins and small replacement bodies along and near the Lemoigne thrust fault on the eastern side of the wilderness study area. Two workings, the Big Four mine with 35,000 tons of inferred subeconomic lead-zinc-silver resources and a moderate potential for additional resources, and the Apple 1 claim with low potential for lead-zinc-silver resources, are surrounded by the study area but are specifically excluded from it. A low resource potential for lead-zinc-silver is assigned to other exposures along the Lemoigne thrust, although metallic minerals were not detected at these places. The Green Quartz prospect, located near the northern tip of the study area, has low resource potential for copper in quartz pegmatities in quartz monzonite of the Hunter Mountain batholith. Nonmetallic mineral resources consist of volcanic cinders and quartz sand. An estimated 900,000 tons of inferred cinder reserves are present at Cal Trans borrow pit MS 242, on the southern margin of the study area. The Panamint Valley dune field, encompassing 480 acres in the north-central part of the study area, has only low resource potential for silica because of impurities. Other sources of silica and outside the study area are of both higher purity and closer to possible markets. 19 refs., 2 figs., 1 tab.

  13. Wind Energy Resource Atlas of Armenia (CD-ROM)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Atlas of Armenia (CD-ROM) http:www.nrel.govdocsfy03osti33877CD.zip (ZIP 31.9 MB) NRELCD-500-33877 July 2003 Instructions: The URL above links to a zipped archive...

  14. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    SciTech Connect

    Brower, M.C.; Factor, T.

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  15. United States Offshore Wind Resource Map at 90 Meters

    WindExchange

    Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m m/s 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5 6.5 - 7.0 6.0 - 6.5 0.0 - 6.0 mph 25.7 - 26.8 24.6 - 25.7 23.5 - 24.6 22.4 - 23.5 21.3 - 22.4 20.1 - 21.3 19.0 - 20.1 17.9 - 19.0 16.8 - 17.9 15.7 - 16.8 14.5 - 15.7 13.4 - 14.5 0.0 - 13.4

  16. Finding Large Aperture Fractures in Geothermal Resource Areas Using A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis | Department of Energy A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic

  17. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  18. Validation of Updated State Wind Resource Maps for the United States: Preprint

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2004-07-01

    The National Renewable Energy Laboratory (NREL) has coordinated the validation of updated state wind resource maps for multiple regions of the United States. The purpose of the validation effort is to produce the best map possible within fairly stringent time constraints.

  19. Oregon/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  20. Alaska/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  1. Wyoming/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  2. Kentucky/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  3. Iowa/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  4. Maryland/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  5. Maine/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  6. Kansas/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  7. Connecticut/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  8. Vermont/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  9. Illinois/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  10. Florida/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  11. Virginia/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  12. Georgia/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  13. California/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  14. Minnesota/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  15. Delaware/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  16. Ohio/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  17. Environmental Resources of Selected Areas of Hawaii: Socioeconomics (DRAFT)

    SciTech Connect

    Saulsbury, J.W.; Sorensen, B.M.; Schexnayder, S.M.

    1994-06-01

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the Environmental Impact Statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed. Regis. 5925638), withdrawing its Notice of Intent (Fed Regis. 57:5433), of February 14, 1992, to prepare the HGPEIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District (Fig. 1). Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. This report describes existing socioeconomic resources in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are (1) population, (2) housing, (3) land use, (4) economic structure (primarily employment and income), (5) infrastructure and public services (education, ground transportation, police and fire protection, water, wastewater, solid waste disposal, electricity, and emergency planning), (6) local government revenues and expenditures, and (7) tourism and recreation.

  18. Environmental resources of selected areas of Hawaii: Socioeconomics

    SciTech Connect

    Saulsbury, J.W.; Sorensen, B.M.; Reed, R.M.; Schexnayder, S.M.

    1995-03-01

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the environmental impact statement (EIS) for Phases 3--4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The USDOE published a notice withdrawing its Notice of Intent to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District. Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. this report describes existing socioeconomic resources in the areas studied and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are population, housing, land use, economic structure, infrastructure and public services, local government revenues and expenditures, and tourism and recreation.

  19. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect

    Trettin, L.D.; Petrich, C.H.; Saulsbury, J.W.

    1996-01-01

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  20. Finding Large Aperture Fractures in Geothermal Resource Areas Using a

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three-Component Long-Offset Surface Seismic Survey | Department of Energy a Three-Component Long-Offset Surface Seismic Survey Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques

  1. Development of Regional Wind Resource and Wind Plant Output Datasets. Final Subcontract Report, 15 October 2007 - 15 March 2009

    SciTech Connect

    Lew, Debra

    2010-03-01

    This report describes the development of the necessary and needed wind and solar datasets used in the Western Wind and Solar Integration Study (WWSIS).

  2. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    SciTech Connect

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-04-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs.

  3. Combining Balancing Areas' Variability: Impacts on Wind Integration in the Western Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 July 2010 Combining Balancing Areas' Variability: Impacts on Wind Integration in the Western Interconnection Michael Milligan and Brendan Kirby National Renewable Energy Laboratory Stephen Beuning Xcel Energy Presented at WindPower 2010 Dallas, Texas May 23-26, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE

  4. Remote Area Power Supply (RAPS) load and resource profiles.

    SciTech Connect

    Giles, Lauren; Skolnik, Edward G.; Marchionini, Brian; Fall, Ndeye K.

    2007-07-01

    In 1997, an international team interested in the development of Remote Area Power Supply (RAPS) systems for rural electrification projects around the world was organized by the International Lead Zinc Research Organization (ILZRO) with the support of Sandia National Laboratories (SNL). The team focused on defining load and resource profiles for RAPS systems. They identified single family homes, small communities, and villages as candidates for RAPS applications, and defined several different size/power requirements for each. Based on renewable energy and resource data, the team devised a ''strawman'' series of load profiles. A RAPS system typically consists of a renewable and/or conventional generator, power conversion equipment, and a battery. The purpose of this report is to present data and information on insolation levels and load requirements for ''typical'' homes, small communities, and larger villages around the world in order to facilitate the development of robust design practices for RAPS systems, and especially for the storage battery component. These systems could have significant impact on areas of the world that would otherwise not be served by conventional electrical grids.

  5. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84 C. Traditional geothermometry models estimated reservoir temperatures of approximately 125 C in the 1970s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104 C (217 F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227 C (440 F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be

  6. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  7. Frequently Asked Questions about Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Frequently Asked Questions about Wind Energy Frequently Asked Questions about Wind Energy This page lists frequently asked questions about wind energy. What is wind energy? How do wind turbines work? How much energy comes from wind in the United States? I would like to put up a wind turbine at my house or property. How do I get started? What is the wind resource like in my area? Is wind power more expensive than other forms of energy? What grants or incentives are

  8. Improved Tools for Wind Resource Assessment with Remote Sensing Sodar Device: Cooperative Research and Development Final Report, CRADA Number: CRD-09-363

    SciTech Connect

    Clifton, A.

    2015-02-01

    Under this Agreement, NREL will work with the Participant to characterize wind resource assessment measurement systems needed for the design, construction, and integration of wind energy conversion systems to produce electricity for utility grid applications. This work includes, but is not limited to, research and development of hardware and software systems needed to advance wind energy resource assessment technology at speed and scale for use by electric utilities and wind power system integrators.

  9. Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size Preprint M. Milligan National Renewable Energy Laboratory B. Kirby Oak Ridge National Laboratory To be presented at WindPower 2008 Houston, Texas June 1-4, 2008 Conference Paper NREL/CP-500-43434 June 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US

  10. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Edison (SCE) is positioned to demonstrate the effectiveness of lithium-ion battery and smart inverter technologies to improve grid performance and assist in the integration of variable energy resources. This project will be sited at the Tehachapi Wind Resource Area, one of the largest wind resource areas in the world, where as much as 4,500 MW of wind resources are expected to come online by 2015. An existing SCE substation located approximately 100 miles north of Los Angeles,

  11. Mineral resources of the Cross Mountain Wilderness Study Area, Moffat County, Colorado

    SciTech Connect

    Evans, K.V.; Frisken, J.G.; Kulik, D.M.; Thompson, J.R.

    1989-01-01

    The Cross Mountain Wilderness Study Area, in northwestern Colorado, contains high-purity limestone suitable for industrial and agricultural use; dolomitic limestone suitable for agricultural use; and limestone, dolomite, sandstone, and sand and gravel suitable for use as construction materials. There has been no mining within this study area. This entire study area has a low mineral resource potential for sediment-hosted copper in the Uinta Mountain Group, and parts of this study area have a low resource potential for sandstone-type uranium-vanadium in sedimentary rocks. The entire study area has a low resource potential for all other metals and geothermal resources. It has a high energy resource potential for oil and gas in the eastern part of the area and moderate potential elsewhere. This study area has no mineral resource potential for coal.

  12. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  13. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  14. NREL: Technology Deployment - Resource Maps for Taller Towers Reveal New

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Areas for Wind Project Development Resource Maps for Taller Towers Reveal New Areas for Wind Project Development News Mapping the Frontier of New Wind Power Potential Publications Southeastern Wind Coalition fact sheets Southeast Wind Energy Fact Sheet Enabling Wind Power Nationwide Wind Vision: A New Era for Wind Power in the United States Sponsors AWS Truepower Southeastern Wind Coalition Key Partners U.S. Department of Energy Contact Ian Baring-Gould, 303-384-7021 A picture of a tall wind

  15. Wilderness study area, mineral resources of the Sleeping Giant, Lewis and Clark County, Montana

    SciTech Connect

    Tysdal, G.; Reynold, M.W.; Carlson, R.R.; Kleinkopf, M.D.; Rowan, L.C. ); Peters, T.J. )

    1991-01-01

    A Mineral resource survey was conducted in 1987 by the U.S. Geological Survey and the U.S. Bureau of Mines to evaluate mineral resources (known) and mineral resource potential (undiscovered) of the Sleeping Giant Wilderness Study Area (MT-075-111) in Lewis and Clark County, Montana. The only economic resource in the study area is an inferred 1.35-million-ton reserve of decorative stone (slate); a small gold placer resource is subeconomic. A high resource potential for decorative slate exists directly adjacent to the area of identified slate resource and in the northeastern part of the study area. The rest of the study area has a low potential for decorative slate. The westernmost part of the study area has a moderate resource potential for copper and associated silver in state-bound deposits in green beds and limestone; potential is low in the rest of the study are. The study area has a low resource potential for sapphires in placer deposits, gold in placer deposits (exclusive of subeconomic resource mentioned above), phosphate in the Spokane Formation, diatomite in lake deposits, uranium, oil, gas, geothermal energy, and no resource potential for phosphate in the Phosphoria Formation.

  16. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Agency for International Development Sector: Energy Focus Area: Wind Resource Type: Training materials Website: www.energytoolbox.orggcremod6index.shtml Grid-Connected...

  17. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  18. Offshore Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A photo of several rows of wind turbines standing in the ocean with the sun overhead. Capabilities NREL's offshore wind turbine research capabilities focus on critical areas that ...

  19. Survey of potential geopressured resource areas in California. Final report

    SciTech Connect

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  20. NREL: Wind Research - Offshore Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens ... NREL's offshore wind turbine research capabilities focus on critical areas that reflect ...

  1. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  2. WINDExchange: Education and School Resources

    WindExchange

    Education and School Resources Filter the WINDExchange database for information resources about Wind for Schools, education and training programs, news, and educational links. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 11/9/2016 1:33:02 PM News Web Resource Schools Energy Department Releases Request for Proposal for Collegiate Wind Competition 2018 11/1/2016

  3. McCallum study area: resource and potential reclamation evaluation: executive summary. Final report

    SciTech Connect

    Not Available

    1983-09-01

    The purpose of this investigation was to collect baseline data for establishing reclamation objectives and lease stipulations. The report includes data on climate, biological and cultural resources, physiography, geology, coal resources, soil overburden, vegetation, and hydrology. The study area is within Moffat County in Colorado. The overall effect of mining on hydrology of the area should be minimal, primarily because only small areas of the basins will be mined.

  4. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  5. WINDExchange: Siting Wind Turbines

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  6. Offshore Wind Potential Tables

    WindExchange

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  7. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  8. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  9. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  10. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  11. 20% Wind Energy by 2030- Chapter 3: Manufacturing, Materials, and Resources Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Summary Slides for Chapter 3: Manufacturing, Material Resources, and Impacts on the Nation's Economy

  12. Small Wind Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Wind Electric Systems Small Wind Electric Systems Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having

  13. Wind Power Siting: Public Acceptance and Land Use; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Tegen, Suzanne

    2015-06-17

    Suzanne Tegen presented this information as part of the June 17, 2015 WINDExchange webinar: Overcoming Wind Siting Challenges III: Public Acceptance and Land Use. This presentation provides an overview of current NREL research related to wind energy deployment considerations, the DOE Wind Vision as it relates to public acceptance and land use, why public acceptance of wind power matters, where the U.S. wind resource is best, and how those rich resource areas overlay with population centers.

  14. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  15. Assessment of solar and wind energy resources in Ethiopia. I. Solar energy

    SciTech Connect

    Drake, F.; Mulugetta, Y.

    1996-09-01

    This paper describes how data from a variety of sources are merged to present new countrywide maps of the solar energy distribution over Ethiopia. The spatial coverage of stations with radiation data was found to be unsatisfactory for the purpose of a countrywide solar energy assessment exercise. Therefore, radiation had to be predicted from sunshine hours by employing empirical models. Using data from seven stations in Ethiopia, linear and quadratic correlation relationships between monthly mean daily solar radiation and sunshine hours per day have been developed. These regional models show a distinct improvement over previously employed countrywide models. To produce a national solar-energy distribution profile, a spatial extension of the radiation/sunshine relationships had to be carried out. To do this, the intercepts(a) and slopes(b) of each of the seven linear regression equations and another six from previous studies, completed in neighbouring Sudan, Kenya and Yemen, were used to interpolate the corresponding values to areas between them. Subsequent to these procedures, 142 stations providing only sunshine data were assigned their `appropriate` a and b values to estimate the amount of solar radiation received, which was then used to produce annual and monthly solar radiation distribution maps for Ethiopia. The results show that in all regions solar energy is an abundant resource. 19 refs., 11 figs., 4 tabs.

  16. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  17. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  18. Grid Integration of Offshore Wind | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  19. Mineral resources of the Home Creek wilderness study area, Harney County, Oregon

    SciTech Connect

    Vander Meulen, D.B.; Griscom, A.; King, H.D.; Vercoutere, T.L.; Moyle, P.R.

    1988-01-01

    This book discusses the Home Creek Wilderness Study Area, on the western slope of Steens Mountain in the northern Basin and Range physiographic province of southeastern Oregon. The area is underlain by Miocene Steens Basalt. Isolated outcrops of the Devine Canyon ash-flow tuff unconformably overlie the Steens Basalt. Pleistocene shoreline deposits and Holocene dunes are exposed in the western part of the study area, moderate potential for sand and gravel resources in lake shoreline deposits, and low potential for geothermal energy throughout the study area.

  20. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  1. NREL: Wind Research - Wind Energy Videos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  2. Offshore Wind Research (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  3. Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  4. WINDExchange: Wind Maps and Data

    WindExchange

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  5. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  6. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  7. South Carolina/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  8. North Carolina/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  9. New Jersey/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  10. North Dakota/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  11. Wind for Schools Portal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind for Schools Portal Jump to: navigation, search edit Wind for Schools Portal Home Comparison Motion Chart Educational Resources Turbine Support Software & Downloads Wind...

  12. Workforce Development Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from fiscal years 2008 to 2014. Workforce Development Wind Projects.pdf (2.21 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and

  13. Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint

    SciTech Connect

    Ibanez, E.; Milligan, M.

    2012-02-01

    Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.

  14. Siting guidelines for utility application of wind turbines. Final report

    SciTech Connect

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  15. Analysis of the Impact of Balancing Area Cooperation on the Operation of the Western Interconnection with Wind and Solar Generation (Presentation)

    SciTech Connect

    Milligan, M.; Lew, D.; Jordan, G.; Piwko, R.; Kirby, B.; King, J.; Beuning, S.

    2011-05-01

    This presentation describes the analysis of the impact of balancing area cooperation on the operation of the Western Interconnection with wind and solar generation, including a discussion of operating reserves, ramping, production simulation, and conclusions.

  16. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  17. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  18. Resources

    Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  19. DOE Science Showcase - Wind Power

    Office of Scientific and Technical Information (OSTI)

    Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and ...

  20. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  1. Potential market of wind farm in China

    SciTech Connect

    Pengfei Shi

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  2. Grid Integration of Wind Energy | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Wind Energy Researchers study grid integration of wind energy to better understand how variable generation resources such as wind energy impact the grid and how to increase the percentage of wind generation in the United States' energy portfolio. A photo of three wind turbines with transmission lines in the background. Capabilities NREL's grid integration analysts work with the U.S. Department of Energy, university researchers, independent system operators, and regional

  3. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  4. Combining Balancing Areas' Variability: Impacts on Wind Integration in the Western Interconnection

    SciTech Connect

    Milligan, M.; Kirby, B.; Beuning, S.

    2010-07-01

    This paper investigates the potential impact of balancing area cooperation on a large-scale in the Western Electricity Coordinating Council (WECC).

  5. Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  6. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  7. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnel testing, vertical axis turbines, wind turbine generators, aerodynamics, airfoils, wind loads, Darrieus rotors, economics, legislation, regulations, environmental impacts, national and international programs, fatigue testing, and horizontal axis turbines.

  8. Environmental Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2015. Environmental Projects Report 2006-2015 (2.24 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Pr

  9. Final Report, Wind Power Resource Assessment on the Warm Springs Reservation Tribal Lands, Report No. DOE/GO/12103

    SciTech Connect

    Jim Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates; HDR Engineering; Dr. Stel Walker, Oregon State University

    2007-09-10

    This report concludes a five-year assessment of wind energy potential on the Confederated Tribes of Warm Springs Reservation of Oregon lands.

  10. DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More

    Energy.gov [DOE]

    DOE's webinars include information on the economic impact of offshore wind, tools to develop better clean energy financing programs, and more.

  11. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  12. Wind energy bibliography

    SciTech Connect

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  13. Land-Based Wind Potential Changes in the Southeastern United States (Presentation)

    SciTech Connect

    Roberts, J. O.

    2013-09-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  14. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect

    Roberts, J. O.

    2014-01-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  15. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M.; Hamilton, C.B.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  16. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    SciTech Connect

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  17. Wind energy: Program overview, FY 1992

    SciTech Connect

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  18. WINDExchange: Residential-Scale 30-Meter Wind Maps

    WindExchange

    Residential-Scale 30-Meter Wind Maps The U.S. Department of Energy provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map.

  19. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and

  20. NREL: Renewable Resource Data Center Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewable Resource Data Center Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive collection of renewable energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations throughout the United States can be found through the RReDC. Almost every area of the country can take advantage of renewable energy technologies, but some technologies are better suited for

  1. WINDExchange: Collegiate Wind Competition

    WindExchange

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  2. Cielo Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cielo Wind Power Jump to: navigation, search Name: Cielo Wind Power Address: 823 Congress Avenue Place: Austin, Texas Zip: 78701 Region: Texas Area Sector: Wind energy Product:...

  3. Horizon Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Jump to: navigation, search Name: Horizon Wind Energy Address: 808 Travis Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Wind energy Product: Wind energy...

  4. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Wind Maps NREL's Geospatial Data Science Team offers both a national wind resource assessment of the United States and high-resolution wind data. The national wind resource assessment was created for the U.S. Department of Energy in 1986 by the Pacific Northwest Laboratory and is documented in the Wind Energy Resource Atlas of the United

  5. Resource Conservation and Recovery Act (RCRA) Closure Plan Summary for Interim reasctive Waste Treatment Area (IRWTA)

    SciTech Connect

    Collins, E.T.

    1997-07-01

    This closure plan has been prepared for the interim Reactive Waste Treatment Area (IRWT'A) located at the Y-12 Pkmt in oak Ridge, Tennessee (Environmental Protection Agency [EPA] Identification TN 389-009-0001). The actions required to achieve closure of the IRWTA are outlined in this plan, which is being submitted in accordance with Tennessee Ruie 1200- 1-1 1-.0S(7) and Title 40, Code of Federal Regulations (CFR), Part 265, Subpart G. The IRWTA was used to treat waste sodium and potassium (NaK) that are regulated by the Resource Conservation and Recovery Act (RCRA). The location of the IRWT'A is shown in Figures 1 and 2, and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.

  6. Wind for Schools Funding Spreadsheet | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Wind for Schools Portal Home Comparison Motion Chart Educational Resources Turbine Support Software & Downloads Wind Industry Careers Wind for Schools Funding...

  7. Property:SmallWindOrganizationName | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name SmallWindOrganizationName Property Type Page Description Organization for Small Wind Resource Retrieved from "http:en.openei.orgwindex.php?titleProperty:SmallWindOr...

  8. NREL: Renewable Resource Data Center - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Did you find what you needed? Yes 1...

  9. First Wind (Formerly UPC Wind) (New York) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    10535 Rynders Road Place: Cohocton, New York Zip: 14826 Region: Northeast - NY NJ CT PA Area Sector: Wind energy Product: Wind power developer Website: www.firstwind.com...

  10. Small Wind Site Assessment Guidelines

    SciTech Connect

    Olsen, Tim; Preus, Robert

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  11. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources Information Resources Wind Vision Wind Vision The new Wind Vision Report quantifies the economic, environmental, and social benefits of a robust wind energy future through 2050. Read more The Inside of a Wind Turbine The Inside of a Wind Turbine See a detailed view of the inside of a wind turbine, its components, and learn about its functionality. Read more WINDExchange WINDExchange WINDExchange is a nationwide initiative to educate, engage, and enable critical stakeholders

  12. DETECTION OF THE PULSAR WIND NEBULA HESS J1825-137 WITH THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Grondin, M.-H.; Lemoine-Goumard, M.; Hinton, J. A.; Camilo, F.; Cognard, I.; Theureau, G.; Freire, P. C. C.; Guillemot, L.; Grove, J. E.; Johnston, S.; Possenti, A.; Skilton, J. L. E-mail: lemoine@cenbg.in2p3.fr E-mail: ave@stanford.edu

    2011-09-01

    We announce the discovery of 1-100 GeV gamma-ray emission from the archetypal TeV pulsar wind nebula (PWN) HESS J1825-137 using 20 months of survey data from the Fermi-Large Area Telescope (LAT). The gamma-ray emission detected by the LAT is significantly spatially extended, with a best-fit rms extension of {sigma} = 0.{sup 0}56 {+-} 0.{sup 0}07 for an assumed Gaussian model. The 1-100 GeV LAT spectrum of this source is well described by a power law with a spectral index of 1.38 {+-} 0.12 {+-} 0.16 and an integral flux above 1 GeV of (6.50 {+-} 0.21 {+-} 3.90) x 10{sup -9} cm{sup -2} s{sup -1}. The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses bring new constraints on the energetics and magnetic field of the PWN system. The spatial extent and hard spectrum of the GeV emission are consistent with the picture of an inverse Compton origin of the GeV-TeV emission in a cooling-limited nebula powered by the pulsar PSR J1826-1334.

  13. Cape Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    02116 Region: Greater Boston Area Sector: Wind energy Product: Developing America's first offshore wind farm Website: www.capewind.org Coordinates: 42.3511372, -71.0703224...

  14. Southwest Mesa Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power Energy Purchaser American Electric Power Location McCamey TX Coordinates...

  15. Guide to Small Wind Energy Systems

    SciTech Connect

    2010-10-01

    Wind is one of the great renewable energy resources on the planet because it is in limitless supply. Using wind energy to generate electricity can have environmental benefits.

  16. @NWTC Newsletter: Spring 2013 Issue | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project and Program Updates Shedding Light on Offshore Wind Resources DOE Kicks Off ... Not Guilty NREL's Wind Technology Patents Boost Efficiency and Lower Costs Models ...

  17. ERCOT Wind Scraper | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Resource Type: Softwaremodeling tools User Interface: Desktop Application Website: web.ecs.baylor.edufacultygrady OpenEI Keyword(s): Community Generated ERCOT Wind Scraper...

  18. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. Offshore Wind Projects Fiscal Years 2006-2016 (4.14 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Environmental Wind Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  19. WINDExchange: Information Resources

    WindExchange

    Information Resources A range of WINDExchange resources are available, including links to relevant publications, podcasts, and webinars about wind energy topics. Annual Reports Screenshot of the 2015 Wind Technologies Market Report 2015 Wind Technologies Market Report The report provides a comprehensive overview of 2015 trends in the U.S. wind industry and wind power market. Lawrence Berkeley National Laboratory draws from a variety of data sources and covers a broad range of topics. Screenshot

  20. Des Moines Area Community College | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Des Moines Area Community College Spotlights Home DOE Applauds Des Moines Area Community College Science and Technical Programs Des Moines Area Community College Des Moines Area Community College Des Moines, Iowa Agri/Natural Resources Biology Biomass Operations Biotechnology Environmental Science Information Technology Manufacturing Technology Microcomputers Civil Engineering Pre-Medical Telecommunications Wind Turbines Resource Links About Library

  1. Wind energy information guide

    SciTech Connect

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  2. Mineral resources of the North Algodones Dunes Wilderness Study Area (CDCA-360), Imperial County, California

    SciTech Connect

    Smith, R.S.U.; Yeend, W.; Dohrenwend, J.C.; Gese, D.D.

    1984-01-01

    This report presents the results of a mineral survey of the North Algodones Dunes Wilderness Study Area (CDCA-360), California Desert Conservation Area, Imperial County, California. The potential for undiscovered base and precious metals, and sand and gravel within the North Algodones Dunes Wilderness Study Area is low. The study area has a moderate potential for geothermal energy. One small sand-free area between the Coachella Canal and the west edge of the dune field would probably be the only feasible exploration site for geothermal energy. The study area has a moderate to high potential for the occurrence of undiscovered gas/condensate within the underlying rocks. 21 refs.

  3. Minneapolis, Minnesota: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    formerly Romuld Wind Consulting Natural Resource Group Navitas Energy Inc Project Resources Corporation Sunnyside Technologies Inc Superior Process Technology Inc...

  4. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema

    None

    2016-07-12

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  5. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  6. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Brenda R. Pace

    2003-07-01

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  7. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy; Kuuskraa, Vello; Billingsley, Randy

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAMs databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The models databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated technically-recoverable by the USGS roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  8. Hydrologic Resources Management Program and Underground Test Area Project FY 2001-2002 Progress Report

    SciTech Connect

    Rose, T P; Kersting, A B; Harris, L J; Hudson, G B; Smith, D K; Williams, R W; Loewen, D R; Nelson, E J; Allen, P G; Ryerson, F J; Pawloski, G A; Laue, C A; Moran, J E

    2003-08-15

    This report contains highlights of FY 2001 and 2002 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work emphasizes the Defense Programs goal of responsible management of natural resources at the NTS, while UGTA-funded work focuses on defining the extent of radionuclide contamination in NTS groundwater resulting from underground nuclear testing. The report is organized on a topical basis, and contains eight chapters that reflect the range of technical work performed by LLNL-ANCD in support of HRMP and UGTA. Chapter 1 describes recent hot well sampling efforts at the NTS, and presents the results of chemical and isotopic analyses of groundwater samples from six near-field wells. These include the Cambric (UE-5n), Bilby (U-3cn PS No.2), Bourbon (UE-7nS), Nash (UE-2ce), Tybo/Benham (ER-20-5 No.3), and Almendro (U-19v PS No.1ds) sites. The data generated by the hot well program is vital to the development and validation of contaminant transport models at the NTS. Chapter 2 discusses the results of xenon isotope measurements of groundwater samples from the six near-field wells described in Chapter 1. This work demonstrates that fission xenon is present in the water at levels that are readily measurable and highlights the significant differences in xenon concentrations and isotopic abundances at different sites. These differences provide insight into the early cooling history of nuclear test cavities, and may assist in predicting the distribution of the source term in the near-field environment. Chapter 3 is an investigation of the distribution

  9. Hualapai Wind Project Feasibility Report

    SciTech Connect

    Davidson, Kevin; Randall, Mark; Isham, Tom; Horna, Marion J; Koronkiewicz, T; Simon, Rich; Matthew, Rojas; MacCourt, Doug C.; Burpo, Rob

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  10. Wind Turbine Basics | Department of Energy

    Energy.gov [DOE] (indexed site)

    This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all ...

  11. WindLogics Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: WindLogics provides wind resource analysis and long-period variability forecasting services. References: WindLogics Inc1 This article is a stub. You can help OpenEI...

  12. Built-Environment Wind Turbine Roadmap

    SciTech Connect

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  13. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  14. West Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. WINDExchange: Wind for Schools Project

    WindExchange

    Participant Roles & Responsibilities Affiliate Projects Pilot Project Results Project Funding School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Wind for Schools Project The U.S. Department of Energy funds the Wind for Schools project, which helps develop a future wind energy workforce by engaging students at higher education institutions to join Wind Application Centers and serve as project consultants for small wind turbine

  16. Resource Conservation and Recovery Act corrective measures study: Area 6 decontamination pond facility, corrective action unit no. 92

    SciTech Connect

    1997-10-01

    Corrective Action Unit (CAU) No. 92, the Area 6 Decontamination Pond Facility (DPF), is an historic disposal unit located at the Nevada Test Site (NTS) in Nye County, Nevada (Figures 1 - 1, 1-2, and 1-3). The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV), which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the DPF under the requirements of the Resource Conservation and Recovery Act (RCRA) Part A Permit (NDEP, 1995) for the NTS and Title 40 Code of Federal Regulations (CFR) Part 265 (1996c). The DPF is prioritized in the Federal Facility Agreement and Consent Order (FFACO, 1996) but is governed by the permit. The DPF was characterized through sampling events in 1994, 1996, and 1997. The results of these sampling events are contained in the Final Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Report, Area 6 Decontamination Pond Facility, Revision I (DOE/NV, 1997). This Corrective Measures Study (CMS) for the Area 6 DPF has been prepared for the DOE/NV`s Environmental Restoration Project. The CMS has been developed to support the preparation of a Closure Plan for the DPF. Because of the complexities of the contamination and regulatory issues associated with the DPF, DOE/NV determined a CMS would be beneficial to the evaluation and selection of a closure alternative.

  17. Wind Power Career Chat

    SciTech Connect

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  18. Hydrologic resources management program and underground test area operable unit fy 1997

    SciTech Connect

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  19. Wind Energy Community Acceptance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Community Acceptance Jump to: navigation, search Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Resources...

  20. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-04-01

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  1. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  2. NREL: Wind Research - International Wind Resource Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Agency for International Development, and United Nations International Programme. ... SWERA is a UNEP (United Nations Environment Programme) project with co-financing from ...

  3. Wind Energy Benefits (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  4. Hydrogeochemical and stream-sediment reconnaissance, orientation study, Ouachita Mountain area, Arkansas. National Uranium Resource Evaluation Program

    SciTech Connect

    Steele, K. F.

    1982-08-01

    A hydrogeochemical ground water orientation study was conducted in the multi-mineralized area of the Ouachita Mountains, Arkansas in order to evaluate the usefulness of ground water as a sampling medium for uranium exploration in similar areas. Ninety-three springs and nine wells were sampled in Clark, Garland, Hot Springs, Howard, Montgomery, Pike, Polk, and Sevier Counties. Manganese, barite, celestite, cinnabar, stibnite, copper, lead, and zinc are present. The following parameters were determined: pH, conductivity, alkalinity, U, Br, Cl, F, He, Mn, Na, V, Al, Dy, NO/sub 3/, NH/sub 3/, SO/sub 4/, and PO/sub 4/. The minerals appear to significantly affect the chemistry of the ground water. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation.

  5. Management of hazardous waste containers and container storage areas under the Resource Conservation and Recovery Act

    SciTech Connect

    Not Available

    1993-08-01

    DOE`s Office of Environmental Guidance, RCRA/CERCLA Division, has prepared this guidance document to assist waste management personnel in complying with the numerous and complex regulatory requirements associated with RCRA hazardous waste and radioactive mixed waste containers and container management areas. This document is designed using a systematic graphic approach that features detailed, step-by-step guidance and extensive references to additional relevant guidance materials. Diagrams, flowcharts, reference, and overview graphics accompany the narrative descriptions to illustrate and highlight the topics being discussed. Step-by-step narrative is accompanied by flowchart graphics in an easy-to-follow, ``roadmap`` format.

  6. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Saver

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects Fiscal Years 2006 - 2014 WIND PROGRAM 1 Photo from NREL Introduction Wind and Water Power ...

  7. Energy in the Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced

  8. Data report: Jean Lake Area, Nevada. National Uranium Resource Evaluation Program

    SciTech Connect

    Cook, J.R.

    1982-05-01

    This report presents the results of detailed sampling of soils, rocks, and dry lake bed material from the area of Jean Dry Lake in southern Nevada. The study area is in the Kingman 1/sup 0/ x 2/sup 0/ quadrangle of the National Topographic Map Series. Samples were collected from 1000 sites. The target density of sampling was 16 sites per square mile in the lake bed and four sites per square mile for soil samples. Neutron activation analyses are presented for uranium and 16 other elements. Scintillometer readings are reported for each site. Analytical data and scintillometer measurements are presented in tables. Statistical summaries and a brief description of the results are given. Data from the sites (on microfiche in pocket) include; (1) elemental analyses (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, and V); and (2) scintillometer readings. To make the data available for public use without further delay, this report is being issued without the normal technical and copy editing.

  9. Career Map: Resource Scientist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Scientist Career Map: Resource Scientist The silhouette of a resource scientist as they stand in front of a large projection of a wind simulation. Resource Scientist Position Title Resource Scientist Alternate Title(s) Atmospheric Scientist, Meteorologist, Wind Resource Engineer, Wind Resource Analyst, Site Engineer Education & Training Level Advanced, bachelor's required, prefer graduate degree Education & Training Level Description Resource scientists need a bachelor's degree

  10. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Energy.gov [DOE]

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  11. Method and Case Study for Estimating the Ramping Capability of a Control Area or Balancing Authority and Implications for Moderate or High Wind Penetration: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conference Paper A Method and Case Study for NREL/CP-500-38153 Estimating the Ramping May 2005 Capability of a Control Area or Balancing Authority and Implications for Moderate or High Wind Penetration Preprint B. Kirby Oak Ridge National Laboratory M. Milligan, Consultant National Renewable Energy Laboratory To be presented at WINDPOWER 2005 Conference and Exhibition Denver, Colorado May 15-18, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337

  12. WINDExchange Wind Energy Benefits Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WINDExchange Wind Energy Benefits Fact Sheet WINDExchange Wind Energy Benefits Fact Sheet Learn more about wind energy! This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and pervasive deployment. WINDExchange Wind Energy Benefits Fact Sheet (284.98 KB) More Documents & Publications Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) 2015 Distributed Wind Market Report

  13. Renewable Resource Standard

    Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  14. Small Wind Information (Postcard)

    SciTech Connect

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  15. Wind Program Accomplishments

    SciTech Connect

    Wind Program

    2012-05-24

    This fact sheet describes some of the accomplishments of DOE's Wind Program through its investments in technology development and market barrier reduction, and how those accomplishments are supporting the advancement of renewable energy generated using the United States' abundant wind resources.

  16. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  17. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  18. Portland, Oregon: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (Oregon) First Wind (Formerly UPC Wind) (Oregon) Green Electronics Council Green Empowerment Greenwood Resources Iberdrola Renewables Iberdrola Renewables formerly PPM Energy...

  19. Barlovento Natural Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Barlovento Natural Resources Place: Logrono, Spain Zip: 26005 Sector: Solar, Wind energy Product: Technical consulting in the wind and solar energy sector. Coordinates:...

  20. Hydrologic resources management program and underground test area FY 1999 progress report

    SciTech Connect

    Smith, D K; Eaton, G F; Rose, T P; Moran, J E; Brachmann, A; McAninch, J E; Kersting, A B; Romanovski, V V; Martinelli, R E; Werner, J K Jr

    2000-07-01

    This report presents the results from fiscal year (FY) 1999 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) work-for-others project. This report is the latest in a series of annual reports published by LLNL to document the migration of radionuclides and controls of radionuclide movement at the Nevada Test Site. The FY 1999 studies highlighted in this report are: (1) Chapter 1 provides the results from flow-through leaching of nuclear melt glasses at 25 C and near-neutral pH using dilute bicarbonate groundwaters. (2) Chapter 2 reports on a summary of the size and concentration of colloidal material in NTS groundwaters. (3) Chapter 3 discusses the collaboration between LLNL/ANCD (Analytical and Nuclear Chemistry Division) and the Center for Accelerator Mass Spectrometry (CAMS) to develop a technique for analyzing NTS groundwater for 99-Technicium ({sup 99}Tc) using accelerator mass spectrometry (AMS). Since {sup 99}Tc is conservative like tritium in groundwater systems, and is not sorbed to geologic material, it has the potential for being an important tool for radionuclide migration studies. (4) Chapter 4 presents the results of secondary ion mass spectrometry measurements of the in-situ distribution of radionuclides in zeolitized tuffs from cores taken adjacent to nuclear test cavities and chimneys. In-situ measurements provide insight to the distribution of specific radionuclides on a micro-scale, mineralogical controls of radionuclide sorption, and identification of migration pathways (i.e., matrix diffusion, fractures). (5) Chapter 5 outlines new analytical techniques developed in LLNL/ANCD to study hydrologic problems at the NTS using inductively coupled plasma mass spectrometry (ICP-MS). With costs for thermal-ionization mass spectrometry (TIMS) increasing relative to sample preparation time and facility support, ICP-MS technology

  1. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  2. Resource investigation of low- and moderate-temperature geothermal areas in Paso Robles, California

    SciTech Connect

    Campion, L.F.; Chapman, R.H.; Chase, G.W.; Youngs, L.G.

    1983-01-01

    Ninety-eight geothermal wells and springs were identified and plotted, and a geologic map and cross sections were compiled. Detailed geophysical, geochemical, and geological surveys were conducted. The geological and geophysical work delineated the basement highs and trough-like depressions that can exercise control on the occurrence of the thermal waters. The Rinconada fault was also evident. Cross sections drawn from oil well logs show the sediments conforming against these basement highs and filling the depressions. It is along the locations where the sediments meet the basement highs that three natural warm springs in the area occur. Deep circulation of meteoric waters along faults seems to be a reasonable source for the warm water. The Santa Margarita, Pancho Rico, and Paso Robles Formations would be the first permeable zones that abut the faults through which water would enter. Temperatures and interpretation of well logs indicate the warmest aquifer at the base of the Paso Robles Formation. Warm water may be entering higher up in the section, but mixing with water from cooler zones seems to be evident. Geothermometry indicates reservoir temperatures could be as high as 91/sup 0/C (196/sup 0/F).

  3. Wind Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  4. Prairie Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Wind Energy Information Guide 2004

    SciTech Connect

    anon.

    2004-01-01

    The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

  6. Wind Power: Options for Industry

    SciTech Connect

    Not Available

    2003-03-01

    This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

  7. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota

    Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  8. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  9. Knight & Carver Wind Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City, California Zip: 91950 Region: Southern CA Area Sector: Wind energy Product: Blade design for wind turbines Website: www.kcwind.com Coordinates: 32.6609335,...

  10. California Wind Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Jump to: navigation, search Name: California Wind Systems Address: 3411 Camino Corte Place: Carlsbad, California Zip: 92008 Region: Southern CA Area Sector: Wind energy...

  11. Community Renewable Energy Deployment: Haxtun Wind Project |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project AgencyCompany Organization US Department of Energy Focus Area...

  12. Entegrity Wind Systems Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Riverbend Rd Place: Boulder, Colorado Zip: 80301 Region: Rockies Area Sector: Wind energy Product: Manufactures 50kW wind turbines Website: www.entegritywind.com Coordinates:...

  13. Wind energy applications guide

    SciTech Connect

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  14. Environmental Resources of Selected Areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii (DRAFT)

    SciTech Connect

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17,1994 (Fed Regis. 5925638), withdrawing its notice of intent (Fed. Regis. 575433) of February 14,1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii (hereinafter referred to as Hawaii). Groundwater quality inside and outside the lower east rift zone (LERZ) of Kilauea is compared with that of meteoric water, seawater, and geothermal fluid. The degree of mixing between meteoric water, sea water, and geothermal water in and adjacent to the LERZ also is discussed. Finally, groundwater pathways and use in the Puna District are discussed. Most of the information contained herein is compiled from recent U.S. Geological Survey publications and open-file reports.

  15. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  16. DOE Science Showcase - Wind Power | OSTI, US Dept of Energy,...

    Office of Scientific and Technical Information (OSTI)

    Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and ...

  17. Installing and Maintaining a Small Wind Electric System | Department...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Federal regulations (specifically, the Public Utility Regulatory Policies Act of 1978, or ... Federal tax credits for small solar and wind Wind resource maps Consumer guides for small ...

  18. Indian Mesa Wind Farm I | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power; Orion Energy Energy Purchaser TXU Electric & Gas- Lower Colorado...

  19. Offshore Wind Market Acceleration Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    of the U.S. offshore wind market. These projects address both environmental and supply chain-related issues, and are broken down into seven categories: Wind resource ...

  20. Offshore Wind Market Acceleration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Read a report on the program's portfolio of offshore wind technology research, development, and demonstration projects. Offshore Wind Energy Resources and the Environment ...

  1. WINDExchange: Community-Scale 50-Meter Wind Maps

    WindExchange

    Community-Scale 50-Meter Wind Maps The U.S. Department of Energy provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment

  2. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  3. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  4. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future Trends | Department of Energy Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines

  5. Wind Energy Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Technologies Office Wind Energy Technologies Office Joint National Offshore Wind Strategy Launched Joint National Offshore Wind Strategy Launched The National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States provides a snapshot of the current state of the industry, refinements in resource assessment and cost reduction trajectories, and a roadmap for how the Departments of Energy and the Interior can support the industry's future

  6. Wind Power America Final Report

    SciTech Connect

    Spangler, Brian; Montgomery, Kathi; Cartwright, Paul

    2012-01-30

    The objective of this grant was to further the development of Montana’s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources

  7. Wind Energy for Native Americans

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Native Americans Wind Energy for Native Americans Larry Flowers Larry Flowers Golden, CO Golden, CO November 20, 2003 November 20, 2003 Native American Wind Native American Wind Development Development * NA wind resources * On-site loads vs. export * Investment vs. private developer royalties * Tribal utility business development policies * Transmission constraints vs. green tags opportunity * Tax advantages/limitations * (perceived) Private sector development risk * Federal load

  8. Wind Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Research and Development Wind Research and Development Wind Research and Development The U.S. Department of Energy's (DOE's) Wind Program leads the nation's efforts to improve the performance, lower the costs, and accelerate the deployment of wind power technologies. To learn more about the specific research areas sponsored by the Wind Program, read on below: Offshore Wind: Funding research to develop and demonstrate effective turbine technologies and overcome key barriers to deployment

  9. Eastern Wind Integration Data Set | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Integration Data Set The Eastern Wind Integration Data Set was designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. Access the Eastern Wind Integration Data Set Resources ACCESS DATA SET DOWNLOAD REPORT Methodology The Eastern Wind Integration Data Set consists of 3 years (2004-2006) of 10-minute wind speed and plant output values for 1,326 simulated wind power plants as well as

  10. Offshore Wind Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Offshore Wind Research and Development Offshore Wind Research and Development The offshore wind projects map provides information about progress around the country. The offshore wind projects map provides information about progress around the country. The U.S. Department of Energy's Wind Program funds research nationwide to develop and deploy offshore wind technologies that can capture wind resources off the coasts of the United States and convert that wind into

  11. San Diego County- Wind Regulations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small...

  12. Deepwater Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Street Suite 402 Place: Hoboken, New Jersey Zip: 07030 Region: Northeast - NY NJ CT PA Area Sector: Wind energy Product: offshore wind Phone Number: 201.850.1717 Website:...

  13. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  14. Research Staff | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Staff Learn more about the expertise and technical skills of the wind energy research team and staff at NREL by reading their biographical information. Photo of Daniel Laird Daniel Laird Center Director Dr. Daniel Laird is director of the National Wind Technology Center (NWTC). Laird also serves as an executive committee member of the U.S. Department of Energy's (DOE's) Atmosphere to Electrons Wind Plant Optimization Initiative and provides leadership in the focus areas of high-fidelity

  15. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  16. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  17. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    SciTech Connect

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Qualley, G.; Newman, J. F.; Miller, W. O.

    2015-09-28

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resource areas in the U.S. and are representative of typical wind farms found in their respective areas.

  18. DOE Releases EPRI Report on Benefits of Regional Coordination in Wind Energy Transfers

    Energy.gov [DOE]

    The Department of Energy (DOE) recently released a report finding that inter-regional cooperation can help lower the cost of transporting wind energy from windy areas in the Midwest and South-Central United States to areas with less wind generation capability in the Southeastern United States, improving the ability to meet our nation's electricity demand using clean resources. DOE awarded the Electric Power Research Institute (EPRI) and LCG Consulting an American Recovery and Reinvestment Act (ARRA) grant to evaluate the benefits of coordinating inter-regional transfers of wind energy.

  19. Western Wind and Solar Integration Study | Grid Modernization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Can we integrate large amounts of wind and solar energy into the electric power system of the ... Development of Regional Wind Resource and Wind Plant Output Datasets Phase 2 Research ...

  20. NREL: Transmission Grid Integration - Western Wind and Solar...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of integrating up to 35% wind and solar energy in the WestConnect subregion and, more ... Development of Regional Wind Resource and Wind Plant Output Datasets This report ...

  1. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  2. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Saver

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of ...

  3. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2014-07-25 OSTI Identifier: 1256091 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation

  4. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Energy.gov [DOE] (indexed site)

    wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Since 2012, the U.S. Department of Energy has supported a portfolio of advanced wind ...

  5. Generation Resources Holding Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Holding Co Jump to: navigation, search Name: Generation Resources Holding Co Place: Leawood, Kansas Zip: 66211-2607 Sector: Renewable Energy, Wind energy Product:...

  6. Office of Information Resources | Department of Energy

    Energy Saver

    Meeting, May 22, 2008 Office of Information Resources (343.65 KB) More Documents & Publications CERTIFICATE OF AUTHENTICITY Office of Information Resources U.S. Offshore Wind ...

  7. WINDExchange: Agricultural and Rural Resources and Tools

    WindExchange

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Agricultural and Rural Resources and Tools This page lists...

  8. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  9. Wind Simulation

    Energy Science and Technology Software Center

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  10. Energy Department Awards $1.8 Million to Develop Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs Energy Department Awards 1.8 Million to Develop Wind Turbine Blades to Access Better Wind ...

  11. Wind/Water Nexus

    SciTech Connect

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  12. Wind Energy Teachers Guide

    SciTech Connect

    anon.

    2003-01-01

    This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

  13. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  14. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  15. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  16. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Wind-turbine blade growth continues to have the largest impact on energy capture and ...

  17. WindSENSE Project Summary: FY2009-2011

    SciTech Connect

    Kamath, C

    2011-09-25

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts

  18. Lower Sioux Wind Feasibility & Development

    SciTech Connect

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  19. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  20. Distributed Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  1. Community Wind Handbook/Submit Permit Applications | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Costs * Research Local Incentive Programs * Understand Your Wind Resource * Research Turbine Models * Calculate Simple Payback * Understand Preliminary Siting * Understand...

  2. Community Wind Handbook/Engage with Neighbors | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Costs * Research Local Incentive Programs * Understand Your Wind Resource * Research Turbine Models * Calculate Simple Payback * Understand Preliminary Siting * Understand...

  3. County Wind Ordinance Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Assembly Bill 45 of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's...

  4. Offshore Wind Jobs and Economic Development Impacts in the United...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... development due to the substantial offshore wind resource, with Virginia, North Carolina, South Carolina, and Georgia representing 45% of the total East Coast resource (DOE 2008). ...

  5. Large Scale Wind and Solar Integration in Germany

    SciTech Connect

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  6. Delaware Mountain Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Status In Service Owner NextEra Energy Resources Developer American National Wind PowerOrion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX...

  7. Lower Sioux Indian Community Wind Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Goals * Provide clean and environmentally safe energy resources for tribal reservation by installing wind turbine in community * Sell excess power to nearby power utility * ...

  8. Meyersdale Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser FirstEnergy Location...

  9. Waymart Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Wayne...

  10. Community Wind Handbook | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    * Engage with Neighbors * Conduct a Wind Resource Estimate * Research Interconnecting behind Your Meter * Research Project Economics & Financing * Select the Final Design &...

  11. Texas's 4th congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst...

  12. Texas's 30th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst...

  13. Texas's 32nd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc. AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst...

  14. Texas's 5th congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst...

  15. Texas's 3rd congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc. AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst...

  16. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  17. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  18. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    SciTech Connect

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

  19. Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement

    SciTech Connect

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.; Walitschek, D.A.; Shogren, L.; Mathews, J.E.; Verhaaren, B.T.

    1993-11-01

    Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps are included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.

  20. NREL: Wind Research - U.S. Virgin Islands Begins Collecting Wind...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Virgin Islands Begins Collecting Wind Resource Data: A Wind Powering America Success Story March 25, 2013 In the U.S. Virgin Islands (USVI), electricity is so expensive that ...

  1. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGES [OSTI]

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  2. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  3. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  4. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  5. A Cultural Resources Inventory and Historical Evaluation of the Smoky Atmospheric Nuclear Test, Areas 8, 9, and 10, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Jones, Robert C.; King, Maureen L.; Beck, Colleen M.; Falvey, Lauren W.; Menocal, Tatianna M.

    2014-09-01

    This report presents the results of a National Historic Preservation Act Section 106 cultural resources inventory and historical evaluation of the 1957 Smoky atmospheric test location on the Nevada National Security Site (NNSS). The Desert Research Institute (DRI) was tasked to conduct a cultural resources study of the Smoky test area as a result of a proposed undertaking by the Department of Energy Environmental Management. This undertaking involves investigating Corrective Action Unit (CAU) 550 for potential contaminants of concern as delineated in a Corrective Action Investigation Plan. CAU 550 is an area that spatially overlaps portions of the Smoky test location. Smoky, T-2c, was a 44 kt atmospheric nuclear test detonated at 5:30 am on August 31, 1957, on top of a 213.4 m (700 ft) 200 ton tower (T-2c) in Area 8 of the NNSS. Smoky was a weapons related test of the Plumbbob series (number 19) and part of the Department of Defense Exercise Desert Rock VII and VIII. The cultural resources effort involved the development of a historic context based on archival documents and engineering records, the inventory of the cultural resources in the Smoky test area and an associated military trench location in Areas 9 and 10, and an evaluation of the National Register eligibility of the cultural resources. The inventory of the Smoky test area resulted in the identification of structures, features, and artifacts related to the physical development of the test location and the post-test remains. The Smoky test area was designated historic district D104 and coincides with a historic archaeological site recorded as 26NY14794 and the military trenches designed for troop observation, site 26NY14795. Sites 26NY14794 and 26NY14795 are spatially discrete with the trenches located 4.3 km (2.7 mi) southeast of the Smoky ground zero. As a result, historic district D104 is discontiguous and in total it covers 151.4 hectares (374 acres). The Smoky test location, recorded as historic

  6. Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  7. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  8. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Wind and Moment Averages Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2012-12-06 OSTI Identifier: 1095573 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory

  9. Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FINDING LARGE APERTURE FRACTURES IN GEOTHERMAL RESOURCE AREAS USING A THREE-COMPONENT LONG- OFFSET SURFACE SEISMIC SURVEY, PSInSAR, AND KINEMATIC ANALYSIS Principal Investigator : William Teplow, US Geothermal, Inc. Presenter: Ian Warren, US Geothermal, Inc. INNOVATIVE EXPLORATION TECHNIQUES Project Officer: Ava Coy / Erik Swanton Total Project Funding: $3.77 Million April 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE

  10. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Supply | Department of Energy : Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply The report considers some associated challenges, estimates the impacts and considers specific needs and outcomes in various areas associated with a 20% Wind Scenario. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (9.09 MB) More Documents &

  11. Cisco Wind Energy Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Wind Concurrent Cooling Could Increase Power Transmission Potential...

    Energy Saver

    Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% Wind ... In areas where wind farms are being developed, there is potential to take advantage of ...

  13. New England Breeze Solar and Wind Installers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greater Boston Area Sector: Renewable energy, Services, Solar, Wind energy Product: Solar Panel and Wind Turbine Installation Year Founded: 2006 Phone Number: 978-567-9463...

  14. Global Offshore Wind Farms Database | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website:...

  15. Power House Solar and Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar and Wind Jump to: navigation, search Name: Power House Solar and Wind Address: 1504 Woodlawn Ave Place: Canon City, Colorado Zip: 81212 Region: Rockies Area Sector: Solar...

  16. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: Wilton IV Wind Energy Center; Burleigh County, North Dakota EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota Summary Western Area Power Administration is...

  17. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  18. Wind Farm

    Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  19. Wind Easements

    Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  20. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.