National Library of Energy BETA

Sample records for wind power plant

  1. Dynamic Models for Wind Turbines and Wind Power Plants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamic Models for Wind Turbines and Wind Power Plants January 11, 2008 - May 31, 2011 Mohit Singh Surya Santoso (Principal Investigator) The University of Texas at Austin Austin, ...

  2. Zhangbei Guotou Wind Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

  3. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  4. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  5. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  6. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  7. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  8. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  9. Harmonics in a Wind Power Plant: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented ...

  10. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  11. Permanent Magnet Synchronous Condenser for Wind Power Plant Grid...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Wind Power Plant Grid Connection Support Preprint P. Hsu San Jose State University E. Muljadi National Renewable Energy Laboratory To be presented at the IEEE 2015 9 th ...

  12. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  13. Microsoft PowerPoint - Sandia CREW 2013 Wind Plant Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Security Administration under contract DE-AC04-94AL85000. Wind Plant Reliability Benchmark September 2013 Continuous Reliability Enhancement for Wind (CREW)...

  14. Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation:

    SciTech Connect

    Muljadi, E; Pasupulati, S.; Ellis, A.; Kosterov, D.

    2008-07-01

    This paper focuses on efforts to develop an equivalent representation of a Wind Power Plant (WPP) collector system for power system planning studies.

  15. Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation: Preprint

    SciTech Connect

    Muljadi, E.; Pasupulati, S.; Ellis, A.; Kosterov, D.

    2008-07-01

    This paper focuses on our effort to develop an equivalent representation of a Wind Power Plant collector system for power system planning studies.

  16. Equivalencing the Collector System of a Large Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01

    This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies.

  17. Multidisciplinary Research on Wake Control in Wind Power Plants at NREL

    SciTech Connect

    Gebraad, Pieter; Fleming, Paul; Wright, Alan; Dykes, Katherine; van Wingerden, Jan-Willem

    2015-07-08

    Presentation slides given at WINDFARMS 2015. The presentation gives an overview of National Renewable Energy Laboratory's work on wake control in wind power plants.

  18. Land-Use Requirements of Modern Wind Power Plants in the United...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy...

  19. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  20. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  1. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect

    Milligan, M.R.; Artig, R.

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  2. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  3. VIDEO: Atmosphere to Electrons Is Helping Define the Wind Power Plant of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Future | Department of Energy VIDEO: Atmosphere to Electrons Is Helping Define the Wind Power Plant of the Future VIDEO: Atmosphere to Electrons Is Helping Define the Wind Power Plant of the Future September 14, 2016 - 1:29pm Addthis Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind

  4. Wind Power Plants and System Operation in the Hourly Time Domain...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    * NRELCP-500-33955 Wind Power Plants and System Operation in the Hourly Time Domain Preprint M. Milligan To be presented at WINDPOWER 2003 Austin, Texas May 18-21, 2003 National ...

  5. PMU-Aided Voltage Security Assessment for a Wind Power Plant...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PMU-Aided Voltage Security Assessment for a Wind Power Plant Preprint H. Jiang, 1 Y.C. Zhang, 2 J.J. Zhang, 1 and E. Muljadi 2 1 University of Denver 2 National Renewable Energy ...

  6. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  7. Variable-Speed Wind Power Plant Operating With Reserve Power Capability: Preprint

    SciTech Connect

    Singh, M.; Gevorgian, V.; Muljadi, E.; Ela, E.

    2013-10-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response. Wind turbine generators with this capability can support the frequency stability of the grid. To provide governorresponse, wind turbines should be able to generate less power than the available wind power and hold the rest in reserves, ready to be accessed as needed. In this paper, we explore several ways to control wind turbine output to enable reserve-holding capability. The focus of this paper is on doubly-fed induction generator (also known as Type 3) and full-converter (also known as Type 4) windturbines.

  8. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    SciTech Connect

    Wan, Y. H.

    2013-01-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  9. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  10. Generating Economic Development from a Wind Power Plant in Spanish...

    WindExchange

    of the utility companies. In Utah, the Commission is responsible for determining avoided cost rates for qualifying facilities. As will be noted later, the Spanish Fork Wind...

  11. Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen Production and Delivery from a Dedicated Wind Power Plant Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant This May 2012 study assesses the costs and potential for remote renewable energy to be transported via hydrogen to a demand center for transportation use. The study is based on a projected 40 tonne/day need in the Los Angeles, California, region to serve an average 80,000 fuel cell vehicles/day. The hydrogen would be delivered from

  12. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2010-12-21

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  13. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2013-01-31

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  14. Microsoft PowerPoint - Sandia CREW 2012 Wind Plant Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    electronic work orders for wind industry Average: 1.5 ... Data represents 180,000 turbine-days Key metrics all ... SCADA and data transfer challenges lead to "Unknown Time" * ...

  15. WINDExchange: Selling Wind Power

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  16. Offshore Wind Power USA

    Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  17. Short-Circuit Modeling of a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  18. Wind Power Forecasting Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  19. WINDExchange: What Is Wind Power?

    WindExchange

    What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind

  20. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  1. Permanent Magnet Synchronous Condenser for Wind Power Plant Grid Connection Support: Preprint

    SciTech Connect

    Hsu, P.; Muljadi, E.

    2015-04-03

    A synchronous condenser (SC) using a permanent magnet synchronous generator (PMSG) is proposed for providing necessary reactive power to a wind power plant to support its connection to a weak grid. A PMSG has the advantage of higher efficiency and reliability. Because of its lack of a field winding, a PMSG is typically controlled by a full-power converter, which can be costly. In the proposed system, the reactive power of the SC is controlled by a serially connected compensator operating in a closed-loop configuration. The compensator also damps the PMSG's tendency to oscillate. The compensator's VA rating is only a fraction of the rating of the SC and the PMSG. In this initial investigation, the proposed scheme is shown to be effective by computer simulations.

  2. PMU-Aided Voltage Security Assessment for a Wind Power Plant

    SciTech Connect

    Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason; Muljadi, Eduard

    2015-10-05

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant's point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  3. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    SciTech Connect

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard; Zhang, Yincheng; Miller, Mackay; Wang, Weisheng; Wang, Jing

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power.

  4. 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp...

    Energy Information Administration (EIA) (indexed site)

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 2,"J C ...

  5. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect

    McDowell, Jason; Walling, Reigh; Peter, William; Von Engeln, Edi; Seymour, Eric; Nelson, Robert; Casey, Leo; Ellis, Abraham; Barker, Chris.

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  6. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  7. Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new report released today by the Energy Department’s National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West.

  8. PMU-Aided Voltage Security Assessment for a Wind Power Plant: Preprint

    SciTech Connect

    Jiang, H.; Zhang, Y. C.; Zhang, J. J.; Muljadi, E.

    2015-04-08

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant’s point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  9. Enabling Wind Power Nationwide

    Energy.gov [DOE] (indexed site)

    Enabling Wind Power Nationwide May 2015 This report is being disseminated by the U.S. ... ordering: ntis.govordering.htm Enabling Wind Power Nationwide Primary Authors Jose ...

  10. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  11. NREL Develops Simulations for Wind Plant Power and Turbine Loads (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    NREL researchers are the first to use a high-performance computing tool for a large-eddy simulation of an entire wind plant.

  12. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    SciTech Connect

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; Fleming, Paul A.; Ruben, S. D.; Marden, J. R.; Pao, L. Y.

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.

  13. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  14. Long-Term Wind Power Variability

    SciTech Connect

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  15. WINDExchange: Buying Wind Power

    WindExchange

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  16. Wind Power Today

    SciTech Connect

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  17. Wind Power Today

    SciTech Connect

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  18. Wethersfield Wind Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  19. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  20. Wind Power (pbl/generation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  1. Wind power soars

    SciTech Connect

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  2. Wind & Water Power Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  3. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Comparison of Standards and Technical Requirements of Grid- Connected Wind Power Plants in China and the United States David Wenzhong Gao Alternative Power Innovations, LLC Eduard Muljadi, Tian Tian, and Mackay Miller National Renewable Energy Laboratory Weisheng Wang China Electric Power Research Institute Technical Report NREL/TP-5D00-64225 September 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  4. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  5. Wind Power Partners '94 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  7. Wind Power Outlook 2004

    SciTech Connect

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  8. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  9. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    DOE PAGES [OSTI]

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; Fleming, Paul A.; Ruben, S. D.; Marden, J. R.; Pao, L. Y.

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less

  10. Wind Power Career Chat

    SciTech Connect

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  11. WATER POWER SOLAR POWER WIND POWER

    Energy Saver

    coloring book get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. ...

  12. Shiloh Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Fenton Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Madison Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Somerset Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Desert Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  17. Moraine Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Fenner Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  20. Renaissance for wind power

    SciTech Connect

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  1. Wind Power Reliability Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power Reliability Research The U.S. wind power industry is well established, with nearly 75 gigawatts of installed capacity across the United States. Given this large base of ...

  2. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  3. WINDExchange: Where Is Wind Power?

    WindExchange

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  4. VIDEO: Atmosphere to Electrons Is Helping Define the Wind Power...

    Office of Environmental Management (EM)

    VIDEO: Atmosphere to Electrons Is Helping Define the Wind Power Plant of the Future VIDEO: Atmosphere to Electrons Is Helping Define the Wind Power Plant of the Future September ...

  5. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  6. Crownbutte Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  7. Hardscrabble Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  8. Active Power Controls from Wind Power: Bridging the Gaps | Department...

    Office of Environmental Management (EM)

    Active Power Controls from Wind Power: Bridging the Gaps Active Power Controls from Wind Power: Bridging the Gaps This report evaluates how wind power can support power system ...

  9. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future Trends | Department of Energy Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines

  10. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    WindExchange

    WIND AND WATER POWER PROGRAM Wind Power Career Chat Overview Students will learn about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. In

  11. Northwestern Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Jump to: navigation, search Name: Northwestern Wind Power Place: Wasco, Oregon Zip: OR 97065 Sector: Wind energy Product: US-based wind project developer. Coordinates:...

  12. Daqing Longjiang Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

  13. Laizhou Luneng Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Laizhou Luneng Wind Power Jump to: navigation, search Name: Laizhou Luneng Wind Power Place: Laizhou, Shandong Province, China Sector: Wind energy Product: A wind project...

  14. Clear Wind Renewable Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  15. Padoma Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  16. Evergreen Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  17. Heilongjiang Lishu Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

  18. TS Wind Power Developers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

  19. Green Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Gansu Xinhui Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  1. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Energy.gov [DOE] (indexed site)

    May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, ...

  2. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  3. Wind to Power Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Systems Jump to: navigation, search Name: Wind to Power Systems Place: Madrid, Spain Zip: 28108 Sector: Wind energy Product: Wind to Power Systems designs, supplies and...

  4. Berkshire Wind Power Cooperative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Cooperative Jump to: navigation, search Name: Berkshire Wind Power Cooperative Place: Holyoke, Massachusetts Sector: Wind energy Product: The Berkshire Wind Power Cooperative...

  5. Wind Power Plant Enhancement with a Fault-Current Limiter: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; DeLaRosa, F.

    2011-03-01

    This paper investigates the capability of a saturable core fault-current limiter to limit the short circuit current of different types of wind turbine generators.

  6. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  7. A survey on wind power ramp forecasting.

    SciTech Connect

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  8. Enabling Wind Power Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Power Nationwide May 2015 This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (Public Law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality guidelines or the Office of Management and

  9. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Today 2010 WIND AND WATER POWER PROGRAM * * BUILDING*A*CLEAN* ENERGY*ECONOMY * * ADVANCING*WIND* TURBINE*TECHNOLOGY * * SUPPORTING*SYSTEMS** INTERCONNECTION * * GROWING*A*LARGER* MARKET CONTENTS BUILDING*A*CLEAN*ENERGY*ECONOMY* ........................2 ADVANCING*LARGE*WIND*TURBINE*TECHNOLOGY*.....7 SMALL*AND*MID-SIZED*TURBINE*DEVELOPMENT*...... 15 SUPPORTING*GRID*INTERCONNECTION*..................... 17 GROWING*A*LARGER*MARKET*....................................23

  10. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  11. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-02-01

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  12. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  13. Wind Power Reliability: Breaking Down a Barrier

    Energy.gov [DOE]

    The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice president at EnerNex Corporation in Knoxville, Tenn., a firm specializing in renewable energy grid interconnection and integration. "If this piece isn't done, there will be problems." EnerNex has spent the last decade perfecting wind turbine and plant models that test a wind plant's influence on the grid and its ability to provide grid support. In its latest effort, the company is using American Recovery and Reinvestment Act funds worth $750,000 to develop documentation and validations of computer wind turbine models.

  14. Wind Power: Options for Industry

    SciTech Connect

    Not Available

    2003-03-01

    This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

  15. Marquiss Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marquiss Wind Power Jump to: navigation, search Name: Marquiss Wind Power Place: Folsom, California Zip: 95630 Sector: Wind energy Product: US-based manufacturer of patented ducted...

  16. CECIC Wind Power Zhangbei | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CECIC Wind Power Zhangbei Jump to: navigation, search Name: CECIC Wind Power (Zhangbei) Place: Zhangbei, Hebei Province, China Sector: Wind energy Product: A joint venture of CECIC...

  17. Guohua Hulunbeier Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hulunbeier Wind Power Jump to: navigation, search Name: Guohua (Hulunbeier) Wind Power Place: Hulunbeier, Inner Mongolia Autonomous Region, China Zip: 21300 Sector: Wind energy...

  18. Guohua Qiqihaer Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Qiqihaer Wind Power Jump to: navigation, search Name: Guohua (Qiqihaer) Wind Power Place: Qiqihaer, Heilongjiang Province, China Zip: 161005 Sector: Wind energy Product: Guohua...

  19. Wind Power Associates LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

  20. Infinity Wind Power Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Inc Jump to: navigation, search Name: Infinity Wind Power, Inc. Place: Santa Barbara, California Zip: 93105 Sector: Renewable Energy, Wind energy Product:...

  1. Peel Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Peel Wind Power Jump to: navigation, search Name: Peel Wind Power Place: United Kingdom Product: Clean energy subsidiary of property company Peel Holdings. References: Peel Wind...

  2. Cielo Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cielo Wind Power Jump to: navigation, search Name: Cielo Wind Power Address: 823 Congress Avenue Place: Austin, Texas Zip: 78701 Region: Texas Area Sector: Wind energy Product:...

  3. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  4. PBS: Wind Power for Educators

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PBS: Wind Power for Educators Grades: 5-8, 9-12 Topic: Wind Energy Owner: PBS This educational material is brought to you by the U.S. Department of Energy's Office of Energy ...

  5. Wind Vision: A New Era for Wind Power

    Energy.gov [DOE] (indexed site)

    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives The U.S. Department of Energy's (DOE's) Wind and Water Power Technologies Office has ...

  6. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Energy Saver

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  7. Solar and wind power advancing

    Energy Information Administration (EIA) (indexed site)

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information Administration expects wind-powered generation to grow by 19 percent this year and rise another 8 percent in 2014. Congress's extension in January of a tax credit for electricity producers that use renewables is behind the wind power boost. Solar generation in the electric power sector is expected to grow even more, rising

  8. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnel testing, vertical axis turbines, wind turbine generators, aerodynamics, airfoils, wind loads, Darrieus rotors, economics, legislation, regulations, environmental impacts, national and international programs, fatigue testing, and horizontal axis turbines.

  9. Floating Power Plant A S FPP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant A S FPP Jump to: navigation, search Name: Floating Power Plant AS (FPP) Address: Stenholtsvej 27 Place: Fredensborg, Denmark Zip: DK-3480 Region: Denmark Sector: Wind...

  10. Southwest Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Jump to: navigation, search Name: Southwest Wind Power Place: Flagstaff, AZ Website: www.windenergy.com References: Southwest Wind Power1 Information About Partnership...

  11. DOE Wind and Water Power Technologies Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  12. Wild Horse Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  13. Mill Run Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Run Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  14. Devon Wind Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Devon Wind Power Ltd Jump to: navigation, search Name: Devon Wind Power Ltd Place: Exeter, United Kingdom Zip: EX1 1TL Sector: Wind energy Product: Wind project developer - has...

  15. Wind power outlook 2006

    SciTech Connect

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  16. Harmonics and Resonance Issues with Wind Plants

    SciTech Connect

    Bradt, M.; Badrzadeh, Babak; Camm, E H; Castillo, Nestor; Mueller, David; Siebert, T.; Schoene, Jens; Smith, Travis M; Starke, Michael R; Walling, R.

    2011-01-01

    Wind plants are susceptible to lightly-damped resonances which can attract and amplify ambient grid harmonic distortion and magnify wind turbine harmonic generation. Long-accepted harmonic modeling assumptions and practices are not appropriate for wind plants. VSCs are not ideal current sources and grid impedance is important. Attention to modeling detail and thorough evaluation over range of conditions is critical to meaningful analysis. In general, wind turbines are very slight sources of harmonics. Most harmonic issues are a result of resonance, caused by capacitor banks (for reactive power compensation) or from the extensive underground cabling in a collector system. Converter controls instability can be exacerbated by power system resonances. In some cases this has caused severe voltage distorDon and other problems. The IEEE 519 recommended guidelines are very restrictive. I recommend that they are used to resolve serious harmonic issues, and not to create petty problems.

  17. Wind Power Energia | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Energia Place: Fortaleza, Ceara, Brazil Zip: 60160-230 Sector: Wind energy Product: Brazil-based small scale wind turbine manufacturer. Coordinates: -3.718404,...

  18. Wind Powering America Hosts Fifth Annual Wind for Schools Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Powering America Hosts Fifth Annual Wind for Schools Summit Wind Powering America Hosts Fifth Annual Wind for Schools Summit February 24, 2012 - 10:46am Addthis This is an excerpt ...

  19. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Energy Saver

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis ...

  20. Wind Power Today, 2010, Wind and Water Power Program (WWPP) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Wind Power Today, 2010, Wind and Water Power Program (WWPP) Wind Power Today, 2010, Wind and Water Power Program (WWPP) Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program. 47531.pdf (6.07 MB) More Documents & Publications Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of

  1. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    WindExchange

    Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind

  2. Cielo Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Jump to: navigation, search Name: Cielo Wind Power LLC Place: Austin, Texas Zip: 78701 2459 Sector: Wind energy Product: Currently the largest wind power developer in the...

  3. Kahuku Wind Power Biological Opinion | Department of Energy

    Energy Saver

    Kahuku Wind Power Biological Opinion Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii Kahuku ...

  4. US DOE Wind Powering America | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    US DOE Wind Powering America (Redirected from Wind Powering America) Jump to: navigation, search Logo: Wind Powering America Name Wind Powering America AgencyCompany Organization...

  5. Wind Power Forecasting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  6. Enabling Wind Power Nationwide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enabling Wind Power Nationwide Enabling Wind Power Nationwide The cover of the 2015 report Enabling Wind Power Nationwide with a wind turbine on the right side, surrounded by trees. This report shows how the United States can unlock the vast potential for wind energy deployment in all 50 states-made possible through the next-generation of larger wind turbines. It highlights wind energy's potential to generate electricity even in states with no utility-scale wind energy development today. Through

  7. Boulder Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Jump to: navigation, search Name: Boulder Wind Power Address: 2845 Wilderness Place Suite 201 Place: Boulder, CO Zip: 80301 Sector: Wind energy Website: www.boulderwindpower....

  8. India Wind Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Ltd Place: Ahmedabad, Gujarat, India Zip: 380054 Product: Ahmedabad-based turbine manufacturer and project developer. References: India Wind Power Ltd1 This article is...

  9. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  10. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  11. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  12. Validation of Power Output for the WIND Toolkit

    SciTech Connect

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  13. Wind Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Conducting research into alternative, large scale wind turbine design. References: Wind Power Ltd1 This article is a stub. You can help OpenEI by expanding it. Wind Power...

  14. Tianjin Jinneng Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Co Ltd Jump to: navigation, search Name: Tianjin Jinneng Wind Power Co Ltd Place: Tianjin Municipality, China Sector: Wind energy Product: Tianjin-based wind power...

  15. White Creek Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  16. Kittitas Valley Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  17. Guodian Linghai Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Linghai Wind Power Co Ltd Jump to: navigation, search Name: Guodian Linghai Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind power project developer. References:...

  18. Oasis Power Partners Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oasis Power Partners Wind Farm Jump to: navigation, search Name Oasis Power Partners Wind Farm Facility Oasis Power Partners Sector Wind energy Facility Type Commercial Scale Wind...

  19. Buffalo Ridge II Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Power Project Jump to: navigation, search Name Buffalo Ridge II Wind Power Project Facility Buffalo Ridge II Wind Power Project Sector Wind energy Facility Type Commercial...

  20. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    SciTech Connect

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-05-15

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  1. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Office of Environmental Management (EM)

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and ...

  2. Pantex Plant Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pantex Developer Siemens Energy Purchaser Pantex Plant Location Amarillo TX...

  3. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  4. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    SciTech Connect

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

  5. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE PAGES [OSTI]

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  6. DOE Explores Potential of Wind Power to Stabilize Electric Grids |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Explores Potential of Wind Power to Stabilize Electric Grids DOE Explores Potential of Wind Power to Stabilize Electric Grids March 28, 2016 - 10:31am Addthis DOE’s 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or “ancillary services” currently supplied to the electrical grid by conventional power plants. (Photo by Dennis Schroeder/National Renewable

  7. concentrating solar power plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  8. Scotrenewables Wind Power and Marine Power Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power and Marine Power Ltd Jump to: navigation, search Name: Scotrenewables Wind Power and Marine Power Ltd Place: Orkey, Scotland, United Kingdom Zip: KW16 3AW Sector:...

  9. Wind Power Forecasting Error Distributions: An International...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    be presented at The 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power ...

  10. Wind Powering America FY09 Activities Summary

    SciTech Connect

    none,

    2010-03-22

    The report reflects the accomplishments of state Wind Working Groups, Wind Powering America programs at the National Renewable Energy Laboratory, and partner organizations.

  11. Wind and Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Wind and Power Place: Warszawa, Poland Zip: 04-320 Sector: Solar, Wind energy Product: The firm offers small-scale PV panels, inverters, accumulators, solar...

  12. System-wide emissions implications of increased wind power penetration.

    SciTech Connect

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G.

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  13. Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type...

  14. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  15. Tianyuan Juneng Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tianyuan Juneng Wind Power Co Ltd Jump to: navigation, search Name: Tianyuan Juneng Wind Power Co Ltd Place: Shuangliao, Jilin Province, China Sector: Wind energy Product: Wind...

  16. Lanco Wind Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Pvt Ltd Jump to: navigation, search Name: Lanco Wind Power Pvt. Ltd. Place: Hyderabad, Andhra Pradesh, India Sector: Wind energy Product: Hyderabad-based wind division...

  17. Nordex Baoding Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Baoding Wind Power Co Ltd Jump to: navigation, search Name: Nordex (Baoding) Wind Power Co. Ltd. Place: Baoding, Hebei Province, China Sector: Wind energy Product: Chinese wind...

  18. Harbin Wind Power Equipment Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Equipment Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind...

  19. Liaoning Kangping Jinshan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kangping Jinshan Wind Power Co Ltd Jump to: navigation, search Name: Liaoning Kangping Jinshan Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product: Wind...

  20. Liaoning Zhangwu Jinshan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhangwu Jinshan Wind Power Co Ltd Jump to: navigation, search Name: Liaoning Zhangwu Jinshan Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product: Wind...

  1. China Longyuan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Co Ltd Jump to: navigation, search Name: China Longyuan Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind farm development subsidiary of Longyuan...

  2. Wind Power Renewables | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Renewables Place: Norfolk, United Kingdom Zip: NR29 5BG Sector: Wind energy Product: Wind project developer Coordinates: 36.846825, -76.285069 Show Map Loading...

  3. Offshore Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Offshore Wind Power Place: St Albans, United Kingdom Zip: AL1 3AW Sector: Wind energy Product: Formed to develop offshore wind farms around the coast of Great Britain. References:...

  4. Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems

    SciTech Connect

    Kirby, B.; Milligan, M.

    2008-07-01

    When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

  5. A Chronological Reliability Model Incorporating Wind Forecasts to Assess Wind Plant Reserve Allocation: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    * NREL/CP-500-32210 A Chronological Reliability Model Incorporating Wind Forecasts to Assess Wind Plant Reserve Allocation Preprint Michael Milligan To be presented at the American Wind Energy Association WindPower 2002 Conference Portland, Oregon June 3 - June 5, 2002 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337

  6. NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)

    SciTech Connect

    Not Available

    2010-10-01

    How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

  7. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  8. Wind Farm Monitoring at Storm Lake I Wind Power Project -- Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-369

    SciTech Connect

    Gevorgian, Vahan

    2015-07-09

    Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability of wind power. These data are used for many research and analysis activities consistent with the Wind Program mission.

  9. wind powering america | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    wind powering america Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 30 January, 2013 - 10:55 Wind Powering America Guidebook officially launched on...

  10. Primer on Wind Power for Utility Applications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Primer on Wind Power for Utility Applications Y. Wan Technical Report NRELTP-500-36230 December 2005 A Primer on Wind Power for Utility Applications Y. Wan Prepared under Task ...

  11. Success Stories (Postcard), Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-02-01

    Wind Powering America shares best practices and lessons learned on the Wind Powering America website. This postcard is an outreach tool that provides a brief description of the success stories as well as the URL.

  12. Loranger Power Generation Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  13. Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin...

  14. Shaokatan Power Partners Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Partners Wind Farm Jump to: navigation, search Name Shaokatan Power Partners Wind Farm Facility Shaokatan Power Partners Sector Wind energy Facility Type Commercial Scale...

  15. Federal Incentives for Wind Power Deployment | Department of...

    Energy Saver

    Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment Document that lists some of the major federal incentives for wind power deployment. ...

  16. Minnkota Power Cooperative Wind Turbine (Petersburg) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Minnkota Power Cooperative Wind Turbine (Petersburg) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Petersburg) Facility Minnkota Power Cooperative Wind...

  17. Federal Incentives for Wind Power Deployment | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment This factsheet lists some of the major federal incentives for wind power deployment as of ...

  18. Traverse City Light & Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City Light & Power Wind Farm Jump to: navigation, search Name Traverse City Light & Power Wind Farm Facility Traverse City Light & Power Sector Wind energy Facility Type Community...

  19. Wind Vision Chapter 2: Wind Power in the United States

    Energy.gov [DOE] (indexed site)

    2 Wind Power in the United States: Recent Progress, Status Today, and Emerging Trends Summary With more than 61 gigawatts (GW) installed across 39 states at the end of 2013, wind ...

  20. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  1. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  2. NREL: Wind Research - Wind and Water Power Fact Sheets

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many facilities ...

  3. Wind and Water Power Fact Sheets | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many facilities and capabilities at the NWTC, including field testing research, modeling and simulation, and the Wind-Wildlife Impacts Literature Database. Screenshot of the cover of the national wind technology brochure. 35 Years of Innovation: Leading the Way to a Clean Energy Future Wind-Wildlife Impacts Literature Database (WILD)

  4. Wind Powering America Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2008-04-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

  5. Wind Power Partners '90-'92 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    0-'92 Wind Farm Jump to: navigation, search Name Wind Power Partners '90-'92 Wind Farm Facility Wind Power Partners '90-'92 Sector Wind energy Facility Type Commercial Scale Wind...

  6. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  7. Engineering innovation to reduce wind power COE

    SciTech Connect

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  8. Virginia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  9. Minnesota Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name... States Power Co - Minnesota" "2 Plants 3 Reactors","1,594","13,478",100.0

  10. Gansu China Power Jiuquan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    China Power Jiuquan Wind Power Co Ltd Jump to: navigation, search Name: Gansu China Power Jiuquan Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product:...

  11. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind Program-Lasting Impressions State of the Industry Wind power has the potential to provide vast amounts electricity for the nation with more than 66,000 MW of installed power capacity delivering clean energy to homes and businesses. Wind power is expanding across the United States with utility-scale turbines deployed in 39 states and territories. Texas alone has more installed wind power than all but five countries around the

  12. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  13. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  14. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  15. POWER4 Amstel Wind Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    POWER4 Amstel Wind Energy Jump to: navigation, search Name: POWER4 Amstel Wind Energy Place: Bangalore, Karnataka, India Zip: 560034 Sector: Wind energy Product: Bangalore-based...

  16. Mountain View Power Partners II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  17. Heilongjiang Fulong Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fulong Wind Power Co Ltd Jump to: navigation, search Name: Heilongjiang Fulong Wind Power Co., Ltd. Place: Fujin, Heilongjiang Province, China Zip: 156100 Sector: Wind energy...

  18. Ningxia Tianjing Shenzhou Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tianjing Shenzhou Wind Power Co Ltd Jump to: navigation, search Name: Ningxia Tianjing Shenzhou Wind Power Co Ltd Place: Ningxia Autonomous Region, China Zip: 750002 Sector: Wind...

  19. Zhangjiakou Kunyuan Wind Power Equipment Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kunyuan Wind Power Equipment Co Jump to: navigation, search Name: Zhangjiakou Kunyuan Wind Power Equipment Co Place: Zhangjiakou, Hebei Province, China Sector: Wind energy Product:...

  20. Miracle Wind Power Components Manufacture Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind energy...

  1. Guohua Dongtai Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongtai Wind Power Co Ltd Jump to: navigation, search Name: Guohua (Dongtai) Wind Power Co Ltd Place: Dongtai, Jiangsu Province, China Zip: 224200 Sector: Wind energy Product:...

  2. Jiangsu Longyuan Wind Power Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Co Jump to: navigation, search Name: Jiangsu Longyuan Wind Power Co. Place: Jiangsu Province, China Sector: Wind energy Product: A joint-venture established for the...

  3. Zhongshan Yixiong Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yixiong Wind Power Co Ltd Jump to: navigation, search Name: Zhongshan Yixiong Wind Power Co Ltd Place: Zhongshan, Guangdong Province, China Sector: Wind energy Product: A producer...

  4. Baicheng Fuyu Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Baicheng Fuyu Wind Power Co Ltd Jump to: navigation, search Name: Baicheng Fuyu Wind Power Co. Ltd. Place: Baicheng City, Jiangsu Province, China Zip: 137000 Sector: Wind energy...

  5. Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name: Qingdao Hengfeng Wind Power Generator Co Ltd Place: Jiaonan, Shandong Province, China Sector: Wind energy...

  6. Inner Mongolia Damo Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Damo Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia Damo Wind Power Co Ltd Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product:...

  7. Baoding Huide Wind Power Engineering Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huide Wind Power Engineering Co Ltd Jump to: navigation, search Name: Baoding Huide Wind Power Engineering Co Ltd Place: Baoding, Hebei Province, China Sector: Wind energy Product:...

  8. Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jilin Tianhe Wind Power Equipment Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product:...

  9. Zhejiang Wind Power Development Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Development Co Ltd Jump to: navigation, search Name: Zhejiang Wind Power Development Co Ltd Place: Hangzhou, Zhejiang Province, China Zip: 31005 Sector: Wind energy...

  10. Huaneng Shantou Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shantou Wind Power Co Ltd Jump to: navigation, search Name: Huaneng Shantou Wind Power Co Ltd Place: Guangzhou, Guangdong Province, China Zip: 510630 Sector: Wind energy Product:...

  11. Zhejiang Xingxing Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Xingxing Wind Power Co Ltd Jump to: navigation, search Name: Zhejiang Xingxing Wind Power Co Ltd Place: Taizhou, Zhejiang Province, China Sector: Wind energy Product: Taizhou-based...

  12. Foshan Dongxing Fengying Wind Power Equipment Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongxing Fengying Wind Power Equipment Co Ltd Jump to: navigation, search Name: Foshan Dongxing Fengying Wind Power Equipment Co Ltd Place: Foshan, China Zip: 528000 Sector: Wind...

  13. Jilin Longyuan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Longyuan Wind Power Co Ltd Jump to: navigation, search Name: Jilin Longyuan Wind Power Co Ltd Place: Changchun, Jilin Province, China Zip: 130061 Sector: Wind energy Product: Joint...

  14. Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

  15. Xinjiang Tianfeng Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tianfeng Wind Power Co Ltd Jump to: navigation, search Name: Xinjiang Tianfeng Wind Power Co Ltd Place: Urumuqi, Xinjiang Autonomous Region, China Zip: 830002 Sector: Wind energy...

  16. Inner Mongolia Wind Power Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Corporation Jump to: navigation, search Name: Inner Mongolia Wind Power Corporation Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: A company...

  17. Jiangsu Guoshen Wind Power Equipment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guoshen Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jiangsu Guoshen Wind Power Equipment Co Ltd Place: Yancheng, Jiangsu Province, China Sector: Wind energy...

  18. Yongsheng National Energy Wind Power Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yongsheng National Energy Wind Power Co Jump to: navigation, search Name: Yongsheng National Energy Wind Power Co Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

  19. Dongbai Mountain Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

  20. Changdao Liankai Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Changdao Liankai Wind Power Co Ltd Jump to: navigation, search Name: Changdao Liankai Wind Power Co Ltd Place: Yantai City, Shandong Province, China Zip: 265800 Sector: Wind energy...

  1. Yantai Tianfeng Wind Power Development Co Ltd | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tianfeng Wind Power Development Co Ltd Jump to: navigation, search Name: Yantai Tianfeng Wind Power Development Co Ltd Place: Shandong Province, China Sector: Wind energy Product:...

  2. Nantong Kailian Wind Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kailian Wind Power Company Jump to: navigation, search Name: Nantong Kailian Wind Power Company Place: Nantong, Jiangsu Province, China Zip: 226009 Sector: Wind energy Product:...

  3. Jilin Wind Power Stockholding Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Jilin Wind Power Stockholding Co Ltd Place: Changchun, Jilin Province, China Zip: 130021 Sector: Hydro, Wind energy...

  4. Lianyungang Zhongneng United Wind Power Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhongneng United Wind Power Co Ltd Jump to: navigation, search Name: Lianyungang Zhongneng United Wind Power Co Ltd Place: Lianyungang, Jiangsu Province, China Sector: Wind energy...

  5. Hangtian Longyuan Benxi Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hangtian Longyuan Benxi Wind Power Co Ltd Jump to: navigation, search Name: Hangtian Longyuan (Benxi) Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product:...

  6. Jilin Taihe Wind Power Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Taihe Wind Power Limited Jump to: navigation, search Name: Jilin Taihe Wind Power Limited Place: Zhenlai, Jilin Province, China Sector: Wind energy Product: Top Well and Tianjin DH...

  7. Xilinguole Guotai Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Xilinguole Guotai Wind Power Co Ltd Jump to: navigation, search Name: Xilinguole Guotai Wind Power Co Ltd Place: China Sector: Wind energy Product: Hong Kong-based project...

  8. GWPS Global Wind Power Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GWPS Global Wind Power Systems Jump to: navigation, search Name: GWPS (Global Wind Power Systems) Place: Hamburg, Germany Zip: 20095 Sector: Wind energy Product: Company...

  9. Datang Zhangzhou Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Datang Zhangzhou Wind Power Co Ltd Jump to: navigation, search Name: Datang Zhangzhou Wind Power Co Ltd Place: Zhangzhou, Fujian Province, China Sector: Wind energy Product:...

  10. Inner Mongolia Sansheng Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sansheng Wind Power Jump to: navigation, search Name: Inner Mongolia Sansheng Wind Power Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: China-based...

  11. Tongliao Taihe Wind Power Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Taihe Wind Power Limited Jump to: navigation, search Name: Tongliao Taihe Wind Power Limited Place: Tongliao City, Inner Mongolia Autonomous Region, China Sector: Wind energy...

  12. Guodian Hefeng Wind Power Development Company | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hefeng Wind Power Development Company Jump to: navigation, search Name: Guodian Hefeng Wind Power Development Company Place: Huludao, Liaoning Province, China Sector: Wind energy...

  13. The CECIC Wind Power Xinjiang Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CECIC Wind Power Xinjiang Co Ltd Jump to: navigation, search Name: The CECIC Wind Power (Xinjiang) Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100037 Sector: Wind...

  14. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wende Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name: Beijing Wende Xingye Wind Power Technology Co Ltd Place: Beijing, China Sector: Wind energy Product:...

  15. Huaneng Shouguang Wind Power Company Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huaneng Shouguang Wind Power Company Limited Jump to: navigation, search Name: Huaneng Shouguang Wind Power Company Limited Place: Shouguang, Shandong Province, China Sector: Wind...

  16. Yichun Xinganling Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yichun Xinganling Wind Power Co Ltd Jump to: navigation, search Name: Yichun Xinganling Wind Power Co Ltd Place: Suihua, Heilongjiang Province, China Zip: 152061 Sector: Wind...

  17. Changtu Liaoneng Xiexin Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Changtu Liaoneng Xiexin Wind Power Co Ltd Jump to: navigation, search Name: Changtu Liaoneng Xiexin Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product:...

  18. Guohua AES Huanghua Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huanghua Wind Power Co Ltd Jump to: navigation, search Name: Guohua AES (Huanghua) Wind Power Co Ltd Place: Huanghua, Hebei Province, China Sector: Wind energy Product: The...

  19. LM Wind Power formerly LM Glasfiber AS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power formerly LM Glasfiber AS Jump to: navigation, search Name: LM Wind Power (formerly LM Glasfiber AS) Place: Kolding, Denmark Zip: 6000 Sector: Wind energy Product:...

  20. Yantai Dongyuan Wind Power Group Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yantai Dongyuan Wind Power Group Co Ltd Jump to: navigation, search Name: Yantai Dongyuan Wind Power Group Co Ltd Place: Yantai, Shandong Province, China Zip: 265000 Sector: Wind...

  1. Wind Power Technologies Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TECHNOLOGIES WIND POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through ...

  2. Liaoning Shenhua Xiehe Wind Power Investment Limited | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenhua Xiehe Wind Power Investment Limited Jump to: navigation, search Name: Liaoning Shenhua Xiehe Wind Power Investment Limited Place: Liaoning Province, China Sector: Wind...

  3. Inner Mongolia Lianhe Wind Power Investment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lianhe Wind Power Investment Jump to: navigation, search Name: Inner Mongolia Lianhe Wind Power Investment Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

  4. Century Concord Wind Power Investment Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Concord Wind Power Investment Ltd Jump to: navigation, search Name: Century Concord Wind Power Investment Ltd Place: Beijing, Beijing Municipality, China Sector: Wind energy...

  5. Longxing Wind Power Investment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Longxing Wind Power Investment Co Ltd Jump to: navigation, search Name: Longxing Wind Power Investment Co Ltd Place: Mudanjiang, Heilongjiang Province, China Sector: Wind energy...

  6. Mountain View Power Partners III Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  7. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  8. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  9. Green Ridge Power Wind Farm II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Green Ridge Power Wind Farm II Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  10. Operating Reserves and Wind Power Integration: An International Comparison

    SciTech Connect

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Ericksen, P. B.; Gottig, A.; Rawn, B.; Frunt, J.; Kling, W. L.; Gibescu, M.; Gomez-Lazaro, E.; Robitaille, A.; Kamwa, I.

    2010-01-01

    The determination of additional operating reserves in power systems with high wind penetration is attracting a significant amount of attention and research. Wind integration analysis over the past several years has shown that the level of operating reserve that is induced by wind is not a constant function of the installed capacity. Observations and analysis of actual wind plant operating data has shown that wind does not change its output fast enough to be considered as a contingency event. However, the variability that wind adds to the system does require the activation or deactivation of additional operating reserves. This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on the work in International Energy Agency IEA WIND Task 25 on Large-scale Wind Integration. The paper concludes with an assessment of the common themes and important differences, along with recent emerging trends.

  11. Control voltage and power fluctuations when connecting wind farms

    SciTech Connect

    Berinde, Ioan Bălan, Horia Oros, Teodora Susana

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  12. WINDExchange: How Do I Get Wind Power?

    WindExchange

    How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

  13. Wind Power Price Trends in the United States

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  14. Gansu Xin an Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Xin an Wind Power Co Ltd Jump to: navigation, search Name: Gansu Xin'an Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product: A wind power project developer....

  15. Cangnan Gelin Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cangnan Gelin Wind Power Co Ltd Jump to: navigation, search Name: Cangnan Gelin Wind Power Co Ltd Place: Wenzhou, Zhejiang Province, China Sector: Wind energy Product: A wind power...

  16. PowerWind GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PowerWind GmbH Jump to: navigation, search Name: PowerWind GmbH Place: Hamburg, Germany Zip: 20457 Sector: Wind energy Product: PowerWind GmbH is a German manufacturer and service...

  17. Sky WindPower Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    WindPower Corp Jump to: navigation, search Name: Sky WindPower Corp Place: Ramona, California Zip: 92065 Sector: Wind energy Product: Sky WindPower is working on turbines that...

  18. DOE Science Showcase - Wind Power

    Office of Scientific and Technical Information (OSTI)

    Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and ...

  19. Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Economic development & impacts Federal, state, & local policies Markets Wind Energy Technologies The U.S. Department of Energy defines the scale of wind turbine...

  20. Sandia Energy - Wind Vision 2015: A New Era for Wind Power in...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Wind Power in the United States Home Stationary Power Energy Conversion Efficiency Wind Energy Special Programs Wind Vision 2015: A New Era for Wind Power in the United...

  1. GEOTHERMAL POWER GENERATION PLANT

    Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  2. The Value of Wind Power Forecasting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American ...

  3. Federal Incentives for Wind Power Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Qualified commercial technologies include wind power and incremental hydropower technologies. The Recovery Act provides 4 billion to offset credit subsidy charges which a project ...

  4. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Energy.gov [DOE] (indexed site)

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  5. Final Technical Report - Kotzebue Wind Power Porject - Volume I

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-26

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  6. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  7. Wind Farm Power System Model Development: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  8. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Energy.gov [DOE] (indexed site)

    Wind turbine prices in the United States have declined, on average, by nearly one-third ... sometimes surprising-impact on the levelized cost of energy delivered by wind projects. ...

  9. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  10. Quiz: Know Your Power Plants

    Energy.gov [DOE]

    Think you know where coal, solar and other power plants are located around the country? Test your knowledge with our power plants quiz!

  11. Electricity for road transport, flexible power systems and wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark...

  12. Michigan Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Nuclear Palisades LLC" "3 Plants 4 Reactors","3,947","29,625",100.0 "Note: ...

  13. Langford Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Jump to: navigation, search Name: Langford Wind Power LLC Place: Texas Phone Number: 512-691-6261 or 512-585-0450 Website: www.puc.texas.govindustryele Outage Hotline:...

  14. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    over 20% of the 300,000 MW needed to achieve 20% by 2030. Wind power is expanding across the United States with utility-scale turbines deployed in 39 states and territories. ...

  15. WINDExchange: Motivations for Buying Wind Power

    WindExchange

    Photo of a wind turbine taken looking through a field of grains. Motivations for Buying Wind Power Electricity consumers may have a variety of motivations for buying wind power, including helping the environment, capturing long-term price stability, securing lower-cost energy, improving public relations, and reducing the need for imported fuels in remote communities. In general, however, the decision is usually based on the following three motivations. Voluntary Purchases Voluntary renewable

  16. Value of Wind Power Forecasting

    SciTech Connect

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  17. FCG Putian Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FCG Putian Wind Power Co Ltd Jump to: navigation, search Name: FCG (Putian) Wind Power Co Ltd Place: Fuzhou, Fujian Province, China Zip: 320001 Sector: Wind energy Product: Wind...

  18. Changchun Woer Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Woer Wind Power Co Ltd Jump to: navigation, search Name: Changchun Woer Wind Power Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: China-based wind...

  19. Hebei Hong Song Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hong Song Wind Power Co Ltd Jump to: navigation, search Name: Hebei Hong-Song Wind Power Co Ltd Place: Chengde, Hebei Province, China Zip: 67000 Sector: Wind energy Product: A wind...

  20. M N Wind Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    N Wind Power Ltd Jump to: navigation, search Name: M&N Wind Power Ltd Place: Penzance, United Kingdom Zip: TR20 8HX Sector: Wind energy Product: Wind farm developers in conjunction...

  1. Chahar Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chahar Wind Power Co Ltd Jump to: navigation, search Name: Chahar Wind Power Co Ltd Place: China Sector: Wind energy Product: Inner Mongolia, Shangyi-based wind project developer...

  2. Gansu Jieyuan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jieyuan Wind Power Co Ltd Jump to: navigation, search Name: Gansu Jieyuan Wind Power Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730050 Sector: Wind energy Product: Wind farm...

  3. Om Sakthi Wind Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sakthi Wind Power Pvt Ltd Jump to: navigation, search Name: Om Sakthi Wind Power Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind project...

  4. Mountain View Power Partners I Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  5. BeWind Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BeWind Power Ltd Jump to: navigation, search Name: BeWind Power Ltd Place: India Sector: Wind energy Product: Wind turbine manufacturer, jointly owned by Indowind and EU Energy...

  6. Sandia National Laboratories Releases Updated Wind Plant Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sandia National Laboratories Releases Updated Wind Plant Modeling Guidelines Sandia National Laboratories Releases Updated Wind Plant Modeling Guidelines September 12, 2014 - ...

  7. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co...

  8. Shanghai Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shanghai Wind Power Co Ltd Place: Shanghai Municipality, China Zip: 200437 Sector: Wind energy Product: Engaged in the design and manufacturing of wind turbine generators and...

  9. Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Blade Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Blade Co Ltd Place: Hebei Province, China Sector: Wind energy Product: Wind turbine blade maker....

  10. Variable-Speed Wind Power System with Improved Energy Capture...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Wind Energy Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Variable-Speed Wind Power ...

  11. WindPower Innovations Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arizona Zip: 85142 Sector: Wind energy Product: Arizona-based company focused on refurbishment and repair of wind turbine gearboxes. References: WindPower Innovations Inc1...

  12. Colorado Green Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Colorado Green Wind Power Project Facility Colorado Green Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Jeevandhara Wind Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Pvt.Ltd. Place: Satara, Maharashtra, India Zip: 415001 Sector: Solar, Wind energy Product: Satara-based wind and solar project developer. Coordinates: 17.68731,...

  14. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards

    Energy.gov [DOE]

    The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

  15. Georgia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,302","19,610",58.5,"Georgia Power Co" "2 Plants 4 Reactors","4,061","33,512",100.0 "Note: ...

  16. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,734","13,170",34.7,"Alabama Power Co" "2 Plants 5 Reactors","5,043","37,941",100.0 "Note: ...

  17. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications 20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and ...

  18. Category:Wind power in China | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind power in China Jump to: navigation, search Category: Wind Power in China Pages in category "Wind power in China" The following 2 pages are in this category, out of 2 total. C...

  19. ARGUS-PRIMA: Wind Power Prediction | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARGUS-PRIMA: Wind Power Prediction ARGUS-PRIMA: Wind Power Prediction ARGUS-PRIMA is a software platform for testing statistical algorithms for short-term wind power forecasting. ...

  20. Wind Power America Final Report

    SciTech Connect

    Spangler, Brian; Montgomery, Kathi; Cartwright, Paul

    2012-01-30

    The objective of this grant was to further the development of Montana’s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources

  1. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  2. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  3. Wind and Water Power Technologies Office Position Available:...

    Energy Saver

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  4. Huade County Daditaihong Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huade County Daditaihong Wind Power Co Ltd Jump to: navigation, search Name: Huade County Daditaihong Wind Power Co Ltd Place: Huade, Inner Mongolia Autonomous Region, China...

  5. Tongliao Changxing Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tongliao Changxing Wind Power Co Ltd Jump to: navigation, search Name: Tongliao Changxing Wind Power Co Ltd Place: Tongliao City, Inner Mongolia Autonomous Region, China Sector:...

  6. Indian Wind Power Association IWPA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Association IWPA Jump to: navigation, search Name: Indian Wind Power Association (IWPA) Place: Chennai, Tamil Nadu, India Zip: 600 020 Sector: Wind energy Product:...

  7. Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name: Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place: Harbin, Heilongjiang Province, China Zip: 150060...

  8. Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Baoding Hengyi Wind Power Equipment Co Ltd Jump to: navigation, search Name: Baoding Hengyi Wind Power Equipment Co Ltd Place: Baoding, Hebei Province, China Product: Baoding-based...

  9. Dongshan Aozaishan Wind Power Development Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongshan Aozaishan Wind Power Development Co Ltd Jump to: navigation, search Name: Dongshan Aozaishan Wind Power Development Co Ltd Place: Zhangzhou, Fujian Province, China Sector:...

  10. Datang Chifeng Saihanba Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Saihanba Wind Power Co Ltd Jump to: navigation, search Name: Datang Chifeng Saihanba Wind Power Co Ltd Place: Chifeng, Inner Mongolia Autonomous Region, China Zip: 24000 Sector:...

  11. Fujian Pingtan Changjiangao Wind Power Co Ltd | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fujian Pingtan Changjiangao Wind Power Co Ltd Jump to: navigation, search Name: Fujian Pingtan Changjiangao Wind Power Co Ltd Place: Pingtan, Fujian Province, China Zip: 350400...

  12. Erlianhot Changfeng Xiehe Wind Power Development Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Jump to: navigation, search Name: Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Place: Inner Mongolia Autonomous...

  13. Mass Megawatts Wind Power Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Megawatts Wind Power Inc Jump to: navigation, search Name: Mass Megawatts Wind Power Inc Address: 95 Prescott Street Place: Worcester, Massachusetts Zip: 01605 Region: Greater...

  14. Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name: Guangdong Mingyang Wind Power Technology Co Ltd Place: Zhongshan City, Guangdong Province, China Sector:...

  15. Qixia Rulin Wind Power Development Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Qixia Rulin Wind Power Development Co Ltd Jump to: navigation, search Name: Qixia Rulin Wind Power Development Co. Ltd. Place: Qixia City, Shandong Province, China Zip: 265300...

  16. Shenyang Huaren Wind Power Technology Development Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name: Shenyang Huaren Wind Power Technology Development Co Ltd Place: Shenyang, Liaoning Province, China...

  17. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US ...

  18. Environmental Impacts of Wind Power Development on the Population...

    Office of Environmental Management (EM)

    Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of ...

  19. Jilin CWP Milestone Wind Power Investment Limited | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jilin CWP Milestone Wind Power Investment Limited Jump to: navigation, search Name: Jilin CWP-Milestone Wind Power Investment Limited Place: Baicheng, Jilin Province, China Sector:...

  20. Clean Energy Investment in Developing Countries: Wind Power in...

    OpenEI (Open Energy Information) [EERE & EIA]

    Countries: Wind Power in Egypt Jump to: navigation, search Name Clean Energy Investment in Developing Countries: Wind Power in Egypt AgencyCompany Organization...

  1. Inner Mongolia Shenhua Xiehe Wind Power Investment Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenhua Xiehe Wind Power Investment Co Ltd Jump to: navigation, search Name: Inner Mongolia Shenhua Xiehe Wind Power Investment Co Ltd Place: Xilinguole, Inner Mongolia Autonomous...

  2. Analysis of Wind Power Ramping Behavior in ERCOT

    SciTech Connect

    Wan, Y. H.

    2011-03-01

    This report analyzes the wind power ramping behavior using 10-minute and hourly average wind power data from ERCOT and presents statistical properties of the large ramp events.

  3. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I...

    OpenEI (Open Energy Information) [EERE & EIA]

    I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  4. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  5. Huadian Inner Mongolia Kailu Wind Power Company Limited | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inner Mongolia Kailu Wind Power Company Limited Jump to: navigation, search Name: Huadian Inner Mongolia Kailu Wind Power Company Limited Place: Jinan, Inner Mongolia Autonomous...

  6. Fujian Putian Nanridao Houshanzai Wind Power Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Putian Nanridao Houshanzai Wind Power Co Ltd Jump to: navigation, search Name: Fujian Putian Nanridao Houshanzai Wind Power Co Ltd Place: Putian, Fujian Province, China Sector:...

  7. Inner Mongolia North Longyuan Wind Power Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    North Longyuan Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia North Longyuan Wind Power Co Ltd Place: Hohhot, Inner Mongolia Autonomous Region, China Zip: 10020...

  8. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  9. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  10. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Dongying) Wind Power Equipment Manufacturing Co. Ltd. Place: Dongying, Shandong...

  11. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  12. China Resources Wind Power Development Co Ltd Hua Run | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  13. China Wind Systems formerly Green Power Malex | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    formerly Green Power Malex Jump to: navigation, search Name: China Wind Systems (formerly Green PowerMalex) Place: Wuxi, Jiangsu Province, China Sector: Wind energy Product:...

  14. Characterizing wind power resource reliability in southern Africa...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Characterizing wind power resource reliability in southern Africa Title: Characterizing wind power resource reliability in southern...

  15. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  16. Explore Careers in Wind Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Power Explore Careers in Wind Power The DOE Wind program funds research and development to enable the rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. The DOE Wind program funds research and development to enable the rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. Wind Turbine Technicians Some desired

  17. Deming Solar Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  18. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  19. Solana Generating Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  20. Free Consumer Workshops On Solar & Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Golden, Colo., Dec. 9, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will host three free consumer workshops on solar and wind power for the ...

  1. Wind Power in China | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China...

  2. California Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  3. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  4. Connecticut Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  5. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  6. Ohio Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  7. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  8. NedPower Mount Storm Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyDominion Energy Developer NedPowerShell Wind EnergyDominion Energy...

  9. Power Plant Cycling Costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  10. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  11. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  12. Wind Powering America FY06 Activities Summary

    SciTech Connect

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  13. U.S. Continues to Lead the World in Wind Power Growth | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 29, 2008 - 12:32pm Addthis DOE Report Shows Rapidly Growing U.S. Wind Power Market WASHINGTON - The U.S. Department of Energy (DOE) today released the 2007 edition of its Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends, which provides a comprehensive overview of developments in the rapidly evolving U.S. wind power market. Notably, the report finds that U.S. wind power capacity increased by 46 percent in 2007, with $9 billion invested in U.S. wind plants in

  14. CECIC HKC Wind Power Company Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    HKC Wind Power Company Ltd Jump to: navigation, search Name: CECIC HKC Wind Power Company Ltd Place: China Sector: Wind energy Product: HKC are in a joint venture with China Energy...

  15. Fuxin Huashun Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuxin Huashun Wind Power Co Ltd Jump to: navigation, search Name: Fuxin Huashun Wind Power Co Ltd Place: Fuxin, Liaoning Province, China Sector: Wind energy Product: Fuxin-based JV...

  16. Gansu Datang Yumen Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Datang Yumen Wind Power Co Ltd Jump to: navigation, search Name: Gansu Datang Yumen Wind Power Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730050 Sector: Wind energy Product:...

  17. Maoming Zhong ao Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maoming Zhong ao Wind Power Co Ltd Jump to: navigation, search Name: Maoming Zhong'ao Wind Power Co Ltd Place: Guangdong Province, China Sector: Wind energy Product: Maoming-based...

  18. Jilin Tongli Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tongli Wind Power Co Ltd Jump to: navigation, search Name: Jilin Tongli Wind Power Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product: Jilin-based company...

  19. Shantou Dan Nan Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shantou Dan Nan Wind Power Co Ltd Jump to: navigation, search Name: Shantou Dan Nan Wind Power Co Ltd Place: Shantou, Guangdong Province, China Zip: 515041 Sector: Wind energy...

  20. Jilin Licheng Xiehe Wind Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Licheng Xiehe Wind Power Co Ltd Jump to: navigation, search Name: Jilin Licheng Xiehe Wind Power Co Ltd Place: Jilin Province, China Sector: Wind energy Product: Baicheng-based JV...

  1. Year in Review: Celebrating Wind Energy and Water Power | Department...

    Office of Environmental Management (EM)

    Year in Review: Celebrating Wind Energy and Water Power Year in Review: Celebrating Wind Energy and Water Power December 22, 2015 - 4:01pm Addthis Year in Review: Celebrating Wind ...

  2. PBS: Wind Power for Educators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PBS: Wind Power for Educators PBS: Wind Power for Educators Below is information about the student activitylesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy ...

  3. Mapping the Frontier of New Wind Power Potential | Department...

    Energy Saver

    the Frontier of New Wind Power Potential Mapping the Frontier of New Wind Power Potential December 10, 2014 - 6:03pm Addthis This map shows wind potential capacity for turbine hub ...

  4. Green Ridge Power Wind Farm I | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I Jump to: navigation, search Name Green Ridge Power Wind Farm I Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  6. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Saver

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2016 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 ...

  7. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy.gov [DOE] (indexed site)

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  8. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Saver

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 ...

  9. China WindPower Jilin Power Share JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    WindPower Jilin Power Share JV Jump to: navigation, search Name: China WindPower & Jilin Power Share JV Place: Jilin Province, China Sector: Wind energy Product: China-based...

  10. Tennessee Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name...23","9,738",35.1,"Tennessee Valley Authority" "2 Plants 3 Reactors","3,401","27,739",100.0

  11. Wisconsin Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  12. Louisiana Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name..."1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2 Reactors","2,142","18,639",100.0

  13. Illinois Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... 2","1,774","14,796",15.4,"Exelon Nuclear" "6 Plants 11 Reactors","11,441","96,190",100.0

  14. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  15. Microsoft Word - Sandia CREW 2012 Wind Plant Reliability Benchmark...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-7328 Unlimited Release September 2012 Continuous Reliability Enhancement for Wind (CREW) Database: Wind Plant Reliability Benchmark Valerie A. Peters, Alistair B. Ogilvie, Cody...

  16. Microsoft Word - Sandia CREW 2013 Wind Plant Reliability Benchmark...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3-7288 Unlimited Release September 2013 Continuous Reliability Enhancement for Wind (CREW) Database: Wind Plant Reliability Benchmark Valerie A. Hines, Alistair B. Ogilvie, Cody R....

  17. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  18. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  19. Analysis of wind power ancillary services characteristics with German 250-MW wind data

    SciTech Connect

    Ernst, B.

    1999-12-09

    With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

  20. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 1 -- January 2006

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  1. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  2. Eburru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  3. Ndunga Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  4. Irem Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  5. Tuzla Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  6. Sibayak Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  7. Northern Cheyenne Tribe - Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northern Cheyenne Tribe Wind Power Project Program Review 2006 Ingrid Gardner Project Overview * Project began in 2002 * Sole decision maker and final authority » NORTHERN CHEYENNE TRIBE * Technical Participant » Distributed Generation Systems, Inc. * Tribal Participant » TRIBAL EDA COMMITTEE » TRIBAL EDA PLANNER Project Design * Development Phase Approach - Long Term Wind Data Collected »RAWS SITE »AIR QUALITY SITES »ON-SITE MET TOWERS 50 meter tower 20 meter tower Project Design Cont. *

  8. Wind Powering America FY07 Activities Summary

    SciTech Connect

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  9. WIND Toolkit Power Data Site Index

    DOE Data Explorer

    Draxl, Caroline; Mathias-Hodge, Bri

    2016-10-19

    This spreadsheet contains per-site metadata for the WIND Toolkit sites and serves as an index for the raw data hosted on Globus connect (nrel#globus:/globusro/met_data). Aside from the metadata, per site average power and capacity factor are given. This data was prepared by 3TIER under contract by NREL and is public domain. Authoritative documentation on the creation of the underlying dataset is at: Final Report on the Creation of the Wind Integration National Dataset (WIND) Toolkit and API: http://www.nrel.gov/docs/fy16osti/66189.pdf

  10. Synchrophasor Measurement-Based Wind Plant Inertia Estimation: Preprint

    SciTech Connect

    Zhang, Y.; Bank, J.; Wan, Y. H.; Muljadi, E.; Corbus, D.

    2013-05-01

    The total inertia stored in all rotating masses that are connected to power systems, such as synchronous generations and induction motors, is an essential force that keeps the system stable after disturbances. To ensure bulk power system stability, there is a need to estimate the equivalent inertia available from a renewable generation plant. An equivalent inertia constant analogous to that of conventional rotating machines can be used to provide a readily understandable metric. This paper explores a method that utilizes synchrophasor measurements to estimate the equivalent inertia that a wind plant provides to the system.

  11. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    SciTech Connect

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.; Fleming, Paul A.; Wingerden, Jan-Willem van

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  12. Development of Virtual Power Plants | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Development of Virtual Power Plants

  13. Excise Tax Exemption for Solar or Wind Powered Systems

    Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  14. Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Technology Co Ltd Place: Baoding, Hebei Province, China Zip: 71051 Sector: Wind energy Product: A subsidary...

  15. Shanghai Wind Power Company SWPC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SWPC Jump to: navigation, search Name: Shanghai Wind Power Company (SWPC) Place: Shanghai, Shanghai Municipality, China Sector: Wind energy Product: It is set up for running the...

  16. CECIC Wind Power Investment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Investment Co Ltd Jump to: navigation, search Name: CECIC Wind Power Investment Co Ltd Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A subsidiary of...

  17. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Energy Saver

    Changed to Wind, Solar, Conservation & Utility Changes DOE Tribal Energy Program Review October 23 - 27, 2006 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power ...

  18. Wind Concurrent Cooling Could Increase Power Transmission Potential...

    Energy Saver

    Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% Wind ... In areas where wind farms are being developed, there is potential to take advantage of ...

  19. Environmental Impacts of Wind Power Development on the Population...

    Energy.gov [DOE] (indexed site)

    FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development on ... Project Oversight from National Wind Coordinating Collaborative Abby Arnold, ...

  20. Wind Powering America: FY09 Activities Summary (Book)

    SciTech Connect

    Not Available

    2010-03-01

    The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  1. Wind Powering America FY08 Activities Summary (Book)

    SciTech Connect

    Not Available

    2009-02-01

    The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  2. Power House Solar and Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar and Wind Jump to: navigation, search Name: Power House Solar and Wind Address: 1504 Woodlawn Ave Place: Canon City, Colorado Zip: 81212 Region: Rockies Area Sector: Solar...

  3. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2014-07-25 OSTI Identifier: 1256091 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation

  4. Study Shows Active Power Controls from Wind May Increase Revenues...

    Energy.gov [DOE] (indexed site)

    Researchers examined how the contribution of wind power providing active power controls (APC) could benefit the total power system economics, increase revenue streams, and improve ...

  5. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  6. Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint

    SciTech Connect

    Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

    2004-03-01

    Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

  7. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  8. Wind Program: A New Vision for U.S. Wind Power

    SciTech Connect

    2013-05-07

    A link to the New Vision for U.S. Wind Power Web page, which enables stakeholders to provide input on the direction of the wind industry.

  9. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  10. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  11. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  12. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  13. Construction Completed on Wind Plant Optimization R&D Facility...

    Energy Saver

    Construction Completed on Wind Plant Optimization R&D Facility Construction Completed on Wind Plant Optimization R&D Facility April 1, 2013 - 12:33pm Addthis This is an excerpt ...

  14. Ulumbu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  15. Okeanskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  16. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  17. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow a2e-fact-sheet-cover-thumbnail.jpg The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy

  18. Power Plant Modeling and Simulation

    ScienceCinema

    None

    2016-07-12

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  19. Power Plant Modeling and Simulation

    SciTech Connect

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  20. Wind Plant Optimization: SWiFT Restart Technical Review Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plant Optimization: SWiFT Restart Technical Review Committee - Sandia Energy Energy Search ... Twitter Google + Vimeo Newsletter Signup SlideShare Wind Plant Optimization: SWiFT Restart ...

  1. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  2. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and market features 20percent_summary_chap6.pdf (249.2 KB) More Documents & Publications 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by

  3. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a

  4. Owners of nuclear power plants

    SciTech Connect

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  5. Deniz Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  6. Kakkonda Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arc Plant Information Facility Type Single Flash Owner Tohoku Hydropower,Geothermal Energy.CoTohoku Electric Power Commercial Online Date 1978 Power Plant Data Type of Plant...

  7. Nagqu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  8. Geothermal/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  9. Pailas Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  10. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  11. New IEC Specifications Help Define Wind Plant Performance Reporting Metrics

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy IEC Specifications Help Define Wind Plant Performance Reporting Metrics New IEC Specifications Help Define Wind Plant Performance Reporting Metrics January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy Wind Program and Sandia National Laboratories have been working with the International Electrotechnical Commission (IEC) Committee on wind turbine availability to

  12. Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980

    SciTech Connect

    Baker, R.W.; Hewson, E.W.

    1980-10-01

    This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

  13. Austin Energy Wins DOE Wind Power Award | Department of Energy

    Office of Environmental Management (EM)

    Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award October 25, 2005 - 12:30pm Addthis WASHINGTON, DC-The U.S. Department of Energy (DOE) today ...

  14. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 - 12:00am Addthis ...

  15. Microsoft Word - Mid South and Southeast Wind Power Purchase...

    Energy.gov [DOE] (indexed site)

    Mid-South and Southeast Wind Power Purchase Agreements Utility Purchaser Power (MW) Wind Project Name Location (State) TVA 300 Cayuga Ridge Iowa TVA 198 Pioneer Prairie Iowa TVA ...

  16. Wind and Water Power Program Realignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Water Power Program Realignment Wind and Water Power Program Realignment February 24, 2012 - 10:38am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind ...

  17. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  18. Owners of nuclear power plants

    SciTech Connect

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  19. Ngatamariki Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Ngatamariki Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Mighty River Power Ngahere House 283...

  20. Mohave Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  1. LLNL Predicts Wind Power with Greater Accuracy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LLNL Predicts Wind Power with Greater Accuracy LLNL Predicts Wind Power with Greater Accuracy May 18, 2015 - 5:05pm Addthis A multicolored scatter plot that curves from left to right, bottom to top to show the wind power capacity factor and wind speed meters per second. The colors relate atmospheric stability conditions to reported power-output observations with black, dark blue, and lighter blue representing stable conditions; light blue, green and light green representing neutral conditions;

  2. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  3. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  4. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  5. Students Learn about Wind Power First-Hand through Wind for Schools Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April

  6. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effects Summary Slides | Department of Energy 5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting overview summary slides for chapter 5 of 20% Wind Energy by 2030 20percent_summary_chap5.pdf (1.61 MB) More Documents & Publications 20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power

  7. DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry, Study Finds | Department of Energy Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds, an EERE Retrospective Study Brief, September 2009. Advances in today's commercial wind energy generation are extensively linked to the Department of

  8. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  9. NREL Study: Active Power Control of Wind Turbines Can Improve...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along with ...

  10. Largest Ever Wind Power Commitments Sets Clean Energy Example...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    'Largest Ever' Wind Power Commitments Sets Clean Energy Example for Nation NEWS MEDIA CONTACTS: Christopher Powers, DOE, 303-275-4742 Media Relations, Public Service Co., ...

  11. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    SciTech Connect

    Office of Energy Efficiency and Renewable Energy

    2015-11-01

    The U.S. Department of Energy’s Atmosphere to Electrons research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth’s atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind.

  12. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  13. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  14. Nebraska Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  15. Georgia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  16. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  17. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  18. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  19. ANL Software Improves Wind Power Forecasting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANL Software Improves Wind Power Forecasting ANL Software Improves Wind Power Forecasting May 1, 2012 - 3:19pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. Since 2008, Argonne National Laboratory and INESC TEC (formerly INESC Porto) have conducted a research project to improve wind power forecasting and better use of forecasting in electricity markets. One of the main results from the project is ARGUS PRIMA (PRediction Intelligent

  20. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Energy.gov [DOE]

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  1. Microsoft Word - Sandia CREW 2012 Wind Plant Reliability Benchmark...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the large, modern U.S. wind turbines. The scope of the CREW database includes wind turbines that are at or above 1 megawatt (MW) in size, from plants with at least 10 turbines....

  2. Massachusetts Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  3. Developing Integrated National Design Standards for Offshore Wind Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and

  4. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  5. New Report Evaluates Impacts of DOE's Wind Powering America Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Evaluates Impacts of DOE's Wind Powering America Initiative New Report Evaluates Impacts of DOE's Wind Powering America Initiative August 1, 2013 - 2:59pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The goal of the Wind Powering America (WPA) initiative, established by the U.S. Department of Energy (DOE) in 1999, was to facilitate a rapid increase in U.S. wind power capacity by engaging in activities that

  6. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  7. Massachusetts Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  8. Shanghai Shenhua Wind Power New Energy Co Ltd | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenhua Wind Power New Energy Co Ltd Jump to: navigation, search Name: Shanghai Shenhua Wind Power New Energy Co Ltd Place: Shanghai, Shanghai Municipality, China Sector: Wind...

  9. Hatchobaru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Hatchobaru Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.106330525676,...

  10. Ogiri Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Ogiri Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.954053520674,...

  11. Uenotai Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Uenotai Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867,...

  12. Yamagawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Yamagawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.953944283105,...

  13. Onuma Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Onuma Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.981918665315,...

  14. Mori Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Mori Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Hokkaido, Japan Coordinates 42.132906551396,...

  15. Otake Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Otake Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.105767212548,...

  16. Sumikawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Sumikawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.938819458336,...

  17. Kamojang Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java, Indonesia Coordinates -7.1386705960014, 107.78536749043 Loading map......

  18. Dieng Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java; Indonesia Coordinates -7.2227512797154, 110.01006889972 Loading map......

  19. Lihir Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  20. Pamukoren Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...