National Library of Energy BETA

Sample records for wind generation project

  1. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  2. Wind Power (pbl/generation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  3. Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project

    Energy.gov [DOE]

    The Department of Energy today announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC.

  4. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project

    Energy.gov [DOE]

    DOE recently announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC.

  5. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  6. Wind Energy Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  7. Searchlight Wind Energy Project FEIS Appendix E

    Office of Environmental Management (EM)

    ... Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Energy Project 4. Location Township... 5. Location Sketch 2. Key Observation Point ...

  8. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  9. Next Generation Wind Turbine

    SciTech Connect

    Cheraghi, S. Hossein; Madden, Frank

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  10. Your wind driven generator

    SciTech Connect

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  11. Talkin Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  12. Coastal Ohio Wind Project

    SciTech Connect

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  13. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  14. AVEC's Village Wind Projects

    Office of Environmental Management (EM)

    Village Wind Projects By Meera Kohler Alaska Village Electric Cooperative Tribal Energy Conference Denver, Colorado October 28, 2010 New turbines in Hooper Bay AVEC is a ...

  15. Palmetto Wind Research Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  16. Wildcat 1 Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Springview II Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  18. Shiloh Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Fenton Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Madison Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Somerset Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Moraine Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Adams Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. Dunlap Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  5. Howard Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  6. Wales Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  7. Bayonne Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  8. Gary Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  9. Fenner Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Don Sneve Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Condon Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Cape Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  13. WINDExchange: Wind for Schools Project

    WindExchange

    Participant Roles & Responsibilities Affiliate Projects Pilot Project Results Project Funding School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Wind for Schools Project The U.S. Department of Energy funds the Wind for Schools project, which helps develop a future wind energy workforce by engaging students at higher education institutions to join Wind Application Centers and serve as project consultants for small wind turbine

  14. Hardscrabble Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  15. Highmore Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale...

  16. Stateline Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Chaninik Wind Group- 2010 Project

    Energy.gov [DOE]

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  18. Kotzebue Wind Project II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Kotzebue Wind Project II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Tatanka Wind Project II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Tatanka Wind Project II Facility Tatanka Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. CAES Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Jump to: navigation, search Name CAES Wind Project Facility CAES Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.522243, -112.053963...

  1. Highland Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Highland Wind Project Facility Highland Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Chamberlain Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Chamberlain Wind Project Facility Chamberlain Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Kotzebue Wind Project III | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kotzebue Wind Project III Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue...

  4. Property Tax Exemption for Wind Generators

    Energy.gov [DOE]

    In May 2015, Oklahoma enacted a bill (SB 498) ending the property tax exemption for wind power generators. The exemption will end on January 1, 2017; projects currently in production or put into...

  5. Northern Cheyenne Tribe - Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northern Cheyenne Tribe Wind Power Project Program Review 2006 Ingrid Gardner Project Overview * Project began in 2002 * Sole decision maker and final authority » NORTHERN CHEYENNE TRIBE * Technical Participant » Distributed Generation Systems, Inc. * Tribal Participant » TRIBAL EDA COMMITTEE » TRIBAL EDA PLANNER Project Design * Development Phase Approach - Long Term Wind Data Collected »RAWS SITE »AIR QUALITY SITES »ON-SITE MET TOWERS 50 meter tower 20 meter tower Project Design Cont. *

  6. WINDExchange: Funding School Wind Projects

    WindExchange

    Funding School Wind Projects Funding school wind installations can be challenging, but many schools have successfully secured funding to install turbines and implement curricula. The following examples of methods used to fund Wind for Schools projects may be useful for anyone researching funding wind turbine installations at schools; also see the Wind for Schools Funding Spreadsheet for more examples of school turbine costs and mechanisms utilized to fund the projects. Photo of children in front

  7. Orme School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Workforce Development Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from fiscal years 2008 to 2014. Workforce Development Wind Projects.pdf (2.21 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and

  9. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. Offshore Wind Projects Fiscal Years 2006-2016 (4.14 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Environmental Wind Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  10. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona...

    Office of Environmental Management (EM)

    as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project...

  11. Wapsipinicon Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Wapsipinicon Wind Project Facility Wapsipinicon Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  12. Environmental Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2015. Environmental Projects Report 2006-2015 (2.24 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Pr

  13. Hyannis Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Jump to: navigation, search Name Hyannis Wind Project Facility Hyannis Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.998692,...

  14. AWEA Wind Project Siting Seminar

    Energy.gov [DOE]

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  15. Wind Generator Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  16. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  17. Distributed Wind Competitiveness Improvement Project Fact Sheet

    Energy.gov [DOE]

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards.

  18. Wild Horse Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  19. Mill Run Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Run Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  20. Sherrod Elementary Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Sherrod Elementary Wind Project Facility Sherrod Elementary Sector Wind energy Facility Type Community Wind Location AK Coordinates 61.648163,...

  1. Dakota Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  2. KDOT Osborne Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name KDOT Osborne Wind Project Facility KDOT Osborne Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.456077, -98.695613...

  3. Greenbush Kansas Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Greenbush Kansas Wind Project Facility Greenbush Kansas Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.51403, -94.987839...

  4. KDOT Grainfield Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name KDOT Grainfield Wind Project Facility KDOT Grainfield Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.11006, -100.468124...

  5. Northumberland Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Northumberland Schools Wind Project Facility Northumberland Schools Sector Wind energy Facility Type Community Wind Location VA Coordinates 37.917591, -76.473579...

  6. Miller Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Miller Schools Wind Project Facility Miller Schools Sector Wind energy Facility Type Community Wind Location SD Coordinates 44.521069, -98.979942...

  7. Smoky Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766, -97.683563...

  8. Cedar Rapids Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Cedar Rapids Wind Project Facility Cedar Rapids Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.562199, -98.148048...

  9. Kit Carson Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Kit Carson Wind Project Facility Kit Carson Sector Wind energy Facility Type Community Wind Facility Status In Service Address 102 W 5th...

  10. AWEA Wind Resource & Project Energy Assessment

    Energy.gov [DOE]

    Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will...

  11. Omaha Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Omaha Public Power District Developer Omaha Public Power District Energy...

  12. Continuous Reliability Enhancement for Wind project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Continuous Reliability Enhancement for Wind project HomeTag:Continuous Reliability Enhancement for Wind project The CREW public ...

  13. Community Renewable Energy Deployment: Haxtun Wind Project |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project AgencyCompany Organization US Department of Energy Focus Area...

  14. Wessington Springs Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Armenia Mountain Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility...

  16. Bluegrass Ridge Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bluegrass Ridge Wind Energy Project Jump to: navigation, search Name Bluegrass Ridge Wind Energy Project Facility Bluegrass Ridge Wind Energy Project Sector Wind energy Facility...

  17. Rosebud Sioux Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sioux Wind Energy Project Jump to: navigation, search Name Rosebud Sioux Wind Energy Project Facility Rosebud Sioux Wind Energy Project Sector Wind energy Facility Type Community...

  18. Michigan Offshore Wind Pilot Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  19. White Creek Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  20. Kittitas Valley Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  1. Buffalo Ridge II Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Power Project Jump to: navigation, search Name Buffalo Ridge II Wind Power Project Facility Buffalo Ridge II Wind Power Project Sector Wind energy Facility Type Commercial...

  2. Condon Wind Project phase II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project phase II Jump to: navigation, search Name Condon Wind Project phase II Facility Condon Wind Project phase II Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Hydrogen Pilot Project Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pilot Project Wind Farm Jump to: navigation, search Name Hydrogen Pilot Project Wind Farm Facility Hydrogen Pilot Project Sector Wind energy Facility Type Small Scale Wind Facility...

  4. West Holt Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Jump to: navigation, search Name West Holt Wind Project Facility West Holt Sector Wind energy Facility Type Community Wind Location NE Coordinates 42.540997, -98.978706...

  5. Kaw Nation - Wind Energy Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Wind Energy Project Pre Pre - - Development Phase Development Phase Bob Gaddis, P.E., P.G. Bob Gaddis, P.E., P.G. Utilities Commissioner & Utilities Commissioner & Acting Director Acting Director Renewable Energy Renewable Energy Development on Tribal Development on Tribal Lands Lands FY 2003 FY 2003 - - 06 Project 06 Project Dept. of Energy NREL Dept. of Energy NREL Oct 17 Oct 17 - - 20, 2005 20, 2005 Radisson Hotel Radisson Hotel Denver Stapleton Plaza Denver Stapleton Plaza

  6. Site-optimization of wind turbine generators

    SciTech Connect

    Wolff, T.J. de; Thillerup, J.

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  7. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  8. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  9. WINDExchange: School Wind Project Locations

    WindExchange

    School Wind Project Locations Tips for Using the Google Map On top of the Google Map, use the Country, State, Project Status, and Project Type dropdown lists to filter projects. Along the left margin, use the zooming meter to zoom in or out of your view. In the top left corner, click Reset View to reset all the filters and zooming. Click on Map, Satellite, and Terrain to view the map three different ways. Click and drag the map to move it around. Use the right scroll bar to view the project

  10. Distributed Wind Competitiveness Improvement Project (Fact Sheet...

    Energy.gov [DOE] (indexed site)

    Distributed Wind Competitiveness Improvement Project The Competitiveness Improvement ... (NREL). Manufacturers of small and medium wind turbines are awarded cost-shared grants ...

  11. Great Plains Wind Energy Transmission Development Project

    SciTech Connect

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  12. Cherokee Nation - Wind Power Generation Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Presented by: Carol Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Cherokee Wind Project Synopsis Cherokee Wind Project Synopsis Financially Feasible Wind Resource Electrical Load for all Cherokee Entities is $8 million 100 megawatt (40 Wind Turbines) Offset Entire $8 million Tribal Electrical costs Recover Initial Project Investment in 5 Years Gross $198,764,490.00 in Years 6 - 20 Other Commercial,

  13. Kotzebue Wind Project Phase II & III | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II & III Jump to: navigation, search Name Kotzebue Wind Project Phase II & III Facility Kotzebue Wind Project Phase II & III Sector Wind energy Facility Type Commercial Scale Wind...

  14. Lamar Wind Energy Project II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Lamar Wind Energy Project II Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Centennial Wind Energy Project (2006) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    6) Jump to: navigation, search Name Centennial Wind Energy Project (2006) Facility Centennial Wind Energy Project (2006) Sector Wind energy Facility Type Commercial Scale Wind...

  16. Lamar Wind Energy Project I | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I Jump to: navigation, search Name Lamar Wind Energy Project I Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Lamar Wind Energy Project III | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    III Jump to: navigation, search Name Lamar Wind Energy Project III Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Centennial Wind Energy Project (2007) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    7) Jump to: navigation, search Name Centennial Wind Energy Project (2007) Facility Centennial Wind Energy Project (2007) Sector Wind energy Facility Type Commercial Scale Wind...

  19. Solano Wind Project- phase II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Solano Wind Project- phase II Facility Solano Wind Project- phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Offshore Wind Project Map

    Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  1. Hualapai Wind Project Feasibility Report

    SciTech Connect

    Davidson, Kevin; Randall, Mark; Isham, Tom; Horna, Marion J; Koronkiewicz, T; Simon, Rich; Matthew, Rojas; MacCourt, Doug C.; Burpo, Rob

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  2. Project Reports for Chaninik Wind Group- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  3. Loranger Power Generation Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  4. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Next-Generation Wind Technology Next-Generation Wind Technology Innovation in the design and manufacturing of wind power generation components continues to be critical to achieving ...

  5. Next-Generation Wind Technology | Department of Energy

    Energy Saver

    Research & Development Next-Generation Wind Technology Next-Generation Wind Technology Innovation in the design and manufacturing of wind power generation components continues ...

  6. Super Wind Project Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Pvt Ltd Jump to: navigation, search Name: Super Wind Project Pvt. Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind project...

  7. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  8. Stratton Middle and High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. Central High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  10. Crawford Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. Elkhorn Valley Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  12. Logan View Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  13. Shelley High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  14. USD 376 Sterling High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Spotsylvania Career and Tech Center Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Bancroft-Rosalie Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  17. Thomas Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Leupp Schools Inc Wind Project 3 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  19. Santa Fe Trail High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Lewistown High Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  1. Diller-Odell High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  2. Luray High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  3. Rigby Midway School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  4. Thomas Harrison Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  5. Mullen High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. Mesa County Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Norfolk Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Northwestern High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. Florence High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. Dilcon Community School Inc Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. Grand Ridge Elementary Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  12. Townsend School District Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  13. Kansas State University Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  14. Loup City High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Williams Elementary and Middle School Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Flagler Public School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  17. Northern Arizona University ARD Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Park County RE2 Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  19. Hayes Center Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Creighton Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  1. USD 384 Blue Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  2. Nederland High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  3. Hope Street Academy Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  4. Illini Central CUSD 189 Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  5. St. Michael Indian School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. Clover Hill High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Avery County High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Leupp Schools Inc Wind Project 2 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. Bloomfield Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. USD 373 Walton Rural Life Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. Ferndale High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  12. Concordia High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  13. Cherry Valley Elementary School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  14. Northern Arizona University SHRM Wind Project | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Jefferson West High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Elkton Schools District Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  17. Pretty Prairie High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Northern Arizona University Wind Projects | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Projects Jump to: navigation, search Northern Arizona University ARD Wind Project Northern Arizona University SHRM Wind Project Retrieved from "http:en.openei.orgw...

  19. Northern Arizona University Wind Projects | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Northern Arizona University Wind Projects (Redirected from Northern Arizona University Wind Project) Jump to: navigation, search Northern Arizona University ARD Wind Project...

  20. Wind Forecasting Improvement Project | Department of Energy

    Energy Saver

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program ...

  1. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  2. Offshore Wind Research, Development, and Deployment Projects...

    Energy.gov [DOE] (indexed site)

    Offshore Wind Research, Development, and Deployment Projects View All Maps Addthis Careers & Internships EERE Home Contact EERE Energy.gov

  3. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  4. Searchlight Wind Energy Project FEIS Appendix B

    Office of Environmental Management (EM)

    ... is to prescribe methods to help prevent and manage the spread of noxious weeds during and following construction of the Searchlight Wind Energy Project in Clark County (Project). ...

  5. Darrieus wind turbine electric generating system

    SciTech Connect

    Schwarz, E.L.

    1984-08-07

    A wind electric system intended to provide power to a power grid, for use with a wind turbine which has no starting torque. The generator is one which can function as a motor as well. When the wind is too light to permit generation, an overriding clutch mechanically disconnects the generator shaft from the turbine shaft. The clutch has also the capability of locking the generator shaft to the turbine shaft in response to a control signal. When wind speed is great enough to permit generation and the turbine is stopped, a control signal is issued locking the generator shaft to the turbine shaft. Power from the power grid causes the generator to function as a motor and accelerate the turbine to permit it to be rotated by the wind. The clutch is then returned to overriding operation and electrical generation continues until wind speed again becomes too light.

  6. Environmental Assessment Kotzebue Wind Installation Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment \ Kotzebue Wind Installation Project Kotzebue, Alaska U. S. Department of Energy Golden Field Office 16 17 Cole Boulevard Golden, Colorado May 1998 Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska U. S . Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado May 1998 Finding of No Significant Impact Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska F'INDING OF NO SIGNIFICANT IMPACT for KOTZEBUE WIND

  7. Demonstration Projects Feature Innovative Offshore Wind Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Demonstration Projects Feature Innovative Offshore Wind Technologies Demonstration Projects Feature Innovative Offshore Wind Technologies October 24, 2016 - 3:40pm Addthis From floating foundations to twisted jacket and Mono Bucket foundations, some of the nation's most inventive offshore wind technologies are featured in a portfolio of advanced offshore wind energy demonstration projects that the Energy Department has been supporting since 2012. "All of these

  8. Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name: Qingdao Hengfeng Wind Power Generator Co Ltd Place: Jiaonan, Shandong Province, China Sector: Wind energy...

  9. Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

  10. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western prepared a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  11. explicit representation of uncertainty in wind generation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    wind generation - Sandia Energy Energy Search Icon Sandia ... Secure & Sustainable Energy Future Stationary Power Energy ... National Solar Thermal Test Facility Nuclear ...

  12. Previous Wind Power Announcements (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    following as the list of resources with Western Renewable Energy Generation Information System (WREGIS) Renewable Energy Certificates (RECs) associated with them that will be...

  13. INL Wind Farm Project Description Document

    SciTech Connect

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  14. Watauga High School Wind Energy Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Project Jump to: navigation, search Name Watauga High School Wind Energy Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Facility Status...

  15. PA Sangli Bundled Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PA Sangli Bundled Wind Project Jump to: navigation, search Name: PA Sangli Bundled Wind Project Place: Maharashtra, India Zip: 416115 Sector: Wind energy Product:...

  16. Shree Jai Brahmanvel Bundled Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maharashtra, India Zip: 441 614 Sector: Wind energy Product: Gondia-based SPV for wind project development. References: Shree Jai Brahmanvel Bundled Wind Project1 This article...

  17. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    WindExchange

    Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind

  18. Survey Reveals Projections for Lower Wind Energy Costs | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Survey Reveals Projections for Lower Wind Energy Costs September 13, 2016 The cost of producing electricity via wind power is expected to fall 24-30 percent by 2030 and 35-41 percent by 2050, according to a survey of the world's foremost wind power experts. Cost reductions are anticipated as a function of continued advancements in wind energy technology. These findings are detailed in new study published in the journal Nature Energy and conducted by the Energy Department's National Renewable

  19. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  20. Model county ordinance for wind projects

    SciTech Connect

    Bain, D.A.

    1997-12-31

    Permitting is a crucial step in the development cycle of a wind project and permits affect the timing, cost, location, feasibility, layout, and impacts of wind projects. Counties often have the lead responsibility for permitting yet few have appropriate siting regulations for wind projects. A model ordinance allows a county to quickly adopt appropriate permitting procedures. The model county wind ordinance developed for use by northwest states is generally applicable across the country and counties seeking to adopt siting or zoning regulations for wind will find it a good starting place. The model includes permitting procedures for wind measurement devices and two types of wind systems. Both discretionary and nondiscretionary standards apply to wind systems and a conditional use permit would be issued. The standards, criteria, conditions for approval, and process procedures are defined for each. Adaptation examples for the four northwest states are provided along with a model Wind Resource Overlay Zone.

  1. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  2. Companies Selected for Small Wind Turbine Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  3. Wind Energy Education and Outreach Project

    SciTech Connect

    Loomis, David G.

    2013-01-09

    The purpose of Illinois State University's wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  4. Nanjing Sunec Wind Generator Equipment Factory | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    211100 Sector: Wind energy Product: A Chinese manufacturer for power supply, grid automation equipment and small-to-medium wind turbines, as well as a wind project developer....

  5. Incorporating Wind Generation in Cap and Trade Programs

    SciTech Connect

    Bluestein, J.; Salerno, E.; Bird, L.; Vimmerstedt, L.

    2006-07-01

    Cap and trade programs are increasingly being used to reduce emissions from electricity generation in the United States. Cap and trade programs primarily target emitting generators, but programs have also included renewable generators, such as wind generators. States cite several reasons why they have considered the policy option of including renewable generators in cap and trade programs: to provide an incentive for lower-emitting generation, to achieve emissions reductions in non-capped pollutants, and to gain local economic benefits associated with renewable energy projects. The U.S. Environmental Protection Agency also notes these rationales for considering this policy alternative, and the National Association of Regulatory Commissioners (NARUC) passed a resolution supporting the inclusion of renewable energy in cap and trade programs. This report explores why states consider this policy option, what participation could mean for wind generators, and how wind generation can most effectively be included in state, federal, and regional cap and trade programs.

  6. Survey Reveals Projections for Lower Wind Energy Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Survey Reveals Projections for Lower Wind Energy Costs Survey Reveals Projections for Lower Wind Energy Costs October 24, 2016 - 3:51pm Addthis According to a survey of 163 of the world's foremost wind power experts, continued advancements in wind energy technology are anticipated to reduce the cost of generating electricity by 24%-30% by 2030 and 35%-41% by 2050. With market growth and aggressive research and development, costs could be even lower: experts predict a 10% chance that

  7. Wind Project Development | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    hosting a wind farm on their property. It briefly addresses key factors in this decision. Springer, R. (2013). A Framework for Project Development in the Renewable Energy Sector....

  8. Searchlight Wind Energy Project FEIS Appendix B

    Office of Environmental Management (EM)

    Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550 South Tryon Street Charlotte, North ...

  9. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    2: Notice of Availability and Publications SEARCHLIGHT WIND ENERGY PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT PUBLIC MEETING ANNOUNCEMENT The Bureau of Land Management (BLM) is...

  10. WINDExchange: Wind for Schools Affiliate Projects

    WindExchange

    Affiliate Projects Although the Wind for Schools project is supported in a limited number of states, Wind for Schools affiliate projects allow K-12 schools or state-based programs to leverage existing materials to implement activities in their areas. On this page, you will find information about affiliate projects for individual K-12 schools and for states. Affiliate projects do not receive financial support from the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL),

  11. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility

  12. Wind Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  13. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  14. Simran Wind Project P Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Simran Wind Project P Ltd Jump to: navigation, search Name: Simran Wind Project (P) Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind...

  15. Offshore Wind Energy Projects, Fiscal Years 2006-2014

    SciTech Connect

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Offshore Wind Energy Projects from 2006 to 2014.

  16. Wind Generation on Winnebago Tribal Lands

    SciTech Connect

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining

  17. Sicangu Lakota Oyate, Hihan Sapa Wapaha, Tate Woilagyapi Project - 30 MW Wind Energy Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) 30 MW Wind Energy Facility Phil Two Eagle, Director Ken Haukaas, Project Manager Resource Development Office Dale Osborn, President Distributed Generation Systems, Inc. (DISGEN) www.disgenonline.com Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) Project Objectives 1. Complete all the development

  18. Auburn-Washburn Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Auburn-Washburn Wind Project Facility Auburn-Washburn Sector Wind energy Facility Type Community Wind Owner Auburn-Washburn School District Address...

  19. Colorado Green Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Colorado Green Wind Power Project Facility Colorado Green Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  1. WINDExchange: Wind for Schools Pilot Project Results

    WindExchange

    Pilot Project Results The Colorado pilot project launched in 2006. Lessons learned during this exercise helped to identify the key elements of a successful Wind for Schools project. This page summarizes these elements, which can be helpful for others planning school turbine installations. Identify a Champion A project cannot succeed without a local project champion, an individual, or group to keep the key players in the community informed, cooperating, and moving toward project goals. The

  2. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind-to-Hydrogen Project Photo of person in hard hat working on equipment in a laboratory setting. NREL engineer inspects hydrogen-producing electrolyzer system at the National Wind Technology Center. Photo by Greg Martin, NREL Formed in partnership with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated electricity through water to split it into hydrogen and oxygen. The resulting

  3. Distributed connected wind farms (Smart Grid Project) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  4. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Energy Saver

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape ...

  5. Ponderosa High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. Juneau School District Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Skyline High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Montana State University Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. Eudora High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. Western Illinois University Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. Pocatello Community Charter School Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Elkton Schools District Wind Project

  12. Walsh High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  13. USD 440 Halstead Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  14. Norris Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Little Singer Community School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Flinthills Tech College Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  17. Leupp Schools Inc Wind Project 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Watauga High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  19. Rigby High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Grassfield High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  1. Memorial Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  2. Appanoose Elementary School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  3. USD 393 Solomon High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  4. USD 307 Ell-Saline Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  5. Wellington Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. North Wilkes Middle and High School Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Burlington High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. McKenna Charter School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  9. USD 375 Circle High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. Superior Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  11. USD 345 Seaman High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  12. Meridian Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  13. Henley Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  14. Jerome Middle School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  15. Yankton School District Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  16. Southeast Community College Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  17. Alleghany High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Mt. Edgecumbe High School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  19. Gilpin County School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Hastings Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Elkton Schools District Wind Project

  1. Oshkosh Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  2. Pleasanton Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  3. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore ...

  4. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  5. Session: Wind industry project development

    SciTech Connect

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  6. Generating a Sustainable Wind Energy Future Thanks to Low Prices |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Generating a Sustainable Wind Energy Future Thanks to Low Prices Generating a Sustainable Wind Energy Future Thanks to Low Prices August 17, 2016 - 4:00pm Addthis The U.S. wind power market remains strong thanks to sustained low prices, rapidly increasing wind energy generation, and growing corporate demand. The U.S. wind power market remains strong thanks to sustained low prices, rapidly increasing wind energy generation, and growing corporate demand. Patrick Gilman

  7. Wind Projects Providing Hope for Penn. Workers

    Energy.gov [DOE]

    The Recovery Act made three large-scale wind projects possible, putting 79 laid-off employees back on the job and making it possible for Gamesa to hire 50 additional workers at its other Pennsylvania locations.

  8. Caithness Shephards Flat: The Largest Wind Farm Project in the World |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes.

  9. Wind generator system for microwave radio relay station

    SciTech Connect

    Yamamura, H.; Eguchi, N.

    1983-10-01

    NTT has introduced a wind generator system at microwave relay stations. It consists of a wind turbine generator as main power source and three diesel driven generators as back up. The wind turbine generator adopts a Darrieus unit as the wind driven blades and generates 8 kW maximum power with strong winds blowing over 15 m/s. Before this introduction, NTT manufactured two different wind turbine generator prototypes, one using a propeller and the other a Darrieus unit, and field tests have been carried out since 1978. This paper describes the field tests and the wind generator system for microwave relay stations.

  10. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  11. EA-1824: Record Hill Wind Project in Roxbury, ME | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Record Hill Wind Project in Roxbury, ME EA-1824: Record Hill Wind Project in Roxbury, ME July 1, 2011 EA-1824: Final Environmental Assessment Loan Guarantee to Record Hill Wind,...

  12. Transmission cost minimization strategies for wind-electric generating facilities

    SciTech Connect

    Gonzalez, R.

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  13. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  14. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  15. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 1 -- January 2006

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  16. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  17. EA-1909: South Table Wind Farm Project, Kimball County, Nebraska

    Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western’s existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

  18. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Massachusetts | Department of Energy 0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21, 2012 EIS-0470: Final Environmental Impact Statement Cape Wind Energy Project, Nantucket Sound, MA December 31, 2012 EIS-0470:

  19. WindSENSE Project Summary: FY2009-2011

    SciTech Connect

    Kamath, C

    2011-09-25

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts

  20. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

  1. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  2. AWEA Wind Project Operations and Maintenance and Safety Seminar

    Energy.gov [DOE]

    The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  3. Offshore Wind Market Acceleration Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    of the U.S. offshore wind market. These projects address both environmental and supply chain-related issues, and are broken down into seven categories: Wind resource ...

  4. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Energy Saver

    U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY WIND AND WATER POWER PROGRAM + + + + + U.S. OFFSHORE WIND: ADVANCED TECHNOLOGY DEMONSTRATION PROJECTS + + ...

  5. Offshore Wind Market Acceleration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Read a report on the program's portfolio of offshore wind technology research, development, and demonstration projects. Offshore Wind Energy Resources and the Environment ...

  6. AWEA Wind Project O&M and Safety Seminar

    Energy.gov [DOE]

    The AWEA Wind Project O&M and Safety Seminar is where leading owners, operators, turbine manufacturers, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  7. Wind Integration, Transmission, and Resource Assessment and Characterization Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Program’s Wind Integration, Transmission, and Resource Assessment and Characterization Projects from FY 2006 to FY 2014.

  8. BA Tirunelveli Bundled Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chhattisgarh, India Zip: 492001 Sector: Wind energy Product: Raipur-based SPV for wind project development. Coordinates: 20.38971, 76.15055 Show Map Loading map......

  9. Final Report on the Nikolski Wind-Diesel Project Wind Installation

    Energy Saver

    ... Nikolski Wind-Diesel Project; Wind Turbine Installation, 10142010 Provided by the ... application through a hot water storage and distribution system at the adjacent school. ...

  10. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  11. Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce

    SciTech Connect

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

    2009-08-01

    This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

  12. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  13. EIS-0418: PrairieWinds Project, South Dakota | Department of...

    Office of Environmental Management (EM)

    EIS-0418: PrairieWinds Project, South Dakota SUMMARY This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds ...

  14. AWEA Wind Project O&M and Safety Conference 2016

    Energy.gov [DOE]

    The American Wind Energy Association Wind Project O&M and Safety Conference is where leading owners, operators, turbine manufacturers, material suppliers, wind technicians, managers,...

  15. Environmental Impacts and Siting of Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Environmental Impacts and Siting of Wind Projects Environmental Impacts and Siting of Wind Projects A trained falcon, equipped with a GPS and a VHF tracker, gathers radar data that is helping scientists improve bird detection technologies at wind facilities. A trained falcon, equipped with a GPS and a VHF tracker, gathers radar data that is helping scientists improve bird detection technologies at wind facilities. The Wind Program works to remove barriers to wind

  16. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A.; Gadre, Aniruddha Dattatraya; Garg, Jivtesh; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  17. N.A.T.I.V.E. District Kayenta Wind Project 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  18. Papillion-LaVista South High School Wind Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Northwestern High School Wind Project

  19. N.A.T.I.V.E. District Kayenta Wind Project 3 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  20. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  1. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  2. Conception Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital GroupJohn Deere Capital Developer Wind Capital GroupJohn Deere Capital Energy...

  3. Wind for Schools Project Curriculum Brief (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  4. Advanced Wind Energy Projects Test Facility Moving to Texas Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Projects Test Facility Moving to Texas Tech University Advanced Wind Energy Projects Test Facility Moving to Texas Tech University December 19, 2011 - 1:32pm Addthis ...

  5. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Energy.gov [DOE] (indexed site)

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind ...

  6. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  7. FCRPS Hydro Projects (generation/hydro)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White Book Dry Year...

  8. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Energy.gov [DOE] (indexed site)

    May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, ...

  9. EA-1581: Sand Hills Wind Project, Wyoming

    Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  10. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  11. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2011 DOE Funded Offshore Wind Project Updates 2011 DOE Funded Offshore Wind Project Updates September 12, 2014 - 10:52am Addthis For the past few years, much of the U.S. Department of Energy's (DOE's) Wind Program research and development efforts have been focused on accelerating the development and deployment of offshore wind energy technology. In 2011, DOE awarded $43 million to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying

  12. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  13. Wind farm generating more renewable energy than expected for Pantex |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Wind farm generating more renewable energy than expected for Pantex Friday, April 22, 2016 - 10:30am Each of the five wind turbines at the Pantex Plant is 400 feet tall. They have generated 3 percent more electricity than was expected. The Texas Panhandle has some of the world's best winds for creating renewable energy, and the Wind Farm at the Pantex Plant is taking advantage of those winds, generating up to 60% of the energy needs of the

  14. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  15. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  16. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  17. Property:PotentialOffshoreWindGeneration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The...

  18. Smith River Rancheria - Wind and Biomass Power Generation Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Tribal Energy Program Program Review Meeting October 17 - 21, 2005 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith ...

  19. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Energy.gov [DOE] (indexed site)

    Department of Energy Funds Six Companies to Develop Advanced Drivetrain Designs Department of Energy Awards Nearly 7.5 Million to Help Develop Next Generation Wind Turbines

  20. Student Competition Prepares the Next Generation of Wind Energy...

    Energy.gov [DOE] (indexed site)

    ...windcompetition">Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. ...

  1. EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR

    Energy.gov [DOE]

    This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

  2. AWEA Wind Project Siting & Environmental Compliance Conference 2017 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Siting & Environmental Compliance Conference 2017 AWEA Wind Project Siting & Environmental Compliance Conference 2017 March 21, 2017 8:00AM CDT to March 22, 2017 5:00PM CDT Austin, Texas The American Wind Energy Association Wind Project Siting and Environmental Compliance Conference is where leaders from the wind industry, environmental permitting and compliance sector, the scientific community and regulatory officials come together for a robust discussion about

  3. U.S. Offshore Wind Advanced Technology Demonstration Projects Public

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting Transcript for Offshore Wind Demonstrations | Department of Energy Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations Provides an account of the proceedings of public meeting DE-FOA-0000659 on February 7, 2012 in Washington, DC Contains discussion of the draft financial opportunity announcement DE-FOA-0000410-DRAFT

  4. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  5. EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO

    Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Western’s existing Wray Substation in Yuma County, Colorado.

  6. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  7. Stationary/Distributed Generation Projects - Non-DOE Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Technology Validation » Stationary/Distributed Generation Projects » Stationary/Distributed Generation Projects - Non-DOE Projects Stationary/Distributed Generation Projects - Non-DOE Projects In addition to the stationary/distributed generation technology validation projects sponsored by DOE, universities, along with state and local government entities across the U.S., are partnering with industry to demonstrate stationary fuel cells in real-world applications. South Windsor

  8. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  9. Funding Opportunity Announcement for Wind Forecasting Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Complex Terrain | Department of Energy Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain April 4, 2014 - 9:47am Addthis On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex

  10. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. For more

  11. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association Team roster: Dan Paikowsky, Management; Christian Bain, Entrepreneurship; Noah Meunier, Mechanical Engineering &

  12. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phase 2 Funding | Department of Energy Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle

  13. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  14. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  15. Optimized Hydrogen and Electricity Generation from Wind | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Optimized Hydrogen and Electricity Generation from Wind Optimized Hydrogen and Electricity Generation from Wind Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen. 34364.pdf (337.19 KB) More Documents & Publications Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water

  16. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  17. Brigham City Hydro Generation Project

    SciTech Connect

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and

  18. EWIS European wind integration study (Smart Grid Project) (Denmark...

    OpenEI (Open Energy Information) [EERE & EIA]

    search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  19. EA-1902: Northern Wind Project, Roberts County, South Dakota...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    available on the project webpage, http:www.wapa.govugpEnvironmentNorthernWindFarm.htm. Public Comment Opportunities None available at this time. Documents Available for...

  20. EWIS European wind integration study (Smart Grid Project) (Spain...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spain) Jump to: navigation, search Project Name EWIS European wind integration study Country Spain Coordinates 40.522152, -4.163818 Loading map... "minzoom":false,"mappingserv...

  1. EWIS European wind integration study (Smart Grid Project) (United...

    OpenEI (Open Energy Information) [EERE & EIA]

    United Kingdom) Jump to: navigation, search Project Name EWIS European wind integration study Country United Kingdom Coordinates 55.378052, -3.435973 Loading map......

  2. EWIS European wind integration study (Smart Grid Project) (France...

    OpenEI (Open Energy Information) [EERE & EIA]

    France) Jump to: navigation, search Project Name EWIS European wind integration study Country France Coordinates 45.897655, 2.021484 Loading map... "minzoom":false,"mappingser...

  3. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  4. EWIS European wind integration study (Smart Grid Project) (Germany...

    OpenEI (Open Energy Information) [EERE & EIA]

    Germany) Jump to: navigation, search Project Name EWIS European wind integration study Country Germany Coordinates 51.165691, 10.451526 Loading map... "minzoom":false,"mapping...

  5. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2008 Technical Report Wind-To-Hydrogen Project: NREL... H271.3730 National Renewable Energy Laboratory 1617 Cole ... hydrogen on a scale much greater than current production. ...

  6. EWIS European wind integration study (Smart Grid Project) (Czech...

    OpenEI (Open Energy Information) [EERE & EIA]

    Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493, 15.472962 Loading map......

  7. Alaska Wind Energy Project Final Technical Report

    SciTech Connect

    Stromberg, Rich

    2015-03-26

    To support design and construction of wind energy power plants that demonstrate the feasibility and methods necessary for widespread adoption of wind energy systems in rural Alaska.

  8. Pantex Plant Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pantex Developer Siemens Energy Purchaser Pantex Plant Location Amarillo TX...

  9. NREL: Wind Research - Field Verification Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that verify performance of wind turbine technologies in actual operational applications. ... National Wind Technology Center (NTWC) for safety, performance, noise, and duration. ...

  10. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    Statement Public Meetings February 21 - 23, 2012 * An approximately 200 megawatt wind energy facility and associated infrastructure proposed by Searchlight Wind Energy, LLC * ...

  11. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    SciTech Connect

    Cotrell, J.; Stelhy, T.

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  12. Energy Department Offers Conditional Commitment to Cape Wind...

    Energy.gov [DOE] (indexed site)

    ... Addthis Related Articles DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind ...

  13. Community Wind Handbook/What Is a Small Community Wind Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Specifications * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance What Is a Small Community Wind Project? Three Excel 10S turbines on...

  14. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  15. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  16. Department of Energy Finalizes $102 Million Loan Guarantee to Record Hill Wind, LLC for Maine Wind Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project Expected to Fund Approximately 200 Jobs and Provide Improvements to Wind Turbine Performance 

  17. Next Generation Luminaire (NGL) Downlight Demonstration Project...

    Energy Saver

    Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital The U.S. DOE ...

  18. Survey Reveals Projections for Lower Wind Energy Costs - News Releases |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Survey Reveals Projections for Lower Wind Energy Costs September 13, 2016 An NREL researcher stands near wind turbines at the National Wind Technology Center. Eric Lantz, seen here at the National Wind Technology Center, is co-author of a new study published in the journal Nature Energy about what experts believe wind energy may cost in the future. (Photo by Dennis Schroeder / NREL) The cost of producing electricity via wind power is expected to fall 24-30 percent by 2030 and 35-41

  19. Wind Energy 101 Webinar Series Part 5: Project Development and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 101 Webinar Series Part 5: Project Development and Siting Wind Energy 101 Webinar Series Part 5: Project Development and Siting August 6, 2015 2:00PM to 3:00PM EDT During...

  20. AWEA Wind Resource & Project Energy Assessment Conference | Department...

    Office of Environmental Management (EM)

    Resource & Project Energy Assessment Conference AWEA Wind Resource & Project Energy Assessment Conference September 27, 2016 8:00AM CDT to September 28, 2016 5:00PM CDT ...

  1. New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planned in U.S. Waters | Department of Energy Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters September 29, 2015 - 11:30am Addthis The Energy Department today released a new report showing strong progress for the U.S. offshore wind market-including the start of construction of the nation's first commercial-scale offshore wind farm, one of 21 projects totaling 15,650

  2. Tax Exemption for Wind Energy Generation

    Energy.gov [DOE]

    In March 2007, West Virginia enacted legislation (SB 441) amending its tax law concerning the business and operation (B&O) tax for wind turbines. Although SB 441 increased the taxable value of...

  3. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ramsden.pdf (1.5 MB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  4. NREL Distributes Wind Competitiveness Improvement Project Round Four

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Funding - News Releases | NREL NREL Distributes Wind Competitiveness Improvement Project Round Four Funding May 13, 2016 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) is awarding four subcontracts under the fourth round of funding through DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help manufacturers of small and mid-size wind turbines improve their turbine design and manufacturing processes while reducing costs and improving

  5. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  6. EWIS European wind integration study (Smart Grid Project) (Netherlands...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  7. EWIS European wind integration study (Smart Grid Project) (Greece...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  8. EWIS European wind integration study (Smart Grid Project) (Austria...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  9. EWIS European wind integration study (Smart Grid Project) (Poland...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  10. EWIS European wind integration study (Smart Grid Project) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  11. EWIS European wind integration study (Smart Grid Project) (Portugal...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  12. EWIS European wind integration study (Smart Grid Project) (Ireland...

    OpenEI (Open Energy Information) [EERE & EIA]

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  13. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect

    United States. Bonneville Power Administration

    2006-09-01

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with

  14. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  15. Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)

    WindExchange

    Introduction The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding educa- tion to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institu- tions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind

  16. Sowing the Seeds for a Bountiful Harvest: Shaping the Rules and Creating the Tools for Wisconsin's Next Generation of Wind Farms

    SciTech Connect

    Vickerman, Michael Jay

    2012-03-29

    Project objectives are twofold: (1) to engage wind industry stakeholders to participate in formulating uniform permitting standards applicable to commercial wind energy installations; and (2) to create and maintain an online Wisconsin Wind Information Center to enable policymakers and the public to increaser their knowledge of and support for wind generation in Wisconsin.

  17. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Energy.gov [DOE] (indexed site)

    wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Since 2012, the U.S. Department of Energy has supported a portfolio of advanced wind ...

  18. AWEA Wind Project Siting Seminar 2015

    Energy.gov [DOE]

    As the wind industry has grown and evolved, the scope and complexity of siting and environmental compliance issues has evolved and increased, and now affects all phases of a wind facility's life...

  19. Searchlight Wind Energy Project FEIS Appendix C

    Office of Environmental Management (EM)

    C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) ...

  20. Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.

  1. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  2. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  3. EA-1992: Principle Power, Inc., WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon. The EA has been cancelled.

  4. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    beginning at the stagnation region and spreading in the downstream direction in time. When comparing ice accumulation characteristics for the four coatings tested, for ice thickness during accumulation the CRC6040R3 had the least, followed by the ESL, Flex, and TP. However, when comparing the coatings’ ability to reduce ice adhesion, the Flex showed the highest adhesion reduction, followed by the ESL, TP and CRC 6040R3 coatings. The ice accumulated on the Flex coated surface shed under gravity when rotated 90 degrees following the tests while the other coatings required application of varying degrees of force to remove the ice. In conclusion, the ice coatings tested were not sufficient in preventing ice accumulation on all surfaces. However, Flex coating shows promise in mitigating ice on the rotor blades under the gravitational and centrifugal forces. Only the effect of gravity in shedding the ice was considered in this study. Further research will be needed to evaluate this coating on rotating blades in the icing tunnel to characterize its effectiveness. Lastly, the development of economic feasibility models used existing approaches adapted for offshore deployment in marine settings to one more suitable for Lake Erie deployment. Two different wind turbine models were tested and dynamic return on investment (ROI) model scenarios were generated. For the purpose of estimating power generation three bladed wind turbines of 3 MW capacity were selected including Model1- Leitwind LTW101-3.000-kW and Model2-Vostro V90-3.0 MW. The analysis were based on the revenue aspect of decision making of deploying wind turbines in the Ohio coastal region. The installation cost, maintenance and operational aspects were disregarded due to unavailability of data. The adjusted varying price (residential and industrial sector) and projected future price of electricity in different years suggested that the Leitwind model could generate $32.4 million of revenue in 25 years if the supply

  5. Community Wind: Once Again Pushing the Envelope of Project Finance

    SciTech Connect

    bolinger, Mark A.

    2011-01-18

    In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota

  6. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  7. Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report

    SciTech Connect

    Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

    2002-03-11

    The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

  8. Project: 1.8 MW Wind Turbine on Tribal Common Lands Near Lake...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PAST ACTIVITIES & PROJECTS 1.8 MW Wind Turbine on Common Lands DOE First Steps Grant ... and Fossil Cattaraugus wind turbine project Repair and maintain NG ...

  9. N.A.T.I.V.E. District Kayenta Wind Project 2 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  10. Wind turbine generator with improved operating subassemblies

    DOEpatents

    Cheney, Jr., Marvin C.

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  11. KIBSD Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Community Wind Facility Status In Service Owner KIBSD Address 722 Mill Bay Rd. Location Kodiak Island Borough, Alaska Zip 99615 Coordinates 57.793468,...

  12. Casselman Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer PPM Energy Inc Energy Purchaser First Energy Corp. Location Somerset...

  13. Distributed Wind Competitiveness Improvement Project Fact Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    its National Renewable Energy Laboratory (NREL). Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their ...

  14. Offshore Wind Technology Development Projects | Department of...

    Energy Saver

    Offshore wind turbines are frequently located far from shore, face greater potential for corrosion from exposure to seawater, are only accessible by helicopter or boat, and ...

  15. Kumeyaay Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Superior Renewable Energy Energy Purchaser San Diego Gas & Electric Location...

  16. Dispersed Project Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Commercial Scale Wind Facility Status In Service Developer Northern Alternative Energy Energy Purchaser Xcel Energy Location Lincoln County MN Coordinates...

  17. Wind Project Permitting | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Development Code Beta Version 1.5. Accessed March 29, 2013. The model code presents strategies to remove obstacles, create incentives, and enact standards to encourage wind...

  18. Gaines Cavern Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ess":"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "AWEA-US-Wind-Industry-Market-Reports" Retrieved from "http:en.openei.orgwindex.php?titleGaine...

  19. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Edison (SCE) is positioned to demonstrate the effectiveness of lithium-ion battery and smart inverter technologies to improve grid performance and assist in the integration of variable energy resources. This project will be sited at the Tehachapi Wind Resource Area, one of the largest wind resource areas in the world, where as much as 4,500 MW of wind resources are expected to come online by 2015. An existing SCE substation located approximately 100 miles north of Los Angeles,

  20. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  1. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  2. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  3. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  4. QER- Comment of Oceti Sakowin Sioux Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Secretariat: Attached please find the Comments of the Oceti Sakowin Sioux Wind Power Project, for inclusion in the record of the QER. If any questions, please direct to the undersigned.

  5. Pantex signing ceremony kicks off wind farm project | National...

    National Nuclear Security Administration (NNSA)

    U.S. Congressman Mac Thornberry joined local dignitaries and other visitors at the Pantex Plant Thursday to make their mark on an important wind project at the Plant. The visitors ...

  6. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  7. Wind and Solar Data Projections from the U.S. Energy Information

    Energy Information Administration (EIA) (indexed site)

    Administration: Past Performance and Planned Enhancements Full report Wind and Solar Data Projections from the U.S. Energy Information Administration: Past Performance and Planned Enhancements Release date: March 22, 2016 Summary EIA's data for renewable electricity, in particular wind and solar generators, are one of the largest areas of interest among EIA data users, as well as one of the more frequent targets of criticism. Although particular details vary from source to source, several

  8. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  9. Wind Powering Americas Wind for Schools Project: Summary Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind for Schools Project Summary Report I. Baring-Gould and C. Newcomb Management Report NRELMP-7A20-51180 June 2012 NREL is a national laboratory of the U.S. Department of Energy...

  10. Kotzebue Wind Project 2012 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    W 1,800,000,000 mW 0.0018 GW Number of Units 2 Commercial Online Date 2012 Wind Turbine Manufacturer EWT Americas References AWEA 2012 Market Report1 Loading map......

  11. Wildcat Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    W 27,300,000,000 mW 0.0273 GW Number of Units 13 Commercial Online Date 2012 Wind Turbine Manufacturer Suzlon References AWEA 2012 Market Report1 Loading map......

  12. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    ... (and associated ECP) is being requested is between the FWS and Searchlight Wind Energy, LLC. Federal Agency Comments |11 Section 4.17 Cumulative Impacts Analysis has been updated. ...

  13. Wind Project Siting Tools | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and Lucille Packard Foundation, is working with BLM, CDFG, and USFWS to develop a science-based regional planning framework for the high wind resource region of the eastern...

  14. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Saver

    for researchers to learn about offshore wind and Principle Power will install five 6-MW turbines on semi-submersible platforms in the deep waters off the coast of Coos Bay, Oregon. ...

  15. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    SciTech Connect

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  16. Xcel Energy Wind and Biomass Generation Mandate

    Energy.gov [DOE]

    A separate law (Minn. Stat. 216B.2424, also originally enacted in 1994) requires Xcel Energy to build or contract for 110 MW of electricity generated from biomass resources. The original...

  17. Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects...

    Office of Environmental Management (EM)

    Unveils 41 New Offshore Wind Power R&D Projects Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects September 8, 2011 - 11:13am Addthis Chris Hart Offshore Wind Team ...

  18. Assiniboine and Sioux Tribes at Fort Peck - Wind Energy Development Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Brignolo Joseph Brignolo Vice President, Operations and Program Development, FAI Project Manager/Technical Director, Fort Peck Wind Development Project Vice President, Operations and Program Development, FAI Project Manager/Technical Director, Fort Peck Wind Development Project ASSINIBOINE & SIOUX TRIBES at FORT PECK WIND ENERGY DEVELOPMENT PROJECT ASSINIBOINE & SIOUX TRIBES at FORT PECK WIND ENERGY DEVELOPMENT PROJECT Fort Peck Fort Peck PROJECT OVERVIEW PROJECT OVERVIEW Buy and Install

  19. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  20. Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    van Dam, J.; Baker, D.; Jager, D.

    2010-05-01

    This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  1. EA-1824: Record Hill Wind Project in Roxbury, ME | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Record Hill Wind Project in Roxbury, ME EA-1824: Record Hill Wind Project in Roxbury, ME July 1, 2011 EA-1824: Final Environmental Assessment Loan Guarantee to Record Hill Wind, LLC for Construction of a Wind Energy Project in Roxbury, Maine July 11, 2011 EA-1824: Finding of No Significant Impact Loan Guarantee to Record Hill Wind, LLC, for the Record Hill Wind Project, Maine

  2. EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 01: Granite Reliable Power Wind Park Project in Coos County, NH EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH June 25, 2010 EA-1801: Final Environmental Impact Granite Reliable Power Wind Project, Coos County, New Hampshire July 23, 2010 EA-1801: Finding of No Significant Impact Granite Reliable Power Wind Project, Coos County, New Hampshire

  3. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  4. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  5. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  6. Evaluation of wind/tornado-generated missile impact

    SciTech Connect

    Singhal, M.K.; Walls, J.C.

    1993-09-01

    Simplified empirical formulae and some tabular data for the design/evaluation of structure barriers to resist wind/tornado generated missiles impact are presented in this paper. The scope is limited to the missiles defined by UCRL-15910 which are to be considered for moderate and high hazard facilities only. The method presented herein are limited to consideration of local effects on the barrier, i.e., the barrier must be capable of stopping the missile, and the barrier must no cause the generation of secondary missiles due to scabbing. Overall structural response to missile impact and structural effects derived from wind pressure are not addressed in this paper.

  7. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  8. Testing of a direct drive generator for wind turbines

    SciTech Connect

    Sondergaard, L.M.

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  9. Accelerating Offshore Wind Development | Department of Energy

    Energy.gov [DOE] (indexed site)

    The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. ...

  10. EA-1825: Limon Wind Project, Lincoln County, Colorado

    Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposal to interconnect the proposed Limon Wind Project, in Lincoln County, Colorado, to Western’s transmission grid. NOTE: Proponent has postponed development of the project and withdrawn its interconnection requeest with WAPA.

  11. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  12. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    SciTech Connect

    1999-02-01

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  13. Digital Book Showcases Washington Wind Project

    Energy.gov [DOE]

    "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project, from prospecting to harvest.

  14. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOEpatents

    Bagepalli, Bharat; Barnes, Gary R.; Gadre, Aniruddha D.; Jansen, Patrick L.; Bouchard, Jr., Charles G.; Jarczynski, Emil D.; Garg, Jivtesh

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  15. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Energy.gov [DOE] (indexed site)

    Read the full article: Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project Addthis Related Articles Energy Department Offers Conditional ...

  16. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  17. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  18. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  19. Session: Monitoring wind turbine project sites for avian impacts

    SciTech Connect

    Erickson, Wally

    2004-09-01

    This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

  20. EA-1777: Lincoln Electric's Wind Energy Project in Euclid, OH

    Energy.gov [DOE]

    Lincoln Electric proposes to construct and operate a 2.5 MW single turbine wind energy project at Lincoln Electric’s World Headquarters facility located at 22800 Saint Clair Avenue, Euclid, Ohio. The wind turbine would provide 2.5 MW of renewable energy to fulfill up to ten percent (10%) of the Lincoln Electric Headquarters’ annual electricity demand and help to reduce greenhouse gas emissions.

  1. Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project

    SciTech Connect

    Not Available

    2006-01-01

    In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.

  2. Regional Test Centers Project Expands U.S. Small Wind Certification...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Regional Test Centers Project Expands U.S. Small Wind Certification Testing Capability ... partners to establish small wind Regional Test Centers (RTCs) to conduct tests on small ...

  3. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  4. French wind power generation programme EOLE 2005 - first results

    SciTech Connect

    Laali, A.R.; Benard, M.

    1997-12-31

    EOLE 2005 has been launched in July 1996 by the French Ministry of Industry, Electricite de France and ADEME (Agency for Environment and Energy Management). The Ministries of Research and Environment are participating also in this programme. The purpose is to create an initial market in France for wind power generation in order to evaluate the cost-effectiveness and the competitiveness of the wind energy compared to other energy sources by 2005. The installed capacity will reach at least 250 MW and possibly 500 MW.

  5. A Review of Wind Project Financing Structures in the USA

    SciTech Connect

    Bolinger, Mark A; Harper, John; Karcher, Matthew

    2008-09-24

    The rapid pace of wind power development in the U.S. over the last decade has outstripped the ability of most project developers to provide adequate equity capital and make efficient use of project-related tax benefits. In response, the sector has created novel project financing structures that feature varying combinations of equity capital from project developers and third-party tax-oriented investors, and in some cases commercial debt. While their origins stem from variations in the financial capacity and business objectives of wind project developers, as well as the risk tolerances and objectives of equity and debt providers, each structure is, at its core, designed to manage project risk and allocate federal tax incentives to those entities that can use them most efficiently. This article surveys the six principal financing structures through which most new utility-scale wind projects (excluding utility-owned projects) in the U.S. have been financed from 1999 to the present. These structures include simple balance-sheet finance, several varieties of all-equity special allocation partnership 'flip' structures, and two leveraged structures. In addition to describing each structure's mechanics, the article also discusses its rationale for use, the types of investors that find it appealing and why, and its relative frequency of use in the market. The article concludes with a generalized summary of how a developer might choose one structure over another.

  6. Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System

    SciTech Connect

    Chin, H S

    2005-07-26

    Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and

  7. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect

    N /A

    1999-03-02

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The

  8. Electrical generation using a vertical-axis wind turbine

    SciTech Connect

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  9. Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines

    SciTech Connect

    Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

    2004-11-16

    In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

  10. Wind Power Project Repowering: History, Economics, and Demand (Presentation)

    SciTech Connect

    Lantz, E.

    2015-01-01

    This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

  11. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations | Department of Energy The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast Improvement

  12. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  13. Removable bearing arrangement for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  14. EERE Success Story-Enhanced Efficiency of Wind-Diesel Power Generation...

    Office of Environmental Management (EM)

    Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages EERE Success Story-Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages June 17, 2014 - ...

  15. More wind generation means lower GHG emissions, right?

    SciTech Connect

    2010-11-15

    The answer to what will be the net effect of an x percent increase in wind generation on GHG emissions in a given system is not a simple y percent -- but is likely to depend on many variables, assumptions, modeling, and number crunching. But the result is important, and hence there has been a flurry of contradictory studies, confusing policymakers and the general public alike. While one can certainly find exceptions, under most circumstances, more renewable generation can be expected to result in lower GHG emissions.

  16. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  17. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  18. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  19. EA-1801: Granite Reliable Power Wind Park Project in Coos County...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    01: Granite Reliable Power Wind Park Project in Coos County, NH EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH June 25, 2010 EA-1801: Final Environmental ...

  20. 41 Offshore Wind Power R&D Projects Receive Energy Department...

    Energy Saver

    1 Offshore Wind Power R&D Projects Receive Energy Department Funding 41 Offshore Wind Power R&D Projects Receive Energy Department Funding September 7, 2011 - 3:02pm Addthis ...

  1. DOE Selects 53 New Projects Focused on Wind Energy for up to...

    Energy Saver

    53 New Projects Focused on Wind Energy for up to 8.5 Million DOE Selects 53 New Projects Focused on Wind Energy for up to 8.5 Million May 6, 2009 - 12:00am Addthis WASHINGTON, DC ...

  2. Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006

    SciTech Connect

    Mikhail, A.

    2009-01-01

    This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

  3. EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas

    Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

  4. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  5. Pre-construction Activities for Phase 1 of Shu'luuk Wind Project

    SciTech Connect

    Connolly, Michael

    2015-07-01

    Final Report on pre-construction activities grant for the Shu'luuk Wind project on the Campo Indian Reservation

  6. Generating Energy Efficiency Project Leads and Allocating Leads...

    Energy Saver

    Generating Energy Efficiency Project Leads and Allocating Leads to Contractors Better Buildings Residential Network Peer Exchange Call Series: Generating Energy Efficiency Project ...

  7. Wind Generation in the Future Competitive California Power Market

    SciTech Connect

    Sezgen, O.; Marnay, C.; Bretz, S.

    1998-03-01

    The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in

  8. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  9. EIS-0183: Shepherds Flat Wind Project in Gilliam and Morrow counties, OR |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 183: Shepherds Flat Wind Project in Gilliam and Morrow counties, OR EIS-0183: Shepherds Flat Wind Project in Gilliam and Morrow counties, OR Documents Available for Download October 19, 2010 EIS-0183: Revised Record of Decision Offer of Conditional Commitment for a Loan Guarantee for, and Electrical Interconnection of, the Shepherds Flat Wind Project; Bonneville Power Administration

  10. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  11. The T-REX valley wind intercomparison project

    SciTech Connect

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  12. Feasibility Study of Economics and Performance of Wind Turbine Generators at the Newport Indiana Chemical Depot Site

    SciTech Connect

    Roberts, Joseph Owen; Mosey, Gail

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Newport Indiana Chemical Depot site in Newport, Indiana, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the sitefor possible wind turbine electrical generator installation and estimate the cost, performance, and site impacts of different wind energy options. In addition, the report recommends financing options that could assist in the implementation of a wind system at the site.

  13. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  14. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    SciTech Connect

    Saur, G.

    2008-12-01

    This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

  15. Renewable Generation Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation Inc Jump to: navigation, search Name: Renewable Generation Inc Place: Austin, Texas Sector: Wind energy Product: Developer of utility-scale wind projects. References:...

  16. Energy Department Announces New Projects to Help Protect Wildlife at Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Plants | Department of Energy Projects to Help Protect Wildlife at Wind Energy Plants Energy Department Announces New Projects to Help Protect Wildlife at Wind Energy Plants April 14, 2015 - 1:08pm Addthis The Energy Department today announced more than $1.75 million for five projects that will develop and demonstrate technologies to reduce the potential impacts of wind farms on sensitive bat species. A current challenge facing wind energy developers in the United States is how to

  17. Stationary/Distributed Generation Projects | Department of Energy

    Office of Environmental Management (EM)

    StationaryDistributed Generation Projects Stationary power is the most mature application for fuel ... co-generation (in which excess thermal energy from electricity generation ...

  18. Zhejiang Windey Wind Generating Engineering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhejiang Province, China Zip: 313200 Sector: Wind energy Product: Engaged in the marketing, technical development of wind turbines, quality control, assembly and after sales...

  19. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Energy Saver

    Changed to Wind, Solar, Conservation & Utility Changes DOE Tribal Energy Program Review October 23 - 27, 2006 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power ...

  20. Regulatory Considerations for Developing Generation Projects on Federal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lands | Department of Energy Regulatory Considerations for Developing Generation Projects on Federal Lands Regulatory Considerations for Developing Generation Projects on Federal Lands Presentation covers regulatory considerations for developing generation projects on federal lands. Download the presentation on regulatory considerations for developing generation projects on federal lands. (309.17 KB) More Documents & Publications Coordinating Interstate ElectricTransmission Siting: An

  1. RECONNECTION OUTFLOW GENERATED TURBULENCE IN THE SOLAR WIND

    SciTech Connect

    Vrs, Z.; Sasunov, Y. L.; Zaqarashvili, T. V.; Khodachenko, M.; Semenov, V. S.; Bruno, R.

    2014-12-10

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the generation of local turbulence in the solar wind. Comparing TDR/QSR model predictions of the outflow structures with actual measurements shows that both models can explain the data equally well. It is demonstrated that the outflows can often generate more or less spatially extended turbulent boundary layers. The structure of a unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and spectral break locations shows that reconnection can change the local field and plasma conditions which may support different local turbulent dissipation mechanisms at their characteristic wavenumbers.

  2. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Energy.gov [DOE] (indexed site)

    Turbines at the National Wind Technology Center in Boulder, Colorado. The 2013 Wind Technologies Market Report includes a new chapter that focuses on trends in wind turbine ...

  3. EIS-0413: Searchlight Wind Energy Project, Searchlight, NV

    Energy.gov [DOE]

    The Department of the Interiors Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western.

  4. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  5. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  6. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

  7. MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Overseeing Organization Tidal Generation Ltd Project Technology *MHK TechnologiesDeep Gen Tidal Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See...

  8. (Wind generation in Washington). Final progress report, January 1, 1984-April 30, 1985

    SciTech Connect

    James, J.W.

    1985-05-13

    A chronology of events describing the activities completed in a wind energy project is presented. The goal of the project was to use energy from a wind turbine to preheat hot water for a Ridgefield, Washington residence. The turbine operated successfully in the spring of 1984 until the yaw mechanism and prop began to fail. An output performance sheet is included which provides estimated energy outputs and wind speeds measured from the year 1979. (BCS)

  9. Relationship Between Wind Generation and Balancing Energy Market Prices in ERCOT: 2007-2009

    SciTech Connect

    Nicholson, E.; Rogers, J.; Porter, K.

    2010-11-01

    This paper attempts to measure the average marginal effects of wind generation on the balancing-energy market price in ERCOT with the help of econometric analysis.

  10. Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation

    Energy.gov [DOE]

    This report discusses linkages from the U.S. Department of Energy's Wind Energy Program research and development to commercial renewable power generation.

  11. Hanford Generating Project (HGP) Repowering Analysis.

    SciTech Connect

    Fluor Daniel Fernald

    1988-12-01

    The Hanford Generating Project (HGP), owned by the Washington Public Power Supply System, consists of two low pressure steam turbines, generators, and associated equipment located adjacent to the Department of Energy's (DOE) N-Reactor. HGP has been able to produce approximately 800 MWe with low pressure steam supplied by N-Reactor. DOE has placed N-Reactor in cold standby status for an undetermined length of time. This results in the idling of the HGP since no alternative source of steam is available. Bonneville Power Administration contracted with Fluor Daniel, Inc. to investigate the feasibility and cost of constructing a new source of steam for (repowering) one of the HGP turbines. The steam turbine is currently operated with 135 psia steam. The turbines can be rebuilt to operate with 500 psia steam pressure by adding additional stages, buckets, nozzles, and diaphragms. Because of the low pressure design, this turbine can never achieve the efficiencies possible in new high pressure turbines by the presences of existing equipment reduces the capital cost of a new generating resource. Five repowering options were investigated in this study. Three cases utilizing gas turbine combined cycle steam generation equipment, one case utilizing a gas fired boiler, and a case utilizing a coal fired boiler. This report presents Fluor Daniel's analysis of these repowering options.

  12. New Superconducting Magnet Will Lead to Next Generation of Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generators | Department of Energy Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators New Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators September 12, 2014 - 11:08am Addthis AML Superconductivity and Magnetics, in conjunction with the U.S. Department of Energy's (DOE's) Argonne National Laboratory, recently announced that their superconducting magnet system passed a landmark reliability test, demonstrating its potential suitability

  13. Projecting changes in annual hydropower generation using regional...

    Office of Scientific and Technical Information (OSTI)

    generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. ...

  14. EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to authorize the expenditure of Federal funding through the Community Renewable Energy Deployment Program to Phillips County for design, permitting, and construction of an approximately 30-megawatt wind energy project, known as Haxtun Wind Project, within Phillips and Logan counties in northeastern Colorado. The proposed project consists of 18 wind turbines that would interconnect to the Highline Electric Cooperative equipment inside Western Area Power Administration's Haxtun substation just south of the Town of Haxtun.

  15. DOE and NREL Issue Sources Sought for Wind for Schools Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainability Plan | Department of Energy NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan DOE and NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan January 12, 2016 - 12:55pm Addthis The National Renewable Energy Laboratory (NREL), in collaboration with the U.S. Department of Energy (DOE), today issued a formal notice of intent for organizations interested in developing a Sustainability Plan for the Wind for Schools project. This formal

  16. New Report Highlights Trends in Offshore Wind with 14 Projects Currently In

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Stages of Development | Department of Energy Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development September 3, 2014 - 10:57am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market over the past year, including two projects that have moved into the initial stages of

  17. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    SciTech Connect

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  18. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  19. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  20. EIS-0183: Shepherds Flat Wind Project in Gilliam and Morrow counties...

    Energy.gov [DOE] (indexed site)

    October 19, 2010 EIS-0183: Revised Record of Decision Offer of Conditional Commitment for a Loan Guarantee for, and Electrical Interconnection of, the Shepherds Flat Wind Project; ...

  1. Wind Energy 101 Webinar Series Part 5: Project Development and Siting

    Energy.gov [DOE]

    During this webinar, gain a better understanding of the various phases wind projects, the development timeline and siting process.  Session will include:

  2. DOE Announces Nearly $14 Million to go to 28 New Wind Energy Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 4 Million to go to 28 New Wind Energy Projects DOE Announces Nearly $14 Million to go to 28 New Wind Energy Projects July 16, 2009 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu today announced the selection of 28 new wind energy projects for up to $13.8 million in funding - including $12.8 million in Recovery Act funds. These projects will help address market and deployment challenges including wind turbine research and testing and

  3. Hardin-Hilltop Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Community wind Developer Community wind Energy Purchaser Alliant Location Greene County IA Coordinates 42.086204, -94.349999 Show Map Loading map... "minzoom":false,"mappings...

  4. Offshore Wind Project Surges Ahead in South Carolina

    Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  5. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  6. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  7. EIS-0470: U.S. Department of Energy Loan Guarantee for the Cape Wind Energy Project on the Outer Continental Shelf off Massachusetts, Nantucket Sound

    Energy.gov [DOE]

    The DOE Loan Programs Office is proposing to offer a loan guarantee to Cape Wind Associates, LLC for the construction and start-up of the Cape Wind Energy Project in Nantucket Sound, offshore of Massachusetts. The proposed Cape Wind Energy Project would consist of up to 130, 3.6-MW turbine generators, in an area of roughly 25-square miles, and would include 12.5 miles of 115-kilovolt submarine transmission cable and an electric service platform. To inform DOE's decision regarding a loan guarantee, DOE adopted the Department of the Interior’s 2009 Final Cape Wind Energy Project EIS, in combination with two Cape Wind Environmental Assessments dated May 2010 and April 2011 (per 40 CFR 1506.4), as a DOE Final EIS (DOE/EIS-0470). The adequacy of the Department of the Interior final EIS adopted by DOE is the subject of a judicial action. This project is inactive.

  8. Secretary Chu Announces $45 Million to Support Next Generation of Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbine Designs | Department of Energy 5 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces $45 Million to Support Next Generation of Wind Turbine Designs November 23, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the selection of Clemson University to receive up to $45 million under the American Recovery and Reinvestment Act for a wind energy test facility that will enhance the performance, durability,

  9. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  10. Generating Economic Development from a Wind Power Plant in Spanish...

    WindExchange

    of the utility companies. In Utah, the Commission is responsible for determining avoided cost rates for qualifying facilities. As will be noted later, the Spanish Fork Wind...

  11. Enhanced Efficiency of Wind-Diesel Power Generation in Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... CWG community members review structural plans as part of their wind turbine training in ... Solutions to Native Alaska Energy Challenges USDA Helps Reduce High Energy Costs ...

  12. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Agency for International Development Sector: Energy Focus Area: Wind Resource Type: Training materials Website: www.energytoolbox.orggcremod6index.shtml Grid-Connected...

  13. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  14. Project Notebook - Makah Indian Nation "Next Steps to Implement...

    Energy.gov [DOE] (indexed site)

    Makah Indian Nation "Next Steps to Implement Pilot Power Project for Pacific Northwest Region" Project Overview Wind Power and Other Generation Wind Resource marginal Other ...

  15. Current projects of the National Wind Coordinating Committee

    SciTech Connect

    Rhoads, H.

    1997-12-31

    This paper summarizes the activities of the National Wind Coordinating Committee (NWCC), a multi-stakeholder collaborative formed in 1994 to support the responsible use of wind power in the USA. The NWCC`s vision is a self-sustaining commercial market for wind power - environmentally, economically, and politically sustainable. Current NWCC activities include: outreach initiatives, disseminating information about wind energy to regulators and legislators through the Wind Energy Issue Paper Series, researching distributed wind energy models, producing a wind facility permitting handbook, improving avian research, addressing transmission and resource assessment issues, and exploring sustainable development and marketing approaches.

  16. Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)

    SciTech Connect

    Lantz, E.; Flowers, L.

    2010-05-01

    Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

  17. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  18. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  19. Wind and solar power electric generation to see strong growth over the next two years

    Energy Information Administration (EIA) (indexed site)

    Wind and solar power electric generation to see strong growth over the next two years The amount of electricity generated by wind in the United States is expected to increase by 15 percent this year...and grow another 8 percent in 2014. The U.S. Energy Information Administration's new monthly Short-Term Energy Outlook says the increase in wind power will be due to the new wind turbines coming online thanks to the federal production tax credit that was recently extended by Congress. Solar power

  20. North Dakota Company Wins Praise for Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of