National Library of Energy BETA

Sample records for wells total number

  1. Total Number of Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  2. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  3. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  4. Texas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  5. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  6. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  7. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  8. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  9. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  10. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  11. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  12. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  13. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  14. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  15. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  16. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  17. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  18. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  19. California Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  20. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  1. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  2. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  3. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  4. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  5. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  6. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  7. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  8. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  9. Notices Total Estimated Number of Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  10. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  11. Number of Gas Producing Oil Wells

    Gasoline and Diesel Fuel Update

    73 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential sector, 2015 Figure 26. Top Five States with Participants in a Residential Customer Choice Program, 2015 California 10,969,597 6,712,311 441,523 Colorado 1,712,153 1,254,056 0 Connecticut 531,380 1,121 340 District of Columbia 147,895 147,867 17,167 Florida 701,981 17,626 16,363 Georgia 1,777,558 1,468,084 1,468,084

  12. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  13. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  14. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  15. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  16. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  17. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  18. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  19. New York Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  20. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  1. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  2. Total number of longwall faces drops below 50

    SciTech Connect

    Fiscor, S.

    2009-02-15

    For the first time since Coal Age began its annual Longwall Census the number of faces has dropped below 50. A total of five mines operate two longwall faces. CONSOL Energy remains the leader with 12 faces. Arch Coal operates five longwall mines; Robert E. Murray owns five longwall mines. West Virginia has 13 longwalls, followed by Pennsylvania (8), Utah (6) and Alabama (6). A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs., 1 photo.

  3. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5 5 4 4 2000's 4 4 4 4 4 4 4 4 0 0 2010's 0 0 0 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Producing Gas

  4. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 1,027 1,027 1,089 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  5. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 155 159 133 128 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  6. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 7 7 7 5 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  7. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 1990's 8 6 5 8 12 15 24 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 19 15 7 6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  8. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15 1990's 11 12 22 59 87 87 88 91 95 96 2000's 98 96 106 109 111 114 114 186 322 285 2010's 276 307 299 246 109 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  9. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 28 24 24 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  10. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 274 281 300 338 329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 4 3 6 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  12. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  13. Federal Offshore--Gulf of Mexico Natural Gas Number of Oil Wells (Number of

    Gasoline and Diesel Fuel Update

    Condensate Wells (Number of Elements) Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 NA 2000's NA 3,271 3,245 3,039 2,781 2,123 2,419 2,552 1,527 1,984 2010's 1,852 2,226 1,892 1,588 1,377 1,163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 139,368 140,087 140,964 142,292 142,368 - = No Data Reported; -- = Not Applicable; NA = Not

  15. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 574,593 577,916 572,742 565,951 555,364 - = No Data Reported; -- = Not

  16. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 61,815 62,922 61,838 67,621 68,536 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,309 1990's 16,889 15,271 13,512 15,569 12,958 14,169 15,295 14,958 18,399 16,717 2000's 15,700 16,350 17,100 16,939 20,734 18,838 17,459 18,145 19,213 18,860 2010's 19,137 19,318 19,345 18,802 18,660 18,382 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,207 1990's 1,438 2,620 3,257 5,500 6,000 5,258 5,826 6,825 7,000 6,750 2000's 7,068 7,425 7,700 8,600 8,500 8,900 9,200 9,712 9,995 10,600 2010's 10,100 10,480 10,381 10,322 10,246 9,929 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 1,703 1,666 1,632 1,594 1,560 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,615 6,366 5,870 5,682 5,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 31,966 31,647 30,804 31,060 26,599 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  2. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 51,712 51,472 50,606 50,044 49,852 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 6,243 6,203 6,174 6,117 6,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,428 9,012 9,324 9,778 9,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 4,240 4,356 4,183 4,211 4,209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 43,792 46,141 46,883 46,876 46,322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,362 25,013 24,802 24,840 24,451 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  9. Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,248 1990's 11,713 12,169 12,483 12,836 13,036 13,311 13,501 13,825 14,381 14,750 2000's 13,487 14,370 14,367 12,900 13,920 14,175 15,892 16,563 16,290 17,152 2010's 17,670 12,708 13,179 14,557 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  11. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  12. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  13. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  14. Award Number: Federal Non-Federal Federal Non-Federal Total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Number: Federal Non-Federal Federal Non-Federal Total (a) (b) (c ) (d) (e) (f) (g) 1. $0 2. $0 3. $0 4. $0 5. Totals $0 $0 $0 $0 $0 (1) (2) (3) (4) $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 7. $0 SF-424A (Rev. 4-92) Prescribed by OMB Circular A-102 Previous Edition Usable Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct

  15. OSTI Increases Total Number of Documents Available to the Public | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information Increases Total Number of Documents Available to the Public Back to the OSTI News Listing for 2005 OSTI is pleased to announce the addition of full-text reports from 1994 in digital form to the DOE Information Bridge, bringing the currently viewable total to more than 108,000 DOE scientific and technical reports

  16. OSTI Increases Total Number of Documents Available to the Public | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information addition of 1994 full-text records in digital form to the DOE Information Bridge, increasing by more than 15 percent the total number of documents available to the public through this Web product. Currently viewable are more than 108,000 DOE scientific and technical reports

  17. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    Energy Information Administration (EIA) (indexed site)

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion

  18. Effective atomic numbers and mass attenuation coefficients of some thermoluminescent dosimetric compounds for total photon interaction

    SciTech Connect

    Shivaramu; Amutha, R.; Ramprasath, V.

    1999-05-01

    Effective atomic numbers for total gamma-ray interaction with some selected thermoluminescent dosimetric compounds such as barium acetate, barium sulfate, calcium carbonate, calcium sulfate, calcium sulfate dihydrate, cadmium sulfate (anhydrous), cadmium sulfate, strontium sulfate, and lithium fluoride have been calculated in the 1-keV to 20-MeV energy region. Experimental mass attenuation coefficients and effective atomic numbers for these compounds at selected photon energies of 26.3, 33.2, 59.54, and 661.6 keV have been obtained from good geometry transmission measurements and compared with theoretical values. The effect of absorption edge on effective atomic numbers and its variation with energy, and nonvalidity of the Bragg`s mixture rule at incident photon energies closer to the absorption edges of constituent elements of compounds are discussed.

  19. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    Energy Information Administration (EIA) (indexed site)

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," "

  20. Graph of Total Number of Oligos Within Windows of a Sequence

    Energy Science and Technology Software Center

    1995-11-28

    SEQWIN is user-friendly software which graphs the total number of oligos present in a sequence. The sequence is scanned one window at a time; windows can be overlapping. Each bar on the graph represents a single window down the sequence. The user specifies the sequence of interest and a list of oligos as program input. If the sequence is known, locations of specific structure or sequences can be specified and compared with the bars onmore » a graph. The window size, amount of overlap of the windows, number of windows to be considered, and the starting position of the first window used can be adjusted at the user's discretion.« less

  1. Total

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  2. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  3. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  4. Total............................................................

    Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  5. Award Number: Federal Non-Federal Federal Non-Federal Total

    Gasoline and Diesel Fuel Update

    Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised ... Program Income Total (5) f. Contractual g. Construction Section B - Budget Categories ...

  6. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  7. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  8. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  9. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  10. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  11. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  12. Total

    Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  13. Award Number: Federal Non-Federal Federal Non-Federal Total

    Energy.gov [DOE] (indexed site)

    Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a....

  14. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  15. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  16. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  17. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  18. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  19. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  20. Total................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  1. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  2. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  3. Total.........................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  4. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  5. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  6. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  7. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  8. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  9. U.S. Natural Gas Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    (Percent) Commercial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Commercial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10.9 1990's 13.4 14.9 16.8 16.1 20.7 23.3 22.4 29.2 33.0 33.9 2000's 36.1 34.0 36.4 34.9 35.9 35.0 36.3 37.6 38.1 40.8 2010's 42.5 44.2 46.8 46.1 46.2 46.6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells

    Energy.gov [DOE]

    RICHLAND, Wash. – Workers at the Hanford Site have surpassed goals for drilling wells to detect and remove contamination from groundwater.

  11. Number of Producing Gas Wells

    Gasoline and Diesel Fuel Update

    Area 2010 2011 2012 2013 2014 2015 View History U.S. 487,627 574,593 577,916 572,742 565,951 555,364 1989-2015 Alabama 7,026 6,243 6,203 6,174 6,117 6,044 1989-2015 Alaska 269 274 ...

  12. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Delaware - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals

  13. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Massachusetts - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross

  14. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    886,608 Computer Sciences Corporation DE-AC06-04RL14383 895,358 899,230 907,583 Cost Plus Award Fee 134,100,336 8,221,404 Fee Available Contract Period: Fee Information...

  15. Number of Gas Producing Oil Wells

    Energy Information Administration (EIA) (indexed site)

    & Notes Definitions, Sources & Notes Area 2011 2012 2013 2014 2015 View History U.S. ... Louisiana 5,201 5,057 5,078 5,285 4,968 2011-2015 Maryland 0 0 0 0 0 2011-2015 Michigan 51...

  16. Number of Producing Gas Wells (Summary)

    Annual Energy Outlook

    Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and ...

  17. Number of Gas Producing Oil Wells (Summary)

    Energy Information Administration (EIA) (indexed site)

    2011 2012 2013 2014 2015 View History U.S. 181,241 195,869 203,990 215,815 215,867 2011-2015 Federal Offshore Gulf of Mexico 3,046 3,012 3,022 3,038 2,965 2011-2015 Alabama 346 367 402 436 414 2011-2015 Alaska 2,040 1,981 2,006 2,042 2,096 2011-2015 Arizona 1 1 1 0 1 2011-2015 Arkansas 165 174 218 233 240 2011-2015 California 25,958 26,061 26,542 26,835 27,075 2011-2015 Colorado 5,963 6,456 6,799 7,771 7,733 2011-2015 Florida 30 33 32 30 29 2011-2015 Illinois NA NA NA NA NA 2011-2015 Indiana NA

  18. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    SciTech Connect

    Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo; Suzuki, Hidetoshi; Fujii, Hiromasa; Nakano, Yoshiaki; Sugiyama, Masakazu

    2015-02-28

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.

  19. Number | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  20. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Alabama - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 346 367 402 436 414 Gas Wells R 6,243 R 6,203 R 6,174 R 6,117 6,044 Production

  1. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Alaska - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2,040 1,981 2,006 2,042 2,096 Gas Wells R 274 R 281 R 300 R 338 329 Production

  2. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Colorado - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,963 6,456 6,799 7,771 7,733 Gas Wells R 43,792 R 46,141 R 46,883 R 46,876

  3. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 District of Columbia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic

  4. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Hawaii - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  5. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Idaho - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  6. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    20 Maine - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  7. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Mississippi - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 561 618 581 540 501 Gas Wells R 1,703 R 1,666 R 1,632 R 1,594 1,560

  8. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Montana - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 1,956 2,147 2,268 2,377 2,277 Gas Wells R 6,615 R 6,366 R 5,870 R 5,682 5,655

  9. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 New Mexico - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 12,887 13,791 14,171 14,814 14,580 Gas Wells R 40,231 R 40,441 R 40,119 R

  10. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 New York - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 988 1,170 1,589 1,731 1,697 Gas Wells R 7,372 R 7,731 R 7,553 R 7,619 7,605

  11. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 North Dakota - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,561 7,379 9,363 11,532 12,799 Gas Wells R 526 R 451 R 423 R 398 462

  12. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Ohio - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,775 6,745 7,038 7,257 5,941 Gas Wells R 31,966 R 31,647 R 30,804 R 31,060 26,599

  13. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Oklahoma - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,723 7,360 8,744 7,105 8,368 Gas Wells R 51,712 R 51,472 R 50,606 R 50,044

  14. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Oregon - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells R 28 R 24 R 24 R 12 14 Production (million cubic feet) Gross

  15. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Pennsylvania - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 7,046 7,627 7,164 8,481 7,557 Gas Wells R 61,815 R 62,922 R 61,838 R

  16. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Tennessee - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 52 75 NA NA NA Gas Wells R 1,027 R 1,027 1,089 NA NA Production (million cubic

  17. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Texas - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 85,030 94,203 96,949 104,205 105,159 Gas Wells R 139,368 R 140,087 R 140,964 R 142,292

  18. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Utah - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 3,119 3,520 3,946 4,249 3,966 Gas Wells R 7,603 R 8,121 R 8,300 R 8,537 8,739 Production

  19. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Virginia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2 1 1 2 2 Gas Wells R 7,781 R 7,874 7,956 R 8,061 8,111 Production (million

  20. Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  1. Total Imports

    Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  2. Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar power Finished groundwater well head with solar power How does LANL determine where to put a monitoring well? Project teams routinely review groundwater monitoring data to verify adequate placement of wells and to plan the siting of additional wells as needed. RELATED IMAGES

  3. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  4. Request Number:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  5. Monitoring well

    DOEpatents

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  6. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  7. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  8. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  9. (Document Number)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  10. Total Natural Gas Underground Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources ...

  11. Total Number of Existing Underground Natural Gas Storage Fields

    Annual Energy Outlook

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 411 410 414 ... Oklahoma 13 13 13 13 13 13 1989-2015 Oregon 7 7 7 7 7 7 1989-2015 Pennsylvania 51 51 51 51 ...

  12. DOE Project Number Project Name Site Critical Decision Total...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (UVS) Carlsbad CD0 309,000,000 010121 CBC-ETEC-0040.C1 Energy Technology Engineering ... CBC-LBNL-0040.C1 Old Town Demolition Project, Phase 1 Project Lawrence Berkeley National ...

  13. Total Number of Existing Underground Natural Gas Storage Fields

    Energy Information Administration (EIA) (indexed site)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013...

  14. U.S. Dry Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,369 1950's 6,507 7,487 7,669 7,816 8,541 8,620 8,993 8,252 7,530 8,012 1960's 8,697 8,309 8,263 8,076 8,743 8,221 6,808 5,886 5,373 5,735 1970's 4,869 4,357 4,757 4,368 5,283 6,517 6,986 7,702 8,586 8,662 1980's 11,704 15,553 15,072 14,149 14,563 12,257 7,232 6,115 5,408 4,302 1990's 4,703 4,492 3,734 4,004 3,050 3,040 3,341 3,777 3,156 2,337 2000's 2,805 2,865 2,472 2,685 2,732 3,191 3,659 3,399 3,708 2,470

  15. U.S. Dry Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 7,228 1950's 8,292 9,539 10,090 10,633 10,389 11,832 13,118 11,904 10,632 10,577 1960's 9,515 9,022 8,815 8,686 8,951 8,005 8,419 7,360 7,439 8,001 1970's 6,162 5,952 6,134 5,952 6,833 7,129 6,772 7,283 7,965 7,437 1980's 9,081 12,400 11,307 10,206 11,321 8,954 5,567 5,052 4,711 3,934 1990's 3,793 3,390 2,550 2,509 2,465 2,279 2,246 2,178 1,649 1,167 2000's 1,341 1,733 1,282 1,297 1,350 1,462 1,547 1,582 1,715

  16. U.S. Dry Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    U.S. DEPARTMENT OF ENERGY U.S. ENERGY INFORMATION ADMINISTRATION Washington, DC 20585 OMB No. 1905-0174 Form Expires: 09/30/2017 Version No. : 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2014 This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. Title 18 USC 1001 makes it a criminal offense for any person knowingly

  17. U.S. Dry Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 538 411 431 367 454 477 530 601 502 551 501 589 1974 490 486 492 532 570 556 608 617 590 622 644 626 1975 624 453 572 551 543 539 623 595 611 689 638 691 1976 679 523 596 538 501 535 526 548 574 593 572 587 1977 549 480 566 527 586 570 593 590 682 716 695 729 1978 653 537 629 624 624 645 699 678 689 765 701 721 1979 572 471 527 530 561 603 612 712 679 732 714 724 1980 724 614 617 629 683 757 772 839 845 845 838 918 1981 1,014 812 914 919

  18. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  19. Total Crude by Pipeline

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  20. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  1. Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and...

    Energy Information Administration (EIA) (indexed site)

    Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) Federal Offshore ...

  2. Monitoring Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013 Topographic map showing placement of monitoring wells Topographic map showing placement of monitoring wells

  3. Monitoring Well Placement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013...

  4. Well Monitoring Systems for EGS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well Monitoring Systems for EGS Principal Investigator: Randy Normann Track: 2, HT Tools Project Officer: Bill Vandermeer Total Project Funding: $2,869,978 March 14th, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 3600 SqFt Both electronic and machine shops 9916 Bell Ave SE Albuquerque, NM 87123 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research, Pg 1 Objective of our project is to develop a well monitoring

  5. Well Placement Decision Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Well Placement Decision Process Well Placement Decision Process Determining where to place a well is a multi-step process. August 1, 2013 Investigation process for determining where to place a sentinel well Investigation process for determining where

  6. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  7. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  10. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  13. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  14. Parallel Total Energy

    Energy Science and Technology Software Center

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  15. NSR Key Number Retrieval

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  16. Compendium of Experimental Cetane Numbers

    SciTech Connect

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  17. Modular redundant number systems

    SciTech Connect

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  18. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  19. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0 0 0 Repressuring 0 0 0 0 0 Vented and Flared 0 0 0 0 0 ...

  20. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gas Wells 34 44 32 20 27 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 34 44 32 20 27 Repressuring 0 0 0 0 0 Vented and Flared 0 0 0 0 ...

  1. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gas Wells 0 0 8 R 3 1 From Oil Wells 0 0 1 * 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 9 R 3 1 Repressuring 0 0 0 0 0 Vented and Flared 0 0 0 0 0 ...

  2. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    From Gas Wells 0 0 0 * 1 From Oil Wells 3 4 3 3 3 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 3 4 3 3 3 Repressuring 0 0 0 0 0 Vented and Flared 0 0 0 0 0 ...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  4. ARM - Measurement - Total carbon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  5. Big Numbers | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Big Numbers Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of

  6. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  7. Oil well standing valve

    SciTech Connect

    Holland, R. A.; Brennan, J. R.; Christ, F. C.; Petrie, H. L.

    1985-05-28

    A standing valve which may be retrievably mounted in a well production tubing and will allow the maximum possible fluid flow and also allow the valve to be easily drained and retrieved through the well production tubing. The seal between the standing valve and the bottom hole assembly is located at or below the level of the seat and fluid from the top of the valve into the well is drained through the seat.

  8. Well Log ETL tool

    Energy Science and Technology Software Center

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  9. Geothermal well stimulation program

    SciTech Connect

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  10. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil Wells 120,880 67,065 69,839 R 70,475 66,065 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 94,349 87,854 94,268 R 107,577 107,964 Total 279,130 246,822 252,310 R 238,988 ...

  11. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8,814 7,938 6,616 7,250 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 9,075 8,814 7,938 6,616 7,250 Repressuring NA NA NA NA NA Vented ...

  12. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2,887 R 1,929 2,080 From Oil Wells 7 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 2,121 2,125 2,887 R 1,929 2,080 Repressuring 0 0 0 NA NA Vented ...

  13. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil Wells 68,505 49,380 51,948 R 50,722 44,748 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 2,088,306 2,130,551 1,534,372 R 1,197,480 1,120,806 Total 3,040,523 2,955,437 ...

  14. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    R 93,091 85,775 From Oil Wells 1,665 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 124,243 106,122 94,665 R 93,091 85,775 Repressuring 0 0 0 NA NA ...

  15. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wells 37,194 0 0 0 0 From Coalbed Wells 35,924 31,689 28,244 R 25,387 23,359 From Shale Gas Wells 0 0 0 0 0 Total 309,952 296,299 292,467 R 286,480 285,236 Repressuring 521 NA NA ...

  16. Million Cu. Feet Percent of National Total

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1,027 R 353 399 From Oil Wells 126 11 5 R 63 78 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 1,980 1,328 1,032 R 417 477 Repressuring 0 0 0 0 0 Vented and ...

  17. Penrose Well Temperatures

    DOE Data Explorer

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  18. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  19. Isobaric groundwater well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  20. Florida Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers Florida Number of Natural Gas ...

  1. Florida Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial ... Referring Pages: Number of Natural Gas Industrial Consumers Florida Number of Natural Gas ...

  2. Florida Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential ... Referring Pages: Number of Natural Gas Residential Consumers Florida Number of Natural Gas ...

  3. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  4. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  5. North Dakota Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  6. ARM - Measurement - Cloud particle number concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  7. Quantum random number generator

    DOEpatents

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  8. Geothermal Well Stimulation

    SciTech Connect

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  9. Horizontal well planning

    SciTech Connect

    Schuh, F.J. )

    1991-03-01

    Interest in horizontal drilling has exploded at a rate well above even the most optimistic projections. Certainly, this technique will not end with the Bakken and Austin Chalk plays. However, future reservoirs will undoubtedly require much more complicated well designs and multi-disciplined technical interaction than has been used so far. The horizontal drilling costs are too high to permit resolving of all the technical issues by trial and error. A multi-disciplinary team approach will be required in order for horizontal drilling to achieve its economic potential.

  10. Thermal indicator for wells

    DOEpatents

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  11. Report number codes

    SciTech Connect

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  12. Quantum random number generation

    DOE PAGES [OSTI]

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  13. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  14. Models for geothermal wells

    SciTech Connect

    Michaelides, E.E.

    1980-06-01

    The problem of two-phase flow pressure loss is examined in order to give an answer to the problem of determination of the wellhead conditions. For this purpose two models have been developed, the first based on the pattern structure of the flow and the second on the mixing length theory. The void fraction correlations and the transition conditions are presented in the first model as a means of estimating the pressure loss. Heat losses, and the effect of impurities are examined in detail. An expression for the critical flow conditions is also derived. The model is used to predict the available power at the wellhead under various conditions and an answer to the problem of well pumping is given. For the second model an outline of the mixing length theory and the boundary layer coordinates is given; a density distribution in the geothermal well is assumed and the equations for the pressure loss are derived by means of the entropy production function. Finally a comparison of the two models is made and their predictive power is tested against known well data. A brief comparison with the Denver Research Institute is also made.

  15. ALARA notes, Number 8

    SciTech Connect

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  16. Property:NumRepWells | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NumRepWells Property Type Number Description Number of replacement wells needed in a specific Geothermal Resource Area Retrieved from "http:en.openei.orgwindex.php?titlePrope...

  17. Total quality management implementation guidelines

    SciTech Connect

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  18. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  19. Abandoning wells working group

    SciTech Connect

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  20. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Total To Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to

  1. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Sabine Pass, LA Total To Barbados Miami, FL Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Dominican Republic Sabine Pass, LA Total

  2. Feasibility of EGS Well Control Systems

    SciTech Connect

    Norann, Randy A; Darlow, Richard

    2015-02-03

    This report covers the 8th major objective listed in Grant DE-FG36-08GO18185. This objective takes the information and experience gained from the development of 300°C well monitoring system and applies them to concepts envisioned for future geothermal well control systems supporting EGS power production. This report covers a large number of instrumentation and control system engineering issues for EGS wells while also providing a window into existing technology to address those issues.

  3. Improvements in subsea well technology

    SciTech Connect

    Halvorsen, T.

    1995-12-31

    The next generation subsea developments will be facing a number of new challenges which have to be solved to maintain a cost-efficient solution for production of oil and gas: (1) Smaller fields, i.e. cost reduction through volume will no longer be valid. (2) Freedom in configuration of subsea development. The current idea of standardization will not be directly applicable for cost reduction. (3) Various water depth. The same technology should be applicable for both guideline- and guideline less water depth. (4) Development in new areas of the world where drilling rig deployable system is a must. (5) Various types of fluid processing may be required as an integral part of a subsea production system. The next generation subsea production system should be universal and applicable to any subsea field development. Kongsberg Offshore a.s. (KOS) have gained extensive experience in supplying standardized total subsea systems. The paper presents the approach taken by KOS to develop the next generation subsea system, and discussed the challenges associated with this.

  4. Third invitational well-testing symposium: well testing in low...

    Office of Scientific and Technical Information (OSTI)

    session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. ...

  5. Total Eolica | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  6. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  7. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  8. Total

    Energy Information Administration (EIA) (indexed site)

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  9. Total

    Gasoline and Diesel Fuel Update

    Fuel Oil, Greater than 500 ppm Sulfur Residual Fuel Oil Lubricants Asphalt and Road Oil Other Products Period: Annual (as of January 1) Download Series History Download ...

  10. Total

    Gasoline and Diesel Fuel Update

    of photovoltaic module shipments, 2015 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic CellModule ...

  11. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  12. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  13. Total..........................................................

    Annual Energy Outlook

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  14. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  15. Total..........................................................

    Annual Energy Outlook

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  16. Total

    Gasoline and Diesel Fuel Update

    ... District heat 48 5,964 8,230 124.9 725 87 District chilled water 54 4,608 5,742 85.4 803 ... Natural gas 12 732 1,048 61.5 699 67 District chilled water 54 4,608 5,742 85.4 803 87 ...

  17. Total..............................................

    Energy Information Administration (EIA) (indexed site)

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  18. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  19. Total............................................................

    Energy Information Administration (EIA) (indexed site)

  20. Total.............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  1. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  2. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  3. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  4. Total................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  5. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  6. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  7. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  8. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  9. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  10. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  11. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  12. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  13. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  14. Total....................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  15. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  16. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  17. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  18. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  19. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  20. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  1. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  2. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  3. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  4. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  5. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  6. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  7. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  8. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  9. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  10. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  11. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  12. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  13. Total.................................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  14. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  15. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  16. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  17. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  18. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  19. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  20. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  1. Total.........................................................................................

    Energy Information Administration (EIA) (indexed site)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  2. Wyoming Natural Gas Number of Residential Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Virginia Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  5. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Virginia Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Vermont Natural Gas Number of Residential Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  11. Virginia Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. West Virginia Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. Wisconsin Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Vermont Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Wyoming Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. West Virginia Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Washington Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Washington Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. Washington Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Vermont Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. West Virginia Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. North Carolina Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. North Carolina Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. North Dakota Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  9. North Dakota Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. New Mexico Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. City of Wells, Minnesota (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wells Address: 101 First Street SE Place: Wells, MN Zip: 56097 Phone Number: 507-553-3119 Website: www.cityofwells.net Twitter: @CityofWellsMN Outage Hotline: 507-553-3197...

  16. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    OpenEI (Open Energy Information) [EERE & EIA]

    Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

  17. Table A56. Number of Establishments by Total Inputs of Energy...

    Energy Information Administration (EIA) (indexed site)

    ... Feedstocks",12,44 ," Direct Microbial",40,0 ," Bioprocessing",141,42 ," Gasification of Biomass Feedstocks"," W ",20 ," Fast Pyrolysis of Biomass Feedstocks",11,0 ," ...

  18. Table B1. Summary Table: Totals and Means of Floorspace, Number...

    Energy Information Administration (EIA) (indexed site)

    ....",2786,53395,71290,19.2,749,68 "Energy Management and" " Control System (EMCS) ... Building","RSEs for Mean Square Feet per Worker","RSEs for Mean Hours per Week" "All ...

  19. PA_Format_WAP April Production Numbers and Total ARRA and Non...

    Energy.gov [DOE] (indexed site)

    547 2,965 5,211 Montana 222 849 3,008 Nebraska 208 745 1,631 Nevada 748 2,318 3,668 New Hampshire 103 853 1,472 New Jersey 108 426 1,948 New Mexico 156 629 1,577 New York 443 1,818 ...

  20. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  1. U.S. Crude Oil Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. U.S. Crude Oil Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 1,406 1950's 1,583 1,763 1,776 1,981 1,985 2,236 2,267 1,945 1,745 1,702 1960's 1,321 1,157 1,211 1,314 1,219 946 1,196 986 954 1,084 1970's 757 659 685 642 859 982 1,086 1,164 1,171 1,321 1980's 1,777 2,651 2,437 2,030 2,209 1,680 1,084 926 855 607 1990's 664 601 498 509 579 549 496 434 286 156 2000's 288 357 258 350 383 539 646 808 897 605 2010's 669

  3. U.S. Crude Oil Exploratory and Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 21,352 1950's 23,812 23,179 23,290 25,323 28,141 30,432 30,528 27,364 23,774 24,043 1960's 22,258 21,437 21,727 20,135 19,905 18,065 16,780 15,329 14,331 14,368 1970's 12,968 11,853 11,378 10,167 13,647 16,948 17,688 18,745 19,181 20,851 1980's 32,959 43,887 39,459 37,366 42,906 35,261 19,213 16,210 13,646 10,230 1990's 12,445 12,035 9,019 8,764 7,001 7,827 8,760 10,445 6,979 4,314 2000's 8,090

  4. U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 28,254 1950's 31,744 31,887 32,138 34,427 38,009 40,208 40,963 37,281 33,742 34,372 1960's 33,915 33,262 33,361 30,803 31,566 29,307 26,071 23,356 21,720 22,486 1970's 20,614 19,052 20,234 19,759 24,019 29,362 31,651 35,857 39,238 41,539 1980's 58,248 74,517 69,037 62,564 71,070 58,962 33,163 28,739 26,030 22,741 1990's 26,917 24,993 20,133 21,892 18,471 18,189 20,553 24,431 20,466 17,097 2000's

  5. U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 9,058 1950's 10,306 11,756 12,425 13,313 13,100 14,942 16,207 14,714 13,199 13,191 1960's 11,704 10,992 10,797 10,664 10,727 9,466 10,313 8,878 8,879 9,701 1970's 7,396 7,081 7,475 7,661 8,882 9,359 9,204 9,995 10,907 10,665 1980's 12,957 17,573 15,877 13,841 15,058 11,834 7,448 6,734 6,313 5,247 1990's 5,150 4,535 3,475 3,559 3,784 3,411 3,333 3,155 2,445 1,842 2000's 2,286 3,142 2,384 2,644 3,404

  6. U.S. Dry Exploratory and Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 12,597 1950's 14,799 17,026 17,759 18,449 18,930 20,452 22,111 20,156 18,162 18,589 1960's 18,212 17,331 17,078 16,762 17,694 16,226 15,227 13,246 12,812 13,736 1970's 11,031 10,309 10,891 10,320 12,116 13,646 13,758 14,985 16,551 16,099 1980's 20,785 27,953 26,379 24,355 25,884 21,211 12,799 11,167 10,119 8,236 1990's 8,496 7,882 6,284 6,513 5,515 5,319 5,587 5,955 4,805 3,504 2000's 4,146 4,598 3,754 3,982

  7. U.S. Natural Gas Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 140,457 143,420 40,508 165,589 29,670 -12,687 -7,522 -5,639 -25,646 -132,631 -75,869 -161,019 2002 -4,043 38,079 11,261 164,421 28,047 94,698 54,263 49,349 7,788 -124,023 -126,334 -128,599 2003 -85,911 76,412 117,834 42,839 29,671 16,325 80,113 57,301 11,671 -49,115 -135,623 -117,899 2004 -66,341 134,281 125,684 132,567 116,388 71,221 58,237 60,432 62,797 -13,466 -78,965 -141,694 2005 -41,225 103,738 14,442 131,451 60,083 57,514 61,979

  8. U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 424 1950's 431 454 559 699 726 874 822 865 822 912 1960's 868 813 771 664 557 515 698 532 486 616 1970's 477 470 656 1,067 1,190 1,248 1,346 1,548 1,771 1,907 1980's 2,099 2,522 2,133 1,605 1,528 1,200 797 756 747 706 1990's 693 544 427 541 740 583 591 543 510 519 2000's 657 1,052 844 997 1,671 2,141 2,456 2,794 2,345 1,206 2010's 1,105

  9. U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,363 1950's 3,439 3,438 3,514 3,968 4,038 4,266 4,531 4,475 5,005 4,931 1960's 5,149 5,486 5,353 4,570 4,694 4,482 4,377 3,659 3,456 4,083 1970's 4,011 3,971 5,440 6,933 7,138 8,127 9,409 12,122 14,413 15,254 1980's 17,461 20,250 19,076 14,684 17,338 14,324 8,599 8,096 8,578 9,522 1990's 11,126 9,611 8,305 10,174 9,739 8,454 9,539 11,186 11,127 11,121 2000's 17,051 22,072 17,342 20,722 24,186

  10. U.S. Crude Oil Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's 196 348 539 752 851 956 1,003 1,090 1,194 1,252 2000's 1,379 1,562 1,614 1,600 1,720 1,732 1,758 1,753 1,966 1,914 2010's 1,886 1,763 1,655 1,466 1,404 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. U.S. Crude Oil Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 58 52 53 28 51 63 45 73 55 49 61 54 1974 56 54 70 61 77 88 80 81 63 85 65 79 1975 84 81 94 83 85 80 81 93 69 90 69 73 1976 92 100 90 79 84 90 84 105 92 78 104 88 1977 110 95 92 97 103 106 77 100 94 102 107 81 1978 81 93 88 106 115 110 99 95 95 103 96 90 1979 83 84 113 95 78 113 118 103 127 140 131 136 1980 140 137 143 137 130 141 137 163 169 148 149 183 1981 221 179 210 184 225 223 236 235 222 236 226 254 1982 248 184 267 228 182 213 171

  12. U.S. Crude Oil Exploratory and Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 779 695 846 679 891 915 857 978 898 896 911 822 1974 909 883 1,077 1,137 1,191 1,229 1,253 1,210 1,083 1,281 1,105 1,289 1975 1,315 1,067 1,314 1,333 1,352 1,434 1,450 1,545 1,496 1,720 1,430 1,492 1976 1,709 1,288 1,495 1,468 1,385 1,543 1,343 1,581 1,482 1,535 1,396 1,463 1977 1,388 1,345 1,653 1,519 1,596 1,676 1,521 1,698 1,629 1,630 1,565 1,525 1978 1,430 1,182 1,451 1,785 1,704 1,765 1,562 1,708 1,578 1,863 1,643 1,510

  13. U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    22,315 25,181 28,950 33,403 36,520 39,933 2009-2014 Adjustments 46 188 207 137 -595 440 2009-2014 Revision Increases 3,270 3,900 5,096 4,909 4,786 6,028 2009-2014 Revision Decreases 1,262 1,957 3,682 3,997 4,241 5,612 2009-2014 Sales 249 803 1,024 819 1,536 2,475 2009-2014 Acquisitions 344 1,470 1,561 1,234 1,925 2,828 2009-2014 Extensions 1,305 1,766 3,107 5,191 4,973 5,021 2009-2014 New Field Discoveries 141 124 481 55 191 164 2009-2014 New Reservoir Discoveries in Old Fields 95 169 88 129 343

  14. U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 656 524 553 477 601 625 687 767 660 710 656 745 1974 630 627 660 703 767 741 793 779 761 826 803 792 1975 804 615 757 729 741 723 832 821 774 892 816 855 1976 898 733 810 733 689 758 718 765 774 778 787 761 1977 740 674 795 751 806 830 800 837 915 954 952 941 1978 876 748 861 890 894 904 942 924 925 1,058 928 957 1979 786 675 804 774 792 893 881 971 965 1,086 1,007 1,031 1980 1,027 925 911 941 940 1,088 1,094 1,157 1,220

  15. U.S. Dry Exploratory and Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 868 747 811 658 809 821 895 1,022 861 948 906 974 1974 867 796 895 955 1,028 947 1,115 1,061 1,074 1,149 1,098 1,131 1975 1,139 861 1,028 1,033 1,043 1,081 1,149 1,194 1,260 1,374 1,237 1,247 1976 1,316 1,045 1,170 1,129 1,064 1,123 1,075 1,102 1,154 1,238 1,164 1,178 1977 1,089 997 1,208 1,147 1,246 1,200 1,248 1,337 1,322 1,426 1,386 1,379 1978 1,346 1,031 1,274 1,304 1,342 1,408 1,405 1,522 1,491 1,570 1,446 1,412 1979 1,227 997 1,192

  16. U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 60 61 69 82 96 85 112 93 103 110 94 102 1974 84 87 98 110 120 97 105 81 108 119 94 87 1975 96 81 91 95 113 104 128 133 94 113 109 91 1976 127 110 124 116 104 133 108 112 108 107 111 86 1977 81 99 137 127 117 154 130 147 139 136 150 131 1978 142 118 144 160 155 149 144 151 141 190 131 146 1979 131 120 164 149 153 177 151 156 159 214 162 171 1980 163 174 151 175 127 190 185 155 206 217 185 171 1981 211 179 191 215 225 209 206 236 238 210

  17. U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 519 454 494 546 598 543 615 690 574 694 616 590 1974 686 545 657 624 604 595 604 554 569 633 526 541 1975 613 539 534 587 634 673 731 838 788 842 673 675 1976 866 691 708 659 708 781 795 964 866 815 846 710 1977 847 782 1,014 899 946 1,092 1,030 1,187 1,070 1,166 1,025 1,064 1978 1,076 861 1,075 1,142 1,182 1,251 1,215 1,353 1,301 1,428 1,291 1,238 1979 1,337 917 1,114 1,117 1,258 1,335 1,286 1,424 1,302 1,582 1,328 1,254

  18. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  19. Methods for obtaining well-to-well flow communication

    SciTech Connect

    Harmon, R.A.; Wahl, H.A.

    1988-07-05

    A process is described for reducing uneven areal sweep of injection fluid in a well pattern having a central injection well surrounded by production wells, all of the wells being communicated by a fracture, comprising: (a) injecting fracturing fluid containing a proppant material into the central injection well and into the fracture to prop the fracture adjacent the injection well; (b) simultaneous with step (a), injecting fluid into one or more of the production wells toward which it is desired to reduce the flow of injection fluid, thereby causing a greater portion of the proppant material to be placed in the fracture adjacent the central injection well in directions away from the one or more of the production wells toward which it is desired to reduce the flow of injection fluid; and (c) thereby subsequently reducing uneven areal sweep of injection fluid injected into the central injection well at rates and pressures below those required to part the fracture.

  20. Country Total Percent of U.S. Total Canada

    Annual Energy Outlook

    Taiwan 60,155 1% Vietnam 361,184 4% All others 1,861,971 19% Total 9,755,831 100% Table 7 . Photovoltaic module import shipments by country, 2015 Note: All Others includes Czech ...

  1. Determination of Total Solids in Biomass and Total Dissolved...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  2. Number

    Office of Legacy Management (LM)

    It is seen that all operations are performed vet, thus eliminating almost entirely a dust exposure hazard. A* Monazite sand is at present derived from India which supplies an ore ...

  3. Property:RenewableFuelStandard/Total | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  4. Performance Measure Unit Lifecycle Total Estimate Pre-2016 Lifecycle...

    Office of Environmental Management (EM)

    Measure Unit Lifecycle Total Estimate Pre-2016 Lifecycle Values 2016 Target 2017 Target Pu packaged for long-term disposition Number of Containers 5,089 5,089 5,089 5,089 eU ...

  5. TotalView Training 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  6. Pulse Wave Well Development Demonstration

    SciTech Connect

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  7. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  8. Monitoring cathodic protection of well casings

    SciTech Connect

    Dabkowski, J.

    1980-01-01

    Because conventional downhole logging of gas storage wells to determine cathodic-protection levels is expensive and inconvenient, a program was developed (1) to predict downhole casing-to-soil potentials from wellhead measurements in the presence of interference and (2 )to model the mutual interference effects occurring between the wells and the cathodic-protection systems. In the first phase of this project, a transmission-line model that was developed to represent the well casing electrically adequately predicted the downhole potentials for both ideal and nonideal polarization conditions. By allowing the number of sections used and their parameter values as variables, the model can accommodate different environments and casing configurations. The model's representation of a well casing by a lumped-parameter electrical network will also permit interference studies between mutually coupled wells.

  9. Characteristics RSE Column Factor: Total

    Energy Information Administration (EIA) (indexed site)

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  10. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  11. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  12. ARM: Auxiliary data for the Total Precipitation Sensor (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Auxiliary data for the Total Precipitation Sensor Title: ARM: Auxiliary data for the Total Precipitation Sensor Auxiliary data for the Total Precipitation Sensor Authors: Jessica Cherry Publication Date: 2015-01-09 OSTI Identifier: 1150276 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US); Sponsoring Org: USDOE Office of Science

  13. Thermal well-test method

    DOEpatents

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  14. Wellness Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational

  15. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural

  16. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural Gas Indu

  17. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    OpenEI (Open Energy Information) [EERE & EIA]

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  18. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  19. Well having inhibited microbial growth

    DOEpatents

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  20. Guidelines simplify well test interpretation

    SciTech Connect

    Ehlig-Economides, C.A.; Hegeman, P. ); Vik, S. )

    1994-07-18

    With a few simple guidelines, industry professionals, especially those who are not well-testing experts, can know more about well-test interpretation, and thus make more appropriate decisions for well tests. Today's well tests frequently provide much more than permeability, skin, and extrapolated pressure. Most managers, geoscientists, and petroleum engineers rely on specialists to interpret pressure-transient data from well tests. At times, however, valuable test results are overlooked when modern analysis techniques are not used to interpret the acquired data. The first in a series of three articles addresses what to expect from a well test interpretation. The second part will show how to design a test, and manage well site data acquisition to ensure optimum results. The concluding part will illustrate these concepts in two successful cases.

  1. Additional potential for older, Antrim Shale wells

    SciTech Connect

    Frantz, J.H. Jr.; Hopkins, C.W.; Hill, D.G.

    1995-09-01

    The Gas Research Institute (GRI) has been performing evaluations to estimate the recompletion and restimulation potential in older, Antrim Shale wells. The recompletion potential is two-fold: (1) wells that can be deepened to the productive Norwood interval, and (2) wells with Upper Antrim potential. There are also numerous restimulation candidates due to sand flowback and/or other problems. The Antrim Shale is an organic-rich naturally fractured formation which produces both gas and water. Operators today typically complete the Lachine and Norwood intervals but many older wells were not drilled deep enough to encounter to Norwood. We performed an evaluation to determine the optimal deepening method using actual and simulated data. We estimate there are over 500 deepening candidates with total potential reserve additions of 50 Bscf. The Upper antrim formation can be added in approximately 1,500 existing wells throughout several counties. This interval is uphole from the Lachine and Norwood. In this phase of the project, we collected production and reservoir data from several Upper Antrim tests across the basin. We estimate the Upper Antrim could add total new reserves of 100 to 200 Bscf from al the recompletion candidates across the basin. In the restimulation evaluation, we developed a novel injection test unit to help operators identify the best restimulation candidates in a cost effective manner. The injection test determines if an effective hydraulic fracture is connected to the wellbore. Based on 60 test wells, we estimate the restimulations could add 50 to 200 Bscf of future reserves from the 500 to 1,000 candidate wells.

  2. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    DE-AM09-05SR22405DE-AT30-07CC60011SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee 357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear...

  3. Resonator-quantum well infrared photodetectors

    SciTech Connect

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  4. ARM - Measurement - Particle number concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  5. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  6. Thermal well-test method

    DOEpatents

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  7. Remote multiple string well completion

    SciTech Connect

    Kirkland, K.G.

    1981-04-21

    Method and apparatus for multiple string well completions by remote operations in underwater installations, by which the tubing strings are installed independently rather than simultaneously.

  8. Well Deepening | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    can be deepened in order to reach a location with higher flow and temperature. Use in Geothermal Exploration Sometimes wells that were initially not planned for utilization...

  9. Connecticut Wells | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 6751 Sector: Geothermal energy Product: A Connecticut-based geothermal heat pump installer and well driller. Coordinates: 40.04446, -80.690839 Show Map Loading...

  10. Well drilling apparatus and method

    DOEpatents

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  11. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  12. South Dakota Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 578 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 136 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  14. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  15. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 219 215 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  16. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  17. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 144 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  18. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  19. Articulated plural well deep water production system

    SciTech Connect

    Lawson, J.

    1980-07-08

    Apparatus for subsea production of fluids through a manifold and central riser from a plurality of individual wells drilled in different parts of a field in deep water, is described that is comprised of: a central manifold base having flow line connectors thereon; an elongated boom for each well to be produced in a field, each boom being rigidly attached to the manifold base; a temporary guide base mounted to the other end of each boom for establishing a well site; and a flow line extending along each boom from a flow line connector on the central manifold base. A method of producing well fluids from a number of individual wells drilled in different parts of a field located in deep water to a production platform via a central riser, which comprises the steps of: submerging to the ocean floor a subsea production apparatus which includes a central manifold base having an elongated boom for each well articulated thereto at one end and mounting a temporary guide base at the other end of the boom for establishing a well site, and a preinstalled flow line extending along each boom from the manifold base; landing a manifold section on the manifold; and landing a subsea tree on each temporary guide base.

  20. Functional design criteria for FY 1993-2000 groundwater monitoring wells

    SciTech Connect

    Williams, B.A.

    1996-01-01

    The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement.

  1. Million Cu. Feet Percent of National Total Million Cu. Feet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    From Oil Wells 11,620 4,470 4,912 R 5,560 4,796 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 113,736 107,822 101,208 R 95,366 90,509 Total 143,826 129,333 123,622 R 115,065 ...

  2. Million Cu. Feet Percent of National Total

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  3. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  4. Soda Lake Well Lithology Data and Geologic Cross-Sections

    SciTech Connect

    Faulds, James E.

    2013-12-31

    Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross‐sections in Adobe Illustrator format.

  5. Fracture optimization on every well

    SciTech Connect

    Ely, J.W.; Tiner, R.L.

    1998-01-01

    Since hydraulic fracturing was introduced in 1947, significant advances have been made in the area of fracture diagnostics, particularly in the last 20 years. Common diagnostic procedures used today to quantify fracture geometry and fracture fluid efficiency are listed in a table. During the past several years, the most popular procedure was to conduct most or all of the diagnostics on one well in a field, and apply the results to subsequent wells. However, experience has shown that critical factors can change drastically, even in fields with minimal well spacing. Although some variations in relative rock stresses have been seen, rock properties typically remain fairly consistent within a designated area. However, the factor that changes drastically from well to well--even in spacing as small as 10 acres--is fracture fluid efficiency. As much as a 60% change in fluid efficiencies has been noted for offset wells. Because of these variations, a new procedure has been developed in which fracture treatments on individual wells can be optimized on the day of the fracture treatment. The paper describes this fracture optimization procedure.

  6. Well Productivity Awareness School (WPAS)

    SciTech Connect

    Beadie, G.

    1995-12-31

    It is well known that Formation Damage or Well Impairment leads to lower production rates and thereby a loss in revenue. BP Exploration (BPX) quantified this loss across their fields in a 1991 report. This report concluded that the potential net present cost of Formation Damage to BPX, assessed over the remaining life of currently producing fields, to be in the region of $1.5 billion (before taxation). Much of this loss is already being avoided through enhanced and new procedures, however, there is still potential for improvement. Where can these improvements be made? BPX looked at the life cycle of a well; drilling; testing; completion; production; workover; and stimulation. At each stage there is a variety people, from office based to wellsite, involved in the planning and operational decisions. In a majority of the stages some people were only involved in the well`s immediate future, however, their planning and operational decision making could impact the whole life of the well. To make people aware of the potential consequences of their actions BPX devised the Well Productivity Awareness School. Attendance at the school is not only for BPX personnel but also includes the Rig Crews and Contractor/Service Company personnel because everyone needs to be involved. The schools have been run at BPX locations world-wide since late `93. Improved well productivity in these locations has been attributed to raising Operator/Contractor/Service Company participants awareness by showing how their job can impact on well productivity and where they can make a difference.

  7. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  8. Recompletion Report for Well UE-10j

    SciTech Connect

    M. J. Townsend

    2000-05-01

    Existing Well UE-10j was deepened and recompleted for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was originally drilled to a total depth of 725.4 meters in 1965 for use as a hydrologic test hole in the northern portion of Yucca Flat in Area 8 of the Nevada Test Site. The well is located up-gradient of the Yucca Flat underground test area and penetrates deep into the Paleozoic rocks that form the lower carbonate aquifer of the NTS and surrounding areas. The original 24.4-centimeter-diameter borehole was drilled to a depth of 725.4 meters and left uncompleted. Water-level measurements were made periodically by the U.S. Geological Survey, but access to the water table was lost between 1979 and 1981 due to hole sloughing. In 1993, the hole was opened to 44.5 centimeters and cased off to a depth of 670.0 meters. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 796.4 meters. The depth to water in the open borehole was measured at 658.7 meters on March 18, 1993.

  9. Elf well turns 90/degree/- and stays there

    SciTech Connect

    Astier, B.; Jourdan, A.; Baron, G.

    1981-01-01

    As part of an intensive research program, the French association IFP (Institut Francais du Petrole) and Elf-Aquitaine have drilled the first European horizontal hole. The well was spudded conventionally and then deviated so that its final path was horizontal, 2,198 ft (670 m) below the surface. More than 330 ft (100 m) were drilled between 89/degree/ and 92/degree/ of inclination. The project started with reservoir engineering studies aimed at demonstrating, on mathematical models, the effectiveness of a horizontal drain hole in areas where hydrocarbon recovery is poor or unsatisfactory, due to gas or water coning, poor flooding patterns, intersection of fractures in tight but fractured producing formations, or other causes. This technique has a number of potential applications both in and out of the oil industry. The well was drilled in 44 days. Horizontal displacement was 2,192 ft (668 m) with a total vertical depth of 2,198 ft (670 m). To accomplish this, it was necessary to drill 3,563 ft (1,086 m) of hole. In the 17/one-half/-in. hole, 73/4-in. drill collars and 5-in. heavy weight drill pipe were run above the bent sub and the monel collar. While reaming the hole, the drill string was rotated conventionally, one near bit and one stabilizer (30 ft above) being included in the string.

  10. Total-variation regularization with bound constraints

    SciTech Connect

    Chartrand, Rick; Wohlberg, Brendt

    2009-01-01

    We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.

  11. Departmental Business Instrument Numbering System

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  12. Departmental Business Instrument Numbering System

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  13. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  14. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  15. Design Storm for Total Retention.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual ... International. Environmental Programs Design Storm for "Total Retention" under ...

  16. U.S. Total Imports

    Energy Information Administration (EIA) (indexed site)

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  17. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,027 132,392 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 2,651 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 - = No Data

  20. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 316,756 319,512 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,398 6,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282

  3. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 241,682 - = No Data Reported; -- = Not

  4. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 4,932 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  6. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 24,088 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Rhode Island Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 236,323 - = No Data Reported; -- =

  8. South Carolina Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,323 56,871 - = No Data Reported; -- = Not Applicable; NA = Not

  9. South Carolina Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,442 1,438 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. South Carolina Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 605,644 620,555 - = No Data Reported; -- =

  11. South Dakota Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 24,040 - = No Data Reported; -- = Not Applicable; NA = Not

  12. South Dakota Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 182,568 - = No Data Reported; -- =

  13. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,996 57,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 845 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  15. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 903,686 888,023 - = No Data Reported; -- = Not Applicable; NA

  16. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 11,888 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 31,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 78,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  20. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 - = No Data Reported;

  1. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 140,533 - = No Data Reported; -- = Not

  2. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 11,266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Massachusetts Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  4. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 254,484 - = No Data Reported; -- = Not Applicable; NA =

  5. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 7,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  7. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,380 138,871 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,880 1,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1,496,790

  10. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 49,911 49,821 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Mississippi Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 440,252 439,359 - = No Data Reported; -- =

  13. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,134 141,216 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 3,232 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  16. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 35,777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 269,766 - = No Data Reported; -- = Not Applicable; NA =

  18. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 57,521 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 8,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 525,165 - = No Data Reported; -- = Not Applicable; NA

  1. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 42,860 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 824,039 - = No Data Reported; -- = Not Applicable; NA =

  3. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 269,981 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 6,502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,968

  6. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,005 96,471 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  7. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,062 3,059 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 941,137 - = No Data Reported; -- = Not Applicable; NA

  9. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 80,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 1,117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 717,999 - = No Data Reported; -- = Not Applicable; NA =

  12. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,847 67,746 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  13. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 3,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,900 768,568 - = No Data Reported; -- = Not Applicable;

  15. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 13,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  16. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 128,605 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 56,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  18. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1,200,783 - = No Data Reported;

  19. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 69,265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 1,023 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 550,108 - = No Data Reported; -- = Not Applicable;

  2. California Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 446,510 - = No Data Reported; -- = Not Applicable;

  3. California Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 36,854 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. California Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  5. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 150,545 - = No Data Reported; -- = Not Applicable;

  6. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 8,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581

  8. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 57,403 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 3,945 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Connecticut Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 531,380 - = No Data Reported; --

  11. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 13,430 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 161,607 - = No Data Reported; -- = Not Applicable; NA =

  13. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,578 123,307 - = No Data Reported; -- = Not Applicable; NA =

  14. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 2,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  16. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 2,815 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 28,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  18. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 40,744 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 374,557 - = No Data Reported; -- = Not Applicable; NA =

  20. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  1. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 23,049 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  3. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 160,051 - = No Data Reported; -- = Not Applicable; NA =

  4. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 5,095 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  6. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,186 99,662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 908,058 - = No Data Reported; -- = Not Applicable; NA =

  9. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,654 86,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,328 7,218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 860,441 861,419 - = No Data Reported; -- = Not Applicable; NA =

  12. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,630 85,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  13. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 2,008 2,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 761,935 764,946 - = No Data Reported; -- = Not Applicable; NA

  15. Solar total energy project Shenandoah

    SciTech Connect

    1980-01-10

    This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

  16. Well completion and servicing fluid

    SciTech Connect

    Grimsley, R.L.

    1990-09-25

    This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.

  17. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  18. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  19. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 69,914 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 34,524 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,198 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 589 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  20. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. Total 8,596 6,340 4,707 8,092 8,512 8,017 1936-2016 PAD District 1 2,694 1,250 1,327 2,980 2,074 3,566 1981-2016 Connecticut 1995-2015 Delaware 280 231 385 1995-2016 Florida 800 200 531 499 765 1995-2016 Georgia 149 106 1995-2016 Maine 1995-2015 Maryland 84 66 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,073 734 355 1,984 399 1,501 1995-2016 New York 210 196 175 1,223 653 1995-2016 North Carolina 1995-2011