National Library of Energy BETA

Sample records for waste vegetable oil

  1. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  2. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  3. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  4. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  5. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  6. Vegetable oil fuel

    SciTech Connect

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  7. Plasticizers Derived from Vegetable Oils - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vegetable Oils Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology addresses the known health issues of commonly used...

  8. Plasticizers Derived from Vegetable Oils - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vegetable Oils Battelle Memorial Institute Contact BMI About This Technology Technology Marketing Summary This technology addresses the known health issues of commonly used...

  9. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    SciTech Connect

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  10. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  11. Remediation of oil field wastes

    SciTech Connect

    Peters, R.W.; Wentz, C.A.

    1990-01-01

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  12. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  13. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  14. Novel Bioplastics and biocomposites from Vegetable Oils

    SciTech Connect

    Phillip H. Henna

    2008-08-18

    there are three degrees of unsaturation. In addition, the double bonds are not in conjugation. Table 1 gives the fatty acid make-up of linseed oil. It can be seen that linseed oil has an average of 6.0 double bonds per triglyceride. Its fatty acid content consists of 5.4% palmitic acid (C16:0), 3.5% stearic acid (C18:0), 19% oleic acid (C18:1), 24 % linoleic acid (C18:2) and 47% linolenic (C18:3). Table 1 also gives the fatty acid composition and varying degrees of unsaturation for various other naturally-occurring natural vegetable oils. The regions of unsaturation in natural oils allow for interesting polymer chemistry to take place. Some of this interesting polymer science, however, involves chemical modification of the regions of unsaturation. Acrylated epoxidized soybean oil (AESO) is prepared by epoxidation of the double bonds, followed by ring opening with acrylic acid. The resulting oil has both acrylate groups and hydroxyl groups. Wool and colleagues have further reacted the hydroxyl groups within the oil with maleic anhydride to produce maleated acrylated epoxidized soybean oil (MAESO). The MAESO has been copolymerized with styrene free radically to produce promising thermosetting sheet molding resins. Petrovi? and co-workers have directly ring opened the epoxidized oil to produce polyols that produce promising polyurethanes through condensation polymerization with diisocyanates. Our group's work initially focused on direct cationic copolymerization of the double bonds or conjugated double bonds of natural oils with monomers, such as styrene and divinylbenzene, to produce promising thermosetting resins. The only modification of the oils that was carried out in these studies was conjugation of the double bonds to enhance the reactivity of the oil. This work has been expanded recently with the incorporation of glass fiber to produce promising composites. We have also explored thermal polymerization techniques to make novel thermosets. This dissertation is

  15. Combating oil spill problem using plastic waste

    SciTech Connect

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  16. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  17. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  18. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies E. Thomas (Tom) Habib, Jr., Director, Customer Research Partnerships, W.R. Grace & Co. biomass13_habib_2-d.pdf (769.62 KB) More Documents & Publications Opportunities for Biomass-Based Fuels and

  19. Accumulation of heavy metals by vegetables grown in mine wastes

    SciTech Connect

    Cobb, G.P.; Sands, K.; Waters, M.; Wixson, B.G.; Dorward-King, E.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assess metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.

  20. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Hyperspectral Remote Sensing | Department of Energy Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing January 17, 2012 Jungho Im, John R. Jensen, Ryan R. Jensen, John Gladden, Jody Waugh and Mike Serrato Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing (3.07 MB) More

  1. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  2. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  3. Controlled waste-oil biodegradation at existing drying beds

    SciTech Connect

    Hary, L.F.

    1982-01-01

    A feasibility study at the Portsmouth Uranium Enrichment Facility to determine if sludge drying beds at a sewage treatment plant could be used as controlled waste oil biodegradation plots has been completed. A greenhouse-like enclosure would be constructed over three 9.1 meter by 21.3 meter beds to allow for year-round use, and any waste oil runoff would be collected by existing leachate piping. It has been determined that this proposed facility could dispose of existing radioactive waste oil generation (7200 liters/year) from the Gaseous Diffusion Plant (GDP); however, it would be inadequate to handle radioactive waste oils from the new Gas Centrifuge Enrichment Plant (GCEP) as well. The study reviewed nuclear criticality constraints, biodegradation technology, and the capital cost for an enclosed biodegradation facility.

  4. Soil stabilization using oil-shale solid waste

    SciTech Connect

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  5. Method for reclaiming waste lubricating oils

    DOEpatents

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  6. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy...

    Alternative Fuels and Advanced Vehicles Data Center

    10% post consumer waste. DOEGO-102014-3449 * January 2014 Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of...

  7. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-10-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-03-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  11. Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  12. Waste oil reclamation. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  13. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  14. Magnetic survey of D-Area oil basin waste unit

    SciTech Connect

    Cumbest, R.J.; Marcy, D.; Hango, J.; Bently, S.; Hunter, B.; Cain, B.

    1994-10-01

    The D-Area Oil Basin RCRA Waste Unit is located north of D-Area on Savannah River Site. This Waste Unit was known, based on aerial photography and other historical data, to be the location for one or more trenches used for disposal of oil in steel drums and other refuse. In order to define the location of possible trenches on the site and to assess the possibility of the presence of additional buried objects a magnetic survey was conducted by the Environmental Monitoring Section/Groundwater Group during July, 1993, at the request of the Environmental Restoration Department. Prior to the conduct of the magnetic survey a Ground Penetrating Radar survey of the site consisting of several lines identified several areas of disturbed soil. Based on these data and other historical information the general orientation of the trenches could be inferred. The magnetic survey consists of a rectangular grid over the waste unit designed to maximize resolution of the trench edges. This report describes the magnetic survey of the D-Area Oil Basin Waste Unit.

  15. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun

    1994-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that EBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During this first quarter the requirement of an added photosensitizer has been eliminated, the catalytic effect of coal has been confirmed, and the existence of a complex set of reactions revealed. These reactions between the oxygen, oil, hydroperoxides, and coal are hydroperoxide formation, which is catalyzed by the coal surface and by heat, an unknown coal-hydroperoxide reaction, and oil polymerization. Additionally, diffusion phenomena must be playing a role because oil polymerization occurs, but the importance of diffusion is difficult to assess because less polymerization occurs when coal is present. The first task has been completed and we are now ready to determine the ability of linseed oil hydroperoxides to oxidize organic sulfur in EBC 108 coal.

  16. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  17. Mercury and tritium removal from DOE waste oils

    SciTech Connect

    Klasson, E.T.

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  18. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  19. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  20. Biodegradation of oil refinery wastes under OPA and CERCLA

    SciTech Connect

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M.

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  1. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  2. Solid waste/oil shale combustion: An environmentally benign plant

    SciTech Connect

    McCarthy, H.E.; Clayson, R.L.; Short, G.R.

    1995-12-31

    The co-combustion of oil shale and Refuse Derived Fuel (RDF) in a fluidized bed provides relatively clean stack gas. It is believed that the need for expensive clean-up equipment is therefore eliminated. The fluidized bed boiler of this cogeneration plant is to be fueled by roughly 75 percent RDF and 25 percent oil shale. The resulting ash will have cement-like properties likely making it suitable for the manufacture of some construction materials or simply mixed with water and placed in a landfill where the mixture would form a concrete mass to seal in any environmentally hazardous chemicals that may be present in RDF ash. Several mass burn plants in the United States use municipal solid wastes as fuel. Several dozen more will be operational within the next few years. In order to meet air quality requirements, these plants (as well as most coal-fired power plants) require expensive pollution control equipment. It has been amply demonstrated that fluidized bed combustors are an effective option for coal-fired power plants. In such plants, crushed limestone in the fluidized bed absorbs sulfur compounds, obviating the need for much of the expensive stack gas clean-up equipment that coal-fired power plants normally require. Major oil companies have spent hundreds of millions of dollars to try to economically use the huge energy reserves contained in US oil shale deposits. However, after many years of research and development, they have been unable to utilize this energy directly.

  3. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  4. Waste oils utilized as coal liquefaction solvents on differing ranks of coal

    SciTech Connect

    Orr, E.C.; Shi, Y.; Liang, J.

    1995-12-31

    To determine the feasibility of using different waste oils as solvent media for coals of differing rank, oil from automobile crankcases, oil derived from the vacuum pyrolysis of waste rubber tires, and oil derived from the vacuum pyrolysis of waste plastics, have been heated to 430{degrees}C with coal in tubing reactors a hydrotreated for 1 hour. Analysis of the solvents indicates the presence of heavy metals in the waste automobile oil. Analysis of the plastic oil shows the presence of iron and calcium. The analysis of the tire oil shows the presence of zinc. Conversion yields are compared and results of analysis for the presence of metals in the liquid products are reported.

  5. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  6. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  7. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  8. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  9. Vegetation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vegetation 250 o 250 N A Community _ Loblolly Pine D Bottomland Hardwood I!!!I Carolina Bay Wetland _ Bottomland HardwodlPine W Streams ~ Roads A/; Rails [2] SRS Bays Will Hydric Soils 500 Meters Soils Soil Series and Phase D DoA D DoB DRm rn Uo Figure 24-1. Plant COll/llll/lzities and soils associated with the Cypress Bay Set-Aside Area. sc 24-5 Set-Aside 24: Cypress Bay

  10. Evaluation of potential mixed wastes containing lead, chromium, or used oil

    SciTech Connect

    Siskind, B.; MacKenzie, D.R.; Bowerman, B.S.; Kempf, C.R.; Piciulo, P.L.

    1987-01-01

    This paper presents the results of follow-on studies conducted by Brookhaven National Laboratory (BNL) for the Nuclear Regulatory Commission (NRC) on certain kinds of low-level waste (LLW) which could also be classified as hazardous waste subject to regulation by the Environmental Protection Agency (EPA). Such LLW is termed ''mixed waste.'' Additional data have been collected and evaluated on two categories of potential mixed waste, namely LLW containing metallic lead and LLW containing chromium. Additionally, LLW with organic liquids, especially liquid scintillation wastes, are reviewed. In light of a proposed EPA rule to list used oil as hazardous waste, the potential mixed waste hazard of used oil contaminated with radionuclides is discussed. It is concluded that the EPA test for determining whether a solid waste exhibits the hazardous characteristic of extraction procedure toxicity does not adequately simulate the burial environment at LLW disposal sites, and in particular, does not adequately assess the potential for dissolution and transport of buried metallic lead. Also, although chromates are, in general, not a normal or routine constitutent in commercial LLW (with the possible exception of chemical decontamination wastes), light water reactors which do use chromates might find it beneficial to consider alternative corrosion inhibitors. In addition, it is noted that if used oil is listed by the EPA as hazardous waste, LLW oil may be managed by a scheme including one or more of the following processes: incineration, immobilization, sorption, aqueous extraction and glass furnace processing.

  11. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  12. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  13. Bioremediation of petroleum wastes from the refining of lubricant oils

    SciTech Connect

    Prince, M.; Sambasivam, Y. )

    1993-02-01

    The results of an initial feasibility study on the bioremediation of sludge are presented. The sludge used in the study was taken from a site containing waste produced during the refining of lubricant oils to which sulfuric acid had been added. The effectiveness of bioremediation was examined using shake flask experiments with indigenous and other bacteria sources and nutrient supplementation. The initial results show limited effectiveness of biological treatment at conditions employing indigenous bacteria and low (2%) sludge concentrations in Bushnell-Haas media. In addition, the indigenous bacteria were seen to degrade the polycyclic aromatic hydrocarbons naphthalene, penanthrene and pyrene which are present at some locations at the site. No apparent degradation of material was seen using conditions of high (30%) sludge concentrations in Bushnell-Haas medium under a variety of conditions. In addition, nutrients were rapidly depleted at these sludge concentrations, with the exception of sulfates which were produced when high sludge concentrations were used. 23 refs., 8 figs., 3 tabs.

  14. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  15. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  16. Thin-layer drying behavior of vegetable wastes from wholesale market

    SciTech Connect

    Lopez, A.; Iguaz, A.; Esnoz, A.; Virseda, P.

    2000-05-01

    The thin-layer drying behavior of vegetable wastes (as a mix of lettuce and cauliflower leaves) from wholesale market for a temperature range of 50--150 C was determined. Drying of this material was found to take part only in the falling-rate period. The experimental data were fitted to the simple exponential model and the Page model. Both models have good prediction capability. Effective diffusion coefficient varied from 6.03 x 10{sup {minus}9} to 3.15 x 10{sup {minus}8} m{sup 2}/s with an activation energy of diffusion of 19.82 kJ/mol. The temperature dependence of the effective diffusion coefficient was expressed by an Arrhenius-type relationship.

  17. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali, Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1996-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method is being investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. During the first quarter the selection of base fro pretreatment and extraction was completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. During the second quarter the effectiveness of linseed oil and NaOH for sulfur removal from IBC-108 coal was further tested by pretreating the coal with two base concentrations at four different times followed by treatment with linseed oil at 125{degrees}C for three different times and finally washing with 5% Na{sub 2}CO{sub 3} and methanol. During this third quarter more experimental parameters were systematically varied in order to study the effectiveness of linseed oil and NaOH for sulfur removal from IBC- 108 coal.

  18. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  19. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly progress report], December 1, 1994--February 28, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun; Shi, Feng; Gholson, K.L.; Ho, K.K.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During this second quarter working with IBC-108 coal (2.3% organic S. 0.4% pyrite S), the effects of different ratios of oil:coal, different extraction solvents, and different temperatures were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 1OO{degree}C. BTU loses can be kept to a minimum of 3% with proper use of solvents.

  20. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    SciTech Connect

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  1. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  2. New information on disposal of oil field wastes in salt caverns

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  3. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  4. NREL and Colombian Oil Firm Unlocking Agricultural Waste Feedstocks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... greenhouse gases and reducing reliability on foreign sources of oil, Elander said. The experience gained in processing these two biomass feedstocks will be directly applicable to ...

  5. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    SciTech Connect

    Bedient, P.B.

    1995-01-16

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  6. Decision guide to farm fuel production: ethanol, methanol, or vegetable oils

    SciTech Connect

    Kerstetter, J.D.

    1984-09-01

    The purpose of this paper is to inform farmers of the choices they have today regarding production of motor vehicle fuels. Its intent is to inform farmers of what is involved in producing an alternative fuel, its compatibility with existing engines, the costs involved, and the markets for the fuel and any by-products. This paper is not a how-to-do-it manual or a policy document. Some of the data has been developed from the Appropriate Technology Small Grants Program managed by the Washington State Energy Office. Part One provides background information on Washington's fuel use patterns, highlighting the agricultural sector. In Part Two, general considerations common to all alternative fuels are covered. Part Three contains three detailed discussions of the alternative fuels most favored by Washington farmers for production and use - ethanol, vegetable oils, and methanol. The Appendix contains a brief summary of the 11 ethanol projects in Washington funded as a result of the Appropriate Technology Small Grants Program. 5 references, 12 figures, 2 tables.

  7. Oil-tanker waste-disposal practices: A review

    SciTech Connect

    Not Available

    1992-01-01

    In the spring of 1991, the Environmental Protection Agency, Region 10 (EPA), launched an investigation into tanker waste disposal practices for vessels discharging ballast water at the Alyeska Pipeline Services Company's Ballast Water Treatment (BWT) facility and marine terminal in Valdez, Alaska. It had been alleged that the Exxon Shipping Company was transferring 'toxic wastes originating in California' to Valdez. In response, EPA decided to examine all waste streams generated on board and determine what the fate of these wastes were in addition to investigating the Exxon specific charges. An extensive Information Request was generated and sent to the shipping companies that operate vessels transporting Alaska North Slope Crude. Findings included information on cargo and fuel tank washings, cleaning agents, and engine room waste.

  8. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  9. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  10. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  11. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  12. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    SciTech Connect

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  13. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect

    Miller, R.L.; Atwood, R.L.; Ye, Yi

    1991-12-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  14. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect

    Miller, R.L. ); Atwood, R.L.; Ye, Yi )

    1991-01-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  15. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  16. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  17. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  18. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  19. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  20. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  1. The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining

    SciTech Connect

    Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K.

    2008-10-15

    In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

  2. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  3. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    SciTech Connect

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  4. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    SciTech Connect

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q.

    2014-12-15

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  5. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  6. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-02-25

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option.

  7. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  8. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  9. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  10. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect

    1996-01-01

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  11. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  12. U(VI) bioreduction with emulsified vegetable oil as the electron donor-- Microcosm tests and model development

    SciTech Connect

    Tang, Guoping; Wu, Wei-min; Watson, David B; Parker, Jack C.; Schadt, Christopher Warren; Brooks, Scott C; Shi, Xiaoqing

    2013-01-01

    Microcosm tests were conducted to study U(VI) bioreduction in contaminated sediments with emulsified vegetable oil (EVO) as the electron donor. In the microcosms, EVO was degraded by indigenous microorganisms and stimulated Fe, U, and sulfate bioreduction, and methanogenesis. Removal of aqueous U occurred concurrently with sulfate reduction, with more reduction of total U in the case of higher initial sulfate concentrations. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed U(VI) reduction to U(IV). As the acetate concentration peaked in 10~20 days in oleate microcosms, the maximum was reached in 100~120 days in the EVO microcosms, indicating that EVO hydrolysis was rate-limiting. The acetate accumulation was sustained over 50 days longer in the oleate and EVO than in the ethanol microcosms, suggesting that acetate-utilizing methanogenesis was slower in the cases of oleate and EVO. Both slow hydrolysis and methanogenesis could contribute to potential sustained bioreduction in field application. Biogeochemical models were developed to couple degradation of EVO, production and oxidation of long-chain fatty acids, glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of microbial functional groups. The models were used to simulate the coupled processes in a field test in a companion article.

  13. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  14. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  15. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    SciTech Connect

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95 wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.

  16. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect

    Not Available

    1995-01-01

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  17. Oil

    Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  18. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  19. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  20. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  1. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  2. Public-health assessment for Whitehouse Waste Oil Pits, Whitehouse, Duval County, Florida, Region 4, CERCLIS No. FLD980602767. Final report

    SciTech Connect

    Not Available

    1992-09-14

    The Whitehouse Waste Oil Pits National Priorities List (NPL) site is located about 0.5 mile northwest of the community of Whitehouse in western Duval County, Florida. After waste oil spilled into the northeast tributary of McGirts Creek in 1968 and 1976, the Environmental Protection Agency stabilized and covered the remaining waste oil from the abandoned oil recycling business. Soils and ground water at the site are contaminated with heavy metals, primarily lead. The residents are particularly concerned about children who play on the site being exposed to toxic chemicals and about contamination of their private potable wells. Dermal contact with the exposed waste oil is a likely exposure pathway for children and other trespassers on the site. Dermal contact with the waste oil by remediation workers and ingestion of contaminated ground water by nearby residents are potential exposure pathways. The data and information have been evaluated for appropriate health follow-up activities by the Agency for Toxic Substances and Disease Registry (ATSDR).

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  4. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOEpatents

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  5. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi

    1997-05-01

    The goal of this project is to develop an inexpensive method to remove organic sulfur from pyrite-free and mineral-free coal using base, air, and readily available farm products. This is accomplished by treating coals with impregnating coals with polyunsaturated offs, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they produce no noxious products and improve burning qualities of the solid products. IBC-108 coal, (contains only 0.4% pyrite and 2.7% organic sulfur) was first treated with Na{sub 4}OH at two different concentrations and four different times, and with NH{sub 4}OH at two different concentrations and two different temperatures. Pretreating IBC-108 coal with bases removes 13% to 23% of the sulfur, and NaOH is a better treatment than NH{sub 4}OH in most of the experiments. Higher temperatures, higher base concentrations, and longer treatment times remove more sulfur. Na{sub 2}CO{sub 3} is more effective than NaOH for oil extraction after the oil treatment. To test for effectiveness of sulfur removal, eight coal samples were treated with NaOH (two concentrations at four different times) were further treated with linseed oil at three temperatures, four different times, and two oil to coal ratios. The combination of NaOH pretreatment, then oil treatment, followed by Na{sub 2}CO{sub 3} extraction, removes 23% to 50% of the sulfur. The best result is achieved by pretreating with 5% NaOH for 20 hr (23% sulfur removal) followed by oil treatment at 100{degrees}C for 5 hr with a 1:1 oil to coal ratio (50% sulfur removal in total). More sulfur is removed with a 1:1 oil to coal ratio than a 1:10 ratio under most conditions.

  6. United Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  7. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  8. Superfund record of decision (EPA Region 4): Whitehouse Waste Oil Pits Site, Duval County, Jacksonville, FL. (First remedial action), (Amendment), June 1992. Final report

    SciTech Connect

    Not Available

    1992-06-16

    The 7-acre Whitehouse Waste Oil Pits site was used by Allied Petroleum Products (Allied) to dispose of acidic waste oil sludges from its oil reclamation process in Whitehouse, Duval County, Florida. A cypress swamp system and residential area are immediately adjacent to the site. The acid sludge produced in the first step and clay used to decolorize the oil were dumped into the unlined pits at the site. A 1985 ROD addressed source control as a containment remedy consisting of a slurry wall construction, soil cap, and a ground water recovery and treatment system; however, EPA has re-evaluated the 1985 ROD selection and determined that the containment remedy failed to meet the requirements of SARA. As a result, the ROD Amendment focuses on an alternative for treating Whitehouse wastes by eliminating direct contact risk associated with pit soil/sludge wastes and preventing contaminated ground water in the surficial aquifer from migrating laterally. The primary contaminants of concern that affect the soil, sediment, surface water, and ground water are VOCs, including benzene, toluene, and xylenes; organics, including PCBs and phenols; and metals, including arsenic, chromium, and lead. The amended remedial action for the site are included.

  9. Health assessment for Whitehouse Waste Oil Pits, Whitehouse, Florida, Region 4. CERCLIS No. FLD980602767. Final report

    SciTech Connect

    Not Available

    1989-03-16

    The Whitehouse Waste Oil Pits National Priorities List site is located in Whitehouse, Duval County, Florida. The site is located in a low density residential area. There are volatile organic compounds and several heavy metals present in the groundwater, surface water, soil, and leachate. The Record of Decision (ROD) signed May 1985 mandated several remedial actions which included the construction of a slurry wall around the entire site, the recovery and treatment of contaminated groundwater within the walled area, the removal of contaminated sediments, and surface capping of the entire area. The project is currently in the design phase. The Environmental Protection Agency is considering altering the ROD to conform with the requirements in the Superfund Amendments and Reauthorization Act of 1986 for permanent remedial actions.

  10. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation: Competition in bioremediation system

    DOE PAGES [OSTI]

    Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; Yang, Yunfeng; He, Zhili; Schadt, Christopher Warren; Zhou, Jizhong

    2015-08-11

    When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the networkmore » interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.« less

  11. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation: Competition in bioremediation system

    SciTech Connect

    Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; Yang, Yunfeng; He, Zhili; Schadt, Christopher Warren; Zhou, Jizhong

    2015-08-11

    When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the network interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.

  12. Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project

    SciTech Connect

    Schriner, J.A.

    1998-08-01

    The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF.

  13. Assessment of solid-waste characteristics and control technology for oil-shale retorting. Final report for September 1983-February 1985

    SciTech Connect

    Agarwal, A.K.

    1986-05-01

    The report presents information on oil-shale deposits in the eastern and western parts of the United States, their geological subdivisions, locations, tonnage, and physical and chemical characteristics. Characteristics of solid and liquid wastes produced from various oil-shale-processing technologies and control methods are presented. Also included are results from an experimental study to construct liners and covers for disposal of spent shale. A compilation of available data on the auto-ignition potential of raw and spent shales indicates a similarity between raw-shale fines and bituminous coals.

  14. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Yearly report, July 1, 1992--June 30, 1993

    SciTech Connect

    Bedient, P.B.

    1993-07-30

    The project consists of 3 tasks: (1) Developing a Production Environmental Database (PED) with the purpose of investigating the current industry waste storage and disposal practices by different regions, states and types of waste and investigating the environmental impacts associated with these practices; (2) Evaluating the suitability of available and developing technologies for treating produced water and identifying applicable unit process configurations; and (3) Evaluating the costs associated with various degrees of treatment achievable by different configurations. Records of wells drilled during the years 1986 through 1991 were compiled from industry reports. Overall, drilling has decreased from an average of 60,000 wells/yr for the period 1981 through 1985 to 20,000/yr during 1986 through 1991. A produced water database was developed from data and information provided by the various state and federal agencies. Currently, the database has information on the production of oil, gas and brines from 24 states. The data from the produced water database indicate that for the most part, Class II Injection seemed to be the common disposal method. Other methods included evaporation, surface disposal via NPDES permit, road spreading, hauling out-of-state, and annular disposal. A survey of oil and gas operators has been developed, reviewed and edited. The survey is divided-by topic into three sections. (1) drilling wastes; (2) associated wastes; and (3) produced water. The objective of the survey is to develop more current information on the waste volumes and disposal methods used during 1986 through 1991. The possible treatment scenarios for produced water have been identified. Organic and inorganic contaminant removal, liquid/solid separation and liquid/emulsified oil separation have been identified as the main objectives of the treatment of produced water.

  15. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    SciTech Connect

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  16. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    SciTech Connect

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-05-01

    Highlights: Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.56.2. Energy yield was lower by 33% for two-phase system compared to the single-phase system. Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.56.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during

  17. Induction of MFO enzymes and production of bile metabolites in rainbow trout (Oncorhynchus mykiss) exposed to waste crankcase oil

    SciTech Connect

    Upshall, C.; Payne, J.F.; Hellou, J. . Dept. of Fisheries and Oceans)

    1993-11-01

    It is difficult to assess the toxicological significance of complex mixtures of contaminants in the environment because of paucity of dose-response studies. Rainbow trout (Oncorhynchus mykiss) were exposed per os to waste crankcase oil and analyzed for hydrocarbon classes, 26 polycyclic aromatic compounds (PACs) and 66 elements. MFO enzyme activity, measured as 7-ethoxyresorufin O-deethylase (EROD) was induced in liver, kidney, and heart. The threshold level for induction in liver was approximately 3 mg of PACs (sum of 26 PACs) per kilogram fish. A dose-response relationship was obtained for liver and kidney but not for the heart. In a time-response study, liver, kidney, and heart MFL activity increase (14-, 5-, and 3-fold, respectively), reaching a maximum between days 1 and 4, then decreased to basal levels by day 12. Analysis of bile metabolites, as glucuronide and sulfate conjugates, showed a pattern similar to that displayed by MFO induction, possibly with a slight delay. This study establishes time- and dose-response relationships for MFO enzyme induction and appearance of bile metabolites in fish exposed to an environmentally important source of PACs.

  18. Categorical Exclusion 4565, Waste Management Construction Support

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls;...

  19. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    SciTech Connect

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  20. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

    1993-08-11

    This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  1. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Fourth quarterly report, July--September 1993

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1993-10-08

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  3. Oil shale research in China

    SciTech Connect

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  4. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  5. Overview of mixed waste issues

    SciTech Connect

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  6. Disposal of NORM waste in salt caverns

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  7. Vegetation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vegetation Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleVegetation&oldid612270" Feedback Contact needs updating Image needs updating...

  8. How to deal with radiologically contaminated vegetation

    SciTech Connect

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-12-31

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

  9. Oil shale: The environmental challenges III

    SciTech Connect

    Petersen, K.K.

    1983-01-01

    This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

  10. An Industrial Membrane System Suitable for Distributed Used Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    such as thermal and chemical stability, including waste oil re-refining, coal tar oil clean-up, and FCC slurry upgrading. * In parallel, use these applications and know-how ...

  11. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  12. Oil shale: Technology status report

    SciTech Connect

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  13. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  14. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect

    Marker, T.L.

    2005-12-19

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  15. Sky Vegetables | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vegetables Jump to: navigation, search Name: Sky Vegetables Address: 45 Rosemary Street, Suite F Place: Needham, MA Zip: 02494 Sector: Solar Website: www.skyvegetables.comindex.ht...

  16. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  17. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    SciTech Connect

    L. M. Dittmer

    2006-08-10

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  18. World oil trends

    SciTech Connect

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  19. Waste Hoist

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  20. Identification of radioactive mixed wastes in commercial low-level wastes

    SciTech Connect

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1986-01-01

    A literature review and survey were conducted on behalf of the US NRC Division of Waste Management to determine whether any commercial low-level radioactive wastes (LLW) could be considered hazardous as defined by EPA under 40 CFR Part 261. The purpose of the study was to identify broad categories of LLW which may require special management as radioactive mixed waste, and to help address uncertainties regarding the regulation of such wastes. Of 239 questionnaires sent out to reactor and non-reactor LLW generators, there were 91 responses representing 29% by volume of all low-level wastes disposed of at commercial disposal sites in 1984. The analysis of the survey results indicated that the following waste types generic to commercial LLW may be potential radioactive mixed wastes: Wastes containing oil, disposed of by reactors and industrial facilities, and representing 4.2% of the total LLW volume reported in the survey. Wastes containing organic liquids, disposed of by all types of generators, and representing 2.3% by volume of all wastes reported. Wastes containing lead metal, i.e., discarded shielding and lead containers, representing <0.1% by volume of all wastes reported. Wastes containing chromium, i.e., process wastes from nuclear power plants which use chromates as corrosion inhibitors; these represent 0.6% of the total volume reported in the survey. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well.

  1. Crude oil and shale oil

    SciTech Connect

    Mehrotra, A.K.

    1995-06-15

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  2. Tank Waste and Waste Processing | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled ...

  3. Management of offshore wastes in the United States.

    SciTech Connect

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  4. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  5. Improving oiled shoreline cleanup with COREXIT 9580

    SciTech Connect

    Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.

    1996-08-01

    The cleanup of oiled shorelines has generally been by mechanical, labor-intensive means. The use of a chemical shoreline cleaner to assist in water-flushing oil from the surfaces can result in more complete and more rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging since there is potentially much less human intrusion and stress on the biological community. This paper describes research and applications of COREXIT 9580 shoreline cleaner for treatment of oiled shorelines, including four recent applications in Puerto Rico, Bermuda, Texas and Nova Scotia. Research work on shoreline vegetation, such as mangroves, has also demonstrated the potential use of this product to save and restore oiled vegetation.

  6. Greasecar Vegetable Fuel Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greasecar Vegetable Fuel Systems Jump to: navigation, search Name: Greasecar Vegetable Fuel Systems Place: Florence, Massachusetts Zip: 1062 Product: Manufacturer of vegetable fuel...

  7. Pyrolysis of waste tyres: A review

    SciTech Connect

    Williams, Paul T.

    2013-08-15

    Graphical abstract: - Highlights: Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. Product yields are influenced by reactor type, temperature and heating rate. Pyrolysis oils are complex and can be used as chemical feedstock or fuel. Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  8. Waste minimization in an autobody repair shop

    SciTech Connect

    Baria, D.N.; Dorland, D.; Bergeron, J.T.

    1994-12-31

    This work was done to document the waste minimization incorporated in a new autobody repair facility in Hermantown, Minnesota. Humes Collision Center incorporated new waste reduction techniques when it expanded its old facilities in 1992 and it was able to achieve the benefits of cost reduction and waste reduction. Humes Collision Center repairs an average of 500 cars annually and is a very small quantity generator (VSQG) of hazardous waste, as defined by the Minnesota Pollution Control Agency (MPCA). The hazardous waste consists of antifreeze, batteries, paint sludge, refrigerants, and used oil, while the nonhazardous waste consists of cardboard, glass, paint filters, plastic, sanding dust, scrap metal, and wastewater. The hazardous and nonhazardous waste output were decreased by 72%. In addition, there was a 63% reduction in the operating costs. The waste minimization includes antifreeze recovery and recycling, reduction in unused waste paint, reduction, recovery and recycle of waste lacquer thinner for cleaning spray guns and paint cups, elimination of used plastic car bags, recovery and recycle of refrigerant, reduction in waste sandpaper and elimination of sanding dust, and elimination of waste paint filters. The rate of return on the investment in waste minimization equipment is estimated from 37% per year for the distillation unit, 80% for vacuum sanding, 146% for computerized paint mixing, 211% for the refrigerant recycler, to 588% per year for the gun washer. The corresponding payback time varies from 3 years to 2 months.

  9. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  10. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  11. Problems associated with solid wastes from energy systems

    SciTech Connect

    Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

    1980-09-01

    Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

  12. Venezuelan oil

    SciTech Connect

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  13. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  14. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  16. Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  17. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  18. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  19. Summary of BNL studies regarding commercial mixed waste

    SciTech Connect

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1986-09-01

    Based on BNL's study it was concluded that there are low-level radioactive wastes (LLWs) which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November 1985, no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA permitted site. Currently generators of liquid scintillation wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes may also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed waste unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. While management options for handling potential mixed wastes are available, there is limited regulatory guidance for generators. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concerns can, at the same time, address stabilization and volume reduction concerns of NRC. 6 refs., 1 tab.

  20. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  1. Production of Oil in Vegetative Tissues - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    biodiesel is on the rise around the world and in the U.S. due to a strong and growing desire to reduce dependency on petroleum-derived diesel fuel. The acceptance of biodiesel ...

  2. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Corporation, Grand Junction, CO 81503, USA; E-Mail: jody.waugh@lm.doe.gov * Author to ... based on either the scaled reflectance data or mixture tuned matched filtering ...

  3. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    SciTech Connect

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  4. Oil Bypass Filter Technology Performance Evaluation - January 2003 Quarterly Report

    SciTech Connect

    Laurence R. Zirker; James E. Francfort

    2003-01-01

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  5. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Game | Department of Energy Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis

  11. MAPSS Vegetation Modeling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    mdrmapss MAPSS Vegetation Modeling Screenshot References: MAPSS1 Applications "A landscape- to global-scale vegetation distribution model that was developed to simulate the...

  12. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  13. Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date

    SciTech Connect

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  14. Radioactive Waste Management Information for 1992 and record-to-date

    SciTech Connect

    Litteer, D.L.; Randall, V.C.; Sims, A.M.; Taylor, K.A.

    1993-07-01

    This document provides detailed data and graphics on air borne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  15. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    SciTech Connect

    Not Available

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  16. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  17. Waste processing air cleaning

    SciTech Connect

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  18. Waste Hoist

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck

  19. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  20. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

    Office of Environmental Management (EM)

    Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Mission The team supports efforts that promote a more

  1. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis ...

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Energy.gov [DOE] (indexed site)

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  3. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect

    Orr, E.C.; Shi, Yanlong; Ji, Qin; Anderson, L.L.; Eyring, E.M.

    1995-12-31

    Recent interest in coprocessing coal with hydrogen rich waste materials in order to produce liquid transportation fuels has given rise to interesting twists on standard coal liquefaction. In general, coprocessing coal with a waste material has been approached with the idea that the waste material would be mixed with the coal under liquefaction conditions with little or no preliminary processing of the waste material other than shredding into smaller size particles. Mixing the waste material with the coal would occur in the primary stage of liquefaction. The primary stage would accomplish the dissolution of the coal and breakdown of the waste material. The products would then be introduced into the secondary stage where upgrading of product would occur. This paper describes the usefulness of oil derived from pyrolysis of waste rubber tires as a reactant in coal coprocessing or coal liquefaction.

  4. Method for extracting metals from aqueous waste streams for long term

    Office of Scientific and Technical Information (OSTI)

    storage (Patent) | DOEPatents Method for extracting metals from aqueous waste streams for long term storage Title: Method for extracting metals from aqueous waste streams for long term storage A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils. http:energy.goveereeducationdownloads...

  6. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  7. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  8. Oil shale mining processing, uses, and environmental impacts. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect

    NONE

    1995-09-01

    The bibliography contains citations concerning oil shale mining and retorting, uses, and related environmental aspects. References discuss pyrolyzed, gasified, and combusted oil shales. Product yields and oil quality, socioeconomic impacts, exploration, reclamation of mined lands, and waste disposal are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Vegetation Change Analysis User's Manual

    SciTech Connect

    D. J. Hansen; W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  10. Low-level waste certification plan for the WSCF Laboratory Complex

    SciTech Connect

    Morrison, J.A.

    1994-09-19

    The solid, low-level waste certification plan for the Waste Sampling and Characterization Facility (WSCF) describes the organization and methodology for the certification of the solid low-level waste (LLW) that is transferred to the Hanford Site 200 Areas Storage and Disposal Facilities. This plan incorporates the applicable elements of waste reduction, including up-front minimization, and end product treatment to reduce the volume or toxicity of the waste. The plan also includes segregation of different waste types. This low-level waste certification plan applies only to waste generated in, or is the responsibility of the WSCF Laboratory Complex. The WSCF Laboratory Complex supports technical activities performed at the Hanford Site. Wet Chemical and radiochemical analyses are performed to support site operations, including environmental and effluent monitoring, chemical processing, RCRA and CERCLA analysis, and waste management activities. Environmental and effluent samples include liquid effluents, ground and surface waters, soils, animals, vegetation, and air filters.

  11. EM's Defense Waste Processing Facility Achieves Waste Cleanup...

    Office of Environmental Management (EM)

    Defense Waste Processing Facility Achieves Waste Cleanup Milestone EM's Defense Waste Processing Facility Achieves Waste Cleanup Milestone January 14, 2016 - 12:10pm Addthis The ...

  12. Radionuclide release from low-level waste in field lysimeters

    SciTech Connect

    Oblath, S B

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species.

  13. Hanford Dangerous Waste Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Integrated Disposal Facility Operating Unit #11 Aerial view of IDF looking south. Note semi-truck trailer for scale. There are risks to groundwater in the future from secondary waste, according to modeling. Secondary waste would have to be significantly mitigated before it could be disposed at IDF. Where did the waste come from? No waste is stored here yet. IDF will receive vitrified waste when the Waste Treatment Plant starts operating. It may also receive secondary waste resulting from

  14. Legacy Waste | Department of Energy

    Office of Environmental Management (EM)

    Services Legacy Waste Legacy Waste Legacy Waste The Environmental Management Los Alamos Field Office's (EM-LA) Solid Waste Stabilization and Disposition Project Team is ...

  15. Could a Common Household Fungus Reduce Oil Imports?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Imagine if the same mold that ruins old grapes and onions could double as a key ingredient in the recipe to reduce U.S. dependence on foreign oil. Pacific Northwest National Laboratory are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes.

  16. Crude Oil | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, ... by the network model (see figure) spans from oil fields to fuel distribution terminals. ...

  17. Oil Security Metrics Model

    SciTech Connect

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  18. Crude Oil Domestic Production

    Energy Information Administration (EIA) (indexed site)

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  19. Oil and Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  20. NETL: Oil & Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally ... and challenging locations of many of our remaining oil and natural gas accumulations. ...

  1. Used oil and its regulation in the United States. Master's thesis

    SciTech Connect

    Ledbetter, G.H.

    1988-09-30

    The Environmental Protection Agency (EPA) took the first significant steps toward the federal regulation of waste and used oil by: (1) promulgating the final rule for the Burning of Waste Fuel and Used Oil Fuel in Boilers and Industrial Furnaces; (2) proposing a rule to establish standards for used oil which is recycled; and (3) proposing a rule to amend the regulations for hazardous waste management under Subtitle C of the Resource Conservation and Recovery Act (hereafter referred to as RCRA) by listing used oil as a hazardous waste. These efforts by EPA are particularly interesting because of both the nature of the prodding from Congress it took to obtain EPA action and the unprecedented volume, degree, and breadth of public opposition these actions generated once taken.

  2. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  3. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  4. Waste remediation

    SciTech Connect

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  5. Vegetation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    /::vI Streams ~Rails 'R Utility ROW Roads oTES Plants (2) [2] Other Set-Asides D Three Rivers Landfill D Hydric Soils 380 Soils Soil Series and Phase DBaB DBaC .Pk _TrB _TuE _TuF _VaC o 380 760 1140 Meters N A sc Figure 6-1. Plant cOllllllunities and soils associated with the Beech-Hardwood Forest Set-Aside Area. 6-5 Set-Aside 6: Beech-Hardwood Forest

  6. Vegetation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pine D Mixed PineHardwood D Upland Hardwood. IiiiI Carolina Bay Wetland m SRS Bays *. TES Plants (1) fVj Roads o Openwells N Site Boundary N A Soils &Ji I Seri es

  7. Oil Production

    Energy Science and Technology Software Center

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  8. Transuranic Waste Requirements

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  9. Defense Waste Management Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy ... Twitter Google + Vimeo Newsletter Signup SlideShare Defense Waste Management Programs ...

  10. Radioactive Waste Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  11. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  12. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  13. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste ...

  14. Waste Confidence Discussion

    Office of Environmental Management (EM)

    Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards ... Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the ...

  15. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  16. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  17. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  18. The evaluation of an analytical protocol for the determination of substances in waste for hazard classification

    SciTech Connect

    Hennebert, Pierre; Papin, Arnaud; Padox, Jean-Marie; Hasebrouck, Benoît

    2013-07-15

    results. Despite discrepancies in some parameters, a satisfactory sum of estimated or measured concentrations (analytical balance) of 90% was reached for 20 samples (63% of the overall total) during this first test exercise, with identified reasons for most of the unsatisfactory results. Regular use of this protocol (which is now included in the French legislation) has enabled service laboratories to reach a 90% mass balance for nearly all the solid samples tested, and most of liquid samples (difficulties were caused in some samples from polymers in solution and vegetable oil). The protocol is submitted to French and European normalization bodies (AFNOR and CEN) and further improvements are awaited.

  19. World Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  20. Eco Oil 4

    SciTech Connect

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  1. Innovative filter polishes oil refinery wastewater

    SciTech Connect

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  2. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  3. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  4. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  5. State of Illinois 1982 annual coal, oil and gas report

    SciTech Connect

    Not Available

    1983-01-01

    This data compilation contains statistics from the coal industry and petroleum industry of Illinois. Data are given on the production, accidents, explosives, and mechanization of coal mines. Metal mines are only briefly described. The report from the Division of Oil and Gas contains data on oil well completions, oil wells plugged, water input wells, and salt water and waste disposal wells. The results of hearings in the division are included. The Land Reclamation Division reports data on permits and acreage affected by surface mining of coal, limestone, shale, clay, sand, and gravel. 2 figures, 76 tables.

  6. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  7. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  8. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  9. Permian Basin`s operators examine alternatives for disposing of wastes

    SciTech Connect

    1995-10-01

    Waste from the production of oil is not toxic, but operators still have to make arrangements to get rid of it. Drilling and production wastes aren`t harmful, but they must be treated in some way to comply with environmental laws.

  10. Waste Package Lifting Calculation

    SciTech Connect

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  11. Infectious waste feed system

    DOEpatents

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    for a pilot program to operate Type II school buses that are retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. ...

  13. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    SciTech Connect

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  14. Radioactive Waste Management Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  15. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  16. Hanford Dangerous Waste Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit #10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at Hanford's Integrated Disposal Facility. HLW canisters will go to a For scale, here's the parking lot! Safe disposition of our nation's most dangerous waste relies on the vit plant's safe completion and ability to process waste for 20+ years. * Permitted for storage and treatment of Hanford's tank waste in unique

  17. Apparatus for distilling shale oil from oil shale

    SciTech Connect

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  18. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  19. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  20. A Canadian Solution for Management of Mixed Liquid Waste - 13384

    SciTech Connect

    Suryanarayan, Sriram; Husain, Aamir

    2013-07-01

    Mixed liquid wastes (MLW) from Canadian nuclear facilities consist of solvents, PCB (Poly Chlorinated Biphenyls) and non-PCB contaminated oils and aqueous wastes. Historically, MLW drums were shipped to a licensed US facility for destruction via incineration. This option is relatively expensive considering the significant logistics and destruction costs involved. In addition, commercial waste destruction facilities in US cannot accept PCB wastes from non-US jurisdictions. Because of this, Kinectrics has recently developed a novel and flexible process for disposing both PCB as well as non-PCB contaminated MLW within Canada. This avoids the need for cross-border shipments which significantly reduces the complexity and cost for waste disposal. This paper presents an overview of the various approaches and activities undertaken to date by Kinectrics for successfully processing and disposing the MLW drums. A summary of the results, challenges and how they were overcome are also presented. (authors)

  1. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1995-03-07

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  2. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, David J.

    1995-01-01

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  3. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1993-01-01

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  4. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  5. Waste Shipment Approval - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Acceptance Process Waste Shipment Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a New Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Shipment Approval Email Email Page | Print Print

  6. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  7. Hydrothermal Processing of Wet Wastes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Tested Feedstocks Slide 6 Waste Dairy Manure, Poultry Manure, Pig Manure, Municipal Solid Waste, Pulp and Paper Mill Waste, Plastic Bottles Aquatic Water Hyacinths, Kelp ...

  8. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  9. South American oil

    SciTech Connect

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  10. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  11. DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules

    Energy.gov [DOE]

    An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

  12. SRC residual fuel oils

    SciTech Connect

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  13. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  14. Oil-futures markets

    SciTech Connect

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  15. Radioactive Waste Management Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  16. Waste management progress report

    SciTech Connect

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management.

  17. Waste Isolation Pilot Plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2/25/16 WIPP Home Page About WIPP Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. CH and RH Waste WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. It consists of clothing, tools,

  18. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  19. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  20. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  1. Estimating Waste Inventory and Waste Tank Characterization | Department of

    Office of Environmental Management (EM)

    Energy Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization (36.64 KB) More Documents & Publications Removal to Maximum Extent Practical Basis for Section 3116

  2. Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility (742.54 KB) Summary - WTP HLW Waste Vitrification Facility (137.99 KB) More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste

  3. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    SciTech Connect

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  4. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  5. Tritium contamination and decontamination of sealing oil for vacuum pump

    SciTech Connect

    Takeishi, T.; Kotoh, K.; Kawabata, Y.; Tanaka, J.I.; Kawamura, S.; Iwata, M.

    2015-03-15

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.

  6. US Crude oil exports

    Gasoline and Diesel Fuel Update

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  7. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of ...

  8. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  9. Waste Specification Records - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a New Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  10. Solid waste handling

    SciTech Connect

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  11. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, December 1991--February 1992

    SciTech Connect

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1992-03-01

    The objective is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Easter oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. Accomplishments for this period are presented for the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. 24 figs., 19 tabs. (AT)

  12. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  13. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  14. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  15. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    42: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area ... EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western ...

  16. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  17. Radioactive Waste Management Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  18. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  19. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Mixed waste: Proceedings

    SciTech Connect

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  1. Bonneville - Hood River Vegetation Management Environmental Assessment

    SciTech Connect

    N /A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  2. Shale oil dearsenation process

    SciTech Connect

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  3. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  4. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  5. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  6. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  7. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  8. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  9. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify ...

  10. Crude Oil Production

    Gasoline and Diesel Fuel Update

    Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  11. Crude Oil Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  12. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  13. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  14. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  15. Upgrading heavy gas oils

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  16. Waste Stream Approval - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a New Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Stream Approval Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size After funding approval is in place, the next step is to

  17. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  18. Solid Waste Management Plan. Revision 4

    SciTech Connect

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  19. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    waste system of the Waste Treatment and Immobilization Plant Low Activity Waste Facility. ... Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 ...

  20. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting ...

  1. Waste Management Committee | Department of Energy

    Office of Environmental Management (EM)

    Waste Management Committee Waste Management Committee Waste Management Committee Waste Management Committee Mission Statement The Northern New Mexico Citizens' Advisory Board ...

  2. Oil shale technology

    SciTech Connect

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  3. Waste from grocery stores

    SciTech Connect

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collection process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.

  4. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  5. Operational Waste Volume Projection

    SciTech Connect

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  6. Operational Waste Volume Projection

    SciTech Connect

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  7. Hanford Dangerous Waste Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dangerous Waste Permit Suzanne Dahl and Jeff Lyon Nuclear Waste Program April 17, 2012 Tank-Related Units Why have permits? * To regulate dangerous waste treatment, storage, and disposal facilities: - Thermal treatment units - Landfills - Tank systems - Container storage - Containment buildings * To protect humans and the environment Parts of the Unit Permit * Fact Sheet * Unit description * Operations and processes * Permit conditions * Requirements or limitations to maintain safe operating

  8. Oil Bypass Filter Technology Evaluation Eleventh Quarterly Report: April -June 2005

    SciTech Connect

    Larry Zirker; James Francfort; Jordan Fielding

    2005-09-01

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2005) details the ongoing fleet evaluation of engine oil bypass filter technologies being conducted by the Idaho National Laboratory (INL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eleven INL four-cycle diesel-engine buses and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems. Eight of the buses and the six Tahoes are equipped with oil bypass filters from the puraDYN Corporation; the remaining three buses are equipped with oil bypass filters from Refined Global Solutions. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminates from the engine oil. During the April to June 2005 reporting quarter, the eleven diesel engine buses traveled 85,663 miles. As of June 30, 2005, the buses had accumulated 829,871 total test miles. During this quarter, seven regularly scheduled 12,000-mile bus service events were performed. Bus 73449 had its oil accidentally changed on 5/17/05 during servicing. Two buses had mechanical problems which required the oil to be changed: Bus 73446 had an injector failure and Bus 73413 had a broken “dip stick” fitting on the oil pan, both of which introduced contaminants. Buses 73432 and 73433 began the idling phase of the INL Diesel Engine Idling Wear-Rate Evaluation Test. Throughout the 35 months of evaluation, only six oil changes were performed on the INL buses because of degraded oil quality from normal operations. This is a 90% reduction of oil consumption (490 gallons saved) and a concurrent 90% reduction (490 gallons) of waste oil generation. Another six oil changes were performed due to mechanical problems and accidental oil changes. The six Tahoe test vehicles traveled 28,688 miles, and as of June 30, 2005, the Tahoes had accumulated 260,116 total test miles.

  9. Balancing oil and environment... responsibly.

    SciTech Connect

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  10. oil and gas portfolio reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)... focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ...

  11. Cooperative Research Program in Coal-Waste Liquefaction

    SciTech Connect

    Gerald Huffman

    2000-03-31

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  12. Oil Refund Decisions

    Office of Energy Efficiency and Renewable Energy (EERE)

    During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers.

  13. Waste to Energy

    Energy.gov [DOE] (indexed site)

    pellets or logs from wood, plants, or paper So, what ... Waste to energy - gasification http:... George Roe Research Professor Alaska Center ...

  14. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  15. Norcal Waste Systems, Inc.

    SciTech Connect

    Not Available

    2002-12-01

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  16. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  17. Vitrification of waste

    DOEpatents

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  18. Vitrification of waste

    DOEpatents

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  19. Pioneering Nuclear Waste Disposal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... agen- cies, scientific advisory panels, and concerned citizens. * As a ... It also prohibited the disposal of high-level radioactive waste and spent nuclear fuel. In 1996, ...

  20. Hanford Dangerous Waste Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    * Removes water and volatile organics from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats up to 1 million gallons to free up about 500,000 gallons in the double-shell tanks in each campaign. * Near PUREX and most of the double-shell tanks in the 200 East Area. * Began operating in 1977. Where does the waste come from? Waste comes to the 242-A Evaporator from the double-shell tanks.

  1. Waste minimization assessment procedure

    SciTech Connect

    Kellythorne, L.L. )

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

  2. Decomposition of carbohydrate wastes

    DOEpatents

    Appell, Herbert R.; Pantages, Peter

    1976-11-02

    Carbohydrate waste materials are decomposed to form a gaseous fuel product by contacting them with a transition metal catalyst at elevated temperature substantially in the absence of water.

  3. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... of tank waste at SRS. SWPF will separate the salt waste into a low-volume, high radioactivity fraction for vitrification in the Defense Waste Processing Facility (DWPF) and ...

  4. Oil Bypass Filter Technology Evaluation Tenth Quarterly Report January–March 2005

    SciTech Connect

    Larry Ziker; James Francfort

    2005-06-01

    This Oil Bypass Filter Technology Evaluation quarterly report (January– March 2005) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eleven INL fourcycle diesel-engine buses and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems. Eight of the buses and the six Tahoes are equipped with oil bypass filters from the puraDYN Corporation; the remaining three buses are equipped with oil bypass filters from Refined Global Solutions. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminates from the oil. During the January to March 2005 reporting quarter, the eleven diesel engine buses traveled 97,943 miles. As of March 31, 2005, the buses had accumulated 744,059 total test miles. During this quarter, four regularly scheduled 12,000-mile bus servicings were performed. The full-flow and bypass oil filters were changed and oil analysis samples were taken for the four buses. Bus 73446 had its oil changed due to a low total base number value. Bus 73450 had a major engine failure at the beginning of the quarter when one of its pushrods and valves were damaged. Buses 73432 and 73433 were removed from the bypass filter evaluation project and placed into the INL Diesel Engine Idling Wear-Rate Evaluation Test. While a total of nine oil changes on the INL buses occurred during the past 29 months, 53 oil changes have been avoided by using the oil bypass filters. The 53 avoided oil changes equates to 1,855 quarts (464 gallons) of new oil not consumed and 1,855 quarts of waste oil not generated. Therefore, over 85% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved a greater than 85% reduction in the amount of waste oil normally generated by the buses. The six Tahoe test vehicles

  5. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  6. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  7. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  8. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  9. Report: EM Tank Waste Subcommittee Full Report for Waste Treatment...

    Office of Environmental Management (EM)

    Triay: As discussed during our September 15th public meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment ...

  10. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August ...

  11. DOI-BLM-NV-B010-2011-0015-EA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    matter including, but not limited to: human waste, trash, garbage, vegetation, refuse, oil drums, petroleum products, ashes, and equipment. 9. The Holder shall comply with all...

  12. AgriFuel Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: AgriFuel Company Place: Cranford, New Jersey Sector: Biofuels Product: AgriFuel produces and markets biofuels refined from waste vegetable oil,...

  13. China shows increasing interest in heavy oil and oil sands

    SciTech Connect

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  14. The Carver-Greenfield Process: dehydration/solvent extraction technology for waste treatment

    SciTech Connect

    Trowbridge, T.D.; Holcombe, T.C.

    1996-12-31

    A combination dehydration/solvent extraction treatment technology, the proprietary Carver-Greenfield (C-G) Process, can be used to separate solid/liquid waste materials into three separate product streams convenient for reuse or disposal: (1) clean, dry solids suitable for fixation of nonhazardous landfilling; (2) water virtually free of solids and oils which can be processed in an industrial or public wastewater treatment facility; and, (3) oil indigenous to the feed, a mixture of extracted hydrocarbon-soluble compounds which typically includes any hazardous contaminants which are present. As normally practices, this dehydration/solvent extraction technology involves slurrying water-wet waste in a hydrocarbon solvent which extracts indigenous oil from contaminated solid particles and concentrates it in the solvent phase. Dehydration also takes place during the treatment; water is evaporated and condensed as a separate product. Dry solids are reslurried in fresh solvent one or more additional times depending on the degree of extraction required. Extracted solids are centrifuged away from the solvent and residual solvent in the centrifuge cake vaporized off the final product solids stream in a desolventizer. Indigenous oil from the waste is separated from the solvent by distillation with recovered solvent being recycled to the process. This paper discusses the C-G Process flexibility and economics as applied to various hazardous waste examples including PCB contaminated sediments, soils and sludges, spent drilling fluids (US EPA SITE Program), refinery wastes, manufactured gas plant (MGP) sites, etc. 8 refs., 1 fig., 9 tabs.

  15. Heterogeneous waste processing

    DOEpatents

    Vanderberg, Laura A.; Sauer, Nancy N.; Brainard, James R.; Foreman, Trudi M.; Hanners, John L.

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  16. Radioactive waste storage issues

    SciTech Connect

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  17. Improving medical waste disposal

    SciTech Connect

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  18. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  20. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  1. Fluorescence emission spectral measurements for the detection of oil on shore

    SciTech Connect

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1997-06-01

    The US DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government Utilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils on shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission properties of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.

  2. Fluorescence emission spectral measurements for the detection of oil on shore

    SciTech Connect

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1996-12-31

    The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission properties of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.

  3. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  4. Waste Determination Equivalency - 12172

    SciTech Connect

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  5. Laboratory Waste | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for...

  6. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    in the EM complex Radioactive tank waste stabilization, treatment, and disposal ... Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and ...

  7. Environmental waste disposal contracts awarded

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste...

  8. Waste Specification Records - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  9. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... RCRA - Resource Conservation and Recovery Act NMSW - New Mexico Special Waste MSW - Municipal Solid Waste C&D - Construction and Demolition 4. Estimated dollar amounts of capital ...

  10. High-Level Waste Inventory

    Office of Environmental Management (EM)

    Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory ... of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report April ...

  11. Status of LLNL Hot-Recycled-Solid oil shale retort

    SciTech Connect

    Baldwin, D.E.; Cena, R.J.

    1993-12-31

    We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  12. Vitrification of NORM wastes

    SciTech Connect

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  13. Oil Bypass Filter Technology Evaluation, Eighth Quarterly Report, July - September 2004

    SciTech Connect

    Larry Zirker; James Francfort; Jordan Fielding

    2004-11-01

    This Oil Bypass Filter Technology Evaluation quarterly report (July--September 2004) details the ongoing fleet evaluation of an oil bypass filter technology being conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 82,123 miles. As of the end of September 2004, they had accumulated 580,848 miles since the beginning of the test and 516,401 miles without an oil change. This represents an avoidance of 43 oil changes, which equates to 1,505 quarts (376 gallons) of new oil not consumed and, furthermore, 1,505 quarts of waste oil not generated. Two buses had their oil changed this quarter due to the degraded quality of the engine oil, as determined by the low total base numbers. This quarter, the six Tahoe test vehicles traveled 40,762 miles. As of the end of September 2004, the six Tahoes have accumulated 150,205 total test miles. The Tahoe filter test is in flux because of the engine cleaning or flushing that is occurring. The recycled oil used initially in the Tahoe testing was replaced with a 10W-30 Castrol oil, however only three vehicles have been flushed (one servicing event with the new oil) and restarted on testing.

  14. Canola-Based Automotive Oil Research and Development

    SciTech Connect

    Pierce, Ira N.; Kammerman, Steven B.

    2009-12-07

    This research project establishes data on the ability of the bioindustry to provide sufficient production of Canola/rapeseed, functioning as a biolubricant, to replace petroleum-based automotive lubricants at competitive prices. In 2005 total sales for lubricants amounted to 2.5 billion gallons. Research was also conducted to determine the attitudes toward adoption of bioproducts, specifically among industries that are large-scale users of automotive lubricants, including government and private industry users. The green technology industry, or bioindustry, uses a variety of plant- and crop-based resources, known as biomass, to produce energy, fuel and many different bioproducts. Rapeseed is categorized as a lignocellulosic biomass. High erucic acid rapeseed is not intended for human consumption thereby negating the food vs. fuel issue that arose with the increased production of corn as a feedstock for use in ethanol. Key findings show that the oil from Canola/rapeseed provides about twice the yield than soybean oil. These seeds also have significantly higher natural lubricity than petroleum, enabling Canola/rapeseed to function in many different capacities where oxidation issues are critical. It also has the most positive energy balance of all common vegetable oils, making it an excellent potential replacement for petroleum-based fuels as well. As a rotating crop, it enhances farm lands, thereby increasing subsequent yields of barley and wheat, thus increasing profit margins. Petroleum-based bioproducts negatively impact the environment by releasing greenhouse gases, sulfur, heavy metals and other pollutants into the air, ground and water. Replacing these products with bio-alternatives is a significant step toward preserving the country’s natural resources and the environment. Further to this, promoting the growth of the green biotechnology industry will strengthen the nation’s economy, creating jobs in the agriculture, science and engineering sectors, while

  15. Oil Bypass Filter Technology Evaluation Ninth Quarterly Report October–December 2004

    SciTech Connect

    Larry Zirker; James Francfort; Jordan Fielding

    2005-02-01

    This Oil Bypass Filter Technology Evaluation quarterly report (October–December 2004) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL; formerly Idaho National Engineering and Environmental Laboratory) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight INL four-cycle diesel-engine buses used to transport INL employees on various routes and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. This quarter, three additional buses were equipped with bypass filters from Refined Global Solutions. Oil bypass filters are reported to have an engine oil filtering capability of less than 1 micron. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminate from the oil. During the quarter, the eleven diesel engine buses traveled 62,188 miles, and as of January 3, 2005 the buses had accumulated 643,036 total test miles. Two buses had their engine oil changed this quarter. In one bus, the oil was changed due to its degraded quality as determined by a low total base number (<3.0 mg KOH/g). The other bus had high oxidation and nitration numbers (>30.0 Abs/cm). Although a total of six buses have had their oil changed during the last 26 months, by using the oil bypass filters the buses in the evaluation avoided 48 oil changes, which equates to 1,680 quarts (420 gallons) of new oil not consumed and 1,680 quarts of waste oil not generated. Therefore, over 80% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved over 80% reduction in the amount of waste oil normally generated. The six Tahoe test vehicles traveled 39,514 miles, and as of January 3, 2005 the Tahoes had accumulated 189,970 total test miles. The Tahoe filter test is in transition. To increase the rate of bypass filter oil flow on the Tahoes

  16. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  17. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  18. Waste Minimization and Pollution Prevention | Department of Energy

    Office of Environmental Management (EM)

    Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention ...

  19. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  20. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    IN SITU THERMAL PROCESSING OF OIL SHALESANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 ...

  1. Hydroprocessing hydrocarbon oils

    SciTech Connect

    Simpson, H.D.; Borgens, P.B.

    1990-07-10

    This patent describes a catalytic hydroprocess of a hydrocarbon oil containing nitrogen or sulfur. It comprises: contacting a catalytic composition with the hydrocarbon oil under hydroprocessing conditions so as to produce a product hydrocarbon oil containing less nitrogen or sulfur than the hydrocarbon oil, the catalytic composition prepared by the method comprising the steps of impregnating porous refractory support particles with an aqueous impregnating solution comprising one or more Group VIB metal components, one or more phosphorus components and citric acid, the citric acid in a mole ratio to the Group VIB metal components calculated as the Group VIB metal trioxide of less than 1 to 1. The solution has a pH less than 1.0 and calcining the impregnated support particles to produce a catalytic composition containing a Group VIB metal component and a phosphorous component on the porous refractory oxide support.

  2. Oil Market Assessment

    Reports and Publications

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  3. enhanced_oil_current_proj | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Project Number Project ...

  4. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  5. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  6. Energy conservation is a waste

    SciTech Connect

    Inhaber, H.

    1998-07-01

    Energy conservation is virtually always a bust. Governments around the world continually trot out new schemes to reduce energy use and promote efficiency. The prime American example of this futility is government regulation of automobile gas mileage. Prompted by the Arab oil embargo of 1973, Congress mandated a doubling of gas mileage. What happened? Gasoline consumption rose from 1973 to the 1990s, as the roads were flooded with energy-efficient cars. Huge sport-utility vehicles crowd parking lots, also thanks to more efficient engines. Conservation fails because it takes no account of economics of human nature. The combination of greater engine efficiency and rising disposable income has produced a true golden age of motoring. In the same way, what is saved by installing special light bulbs is often wasted on new hot tubs, exterior lighting and a host of other energy uses, as homeowners assume that their electric bills will drop off substantially. In spite of these and dozens of other clear failures, the claims for conservation to solve virtually all the national energy dilemmas continue. Few if any are valid. While each of us can reduce energy use in one or two areas, one finds that the nation gradually uses more.

  7. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  8. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    SciTech Connect

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  9. Pioneering Nuclear Waste Disposal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant.

  10. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  11. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  12. Hanford Dangerous Waste Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Double-Shell Tank System 204-AR Waste Unloading Facility Operating Unit #12 241-AP Tank Farm construction. See black pickup trucks for scale. The DSTs have limited capacity and are aging. Maintaining these tanks is important to ensure that waste is ready to supply the Waste Treatment Plant. The permit requires continuous leak detection to protect humans and the environment. 200 West & East * 28 tanks in 6 groups, or tank farms. * Capacity: 1 - 1.2 million gallons each. * The double-shell

  13. Hanford Dangerous Waste Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    We don't expect any risk from this site. The permit ensures operation and closure of this facility do not harm humans or the environment. Liquid Effluent Retention Facility Effluent Treatment Facility Operating Unit #3 What happens to the waste it receives? LERF has three lined basins with a capacity of 88.5 million liters. ETF removes or destroys dangerous waste in liquid waste. It uses treatments such as filters, reverse osmosis, pH adjustment, and ultraviolet light. Water is treated, then

  14. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  15. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  16. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  17. Generating power with waste wood

    SciTech Connect

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  18. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  19. Methane generation from waste materials

    SciTech Connect

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  20. Contained recovery of oily waste

    DOEpatents

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  1. Finding Hidden Oil and Gas Reserves

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  2. Microsoft Word - Heating Oil Season.docx

    Energy.gov [DOE] (indexed site)

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  3. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  4. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  5. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  6. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004

    SciTech Connect

    Larry Zirker; James Francfort; Jordan Fielding

    2004-08-01

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE

  7. MX-2500 thermal processor for the treatment of petroleum refining wastes and contaminated soils

    SciTech Connect

    Swanberg, C. )

    1993-05-01

    Separation and Recovery Systems, Inc. (SRS) of Irvine, California is the market leader in supplying hazardous waste and secondary material dewatering and drying services to the petroleum refining industry. In late 1991, SRS introduced the new generation of dryer technology, the MX-2500. The MX-2500 is an electrically heated dryer system that recovers virtually all of the hydrocarbon value of refinery wastes and secondary materials, while producing a solid residue meeting EPA Land Disposal Restriction (LDR) treatment levels which allows the refinery to land dispose of the solids, thereby realizing two objectives: waste minimization and oil recovery/recycling. 2 figs., 3 tabs.

  8. Hanford Site Secondary Waste Roadmap

    SciTech Connect

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  9. Section 24: Waste Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... DBR direct brine release DOE U.S. Department of Energy EPA U.S. Environmental Protection ... the U.S. Environmental Protection Agency (EPA) radioactive waste disposal requirements ...

  10. Pioneering Nuclear Waste Disposal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a ... Far from ending, however, the WIPP story has really just begun. For the next 35 years, the ...

  11. UMC Construction Waste (4493)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    collect all Construction waste identified in 2006 and excess through plant sales, recycle through plant scrap metal recycle program, dispose in Y-12 on-site landfill, or ship to...

  12. Waste and Recycling

    ScienceCinema

    McCarthy, Kathy

    2016-07-12

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  13. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  14. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  15. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  16. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  17. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  18. Waste Isolation Pilot Plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume limited waste disposal operations in the first quarter of calendar year 2016. WIPP operations were suspended following an underground truck fire and a radiological release in February 2014. The recovery plan was issued on Sept. 30, 2014. Key elements of the recovery plan include strengthening safety programs, regulatory compliance, decontamination of the underground,

  19. Waste Isolation Pilot Plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  20. Citrus Waste Biomass Program

    SciTech Connect

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  1. Vegetation survey of PEN Branch wetlands

    SciTech Connect

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  2. STEO December 2012 - oil production

    Energy Information Administration (EIA) (indexed site)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase

  3. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil Markets Jamie.webster@ihs.com 1 GOING GLOBAL: TIGHT OIL PRODUCTION Key Message: Tight Oil Will Have Unconventional Effects Tight Oil Production will change in the coming decades. It will be:  More global, as it leaps out of North America  More inclusive, as companies come to the US for experience and US companies go

  4. Oil shales and tar sands: a bibliography. Supplement 2, Parts 1 and 2

    SciTech Connect

    Grissom, M.C.

    1984-07-01

    This bibliography includes 4715 citations arranged in the broad subject categories: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; regulations; and general. There are corporate, author, subject, contract number, and report number indexes.

  5. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  6. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  7. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  8. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  9. International Oil and Gas Board International Oil and Gas Board...

    OpenEI (Open Energy Information) [EERE & EIA]

    Petroleum Company Syrian Petroleum Company Damascus Syria Syria http www spc sy com en production activities1 en php Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and...

  10. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  11. Los Alamos exceeds waste shipping goal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  12. Los Alamos exceeds waste shipping goal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  13. Los Alamos exceeds waste shipping goal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  14. Waste Isolation Pilot Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  15. History of western oil shale

    SciTech Connect

    Russell, P.L.

    1980-01-01

    The history of oil shale in the United States since the early 1900's is detailed. Research on western oil shale probably began with the work of Robert Catlin in 1915. During the next 15 years there was considerable interest in the oil shales, and oil shale claims were located, and a few recovery plants were erected in Colorado, Nevada, Utah, Wyoming, and Montana. Little shale soil was produced, however, and the major oil companies showed little interest in producing shale oil. The early boom in shale oil saw less than 15 plants produce a total of less than 15,000 barrels of shale oil, all but about 500 barrels of which was produced by the Catlin Operation in Nevada and by the US Bureau of Mines Rulison, Colorado operation. Between 1930 and 1944 plentiful petroleum supplies at reasonable prices prevent any significant interest in shale oil, but oil shortages during World War II caused a resurgence of interest in oil shale. Between 1940 and 1969, the first large-scale mining and retorting operations in soil shale, and the first attempts at true in situ recovery of shale oil began. Only 75,000 barrels of shale oil were produced, but major advancements were made in developing mine designs and technology, and in retort design and technology. The oil embargo of 1973 together with a new offering of oil shale leases by the Government in 1974 resulted in the most concentrated efforts for shale oil production to date. These efforts and the future prospects for shale oil as an energy source in the US are discussed.

  16. Completed Enhanced Oil Recovery and Other Oil Resoureces Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Completed Enhanced Oil Recovery and Other Oil Resoureces Projects Active | Completed Projects Completed Enhanced Oil Recovery and Other Oil Resources Projects Project Number Project Name Primary Performer 10122-39 Novel Engineered Osmosis Technology: A Comprehensive Approach to the Treatment and Reuse of Produced Water and Drilling Wastewater Colorado School of Mines 11123-03 Cost-Effective Treatment of Produced Water Using Co-Produced Energy Sources - Phase II: Field Scale Demo and

  17. Oil production history in Albania oil fields and their perspective

    SciTech Connect

    Marko, D.; Moci, A.

    1995-12-31

    In this paper we will make a general presentation for oil fields in Albania, actual state, and their perspective.

  18. Waste Treatment Plant - 12508

    SciTech Connect

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium

  19. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  20. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  1. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect

    Vainikka, Pasi; Tsupari, Eemeli; Sipilae, Kai; Hupa, Mikko

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  2. EMAB Tank Waste Subcommittee Report Presentation

    Office of Environmental Management (EM)

    EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report ... Low Assess Candidate Low- -Activity Waste Forms Activity Waste Forms Charge 3: ...

  3. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    systems of the Waste Treatment and Immobilization Plant Low Activity Waste Facility. ... Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 ...

  4. Waste Confidence Discussion | Department of Energy

    Office of Environmental Management (EM)

    Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion (592.19 KB) More Documents & Publications Status Update: Extended ...

  5. Waste Solidification Building Project Lessons Learned Report...

    Office of Environmental Management (EM)

    Waste Solidification Building Project Lessons Learned Report Waste Solidification Building Project Lessons Learned Report This report addresses lessons learned from the Waste ...

  6. Independent Activity Report, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and...

  7. Hanford Waste Services Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hanford Waste Services Ltd Jump to: navigation, search Name: Hanford Waste Services Ltd. Place: Wolverhampton, United Kingdom Zip: Wv2 1HR Product: Waste to Energy facility with...

  8. Waste Processing Annual Technology Development Report 2007 |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications System Planning for Low-Activity Waste at Hanford Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Caustic Recovery Technology

  9. WIPP Receives 500th Waste Shipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    radioactive waste to WIPP for permanent underground disposal. The shipment contained 28 drums of transuranic waste, bringing the total number of waste containers disposed at WIPP...

  10. Densified waste form and method for forming

    SciTech Connect

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  11. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2016-05-17

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  12. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant - December 2014 Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 December, 2014 Review of the Waste Isolation Pilot Plant ...

  13. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste ...

  14. Enterprise Assessments Operational Awareness Record, Waste Isolation...

    Office of Environmental Management (EM)

    Record, Waste Isolation Pilot Plant - March 2015 Enterprise Assessments Operational Awareness Record, Waste Isolation Pilot Plant - March 2015 March 2015 Review of the Waste ...

  15. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  16. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 ...

  17. Nuclear Waste Challenge | Department of Energy

    Office of Environmental Management (EM)

    Consent-Based Siting Nuclear Waste Challenge Nuclear Waste Challenge Approximate locations of the current sites where spent nuclear fuel and high-level radioactive waste are ...

  18. Waste form product characteristics

    SciTech Connect

    Taylor, L.L.; Shikashio, R.

    1995-01-01

    The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

  19. Mixed waste characterization reference document

    SciTech Connect

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  20. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  1. Assessment of heavy oil conversion

    SciTech Connect

    Gleim, W.T.K.

    1983-08-01

    Removal of benzene insoluble asphaltene components greatly facilitates and improves the subsequent upgrading of residual oils, the desulfurization in particular. For the upgrading of Venezualean oils, the Aurobon process is still the only feasible solution.

  2. AEO Early Release 2013 - oil

    Energy Information Administration (EIA) (indexed site)

    Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid ...

  3. Oil and Gas

    Energy Saver

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  4. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    SciTech Connect

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is a United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay

  5. Nineteenth oil shale symposium proceedings

    SciTech Connect

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  6. Heating Oil and Propane Update

    Annual Energy Outlook

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  7. Using wastes as resources

    SciTech Connect

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  8. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil prices available The average retail price for home heating oil is $2.30 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.23

  9. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  10. Co-firing coal and municipal solid waste

    SciTech Connect

    Demirbas, A.

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  11. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  12. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned ...

  13. Meat-, fish-, and poultry-processing wastes. [Industrial wastes

    SciTech Connect

    Litchfield, J.H.

    1982-06-01

    A review of the literature dealing with the effectiveness of various waste processing methods for meat-, fish,-, and poultry-processing wastes is presented. Activated sludge processes, anaerobic digestion, filtration, screening, oxidation ponds, and aerobic digestion are discussed.

  14. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval,...

  15. On-site Destruction of Radioactive Oily Wastes Using Adsorption Coupled with Electrochemical Regeneration - 12221

    SciTech Connect

    Brown, N.W.; Wickenden, D.A.; Roberts, E.P.L.

    2012-07-01

    Arvia{sup R}, working with Magnox Ltd, has developed the technology of adsorption coupled with electrochemical regeneration for the degradation of orphan radioactive oil wastes. The process results in the complete destruction of the organic phase where the radioactivity is transferred to liquid and solid secondary wastes that can then be processed using existing authorised on-site waste-treatment facilities.. Following on from successful laboratory and pilot scale trials, a full scale, site based demonstrator unit was commissioned at the Magnox Trawsfynydd decommissioning site to destroy 10 l of LLW and ILW radioactive oils. Over 99% of the emulsified oil was removed and destroyed with the majority of activity (80 - 90%) being transferred to the aqueous phase. Secondary wastes were disposed of via existing routes with the majority being disposed of via the sites active effluent treatment plant. The regeneration energy required to destroy a litre of oil was 42.5 kWh/l oil. This on-site treatment approach eliminates the risks and cost associated with transporting the active waste oils off site for incineration or other treatment. The Arvia{sup R} process of adsorption coupled with electrochemical regeneration has successfully demonstrated the removal and destruction of LLW and ILW radioactive oils on a nuclear site. Over 99.9% of the emulsified oil was removed, with the majority of the radioactive species transferred to the aqueous, supernate, phase (typically 80 - 90 %). The exception to this is Cs-137 which appears to be more evenly distributed, with 43% associated with the liquid phase and 33 % with the Nyex, the remainder associated with the electrode bed. The situation with Plutonium may be similar, but this requires confirmation, hence further work is underway to understand the full nature of the electrode bed radioactive burden and its distribution within the body of the electrodes. - Tritium gaseous discharges were negligible; hence no off-gas treatment

  16. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  17. Salinity, temperature, oil composition, and oil recovery by waterflooding

    SciTech Connect

    Tang, G.Q.; Morrow, N.R.

    1997-11-01

    The effect of aging and displacement temperatures and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea sandstone with three crude oils and three reservoir brines (RB`s). Salinity was varied by changing the concentration of total dissolved solids (TDS`s) of the synthetic brine in proportion. Salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the RB with dilution of both the initial (connate) and invading brine or dilution of either. Aging and displacement temperatures were varied independently. For all crude oils, water wetness and oil recovery increased with increase in displacement temperature. Removal of light components from the crude oil resulted in increased water wetness. Addition of alkanes to the crude oil reduced the water wetness, and increased oil recovery. Relationships between waterflood recovery and rate and extent of oil recovery by spontaneous imbibition are summarized.

  18. Dying for oil

    SciTech Connect

    Sachs, A.

    1996-05-01

    This article discusses the fight and execution of Ken Saro-Wiwa, the Ogoni leader who defended his people`s land on the Niger delta against oil development encouraged by the government and persued by the Royal/Dutch Shell Co. Political reprocussions and heightened vigilance of environmental activists are discussed at length.

  19. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  20. World Oil Transit Chokepoints

    Reports and Publications

    2012-01-01

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  1. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  2. NORM Management in the Oil and Gas Industry

    SciTech Connect

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  3. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    Department of Energy The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the final report. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE

  4. Pioneering Nuclear Waste Disposal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOE/CAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of Contents Closing the Circle on Transuranic Waste 1 The Long Road to the WIPP 3 The need for the WIPP The National Academy of Sciences Community leaders suggest Carlsbad as the site for the WIPP Construction of the WIPP The WIPP Land Withdrawal Act Certification by the EPA The National Environmental Policy Act The Resource

  5. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  6. Process for upgrading heavy oils

    SciTech Connect

    LePage, J.F.; Marlino, G.

    1983-07-05

    The viscosity of heavy oils is reduced in order to facilitate pipe line transportation thereof. A fraction of the heavy oil is deasphalted in the presence of C/sub 5/-C/sub 7/ hydrocarbons, a portion of the separated asphalt is converted to synthesis gas, at least a portion of said gas is used to manufacture an alcohol mixture including methanol and C/sub 2/ to C/sub 10/ alcohols, which mixture is admixed with the heavy oil before transportation thereof. This procedure is more beneficial to the transported heavy oil than the prior processes which do not comprise the conversion of the asphalt fraction of the heavy oil.

  7. Low-Level Waste Requirements

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  8. High-Level Waste Requirements

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  9. Turning nuclear waste into glass

    SciTech Connect

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  10. Tank Waste Committee Page 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 Waste Management Area C Performance Assessment ................................................................................. 1 Closure Schedule for WMA C

  11. Nevada Waste Leaves Idaho Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nevada Waste Leaves Idaho Facility (Note: This is a reissue of a press release originally ... 15 the afternoon of January 26 actually contained waste from another DOE site in Nevada. ...

  12. Process Waste Assessment - Paint Shop

    SciTech Connect

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  13. Tank Waste | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste Tank Waste October 17, 2016 Mark Edgren, ORP chief of staff, left, presents Larry Shaffer and Clinton Summers with a plaque announcing their Grand Challenge-winning ...

  14. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  15. Waste management units - Savannah River Site

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  16. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  17. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  18. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Environmental Management (EM)

    Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant December 2015 ......... 2 5.1 Radioactive Waste Management Planning ......

  19. Categorical Exclusion Determinations: Civilian Radioactive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Civilian Radioactive Waste Management Categorical Exclusion Determinations: Civilian Radioactive Waste Management Categorical Exclusion Determinations issued by Civilian ...

  20. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Environmental Management (EM)

    Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - March 2015 March 2015 Enterprise Assessments Operational Awareness Record, Waste ...

  1. EM Waste and Materials Disposition & Transportation

    Office of Environmental Management (EM)

    On Closure Success 1 EM Waste and Materials Disposition & Transportation National ... Management DOE's Radioactive Waste Management Priorities * Continue to manage ...

  2. Waste Isolation Pilot Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare drums of contact-handled transuranic waste for loading into transportation containers A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant Operators prepare drums of

  3. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  4. Evaluation of slurry injection technology for management of drilling wastes.

    SciTech Connect

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  5. PNNL Supports Hanford Waste Treatment

    SciTech Connect

    2015-06-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  6. Nuclear Waste Partnership Contract Modifications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consent-Based Siting » Nuclear Waste Challenge Nuclear Waste Challenge Approximate locations of the current sites where spent nuclear fuel and high-level radioactive waste are stored around the country. Approximate locations of the current sites where spent nuclear fuel and high-level radioactive waste are stored around the country. How We Got Here The United States has used nuclear power for more than 60 years to produce reliable, low-carbon energy and to support national defense activities.

  7. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs. Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs. Years of diverse research and uranium and isotope production led to numerous forms of waste in Oak Ridge. However, our EM program has worked to identify,

  8. Chapter 19 - Nuclear Waste Fund

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the

  9. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  10. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  11. Contrasting impacts of localised versus catastrophic oil spills in coastal wetlands

    SciTech Connect

    Burns, K.A.; Codi, S.

    1996-12-31

    A localised oil spill was observed on the wetland marshes bordering a tidal creek near Cairns, Queensland in January 1994. Pollution and conservation issues are of paramount public concern in this region which boarders World Heritage Areas of coral reefs and coastal habitats. Local residents observed oil being dumped from a truck which was contracted to of oil the surface of the roads in the contiguous sugar cane farm for dust control. During this incident several truckloads of mixed waste oil were dumped onto a short section of road and into the wetlands. The oil contaminated a band of marsh 15-30 m wide along approximately 200 m of road. Impacted marsh included Melaleuca forest on the high side of the road and intertidal mangroves on the seaward side. The Queensland Department of Environment (QDE) initiated an impact assessment and directed the trucking company to clean up impacted areas. The extent of damage to wetlands from oil spills is related to the amount and type of oil spilled and the sensitivity of the habitats oiled. QDE asked the Australian Institute of Marine Sciences to assist with their study on the fate of the oil in this localised spill. The initial levels of petroleum hydrocarbons in surface sediments reached 17% of the dry weight in heavily impacted areas. Thus levels were similar to those reached after the catastrophic oil spill in Panama. Clean up efforts and natural dissipation processes reduced sediment hydrocarbon loads to nonacutely toxic levels in only 1.5 years in the intertidal mangroves. High levels remain in the Melaleuca sediments. We used internal molecular markers to detail hydrocarbon dissipation vs degradation. This study provides a contrast between impacts of localised versus catastrophic oil spills in deep mud coastal habitats.

  12. Waste-to-Energy Workshop

    Energy.gov [DOE]

    The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

  13. Mixed Waste Working Group report

    SciTech Connect

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  14. Unconventional Oil and Gas Resources

    SciTech Connect

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  15. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  16. Radioactive Waste Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  17. Radioactive Waste Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  18. Waste Isolation Pilot Plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to

  19. Waste-to-energy: Benefits beyond waste disposal

    SciTech Connect

    Charles, M.A.; Kiser, J.V.L. )

    1995-01-01

    More than 125 waste-to-energy plants operate in North America, providing dependable waste disposal for thousands of communities. But the benefits of waste-to-energy plants go beyond getting rid of the garbage. Here's a look at some of the economic, environmental, and societal benefits that waste-to-energy projects have brought to their communities. The reasons vary considerably as to why communities have selected waste-to-energy as a part of their waste management systems. Common on the lists in many communities are a variety of benefits beyond dependable waste disposal. A look at experiences in four communities reveals environmental, economic, energy, and societal benefits that the projects provide to the communities they serve.

  20. A perimeter-based groundwater protection strategy for waste management units at a petroleum refinery

    SciTech Connect

    Wenzlau, R.K.

    1996-12-01

    This article presents a groundwater management strategy and its application to regulatory compliance for the Shell Oil Company Martinez Manufacturing Complex, a refinery located within northern California. The purpose of the strategy is to protect the beneficial uses of groundwater which are present beyond the facility boundary while recognizing the occurrence of limited degradation of groundwater upgradient of the perimeter. The strategy applies perimeter-based groundwater monitoring and control to two general sources of groundwater quality degradation: historic spill and leak sites and inactive waste management units. To regulate the groundwater contaminant plumes originating form historic spill and leak sites the California Regional Water Quality Control Board (Regional Board) has issued Site Cleanup Requirements (SCR). To satisfy the SCR Shell developed in 1989 a Basin Boundary Control Plan as the first implementation of the groundwater strategy. To regulate groundwater quality impacts from solid waste management units, the Regional Board issues Waste Discharge Requirements (WDR). In 1995 the Regional Board issued revised WDR that established consistency between waste management unit regulation and the facility groundwater management strategy. The Regional Board made two findings that allowed this consistency. The first finding was that the Points of Compliance for all 23 solid waste management units are at the down-gradient perimeter of the facility. The second finding was that all waste management units were within corrective action, regardless of whether a known release of waste constituents occurred from a given waste unit.