National Library of Energy BETA

Sample records for w-band arm cloud

  1. W-Band ARM Cloud Radar - Specifications and Design

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest ... to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. ...

  2. W-band ARM Cloud Radar (WACR) Update and Status

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, ... Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM ...

  3. ARM: Marine W-band (95 GHz) ARM Cloud Radar (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Radar Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar Marine W-band (95 GHz) ARM Cloud Radar Authors: Joseph Hardin ; Bradley Isom ; Alyssa Matthews ; Karen Johnson ; Nitin ...

  4. ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral...

    Office of Scientific and Technical Information (OSTI)

    Radar, filtered spectral data, co-polarized mode Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Marine W-band (95 GHz) ARM Cloud ...

  5. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  6. ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data,

    Office of Scientific and Technical Information (OSTI)

    co-polarized mode (Dataset) | Data Explorer Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Joseph Hardin ; Bradley Isom ; Alyssa Matthews ; Karen Johnson ; Nitin Bharadwaj Publication Date: 2013-06-28 OSTI Identifier: 1150244 DOE Contract Number: DE-AC05-00OR22725 Resource

  7. ARM: Auxiliary data for the Marine W-band (95 GHz) ARM Cloud...

    Office of Scientific and Technical Information (OSTI)

    Auxiliary data for the Marine W-band (95 GHz) ARM Cloud Radar Authors: Joseph Hardin ; Bradley Isom ; Alyssa Matthews ; Karen Johnson ; Nitin Bharadwaj Publication Date: 2012-11-01 ...

  8. ARM - Publications: Science Team Meeting Documents: W-Band ARM Cloud Radar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    System W-Band ARM Cloud Radar System Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory The W-Band ARM Cloud Radar (WACR) is a dual polarization 95 GHz radar that will be deployed at the SGP CART site in the spring of 2005. The WACR system will be installed in the existing MMCR shelter, and will provide continuous zenith pointing measurements of clouds to compliment measurements provided by MMCR. Built by ProSensing Inc. of Amherst, MA, the WACR system include a

  9. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Joseph Hardin; Dan Nelson; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  11. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  12. ARM - Measurement - Cloud extinction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption and/or scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  13. ARM - Measurement - Cloud fraction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    fraction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance

  14. ARM - Instrument - wacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentswacr Documentation WACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-Band (95 GHz) ARM Cloud Radar (WACR) Instrument Categories Cloud Properties Latest version W-band ARM cloud radar General Overview The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at

  15. ARM - Measurement - Cloud base height

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  16. ARM - Evaluation Product - Cloud Type

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsCloud Type ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Type [ ARM research - evaluation data product ] This data product determines a cloud type using cloud boundaries derived from vertically pointing lidar and radar clouds. It uses Active Remotely Sensed Cloud Locations (ARSCL) data as

  17. ARM - Measurement - Cloud condensation nuclei

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    condensation nuclei ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud condensation nuclei Small particles (typically 0.0002 mm, or 1/100 th the size of a cloud droplet) about which cloud droplets coalesce. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  18. ARM - Measurement - Images of Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  19. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  20. ARM - Measurement - Cloud size

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. ARM - Measurement - Cloud droplet size

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    droplet size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for

  2. ARM - Measurement - Cloud ice particle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or

  3. ARM - Measurement - Cloud type

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  4. ARM - Measurement - Cloud location

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. ARM - Evaluation Product - Scanning ARM Cloud Radar Corrections (SACRCOR)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsScanning ARM Cloud Radar Corrections (SACRCOR) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Scanning ARM Cloud Radar Corrections (SACRCOR) [ ARM research - evaluation data product ] This dataset contains moments from the Scanning ARM Cloud Radars (SACRs) which have been filtered and corrected

  6. ARM - Lesson Plans: Making Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Making Clouds Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Making Clouds Objective The objective of this activity is to investigate the conditions that must be present for clouds to form. Materials Each student or group of students will need the following: 1 liter (or

  7. ARM - Cloud Twist

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  8. ARM - Cloud Word Seek

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  9. ARM - Cloud Memory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  10. ARM - Cloud and Rain

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  11. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Cloud Properties from Zenith...

  12. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2013.07.01, Lewis, AMF Marine ARM GPCI Investigation of Clouds (MAGIC): Shortwave Hyperspectral Observations 2013.07.01, McBride, AMF Marine ARM GPCI Investigation of Clouds ...

  13. ARM - Measurement - Cloud phase

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. FACT SHEET U.S. Department of Energy ARM Mobile Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Alaska (2013-2018) * 95-GHz W-Band ARM Cloud Radar * Balloon-Borne Sounding System * Doppler Lidar, Micropulse Lidar, and Laser Ceilometer * Microwave Radiometer * Microwave...

  15. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  16. ARM - Feature Stories and Releases Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    addition, the Ka-ARM zenith radar, W-Band Scanning ARM Cloud Radar, radar wind profiler, Doppler lidar, and 2-D video disdrometer instrumentation was also added. (See the ENA...

  17. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    seen in this photo) on the WACR calibration tower helped to correct problems related to signal interference. As reported in July 2005, the W-band ARM Cloud Radar (WACR) is a...

  18. ARM - Instrument - swacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsswacr Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Instrument Categories Cloud Properties Output Datastreams swacraux : Auxiliary data for the ARM Scanning W-band ARM Cloud Radar swacrblrhi : S-WACR Boundary-layer Range-Height Indicator scan swacrcal : S-WACR calibration information swacrcwrhi : S-WACR Cross-Wind

  19. ARM - VAP Process - wacrarscl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productswacrarscl Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : W-band Cloud Radar Active Remote Sensing of Cloud (WACRARSCL) Instrument Categories Cloud Properties Observations from the 95 GHz W-band ARM Cloud Radar (WACR), Micropulse Lidar, and ceilometer have been combined using the new WACR Active Remote Sensing of Clouds (WACR-ARSCL)

  20. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  1. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Parsivel Disdrometer support for...

  2. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  3. ARM - Evaluation Product - ARM Cloud Retrieval Ensemble Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cloud microphysical property ensemble data set created by assembling existing ARM cloud ... One purpose of developing such an ensemble data set is to provide a rough estimate of the ...

  4. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Authors: Dan Nelson ; ...

  5. ARM - Datastreams - wsacrppiv

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrppiv Documentation Data Quality Plots Citation DOI: 10.5439/1224847 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRPPIV W-Band Scanning ARM Cloud Radar (WSACR) Single Fixed Elevation PPI Scan Active Dates 2015.10.10 - 2016.10.19 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements

  6. ARM - Datastreams - wsacrppivh

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrppivh Documentation Data Quality Plots Citation DOI: 10.5439/1211547 DOI: 10.5439/1224848 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRPPIVH W-Band Scanning ARM Cloud Radar (WSACR) Multiple Elevation PPI Scan Active Dates 2015.12.14 - 2016.09.10 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar

  7. ARM - Datastreams - wsacrzppi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrzppi Documentation Data Quality Plots Citation DOI: 10.5439/1211550 DOI: 10.5439/1224852 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRZPPI W-Band Scanning ARM Cloud Radar (W-SACR) Zenith Pointing PPI Scan Active Dates 2016.03.28 - 2016.10.19 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR)

  8. ARM - Field Campaign - Cloud Radar IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of aerosol properties during clear-sky conditions. The ETL Radar Meteorology and Oceanography Division will field their NOAAK scanning cloud radar near the new ARM millimeter...

  9. ARM - Midlatitude Continental Convective Clouds - Single Column...

    Office of Scientific and Technical Information (OSTI)

    - Single Column Model Forcing (xie-scmforcing) Title: ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scmforcing) The constrained variational ...

  10. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds...

  11. ARM - Evaluation Product - ISCCP Cloud Data Around the ARM Sites

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsISCCP Cloud Data Around the ARM Sites ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ISCCP Cloud Data Around the ARM Sites ISCCP data (Rossow and Schiffer, 1999 and Rossow, et.al. 2005) are widely used in the climate modeling community. Within our LLNL CCPP-ARM Parameterization Testbed (CAPT)

  12. ARM - Field Campaign - Spring Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsSpring Cloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior

  13. ARM - Instrument - wsacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentswsacr Documentation WSACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-band Scanning ARM Cloud Radar (WSACR) Instrument Categories Cloud Properties Note: All the Scanning ARM Cloud Radars have been technically accepted by ARM as meeting specification and each radar's first data are available at this URL: http://www.archive.arm.gov/sacr/. ARM's scanning cloud radars are

  14. ARM - Measurement - Cloud particle number concentration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  15. ARM - Measurement - Cloud particle size distribution

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  16. ARM - Datastreams - wsacrcrcalap

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrcrcalap Documentation Data Quality Plots Citation DOI: 10.5439/1224845 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRCRCALAP W-Band Scanning ARM Cloud Radar (WSACR) Corner Reflector Calibration Fixed Point (AP

  17. ARM - Datastreams - wsacrcrcalfp

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrcrcalfp Documentation Data Quality Plots Citation DOI: 10.5439/1224846 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRCRCALFP W-Band Scanning ARM Cloud Radar (WSACR) Corner Reflector Calibration Fixed Point (FP

  18. ARM - Datastreams - wsacrspeccmaskcopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1150288 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECCMASKCOPOL W-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode

  19. ARM - Datastreams - wsacrspeccmaskxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1150289 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECCMASKXPOL W-Band Scanning ARM Cloud Radar, filtered spectral data, cross-polarized mode

  20. ARM - Datastreams - mwacraux

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsmwacraux Documentation Data Quality Plots Citation DOI: 10.5439/1150243 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MWACRAUX Auxiliary data for the Marine W-band (95 GHz) ARM Cloud Radar Active Dates 2012.11.01 - 2016.03.20 Originating Instrument Marine W-Band (95 GHz) ARM Cloud Radar (MWACR) Measurements Only measurements considered scientifically

  1. ARM - Datastreams - wsacrvpthrc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrvpthrc Documentation Data Quality Plots Citation DOI: 10.5439/1211548 DOI: 10.5439/1224850 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRVPTHRC W-Band Scanning ARM Cloud Radar (W-SACR) Vertically Pointing High-Resolution Scan Active Dates 2015.12.14 - 2016.10.24 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM

  2. ARM - Datastreams - wsacrvpthsc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrvpthsc Documentation Data Quality Plots Citation DOI: 10.5439/1211549 DOI: 10.5439/1224851 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRVPTHSC W-Band Scanning ARM Cloud Radar (W-SACR) Vertically Pointing High-Sensitivity Scan Active Dates 2016.06.21 - 2016.10.24 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM

  3. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) 2012.10.01, Lewis, AMF Comments? We would love to hear from you Send us a note below or call us at...

  4. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  5. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  6. ARM - Campaign Instrument - mmcr94-air

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : 94 GHz, W-band Airborne Cloud Radar (MMCR94-AIR)...

  7. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency...

  8. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw...

  9. ARM - Field Campaign - Boundary Layer Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at ...

  10. ARM - Measurement - Cloud effective radius

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  11. ARM - Datastreams - wacrreflmask

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswacrreflmask Documentation Data Quality Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WACRREFLMASK W-band (95 GHz) ARM Cloud Radar: ???????? Active Dates 2006.03.24 - 2008.04.29 Originating Instrument W-Band (95 GHz) ARM Cloud Radar (WACR) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Locations Southern Great Plains SGP C1 Browse Data

  12. ARM - Datastreams - wsacrspecvptcross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvptcross Documentation Data Quality Plots Citation DOI: 10.5439/1253727 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTCROSS W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing Scan in Cross Mode Active Dates 2016.07.20 - 2016.08.22 Measurement Categories Cloud Properties Originating Instrument W-band

  13. First observations of tracking clouds using scanning ARM cloud radars

    DOE PAGES-Beta [OSTI]

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  14. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan...

    Office of Scientific and Technical Information (OSTI)

    Cross-Wind RHI Scan Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan Authors: Dan Nelson ; Joseph ...

  15. ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    W-SACR) Corner Reflector Raster Scan Title: ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector ...

  16. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Authors: Dan Nelson ; ...

  17. DOE/SC-ARM-TR-099 ARM Cloud Retrieval Ensemble Data Set

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    99 ARM Cloud Retrieval Ensemble Data Set (ACRED) C Zhao MP Jensen S Xie GG Mace SA Klein ... DOESC-ARM-TR-099 ARM Cloud Retrieval Ensemble Data Set (ACRED) C Zhao, Lawrence Livermore ...

  18. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  19. ARM - Measurement - Cloud optical depth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TWST : Three Waveband Spectrally-agile Technique Sensor WRF-CHEM : Weather Research and Forecasting (WRF) Model Output Value-Added Products LBTM-MINNIS : Minnis Cloud Products...

  20. ARM - Measurement - Cloud top height

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    RUC : Rapid Update Cycle Model Data Field Campaign Instruments CO2LIDAR : Carbon Dioxide Doppler Lidar MPLCMASK : Cloud mask from Micropulse Lidar VARANAL : Constrained...

  1. ARM - Datastreams - wsacrspecvptcopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvptcopol Documentation Data Quality Plots Citation DOI: 10.5439/1253192 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTCOPOL W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing Scan in Co-Polarization Mode Active Dates 2016.07.20 - 2016.08.22 Measurement Categories Cloud Properties Originating

  2. ARM - Datastreams - wsacrspecvpthrccopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvpthrccopol Documentation Data Quality Plots Citation DOI: 10.5439/1253734 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTHRCCOPOL W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing High Resolution Scan in Co-Polarization Mode Active Dates 2016.07.21 - 2016.08.22 Measurement Categories Cloud

  3. ARM - Datastreams - wsacrspecvpthrccross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvpthrccross Documentation Data Quality Plots Citation DOI: 10.5439/1253738 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTHRCCROSS W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing High Resolution Scan in Cross Mode Active Dates 2016.07.21 - 2016.08.22 Measurement Categories Cloud Properties

  4. ARM - Datastreams - wsacrspecvpthrcxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvpthrcxpol Documentation Data Quality Plots Citation DOI: 10.5439/1253736 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTHRCXPOL W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing High Resolution Scan in Cross-Polarization Mode Active Dates 2016.07.21 - 2016.08.22 Measurement Categories Cloud

  5. ARM - Datastreams - wsacrspecvpthsccopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvpthsccopol Documentation Data Quality Plots Citation DOI: 10.5439/1295765 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTHSCCOPOL W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing High Sensitivity Scan in Co-Polarization Mode Active Dates 2016.07.21 - 2016.08.22 Measurement Categories Cloud

  6. ARM - Datastreams - wsacrspecvpthsccross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvpthsccross Documentation Data Quality Plots Citation DOI: 10.5439/1295770 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTHSCCROSS W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing High Sensitivity Scan in Cross Mode Active Dates 2016.07.21 - 2016.08.22 Measurement Categories Cloud Properties

  7. ARM - Datastreams - wsacrspecvpthscxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvpthscxpol Documentation Data Quality Plots Citation DOI: 10.5439/1295768 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTHSCXPOL W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing High Sensitivity Scan in Cross-Polarization Mode Active Dates 2016.07.21 - 2016.08.22 Measurement Categories Cloud

  8. ARM - Datastreams - wsacrspecvptxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamswsacrspecvptxpol Documentation Data Quality Plots Citation DOI: 10.5439/1253724 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECVPTXPOL W-Band ARM Scanning Cloud Radar (WSACR) Filtered Spectral Data of Vertically Pointing Scan in Cross-Polarization Mode Active Dates 2016.07.20 - 2016.08.22 Measurement Categories Cloud Properties Originating

  9. ARM: Aerosol Observing System (AOS): cloud condensation nuclei...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data Aerosol Observing System (AOS): cloud condensation nuclei data Authors: Scott Smith ; Cynthia Salwen ; ...

  10. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website ARM ... Campaign : MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01 - 2005.07.30 ...

  11. ARM: AOS: Cloud Condensation Nuclei Counter (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS: Cloud Condensation Nuclei Counter AOS: Cloud Condensation Nuclei Counter Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; ...

  12. ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF...

    Office of Scientific and Technical Information (OSTI)

    transmitted RF power Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Authors: Karen ...

  13. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  14. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  15. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report Citation Details In-Document Search Title: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding

  16. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsTropical Cloud Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al.,

  17. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  18. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  19. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  20. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing PPI

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing PPI Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing PPI Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing PPI Authors: Joseph Hardin ; Dan Nelson ; Iosif [1] ; Bradley Isom ; Karen Johnson ; Alyssa Matthews ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: 2014-04-14 OSTI Identifier: 1140236 DOE Contract Number: DE-AC05-00OR22725 Resource Type:

  1. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsIR Cloud Camera Feasibility Study ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  2. ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data Millimeter Wavelength Cloud Radar (MMCR): monitoring data Authors: Karen Johnson ; Nitin Bharadwaj Publication Date: 2015-01-09 OSTI Identifier: 1025231 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak

  3. High power W-band klystrons

    SciTech Connect (OSTI)

    Caryotakis, George; Scheitrum, Glenn; Jongewaard, Erik; Vlieks, Arnold; Fowkes, Randy [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States); Li, Jeff [University of California Davis, Davis, California 95616 (United States)

    1999-05-01

    The development of W-band klystrons is discussed. Modeling of the klystron performance predicts 100 kW output power from a single klystron. The permanent magnet focusing and small size of the circuit permit combination of multiple klystrons in a module. A six-klystron module in a single vacuum envelope is expected to produce 500 kW peak power and up to 5 kW average power. The critical issues in the W-band klystron development are the electron beam transport and the fabrication of the klystron circuit. Two microfabrication techniques, EDM and LIGA, are being evaluated to produce the W-band circuit. {copyright} {ital 1999 American Institute of Physics.}

  4. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    Vertical Air Motion (williams-vertair) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair) ...

  5. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    Parcivel Disdrometer (williams-disdro) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro) ...

  6. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    Surface Meteorology (williams-surfmet) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet) ...

  7. ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsMASRAD: Pt. Reyes Stratus Cloud and Drizzle Study Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation...

  8. Scanning ARM Cloud Radar Handbook (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical ... Subject: 54 ENVIRONMENTAL SCIENCES; ATTENUATION; CLOUDS; MANUALS; RADAR; WATER VAPOR Word ...

  9. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  10. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming

  11. ARM: Ka-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    Ka-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  12. ARM: X-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  13. ARM: AOS: Cloud Condensation Nuclei Counter (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AOS: Cloud Condensation Nuclei Counter Title: ARM: AOS: Cloud Condensation Nuclei Counter AOS: Cloud Condensation Nuclei Counter Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; Anne Jefferson Publication Date: 2014-01-25 OSTI Identifier: 1256093 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US);

  14. W-Band Sheet Beam Klystron Simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R.; /SLAC; Smithe, D.N.; /Mission Res., Newington

    2005-09-12

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat} {approx} {lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focusing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35% beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry.

  15. W-band sheet beam klystron simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R. [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Smithe, D.N. [Mission Research Corporation, 8560 Cinderbed Road, Ste. 700, Newington, Virginia 22122 (United States)

    1999-05-01

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat}{approximately}{lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focussing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35{percent} beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry. {copyright} {ital 1999 American Institute of Physics.}

  16. ARM - PI Product - Cloud Property Retrieval Products for Graciosa Island,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Azores ProductsCloud Property Retrieval Products for Graciosa Island, Azores ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Property Retrieval Products for Graciosa Island, Azores [ research data - ASR funded ] The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets

  17. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MC3E Garber X-band site (I5) Garber X-band site (I5) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Garber X-band site (I5) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  18. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MC3E Lamont X-band site (I6) Lamont X-band site (I6) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Lamont X-band site (I6) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  19. ARM - Field Campaign - Tropical Warm Pool - International Cloud Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (TWP-ICE) govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Tropical Warm Pool - International Cloud Experiment (TWP-ICE) 2006.01.21 - 2006.02.13 Website : http://www.arm.gov/campaigns/twpice/ Lead Scientist : Peter May For data sets, see below. Abstract The Tropical Warm Pool - International Cloud

  20. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing PPI (Dataset)

    Office of Scientific and Technical Information (OSTI)

    | Data Explorer XSACR) Zenith Pointing PPI Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing PPI X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing PPI Authors: Widener, Kevin ; Nelson, Dan ; Bharadwaj, Nitin ; Lindenmaier, Iosif [1] ; Johnson, Karen + Show Author Affiliations Andrei Publication Date: 2014-04-14 OSTI Identifier: 1150304 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement

  1. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  2. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Remote Cloud Sensing (RCS) Field Evaluation 1994.04.01 - 1994.05.31 Lead Scientist : Robert Kropfli Data Availability CPRS Cloud Data (from the University of Massachusetts Cloud Profiling Radar System (CPRS)) For data sets, see below. Abstract The primary purpose of the field evaluation and calibration

  3. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Remote Cloud Sensing (RCS) Field Evaluation 1995.04.01 - 1995.05.31 Lead Scientist : Robert Kropfli Data Availability CPRS Cloud Data (from the University of Massachusetts Cloud Profiling Radar System (CPRS)) For data sets, see below. Abstract The primary purpose of the field evaluation and calibration

  4. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsThin Cloud Rotating Shadowband Radiometer ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband Radiometer (TCRSR) is a prototype instrument intended to simultaneously retrieve cloud optical depth and effective drop radius in

  5. ARM - Instrument - mwacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsmwacr Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Marine W-Band (95 GHz) ARM Cloud Radar (MWACR) Instrument Categories Cloud Properties This instrument started as the zenith pointing WACR at SGP then was converted to the scanning SWACR and deployed with AMF1. For the MAGIC campaign, MWACR was put on a stabilized platform, but only in zenith pointing mode for now. Later it

  6. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The University of North Dakota Citation was the in situ platform, while the DOE-ARM UAV ... counter and the CSU IN counter, while the UAV had downward looking cloud radar, lidar and ...

  7. ARM - Evaluation Product - Cloud Microbase-kazr Profiles (ka...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Microbase-kazr Profiles (ka) VAP The KAZR radars have recently replaced the...

  8. ARM Cloud Retrieval Ensemble Data Set (ACRED) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: ARM Cloud Retrieval Ensemble Data Set (ACRED) ... This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ...

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    S-band Radar (williams-sband) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-sband) This data was ...

  10. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    ...filer(williams-449prof) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449prof) This data was ...

  11. W-band free-electron masers

    SciTech Connect (OSTI)

    Freund, H. P. [Science Applications International Corp., McLean, Virginia 22102 (United States); Jackson, R. H.; Danly, B. G.; Levush, B. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    1999-05-07

    Theoretical analyses of high power W-band (i.e., {approx_equal}94 GHz) free-electron maser amplifiers are presented for a helical wiggler/cylindrical waveguide configuration using the three-dimensional slow-time-scale ARACHNE simulation code [9]. The geometry treated by ARACHNE is that of an electron beam propagating through the cylindrical waveguide subject to a helical wiggler and an axial guide magnetic field. Two configurations are discussed. The first is the case of a reversed-guide field geometry where the guide field is oriented antiparallel to the helicity of the wiggler field. Using a 330 kV/20 A electron beam, efficiencies of the order of 7% are calculated with a bandwidth (FWHM) of 5 GHz. The second example employs a strong guide field of 20 kG oriented parallel to the helicity of the wiggler. Here, efficiencies of greater than 8% are possible with a FWHM bandwidth of 4.5 GHz using a 300 kV/20 A electron beam. A normalized emittance of 95 mm-mrad is assumed in both cases, and no beam losses are observed for either case. Both cases assume interaction with the fundamental TE{sub 11} mode, which has acceptably low losses in the W-band.

  12. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE); National Geospatial-Intelligence Agency Calibration Target Placements ; National Geospatial-Intelligence Agency Calibration Target Placements ARM Data Discovery Browse Data Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and

  13. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Midlatitude Continental Convective Clouds Experiment (MC3E) Thanks

  14. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at the ARM Climate Research Facility: Part 1. Technique, Validation, and Comparison to Satellite-Derived Diagnostic Quantities. Cloud Radiative Forcing at the ARM Climate Research Facility: Part 1. Technique, Validation, and Comparison to Satellite-Derived Diagnostic Quantities. Mace, Gerald University of Utah Benson, Sally University of Utah Sonntag, Karen ARM Data Quality Office - University of Oklahoma Kato, Seiji Hampton University/NASA Langley Research Center Min, Qilong State

  15. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (MICRE): Ice Nucleating Particle Measurements govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE): Ice Nucleating Particle Measurements Related Campaigns Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01, Marchand, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE): Ice Nucleating Particle Measurements 2017.03.01 - 2018.03.31 Lead Scientist :

  16. ARM - Publications: Science Team Meeting Documents: Cirrus Cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurements by the UAF Polarization Diversity Lidar during M-PACE Cirrus Cloud Measurements by the UAF Polarization Diversity Lidar during M-PACE Sassen, Kenneth University of Alaska Fairbanks Zhu, Jiang UAF During the final week of the September-October 2004 Mixed-Phase Cloud Experiment (M-PACE) conducted in and around the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska, cirrus clouds were unexpectedly prevalent. Overcoming earlier adversity, the

  17. ARM: X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which can vary in elevation range and azimuth Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; ...

  18. ARM Cloud Properties Working Group: Meeting Logistics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to 1630: J. Comstock - Clouds with Low Optical Water Depth (CLOWD) 1630 to 1645: B. Albrecht - Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CLAP-MBL) 1645 to ...

  19. ARM - Field Campaign - Fall 1997 Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The primary objective of the Cloud IOP was to generate a multi-platform data set that can ... Given the diversity of cloud types sampled during the IOP, the analysis of this data set ...

  20. ARM - Publications: Science Team Meeting Documents: Clouds over the ARM SGP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Network area - 3D prospective Clouds over the ARM SGP Network area - 3D prospective Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Minnis, Patrick NASA Langley Research Center Heck, Patrick University of Wisconsin Khaiyer, Mandana Analytical Services and Material, Inc. The poster will present the final product of a 3-dimentional characterization of the clouds over the ARM SGP network area. We have aquired various ground-based and satellite

  1. ARM - Publications: Science Team Meeting Documents: Clouds in the Darwin

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    area and their relation to large-scale conditions Clouds in the Darwin area and their relation to large-scale conditions Jakob, Christian BMRC Hoeglund, Sofia Lulea University of Technology This poster shows a climatological overview of the cloud cover in the Darwin region (location of a TWP ARM site) in the very north of Australia. Information on optical thickness and cloud top pressure from the ISCCP Stage D1 product over the time period 1985 to 2000 has been used to examine how the cloud

  2. ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer W-SACR) Corner Reflector Raster Scan Title: ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan Authors: Joseph Hardin ; Dan Nelson ; Iosif [1] ; Bradley Isom ; Karen Johnson ; Alyssa Matthews ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: 2014-03-07 OSTI Identifier: 1150295 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset

  3. ARM: X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar (Dataset)

    Office of Scientific and Technical Information (OSTI)

    | Data Explorer X-SACR) Side-Looking Radar Title: ARM: X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar Authors: Dan Nelson ; Joseph Hardin ; Iosif [1] ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: 2014-01-16 OSTI Identifier: 1150300 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation

  4. ARM - Evaluation Product - Cloud Classification VAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    properties includes cloud boundaries, thickness, phase, type, and precipitation information, and hence provides a useful tool for evaluation of model simulations and...

  5. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  6. Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral MODIS Data D. A. ... over the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) Barrow site. ...

  7. First observations of tracking clouds using scanning ARM cloud...

    Office of Scientific and Technical Information (OSTI)

    These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator ...

  8. ARM - Niamey News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    West AfricaNiamey News Niamey Deployment AMF Home Niamey Home Data Plots and Baseline Instruments Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa! News Campaign Images AMMA International News Niamey News Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite May 15, 2006 W-Band Cloud Radar Added to

  9. ARM Virtual Tour

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    X-Band Scanning Precipitation Radar Ka/W-Band Scanning ARM Cloud Radar & Ka-Zenith Radar Raman Lidar Raman Lidar Aerosol Observing System Micropulse Lidar Atmospheric Emitted Radiance Interferometer Hydrogen Storage Radar Wind Profiler Administration Offices Balloon-Borne Sounding System Instrument Field Instrument Field The Eastern North Atlantic instrument field covers a variety of meteorological measurements focusing on atmospheric and boundary properties, surface and radiative fluxes,

  10. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Snowfall Experiment Snowfall Experiment ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment 2014.02.01 - 2014.04.30 Lead Scientist : Dmitri Moisseev For data sets, see below. Abstract The snowfall measurement campaign, took place during AMF2

  11. ARM - Field Campaign - SUbsonic Aircraft: Contrail & Cloud Effects Special

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Study (SUCCESS) govCampaignsSUbsonic Aircraft: Contrail & Cloud Effects Special Study (SUCCESS) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : SUbsonic Aircraft: Contrail & Cloud Effects Special Study (SUCCESS) 1996.04.01 - 1996.05.31 Lead Scientist : Randy Peppler Data Availability Data Links NASA data for SUCCESS can be found at the NASA web site For data sets, see below. Summary Locations

  12. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro) (Dataset) | Data Explorer Parcivel Disdrometer (williams-disdro) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed

  13. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, Surface Meteorology (williams-surfmet) (Dataset) | Data Explorer Surface Meteorology (williams-surfmet) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed

  14. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, Vertical Air Motion (williams-vertair) (Dataset) | Data Explorer Vertical Air Motion (williams-vertair) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed

  15. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (MICRE) govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE) Campaign Links Science Plan Backgrounder Baseline Instruments and Data Plots Related Campaigns Macquarie Island Cloud and Radiation Experiment (MICRE): Ice Nucleating Particle Measurements 2017.03.01, DeMott, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist :

  16. ARM - Data Announcements Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    WACR Radar Data Available for AWARE Campaign Bookmark and Share Best estimate reflectivity data from the WACR-ARSCL value-added product are shown here for the AWARE field campaign on January 3, 2016. Best estimate reflectivity data from the WACR-ARSCL value-added product are shown here for the AWARE field campaign on January 3, 2016. The W-band ARM Cloud Radar-Active Remotely-Sensed Cloud Locations (WACR-ARSCL) provides cloud boundaries and best-estimate time-height fields of radar moments. WACR

  17. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE PAGES-Beta [OSTI]

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  18. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE): Nano-Particle Number Concentrations Nano-Particle Number Concentrations Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE): Nano-Particle Number Concentrations 2016.08.28 - 2016.09.26 Lead Scientist :

  19. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE): Nanoparticle Composition and Precursors Nanoparticle Composition and Precursors Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE): Nanoparticle Composition and Precursors 2016.08.21 - 2016.09.27 Lead

  20. ARM - Field Campaign - Measurement of Aerosols, Radiation and Clouds over

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) Ocean (MARCUS: Ice Nucleating Particle Measurements) Related Campaigns Measurement of Aerosols, Radiation and Clouds over the Southern Oceans (MARCUS) 2017.09.01, McFarquhar, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) 2017.09.01 - 2018.04.30

  1. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof) (Dataset) | Data Explorer 449 MHz Profiler(williams-449_prof) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in

  2. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, S-band Radar (williams-s_band) (Dataset) | Data Explorer S-band Radar (williams-s_band) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at

  3. ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsWhole Sky Imager Cloud Fraction Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Whole Sky Imager Cloud Fraction Data 1994.01.01 - 1994.12.31 Lead Scientist : Tim Tooman Data Availability sgpwsicldcoverC1.c1.19931230.144000.asc POR028T.CCV 30 Dec 93 - 06 Jan 94 sgpwsicldcoverC1.c1.19940107.151000.asc POR029T.CCV 07 Jan 94 - 14 Jan 94 sgpwsicldcoverC1.c1.19940114.144000.asc POR030T.CCV 14

  4. ARM - Evaluation Product - WACR-ARSCL VAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsWACR-ARSCL VAP ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : WACR-ARSCL VAP Observations from the 95 GHz W-band ARM Cloud Radar (WACR), Micropulse Lidar (MPL), and ceilometer have been combined using the new WACR Active Remote Sensing of Clouds (WACR-ARSCL) VAP (Kollias and Miller, 2007) to

  5. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    SciTech Connect (OSTI)

    Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and

  6. ARM - VAP Product - arsclwacrbnd1kollias

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productswacrarsclarsclwacrbnd1kollias Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1097548 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : ARSCLWACRBND1KOLLIAS WACRARSCL: cloud boundaries from first Kollias algorithm Active Dates 2006.03.16 - 2014.09.13 Originating VAP Process W-band Cloud Radar Active Remote Sensing of Cloud :

  7. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  8. ARM - VAP Product - arsclwacr1kollias

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productswacrarsclarsclwacr1kollias Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1097547 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : ARSCLWACR1KOLLIAS WACRARSCL: multiple outputs from first Kollias algorithm Active Dates 2006.03.16 - 2014.09.13 Originating VAP Process W-band Cloud Radar Active Remote Sensing of Cloud : WACRARSCL

  9. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsCloud Properties and Radiative Heating Rates for TWP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites

  10. ARM: Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range Title: ARM: Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range Authors: Morris, Victor Publication Date: 1996-10-11 OSTI Identifier: 1025313 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National

  11. ARM - Evaluation Product - MWACR Corrected for Ship Motion (MWACRSHIPCOR)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsMWACR Corrected for Ship Motion (MWACRSHIPCOR) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MWACR Corrected for Ship Motion (MWACRSHIPCOR) [ ARM research - evaluation data product ] The Marine W-band (95 GHz) ARM Cloud radar (MWACR) Ship Correction (MWACRSHIPCOR) VAP is intended to correct the

  12. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CF during LABLE-2012 2 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  13. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CF during LABLE-2013 3 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  14. ARM - PI Product - MWR Retrievals of Cloud Liquid Water and Water Vapor

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : MWR Retrievals of Cloud Liquid Water and Water Vapor A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the 2-channel (23.8 and 31.4 GHz) microwave radiometers (MWRs) deployed at ARM climate research

  15. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files

  16. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  17. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  18. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  19. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Joseph Hardin; Dan Nelson; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  20. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  1. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  2. ARM - Publications: Science Team Meeting Documents: Tropical Cloud Overlap

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Structure and Cloud Area Tropical Cloud Overlap Structure and Cloud Area Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Boer, Erwin LUEBEC The Tropical Western Pacific (TWP), with its vigorous cloud activity, is an excellent location to investigate the relationships between cloud properties and radiative fluxes. To unlock such issues first requires a better understanding of what the observed structures of clouds are and how they affect the

  3. ARM - Field Campaign - MASRAD: Cloud Study from the 2NFOV at...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsMASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus...

  4. ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    data. Cloud microphysical properties derived from Mace's data of atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates are regridded to a...

  5. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  6. ARM - Midlatitude Continental Convective Clouds (jensen-sonde)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

  7. Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies

    DOE PAGES-Beta [OSTI]

    Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; Cederwall, Richard T.; Wiscombe, Warren J.; Clothiaux, Eugene E.; Gaustad, Krista L.; Golaz, Jean -Christophe; Hall, Stephanie D.; Jensen, Michael P.; et al

    2010-01-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.

  8. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect (OSTI)

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  9. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    fraction - Cloud Inter-Compariosn IOP results Day and Night cloud fraction - Cloud Inter-Compariosn IOP results Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory We present results from the CIC IOP from March-may, 2003. Day time and night time cloud fraction retrieval algorithms have been presented and intercompared. Amount of low, middle and high cloud have been estimated and compared to

  10. ARM - Evaluation Product - MWR Retrievals of Cloud Liquid Water and Water

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vapor ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MWR Retrievals of Cloud Liquid Water and Water Vapor A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the

  11. Inferring Cloud Feedbacks from ARM Continuous Forcing, ISCCP, and ARSCL Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Inferring Cloud Feedbacks from ARM Continuous Forcing, ISCCP, and ARSCL Data A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. B. Wolf and M.-S. Yao SGT Inc., Institute for Space Studies New York, New York Introduction Single Column Model (SCM) versions of parent general circulation models (GCMs), accompanied by cloud-resolving models (CRMs) that crudely resolve cloud-scale dynamics, have increasingly been used to simulate

  12. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MicroPulse LIDAR Cloud Optical Depth (MPLCOD) The MPLCOD VAP retrieves the column cloud visible optical depth using LIDAR derived backscatter from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and

  13. ARM - Field Campaign - WB57 Midlatitude Cirrus Cloud Experiment (WB57

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MidCiX) govCampaignsWB57 Midlatitude Cirrus Cloud Experiment (WB57 MidCiX) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : WB57 Midlatitude Cirrus Cloud Experiment (WB57 MidCiX) 2004.04.14 - 2004.05.15 Lead Scientist : Gerald Mace For data sets, see below. Abstract In order to improve our understanding of the role clouds play in the climate system, NASA invested considerable effort in characterizing

  14. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? ... Send Campaign : Deep Convective Clouds and Chemistry 2012.05.01 - 2012.06.30 Lead ...

  15. DOE/SC-ARM-14-030 ARM Cloud Aerosol Precipitation Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... A, and D Rosenfeld. 2005. "Separation between Cloud Seeding and Air Pollution Effects." ... A, and D Rosenfeld. 2005. "Separation between Cloud Seeding and Air Pollution Effects." ...

  16. ARM - 2016 AMS Ninth Symposium on Aerosol-Cloud-Climate Interactions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Abstracts Ninth Symposium on Aerosol-Cloud-Climate Interactions Abstracts Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes118 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 7 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 CARES 1 Data Quality Office 2 ENA 2 GOAMAZON 7 HI-SCALE 5 LASIC 3 MAGIC 15 MC3E 17 PECAN 3 SGP 8 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social

  17. ARM - Publications: Science Team Meeting Documents: A Climatology of Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Radiative Forcing Clouds and Radiative Forcing Liu, Yang University of North Dakota A Climatology of Clouds and Radiative Forcing at at the University of North Dakota Liu, Y., Dong, X. University of North Dakota Point of Contact: Yang Liu, yliu@aero.und.edu, 701-777-4877 A record of cloud fraction has been generated using ceilometer data collected at the UND ground observational site from January 1998 to December.2004. The total and low cloud (cloud-base height < 3 km) fractions are

  18. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  19. ARM - Publications: Science Team Meeting Documents: Clouds and radiation in

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Arctic coastal system - effects of local heterogeneity Clouds and radiation in the Arctic coastal system - effects of local heterogeneity Key, Erica University of Miami, RSMAS Minnett, Peter University of Miami Improving our comprehension of the influence of clouds in the polar regions is important as a prerequisite to refining our understanding of the earth's climate system. Polar clouds modulate the radiative heat loss to space in the regions that serve as the heat sink of the climate

  20. Fully Polarimetric Differential Intensity W-band Imager

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Tedeschi, Jonathan R.; Kelly, James F.; Sheen, David M.; Hall, Thomas E.; Valdez, Patrick LJ; Lechelt, Wayne M.; McMakin, Douglas L.

    2013-05-31

    We present a novel architecture based upon a Dicke-switched heterodyne radiometer architecture employing two identical input sections consisting of horn and orthomode transducer to detect the difference between the H and V polarization states of two separate object patches imaged by the radiometer. We have constructed and described previously a fully polarimetric W-band passive millimeter wave imager constructed to study the phenomenology of anomaly detection using polarimetric image exploitation of the Stokes images. The heterodyne radiometer used a PIN diode switch between the input millimeter wave energy and that of a reference load in order to eliminate the effects of component drifts and reduce the effects of 1/f noise. The differential approach differs from our previous work by comparing H and V polarization states detected by each of the two input horns instead of a reference load to form signals delta H and delta V from closely adjacent paired object patches. This novel imaging approach reduces common mode noise and enhances detection of small changes between the H and V polarization states of two object patches, now given as difference terms of the fully polarimetric radiometer. We present the theory of operation, initial proof of concept experimental results, and extension of the differential radiometer to a system with a binocular fore optics that allow adjustment of the convergence or shear of the object patches viewed by the differential polarimetric imager.

  1. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. ...

  2. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in the Arctic, to measure the BRDF and albedos of various surfaces (ice, snow and tundra) and various cloud types, and to obtain these measurements whenever possible either...

  3. ARM Value-Added Cloud Products: Description and Status

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    This VAP combines the data from the millimeter cloud radar (MMCR), micropulse lidar (MPL), laser ceilometer, microwave radiometer (MWR), and surface measurements. It produces a ...

  4. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  5. arm_stm_2007_revercomb_poster_cloud.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AERI Derived Cloud Properties David Tobin, Lori Borg, David Turner, Robert Holz, Daniel DeSlover, Hank Revercomb, Bob Knuteson, Leslie Moy, Ed Eloranta, Jun Li Space Science...

  6. ARM - Field Campaign - Holistic Interactions of Shallow Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE); National Geospatial-Intelligence Agency Calibration Target Placements 2016.04.24, Kalukin, SGP ...

  7. ARM Cloud Retrieval Ensemble Data Set (ACRED) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval ...

  8. ARM: AOS: Dual Column Cloud Condensation Nuclei Counter (Dataset...

    Office of Scientific and Technical Information (OSTI)

    AOS: Dual Column Cloud Condensation Nuclei Counter Authors: Derek Hageman ; Bill Behrens ; Scott Smith ; Janek Uin ; Janek Uin ; Cynthia Salwen ; Cynthia Salwen ; Annette Koontz ; ...

  9. Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  10. Scanning ARM Cloud Radars. Part II: Data Quality Control and...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  11. ARM - Field Campaign - Cloud, Aerosol, and Complex Terrain Interaction...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    This range of environmental conditions and cloud properties coupled with a high frequency of events makes this an ideal location for improving our understanding of...

  12. ARM - Routine AAF Clouds with Low Optical Water Depths (CLOWD...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Discovery Channel Earth Live Blog News & Press RACORO Backgrounder (PDF, 528K) ... will obtain representative statistics of cloud microphysical, aerosol, and ...

  13. ARM - Publications: Science Team Meeting Documents: Interpretation of cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    structure anomalies over the tropical Pacific during the 1997/98 El Nino Interpretation of cloud structure anomalies over the tropical Pacific during the 1997/98 El Nino Cess, Robert State University of New York at Stony Brook Sun, Moguo State University of New York at Stony Brook The CERES/TRMM single satellite footprint (SSF) dataset, available for January 1998 to August 1998, provides not only radiometric data, but also data for cloud fraction, cloud top pressure and cloud optical depth.

  14. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; Radar polarization; Radar reflectivity Dataset ...

  15. ARM: X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; Radar polarization; Radar reflectivity Dataset ...

  16. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 Environmental Sciences Atmospheric turbulence; Cloud particle size distribution; Hydrometeor fall velocity; Radar Doppler; Radar polarization; Radar ...

  17. ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Campaign Links CLASIC Website ARM Data Discovery Browse Data Related Campaigns CLASIC - SAM Support 2007.06.09, DeVore, SGP CLASIC - 9.4 GHz Phase Array Radar 2007.06.08, Kollias,...

  18. ARM - Field Campaign - 915 MHz Wind Profiler for Cloud Forecasting at BNL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaigns915 MHz Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 915 MHz Wind Profiler for Cloud Forecasting at BNL 2011.05.31 - 2012.05.31 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of the installation of a 37 MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study

  19. ARM - Field Campaign - Radar Wind Profiler for Cloud Forecasting at BNL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsRadar Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radar Wind Profiler for Cloud Forecasting at BNL 2013.07.15 - 2015.08.06 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of recent activities funded by the DOE Energy Efficiency and Renewable Energy (EERE) to produce short-term

  20. Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Poellot University of North Dakota Grand Forks, North Dakota Introduction Large-eddy simulation (LES) models have been widely employed in the study of radiatively forced cloud topped boundary layers (CTBL). These boundary layers are typically well mixed and characterized by a sharp jump

  1. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE PAGES-Beta [OSTI]

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  2. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    SciTech Connect (OSTI)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  3. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  4. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  5. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever collected will ...

  6. ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Campaigns Azores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2009.05.01, Wood, AMF Comments? We would love to hear from you Send us a note...

  7. ARM - Publications: Science Team Meeting Documents: Increasing Cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Droplet Size with Aerosol Optical Depth: A New Effect or Artifact? Increasing Cloud Droplet Size with Aerosol Optical Depth: A New Effect or Artifact? Li, Zhanqing University of Maryland Yuan, Tianle University of Maryland Vant-Hull, Brian University of Maryland Since the Twomey effect was proposed in 1977, it has been a common belief that cloud particle size only decreases with aerosol loading. Using NASA's MODIS products, an opposite trend is found, together with a general finding that

  8. DOE/SC-ARM-12-020 MAGIC: Marine ARM GPCI Investigation of Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... the GCSS and the World Climate Research Programme Working Group on Coupled Modelling Cloud ... the GCSS and the World Climate Research Programme Working Group on Coupled Modelling ...

  9. ARM - Field Campaign - 2008 VAMOS Ocean-Cloud-Atmos-Land Study...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2008 VAMOS Ocean-Cloud-Atmos-Land Study (VOCALS) 2008.10.14 - 2008.11.13 Lead...

  10. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  11. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  12. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  13. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect (OSTI)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  14. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect (OSTI)

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  15. ARM - Publications: Science Team Meeting Documents: Cloud Property

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Retrievals using AIRS data during MPACE Cloud Property Retrievals using AIRS data during MPACE Huang, Allen University of Wisconsin Li, Jun University of Wisconsin-Madison Baggett, Kevin University of Wisconsin-Madison Wu, Xuebao University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin High spectral resolution infrared radiances collected by AIRS aboard the NASA Aqua satellite are

  16. Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    M Jensen; K Johnson; JH Mather

    2009-07-14

    Clouds represent a critical component of the Earth’s atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

  17. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect (OSTI)

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  18. Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD). An ARM Value-Added Product

    SciTech Connect (OSTI)

    Turner, D. D.; McFarlane, S. A.; Riihimaki, L.; Shi, Y.; Lo, C.; Min, Q.

    2014-02-01

    The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.

  19. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  20. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-06

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  1. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  3. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  4. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen L.; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the HS-RHI SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  5. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites

    SciTech Connect (OSTI)

    Turner, David D.; Ferrare, Richard

    2015-01-13

    The systematic and routine measurements of aerosol, water vapor, and clouds in the vertical column above the Atmospheric Radiation Measurement (ARM) sites from surface-based remote sensing systems provides a unique and comprehensive data source that can be used to characterize the boundary layer (i.e., the lowest 3 km of the atmosphere) and its evolution. New algorithms have been developed to provide critical datasets from ARM instruments, and these datasets have been used in long-term analyses to better understand the climatology of water vapor and aerosol over Darwin, the turbulent structure of the boundary layer and its statistical properties over Oklahoma, and to better determine the distribution of ice and aerosol particles over northern Alaska.

  6. Evaluation of Long-Term Cloud-Resolving Modeling with ARM Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluation of Long-Term Cloud-Resolving Modeling with ARM Data Zeng, Xiping NASA/GSFC Tao, Wei-Kuo NASA/Goddard Space Flight Center Zhang, Minghua State University of New York at Stony Brook Peters-Lidard, Christa Laboratory for Hydrospheric Processes, NASA-GSFC Lang, Stephen SSAI/NASA Goddard Space Flight Center Simpson, Joanne Laboratory for Atmospheres, NASA GSFC Kumar, Sujay University of Maryland, NASA-GSFC Xie, Shaocheng Lawrence Livermore National Laboratory Geiger, James NASA-GSFC Shie,

  7. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  8. ARM - 2008 Performance Metrics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    series of retrieved cloud, aerosol, and dust properties, based on results from the ARM ... series of retrieved cloud, aerosol, and dust properties based on results from the ARM ...

  9. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... 2 2.4 ARM Cloud Retrieval Ensemble Data Set (ACRED) ......VAP. 2.4 ARM Cloud Retrieval Ensemble Data Set (ACRED) Translator: Shaocheng Xie, ...

  10. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... 2 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) ......(ECOs). 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) Translator: Shaocheng Xie, ...

  11. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... 1 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) ......(ECOs). 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) Translator: Shaocheng Xie, ...

  12. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    addition to the ARM education materials includes a cloud version of the childhood memory match game. The latest addition to the ARM education materials includes a cloud...

  13. Validation of a radar doppler spectra simulator using measurements from the ARM cloud radars

    SciTech Connect (OSTI)

    Remillard, J.; Luke, E.; Kollias, P.

    2010-03-15

    The use of forward models as an alternative approach to compare models with observations contains advantages and challenges. Radar Doppler spectra simulators are not new; their application in high- resolution models with bin microphysics schemes could help to compare model output with the Doppler spectra recorded from the vertically pointing cloud radars at the ARM Climate Research Facility sites. The input parameters to a Doppler spectra simulator are both microphysical (e.g., particle size, shape, phase, and number concentration) and dynamical (e.g., resolved wind components and sub-grid turbulent kinetic energy). Libraries for spherical and non-spherical particles are then used to compute the backscattering cross-section and fall velocities, while the turbulence is parameterized as a Gaussian function with a prescribed width. The Signal-to-Noise Ratio (SNR) is used to determine the amount of noise added throughout the spectrum, and the spectral smoothing due to spectral averages is included to reproduce the averaging realized by cloud radars on successive returns. Thus, realistic Doppler spectra are obtained, and several parameters that relate to the morphological characteristics of the synthetically generated spectra are computed. Here, the results are compared to the new ARM microARSCL data products in an attempt to validate the simulator. Drizzling data obtained at the SGP site by the MMCR and the AMF site at Azores using the WACR are used to ensure the liquid part and the turbulence representation part of the simulator are properly accounted in the forward model.

  14. ARM - Journal Articles 2012

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Citation) Geoscience and Remote Sensing Letters ARM ... Atmospheric and Oceanic Technology ARM Liu Seasonal ... in Modeling Earth Systems ARM ASR Yang GEWEX Cloud ...

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mixed-Phase Arctic Cloud Experiment, and the ARM Mobile Facility's deployments at Point Reyes National Seashore and Niamey, Niger, West Africa. ARM researchers, including ARM's...

  16. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  17. Seasonal Variability in Clouds and Radiation at the Manus ARM Site

    SciTech Connect (OSTI)

    Mather, Jim H.

    2005-07-01

    The Atmospheric Radiation Measurement (ARM) program operates three climate observation stations in the tropical western Pacific region. Two of these sites, located on Manus island in Papua New Guinea and on the island republic of Nauru, have been operating for over five years. This data set provides an opportunity to examine variability in tropical cloudiness on a wide range of time scales. The focus of this study is on the annual cycle. The most obvious manifestation of the annual cycle in this region is the oscillation of monsoon convection between Asia and Australia. The impact of the annual cycle on Manus and Nauru is more subtle; however, analysis of radiation and cloud observations from the Manus and Nauru ARM sites reveals links to the annual monsoon cycle. One such link relates to the proximity of Manus to the Maritime Continent, the collection of islands separating the Pacific and Indian oceans. Convection over the large islands in the maritime continent exhibits a distinct annual cycle. Outflow from large-island convection is shown to modulate the cirrus population over Manus. During neutral or cool ENSO periods, convection over Nauru is relatively suppressed. During such periods, Nauru is shown to exhibit an annual cycle in local convective activity. During the inactive season, cirrus are often found near the tropopause over Nauru. These clouds are not formed directly by the outflow from convection. The seasonality and source of these clouds is also examined. Identifying the source of cirrus observed at Manus and Nauru is important because of the potential dependence of cirrus properties on the source of convection.

  18. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Animation Joins Learning Tools on Science Education Website Bookmark and Share ARM's tropical convective clouds animation illustrates the difference between tropical cloud...

  19. Atmospheric Radiation Measurement (ARM) Data from the Eastern North Atlantic Site (ENA), Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert

    From May 2009 through December 2010, the ARM Mobile Facility obtained data from a location near the airport on Graciosa Island to support the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign. The campaign was led by principal investigator Robert Wood. Results from this campaign confirmed that the Azores have the ideal mix of conditions to study how clouds, aerosols, and precipitation interact. This new observation site will have significant enhancements to instruments previously deployed to the Azores, including a Ka-/W-band scanning cloud radar, precipitation radar, and Doppler lidar. It has the full support of the Azorean government and collaborators at the University of the Azores. Los Alamos National Laboratory will operate the site for the ARM Facility.

  20. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect (OSTI)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  1. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  2. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect (OSTI)

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  3. ARM's efforts to address the need for 3D cloud and precipitation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2007 Multi-scale Observing Facility (MOF) - Whitepaper 2009 Steps forward: ARM-CASA Partnership ARM-GPM proposed field campaign Wind Profiler IOP Radar simulator...

  4. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  5. ARM - Measurement - Radar Doppler

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    quality assurance purposes. ARM Instruments CSAPR : C-Band ARM Precipitation Radar DL : Doppler Lidar KAZR : Ka ARM Zenith Radar KASACR : Ka-Band Scanning ARM Cloud Radar MWACR :...

  6. A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors

    DOE PAGES-Beta [OSTI]

    Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward

    2016-06-10

    Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less

  7. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM's New Radar Operating Paradigm Aims to Maximize Performance Bookmark and Share Maintaining the pulse of the radar network is vital to research A Scanning ARM Cloud Radar is deployed with the ARM Mobile Facility on Antarctica for the ARM West Antarctic Radiation Experiment campaign. A Scanning ARM Cloud Radar is deployed with the ARM Mobile Facility on Antarctica for the ARM West Antarctic Radiation Experiment campaign. Radars have been getting a lot of attention at ARM in the last few

  8. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    SciTech Connect (OSTI)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D.

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  9. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  10. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  11. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    2012-02-28

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is

  12. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  13. ARM - Journal Articles 2010

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atmospheric and Oceanic Technology Yes ARM Johnson The ... of tropical cloud systems observed during the ... on Geoscience and Remote Sensing ARM Long Correcting ...

  14. Fully Polarimetric Passive W-band Millimeter Wave Imager for Wide Area Search

    SciTech Connect (OSTI)

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Sheen, David M.; Kelly, James F.; McMakin, Douglas L.

    2013-09-27

    We describe the design and phenomenology imaging results of a fully polarimetric W-band millimeter wave (MMW) radiometer developed by Pacific Northwest National Laboratory for wide-area search. Operating from 92 - 94 GHz, the W-band radiometer employs a Dicke switching heterodyne design isolating the horizontal and vertical mm-wave components with 40 dB of polarization isolation. Design results are presented for both infinite conjugate off-axis parabolic and finite conjugate off-axis elliptical fore-optics using optical ray tracing and diffraction calculations. The received linear polarizations are down-converted to a microwave frequency band and recombined in a phase-shifting network to produce all six orthogonal polarization states of light simultaneously, which are used to calculate the Stokes parameters for display and analysis. The resulting system performance produces a heterodyne receiver noise equivalent delta temperature (NEDT) of less than 150m Kelvin. The radiometer provides novel imaging capability by producing all four of the Stokes parameters of light, which are used to create imagery based on the polarization states associated with unique scattering geometries and their interaction with the down welling MMW energy. The polarization states can be exploited in such a way that man-made objects can be located and highlighted in a cluttered scene using methods such as image comparison, color encoding of Stokes parameters, multivariate image analysis, and image fusion with visible and infrared imagery. We also present initial results using a differential imaging approach used to highlight polarization features and reduce common-mode noise. Persistent monitoring of a scene using the polarimetric passive mm-wave technique shows great promise for anomaly detection caused by human activity.

  15. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations

    SciTech Connect (OSTI)

    Qian, Yun; Long, Charles N.; Wang, Hailong; Comstock, Jennifer M.; McFarlane, Sally A.; Xie, Shaocheng

    2012-02-17

    Cloud Fraction (CF) is the dominant modulator of radiative fluxes. In this study, we evaluate CF simulations in the IPCC AR4 GCMs against ARM ground measurements, with a focus on the vertical structure, total amount of cloud and its effect on cloud shortwave transmissivity, for both inter-model deviation and model-measurement discrepancy. Our intercomparisons of three CF or sky-cover related dataset reveal that the relative differences are usually less than 10% (5%) for multi-year monthly (annual) mean values, while daily differences are quite significant. The results also show that the model-observation and the inter-model deviations have a similar magnitude for the total CF (TCF) and the normalized cloud effect, and they are twice as large as the surface downward solar radiation and cloud transmissivity. This implies that the other cloud properties, such as cloud optical depth and height, have a similar magnitude of disparity to TCF among the GCMs, and suggests that a better agreement among the GCMs in solar radiative fluxes could be the result of compensating errors in either cloud vertical structure, cloud optical depth or cloud fraction. Similar deviation pattern between inter-model and model-measurement suggests that the climate models tend to generate larger bias against observations for those variables with larger inter-model deviation. The simulated TCF from IPCC AR4 GCMs are very scattered through all seasons over three ARM sites: Southern Great Plains (SGP), Manus, Papua New Guinea and North Slope of Alaska (NSA). The GCMs perform better at SGP than at Manus and NSA in simulating the seasonal variation and probability distribution of TCF; however, the TCF in these models is remarkably underpredicted and cloud transmissivity is less susceptible to the change of TCF than the observed at SGP. Much larger inter-model deviation and model bias are found over NSA than the other sites in estimating the TCF, cloud transmissivity and cloud-radiation interaction

  16. ARM - Instrument - sacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    : Scanning ARM cloud radar (SACR) Instrument Categories Cloud Properties Contact(s) Karen Johnson Brookhaven National Laboratory (631) 344-5952 kjohnson@bnl.gov Nitin...

  17. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  18. DOE/SC-ARM-10-021 STORMVEX: The Storm Peak Lab Cloud Property...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Observing System ARM Atmospheric Radiation Measurement ... thermometer IWC ice water content JPL Jet Propulsion ... around the area (e.g., weekly testing of diesel generators). ...

  19. ARM - Data Announcements Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM Cloud Retrieval Ensemble Data Set Available for Evaluation Bookmark and Share Multiple long-term cloud retrievals are now available for five ARM sites in the ACRED data set. ...

  20. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3

  1. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  2. ARM - Instrument - kasacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentskasacr Documentation KASACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ka-Band Scanning ARM Cloud Radar (KASACR) Instrument Categories Cloud Properties Note: All the Scanning ARM Cloud Radars have been technically accepted by ARM as meeting specification and each radar's first data are available at this URL: http://www.archive.arm.gov/sacr/. ARM's scanning cloud radars are

  3. ARM - Journal Articles 2006

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... of relative dispersion on threshold behavior of autoconversion process (Citation) ... of Geophysical Research ARM Doran Modification of Summertime Arctic Cloud ...

  4. Validation of Cloud Properties Derived from GOES-9 Over the ARM...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... are estimated using the solar-infrared infrared ... 0500 UTC. The validation datasets include retrievals and ... Clouds and Earth's Radiant Energy System (CERES; see ...

  5. ARM: Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1025313 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak ...

  6. DOE/SC-ARM-14-012 The Mid-latitude Continental Convective Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... along a dry line in west Texas propagated into the ARM scanning radar domain. ... more than 73 flight hours from Offutt Air Force Base in Bellevue, NE. Flight Date Flight ...

  7. ARM - Instrument - xsacr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsxsacr Documentation XSACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : X-Band Scanning ARM Cloud Radar (XSACR) Instrument Categories Cloud Properties Picture of the X-band scanning ARM cloud radar Note: All the Scanning ARM Cloud Radars have been technically accepted by ARM as meeting specification and each radar's first data are available at this URL:

  8. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    It has been used as a tool in evaluating global climate and weather models (Hewitson and Crane 1994, 1996; Tennant 2003) including cloud properties (Jakob et al. 2003, 2004). Why ...

  9. Simulation of Frontal Clouds Using the NCAR CAM3 during the ARM...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of New York at Stony Brook Wu, Jingbo Stony Brook University Category: Modeling A case study is carried out to simulate the March 2-3 frontal clouds with the NCAR CAM3 as...

  10. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  11. DE/SC-ARM/TR-130 Aerosol Observing System Cloud Condensation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DESC-ARMTR-130 Aerosol Observing System Cloud Condensation Nuclei Average (AOSCCNAVG) Value-Added Product Y Shi A Jefferson C Flynn July 2013 DOESC-ARMTR-130 DISCLAIMER This ...

  12. Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical Western Pacific J. M. Comstock, J. H. Mather, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction Upper tropospheric humidity plays an important role in the formation and maintenance of tropical cirrus clouds. Deep convection is crucial for the transport of water vapor from the boundary layer to the upper troposphere and is

  13. ER2 Instrumentation and Measurements for CLASIC (Cloud Land Surface...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ER2 Desired Measurements for CLASIC June 2007 SGP May 31, 2007 1 MEASUREMENT SOURCE DESIRED MEASUREMENTS AND PRODUCTS INSTRUMENT SYSTEMS Cloud Radar System (CRS), W-Band (95 GHz)...

  14. DISCLAIMER

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    13 Scanning ARM Cloud Radar (XKaW-SACR) K Widener N Bharadwaj K Johnson June 2012 Work ... Tube Amplifier VAP value-added product WACR W-band ARM cloud radar W band frequencies ...

  15. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  16. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4, 2012 [Facility News] New Organization to Optimize ARM Radar Data Bookmark and Share Every ARM fixed and mobile site now includes both scanning (left) and zenith-pointing (right) cloud radars. The fixed sites also include scanning precipitation radars. Every ARM fixed and mobile site now includes both scanning (left) and zenith-pointing (right) cloud radars. The fixed sites also include scanning precipitation radars. In the past few years, the ARM Facility added 19 new scanning cloud and

  17. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  18. ARM - AGU Presentations Featuring ARM Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Cloud Properties with DOE ARM AMF Measurements at Shouxian, China Y. Qiu; X. Dong; B. Xi; P. Minnis 1:40 pm, M-South Poster A13A-0184. Effect of Land Surface Interactions on Cloud ...

  19. DOE/SC-ARM/TR-098 Micropulse Lidar Cloud Mask Value-Added Product Technical Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 Micropulse Lidar Cloud Mask Value-Added Product Technical Report C Sivaraman J Comstock July 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  20. ARM - VAP Process - isccpcld

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsisccpcld Documentation & Plots isccpcld : XDC documentation Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : ISCCP Cloud Data Around the ARM Sites (ISCCPCLD) Instrument Categories Cloud Properties

  1. ARM - Instrument -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstruments Documentation : Contacts (PHP) : Index (PHP) : Instrument-fc (PHP) : Instrument (PHP) : Location (PHP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Instruments () A relocated wind profiler, a new dual-frequency scanning cloud radar, and an upgraded K-band ARM zenith radar line up at the SGP site A relocated wind profiler, a new dual-frequency scanning cloud radar, and an upgraded K-band ARM zenith radar line up at

  2. ARM - Publications: Science Team Meeting Documents: The impact of Cloud and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiation on the Great Plains Climate Change during 1981-2003 The impact of Cloud and Radiation on the Great Plains Climate Change during 1981-2003 Popham, Julie University of North Dakota The global average air surface temperature has increased about 0.6oC over the 20th century (Houghton et al. 2001). This warming has resulted in a 10% decrease in the extent of snow cover observed from satellite, and about two weeks reduction in the annual duration of lake and river ice cover in the mid-

  3. DOE/SC-ARM-0606

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The.Role.of.Clouds.in.Climate......ARM.Climate.Research.Facility:.Successful.Science.Program.Leads.to.User.Facility.Designati...

  4. ARM - Point Reyes News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Campaign Images Point Reyes News From Coastal Clouds to Desert Dust: ARM Mobile Facility Headed to Africa September 30, 2005 New Data Streams Available for ARM Mobile Facility ...

  5. ARM - VAP Process - kazrarscl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productskazrarscl Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Active Remote Sensing of CLouds (ARSCL) product using Ka-band ARM Zenith Radars (KAZRARSCL) Instrument Categories Cloud Properties Output Products arsclkazr1kollias : KAZRARSCL: multiple outputs from first Kollias algorithm arsclkazrbnd1kollias : KAZRARSCL: cloud boundaries

  6. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  7. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  8. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  10. X:\\ARM_19~1\\4264.FRT

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiation and Cloud Station ARESE ARM Enhanced ... Satellite GSFC Goddard Space Flight Center HAcc ... Radiative Flux ISCCP International Satellite Cloud ...

  11. ARM - Meetings and Presentations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    528K) Jennifer Comstock, Chaomei Lo, Tim Shippert, Sally McFarlane, Eli Mlawer, David Turner, Andy Vogelmann, and Mandy Khaiyer RACORO: Routine ARM Aerial Facility (AAF) Clouds...

  12. ARM - Campaign Instrument - psr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    call us at 1-888-ARM-DATA. Send Campaign Instrument : Polarimetric Scanning Radiometer (PSR) Instrument Categories Radiometric, Surface Meteorology Campaigns Cloud LAnd Surface...

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    From Coastal Clouds to Desert Dust: ARM Mobile Facility Headed to Africa Bookmark and ... international effort to study the effects of Saharan dust and the West African monsoons. ...

  14. ARM - Campaign Instrument - pdi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Phase Doppler Interferometer (PDI) Instrument Categories Airborne Observations, Cloud Properties...

  15. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... 2 2.4 ARM Cloud Retrieval Ensemble Data Set (ACRED) ............ 18 4.1 CARES Data SetAerosol Modeling Testbed (AMT) ...

  16. ARM - Campaign Instrument - twst

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1-888-ARM-DATA. Send Campaign Instrument : Three Waveband Spectrally-agile Technique Sensor (TWST) Instrument Categories Atmospheric Profiling, Cloud Properties, Radiometric...

  17. ARM - Campaign Instrument - mwrp

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Categories Atmospheric Profiling, Cloud Properties, Radiometric Campaigns ARM-FIRE Water Vapor Experiment Download Data Southern Great Plains, 2000.11.01 - 2000.12.31...

  18. ARM - Data Announcements Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM Cloud ARSCL Evaluation VAPs Available Bookmark and Share Sample images from the ... Sample images from the KAZR-ARSCL VAP are showing: a) hydrometer best-estimate ...

  19. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated...

  20. ARM - Datastreams - xsacrhsrhi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Send Datastream : XSACRHSRHI X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals) Active Dates...

  1. ARM - Campaign Instrument - mas

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA MODIS Airborne Simulator (MAS) Instrument Categories Airborne Observations, Radiometric Campaigns Cloud LAnd...

  2. ARM - Fact Sheets

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  3. ARM - CLASIC News & Press

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    as remote measurements. Between September 7-9, ARM researchers and international collaborators involved in flight operations for the Tropical Warm Pool International Cloud...

  5. ARM - Recovery Act

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... new microwave links that will replace land lines used for the site communication systems. ... Tropical Western Pacific: At ARM's Manus and Darwin sites, the millimeter wave cloud radar ...

  6. ARM - Events Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facility News Students Explore the Skies at ARM Summer Training Bookmark and Share Learning practical and theoretical knowledge about observing and modeling aerosols, clouds,...

  7. ARM Southern Great Plains

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    System Radiometer Calibration Facility Equipment Repair Lab Main Office Raman Lidar Doppler Lidar and Radar Wind Profiler Ka-Band Scanning ARM Cloud Radar Ka-Zenith Radar...

  8. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hawaii, gathering information on the transition zone between two different cloud types. "This was the first time ARM led a shipboard deployment, and the campaign went...

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Using a "cloud in a jar" demonstration, ARM Technical Director Jim Mather explained to children and their parents about how light is absorbed and scattered in clouds. During the...

  10. ARM - Publications: Science Team Meeting Documents: ARM SCM Intercomparison

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Helps Find Cloud Parameterization Bug ARM SCM Intercomparison Helps Find Cloud Parameterization Bug Klein, Stephen Lawrence Livermore National Laboratory The ARM Cloud Parameterization and Modeling working group has carried out several intercomparisons of Single Column Models (SCM) and Cloud Resolving Models (CRMs) to observations. The most recent intercomparison involves the simulation of clouds during the March 2000 Cloud Intensive Observing Period at the Southern Great Plains. The

  11. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  12. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  13. ARM - VAP Process - ccnprof

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsccnprof Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud Condensation Nuclei Profile (CCNPROF) Instrument Categories Derived Quantities and Models, Aerosols The cloud condensation nuclei (CCN) concentration at cloud base is the most relevant measure of the aerosol that influences droplet formation in clouds.

  14. ARM - Measurements

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  15. ARM - Sponsors

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sponsors Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land Experiment Plan

  16. ARM - Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    May 1, 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended

  17. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    SciTech Connect (OSTI)

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversity Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to

  18. ARM - VAP Process - armbe

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsarmbe Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : ARM Best Estimate Data Products (ARMBE) Instrument Categories Surface/Subsurface Properties, Satellite Observations, Radiometric, Atmospheric Profiling, Cloud Properties The ARM Best Estimate data products are ARM datastreams specifically tailored to climate modelers for use in

  19. ARM - VAP Process - kazrcor

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productskazrcor Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : KAZR Corrected Data (KAZRCOR) Instrument Categories Cloud Properties Output Products kazrcorge : Ka ARM Zenith Radar (KAZR): general mode Corrected kazrcorhi : Ka ARM Zenith Radar (KAZR): highest sensitivity mode Corrected kazrcormd : Ka ARM Zenith Radar (KAZR): moderate

  20. Precipitating clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A suggestion for a new focus on cloud microphysical process study in the ARM program 1. Retrieving precipitating mixed- phase cloud properties Zhien Wang University of Wyoming zwang@uwyo.edu Retrieving Precipitating Mixed-phase Cloud Properties Global distribution of supercooled water topped stratiform clouds (top > 1 km and length> 14km) Most of them are mixed-phase with precipitation or virga An multiple sensor based approach to provide water phase as well as ice phase properties

  1. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  2. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  3. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  4. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  5. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  6. Effective Radius of Cloud Droplets Derived from Ground-based Remote Sensing at the ARM SGP site

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Efficacy of Aerosol - Cloud Interactions under Varying Meteorological Conditions Byung-Gon Kim, @ Mark Miller, # Stephen Schwartz, $ Yangang Liu, $ Qilong Min % Kangnung National University, @ Rutgers University # Brookhaven National Laboratory, $ State Univ. of NY at Albany % (Courtesy Magritte) Cloud dynamical processes such as entrainment mixing may be the primary modulators of cloud optical properties in certain situations. Entrainment of dry air alters the cloud drop size distribution by

  7. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  8. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Authors: Liu, Zheng 1 ; Muhlbauer, Andreas 2 ; ...

  9. ARM - Datastreams - kasacrppiv

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrppiv Documentation Data Quality Plots Citation DOI: 10.5439/1224836 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRPPIV Ka-Band Scanning ARM Cloud Radar (KASACR) Single Fixed Elevation PPI Scan Active Dates 2015.10.10 - 2016.11.17 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR)

  10. ARM - Datastreams - kasacrppivh

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrppivh Documentation Data Quality Plots Citation DOI: 10.5439/1211542 DOI: 10.5439/1224837 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRPPIVH Ka-Band Scanning ARM Cloud Radar (KASACR) Multiple Elevation PPI Scan Active Dates 2016.03.28 - 2016.09.10 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar

  11. ARM - Campaign Instrument - acr-jpl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    or call us at 1-888-ARM-DATA. Send Campaign Instrument : Airborne Cloud Radar - JPL (ACR-JPL) Instrument Categories Cloud Properties Campaigns Tropical Warm Pool -...

  12. WACR Calibration Report

    SciTech Connect (OSTI)

    Mead, D

    2010-03-23

    Calibration report for the W-Band (95 GHz) ARM Cloud Radar performed for the ARM Climate Research Facility by ProSensing Inc.

  13. Comparison of Cloud Fraction and Liquid Water Path between ECMWF simulations and ARM long-term Observations at the NSA Site

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    poster, seasonal and annual variations of cloudiness and liquid water path (LWP) from European Center for Medium-Range Weather Forecasts (ECMWF) model were compared with surface measurement from the ARM Climate Research Facility (ARCF) North Slope of Alaska ( N S A ) s i t e b e t we e n J a n u a r y 1 9 9 9 and December 2004. ● Model simulated large scale features match well with observations. ● There are significant differences in cloud vertical and temporal distributions and in the

  14. ARM - Instrument - ccn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsccn Documentation CCN : Handbook CCN : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Cloud Condensation Nuclei Particle Counter (CCN) Instrument Categories Airborne Observations, Aerosols The cloud condensation nuclei counter (CCN) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the

  15. ARM - Datastreams - xsacrzppiaux

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsxsacrzppiaux Documentation Data Quality Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRZPPIAUX Auxiliary data for the X-Band Scanning ARM Cloud Radar ((XSACR) Zenith Pointing PPI Active Dates 2015.11.25 - 2016.05.08 Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units

  16. ARM - Campaign Instrument - htdma

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentshtdma Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Humidified Tandem Differential Mobility Analyzer (HTDMA) Instrument Categories Aerosols Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) [ Download Data ] MAGIC (Marine ARM GPCI Investigation of Clouds); Mobile Facility, 2012.10.01 - 2013.09.30 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer

  17. ARM - Datastreams - kasacrspecvptcopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrspecvptcopol Documentation Data Quality Plots Citation DOI: 10.5439/1253191 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECVPTCOPOL Ka-Band ARM Scanning Cloud Radar (KASACR) Filtered Spectral Data of Vertically Pointing Scan in Co-Polarization Mode Active Dates 2016.06.21 - 2016.07.26 Measurement Categories Cloud Properties Originating

  18. ARM - Datastreams - kasacrspecvptcross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrspecvptcross Documentation Data Quality Plots Citation DOI: 10.5439/1253726 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECVPTCROSS Ka-Band ARM Scanning Cloud Radar (KASACR) Filtered Spectral Data of Vertically Pointing Scan in Cross Mode Active Dates 2016.06.21 - 2016.07.26 Measurement Categories Cloud Properties Originating Instrument

  19. ARM - Datastreams - kasacrspecvpthrccopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrspecvpthrccopol Documentation Data Quality Plots Citation DOI: 10.5439/1253732 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECVPTHRCCOPOL Ka-Band ARM Scanning Cloud Radar (KASACR) Filtered Spectral Data of Vertically Pointing High Resolution Scan in Co-Polarization Mode Active Dates 2016.06.21 - 2016.07.26 Measurement Categories Cloud

  20. ARM - Datastreams - kasacrspecvpthrccross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrspecvpthrccross Documentation Data Quality Plots Citation DOI: 10.5439/1253737 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECVPTHRCCROSS Ka-Band ARM Scanning Cloud Radar (KASACR) Filtered Spectral Data of Vertically Pointing High Resolution Scan in Cross Mode Active Dates 2016.06.21 - 2016.07.26 Measurement Categories Cloud Properties

  1. ARM - Datastreams - kasacrcrcalap

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrcrcalap Documentation Data Quality Plots Citation DOI: 10.5439/1224834 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRCRCALAP Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Fixed Point (AP

  2. ARM - Datastreams - kasacrcrcalfp

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrcrcalfp Documentation Data Quality Plots Citation DOI: 10.5439/1224835 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRCRCALFP Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Fixed Point (FP

  3. ARM - Datastreams - kasacrspecvpthrcxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrspecvpthrcxpol Documentation Data Quality Plots Citation DOI: 10.5439/1253735 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECVPTHRCXPOL Ka-Band ARM Scanning Cloud Radar (KASACR) Filtered Spectral Data of Vertically Pointing High Resolution

  4. ARM - Datastreams - kasacrspecvptxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrspecvptxpol Documentation Data Quality Plots Citation DOI: 10.5439/1253723 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECVPTXPOL Ka-Band ARM Scanning Cloud Radar (KASACR) Filtered Spectral Data of Vertically Pointing

  5. ARM - Datastreams - xsacrspeccmaskcopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsxsacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1150301 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRSPECCMASKCOPOL X-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode

  6. ARM - Datastreams - xsacrspeccmaskxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsxsacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1150302 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRSPECCMASKXPOL X-Band Scanning ARM Cloud Radar, filtered spectral data, cross-polarized mode

  7. ARM - VAP Process - mfrsrcldod

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsmfrsrcldod Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud Optical Properties from MFRSR Using Min Algorithm (MFRSRCLDOD) Instrument Categories Aerosols, Radiometric The mfrsrcldod1min value-added product produces cloud optical depth for overcast liquid clouds using narrowband irradiance measurements from the

  8. ARM - VAP Process - mplcbh

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsmplcbh Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud Base Height from MPL Using Scott-Spinhirne Algorithm (MPLCBH) Instrument Categories Cloud Properties Output Products mplcbh1scott : MPL: cloud base heights using the Scott/Spinhirne algorithm Primary Measurements The following measurements are those considered

  9. ARM - VAP Process - mplcmask

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsmplcmask Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud mask from Micropulse Lidar (MPLCMASK) Instrument Categories Cloud Properties Sample plot generated by MPLCMASK. Click to enlarge the image. Sample plot generated by MPLCMASK. Click to enlarge the image. An operational cloud boundary algorithm has been

  10. ARM - VAP Process - ripbe

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsripbe Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Radiatively Important Parameters Best Estimate (RIPBE) Instrument Categories Radiometric, Aerosols, Cloud Properties Quicklook plot showing RIPBE liquid cloud effective radius (top) and quality control flags (bottom). For the first half of the day, no cloud data

  11. ARM - VAP Process - sfccldgrid

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productssfccldgrid Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Surface Cloud Grid (SFCCLDGRID) Instrument Categories Cloud Properties, Derived Quantities and Models The Surface Cloud Grid VAP uses as input the 15-minute output from the Shortwave Flux Analysis VAP (Long, 2001; Long and Ackerman, 2000; Long et al., 1999)

  12. ARM - VAP Process - wsicloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productswsicloud Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Whole Sky Imager Cloud Products (WSICLOUD) Note:wsicloud is currently inactive and/or retired. Active Dates 1995.09.20 - 1999.07.15 Instrument Categories Cloud Properties Output Products wsicloud : WSI: derived, cloud numbers, area, perimeter, & more wsicloudden : WSI:

  13. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    Office of Scientific and Technical Information (OSTI)

    () | Data Explorer the ARM Aerial Facility Title: Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through

  14. ARM - 2001 ARM Science Team Meeting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and MWR 2:30 p.m. Kollias P, BA Albrecht, and BJ Dow: Sizes Fractional Coverage, and Radar Doppler Moments Profiles of Fair - Weather Cumulus Clouds at the TWP ARM Site 2:45 p.m. ...

  15. ARM - 1998 ARM Science Team Meeting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and MWR 2:30 p.m. Kollias P, BA Albrecht, and BJ Dow: Sizes Fractional Coverage, and Radar Doppler Moments Profiles of Fair - Weather Cumulus Clouds at the TWP ARM Site 2:45 p.m. ...

  16. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Kato, S. (a), Clothiaux, E.E. (b), and Xu, K.-M. (c), Hampton University (a), Pennsylvania State University (b), NASA Langley Research Center(c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The probability of occurrence of the cloud top height for a given altitude and relation to the geometrical cloud thickness are derived from radar reflectivity factor taken by a millimeter cloud radar operated at ARM

  17. ARM - Datastreams - kazrspeccmaskprcross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskprcross Documentation Data Quality Plots Citation DOI: 10.5439/1224809 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKPRCROSS Ka ARM Zenith Radar (KAZR): raw spectral data Active Dates 2015.10.01 - 2016.11.19 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements

  18. ARM - Field Campaign - ARM West Antarctic Radiation Experiment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Cloud Radar Browse Data KAZR Ka ARM Zenith Radar Browse Data LDIS Laser Disdrometer Browse Data MET Surface Meteorological Instrumentation Browse Data Browse Plots MFR ...

  19. Final Technical Report ARM DOE Grant #DE-FG02-03ER63520 Parameterizations of Shortwave Radiactive Properties of Broken Clouds from Satellite and Ground-Based Measurements

    SciTech Connect (OSTI)

    Albrecht, Bruce, A.

    2006-06-19

    This study used DOE ARM data and facilities to: 1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, 2) develop a scientific basis for understanding the pocesses responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and 3) evaluate cumulus cloud characteristics retrieved retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: 1)develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, 2) evaluate the capability and limitation of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low-signal-to-noise conditions associated with weak non-precipitating clouds, 3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and 4) retrieve updraft and downdraft structures under precipitating conditions.

  20. Preliminary Studies on the Variational Assimilation of Cloud...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Studies on the Variational Assimilation of Cloud-Radiation Observations Using ARM ... A linearized cloud scheme and a radiation scheme including cloud effects have been ...

  1. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  2. ARM_STM09.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Aerosol Campaign 1-29 Apr 2008: Same measurements at DOE ARM NSA Site + Canadian NRC In-situ Measurements * Aerosol properties * Atmospheric state * Cloud microphysics *...

  3. ARM - AAF CLASIC Field Campaign

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  4. ARM - Mission and Vision Statements

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Organization Participants Facility Statistics Forms Contacts Facility Documents ARM ... and representation, in climate and earth system models, of clouds and aerosols as ...

  5. ARM - Instrument - kazr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentskazr Documentation KAZR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ka ARM Zenith Radar (KAZR) Instrument Categories Cloud Properties General Overview The Ka-band ARM zenith radar (KAZR) remotely probes the extent and composition of clouds at millimeter wavelengths. The KAZR is a zenith-pointing Doppler radar that operates at a frequency of approximately 35 GHz. The main

  6. ARM - Instrument - mmcr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsmmcr Documentation MMCR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Millimeter Wavelength Cloud Radar (MMCR) Instrument Categories Cloud Properties Picture of the Millimeter Wave Cloud Radar (MMCR) General Overview The MMCR systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz.

  7. ARM - Data Announcements Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scanning ARM Cloud Radar - Advanced - Velocity Azimuth Display (SACR-ADV-VAD) Product Released to Evaluation Bookmark and Share Horizontal wind speed and direction at cloud level is shown, from SACR-ADV-VAD, for the first seven days of August 2012 at the Southern Great Plains megasite. Horizontal wind speed and direction at cloud level is shown, from SACR-ADV-VAD, for the first seven days of August 2012 at the Southern Great Plains megasite. The Scanning ARM Cloud Radar-Advanced-Velocity Azimuth

  8. Microsoft PowerPoint - Mace_Poster_ARM-ATrain_Comparison [Compatibility Mode]

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Representativeness of ARM Cloud Measurements: The Representativeness of ARM Cloud Measurements: The Representativeness of ARM Cloud Measurements: p I iti l C i f ARM Cl d St ti ti With Cl d t d CALIPSO St ti ti Initial Comparison of ARM Cloud Statistics With Cloudsat and CALIPSO Statistics Initial Comparison of ARM Cloud Statistics With Cloudsat and CALIPSO Statistics p Jay Mace Sally Benson Jay Mace, Sally Benson y , y Contributions from: Roger Marchand (Cloudsat mask) Mark Vaughn (CALIPSO

  9. 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Automated W-BandsS-Band Radar Profilers for the ARM SGP 2001 N. Majurec, A. Khandwalla, ... operation and reliability of UMass 95-GHz (W-band) cloud radar (Sekelsky and McIntosh ...

  10. ARM - Campaign Instrument - aod

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM GPCI Investigation of Clouds); Mobile Facility, 2012.09.01 - 2013.09.30 Spring 1994 UAV IOP Download Data Southern Great Plains, 1994.04.01 - 1994.04.30 Primary ...

  11. ARM - Datastreams - mwrp

    Office of Scientific and Technical Information (OSTI)

    1-888-ARM-DATA. Send Datastream : MWRP Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals Active Dates 2004.02.19 -...

  12. ARM - Campaign Instrument - fcdp

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsfcdp Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Fast cloud droplet probe (FCDP)...

  13. ARM - Campaign Instrument - visst

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsvisst Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Minnis Cloud Products Using Visst...

  14. ARM - Campaign Instrument - cpi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentscpi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Particle Imager (CPI) Instrument...

  15. ARM - Campaign Instrument - clddigcam

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsclddigcam Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Digital Camera (CLDDIGCAM)...

  16. ARM - Campaign Instrument - csi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentscsi Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Spectrometer and Impactor (CSI)...

  17. ARM - Campaign Instrument - tcrsr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentstcrsr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Thin Cloud Rotating Shadowband...

  18. ARM - Campaign Instrument - qmeaerilbl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsqmeaerilbl Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Comparison of Statistics or Clouds...

  19. ARM - VAP Product - tdmaccncoll

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : TDMACCNCOLL Tandem Differential Mobility Analyzer: Cloud Condensation Nuclei -- D. Collins Active Dates...

  20. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    group photo near the ARM millimeter wave cloud radar at the SGP Central Facility. Mike Jensen, principle investigator for the campaign, is second from left. Photo courtesy of Brad...

  1. ARM - Datastreams - tsicldmask

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    note below or call us at 1-888-ARM-DATA. Send Datastream : TSICLDMASK Total Sky Imager (TSI): cloud decision images, PNG format Active Dates 2000.07.02 - 2016.01.04 Measurement...

  2. ARM - Campaign Instrument - cep

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cloud Extinction Probe (CEP) Instrument Categories Airborne...

  3. ARM - Education Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pool - International Cloud Experiment Bookmark and Share ARM scientists and graduate students visited a classroom at Wagaman Primary School in Darwin during the two-month TWP-ICE...

  4. ARM - Events Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    There will also be an ARM Next Generation Town Hall this year. 1575: Atmospheric Ice Nuclei and Ice Cloud Formation: Field, Laboratory and Modeling Studies 1637: Use of Unmanned ...

  5. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Utah Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign The HI-SCALE campaign will study how land use near the ARM Southern...

  6. ARM - Campaign Instrument - irsi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Infra-Red Sky Imager (IRSI) Instrument Categories Cloud Properties, ...

  7. ARM - Datastreams - avhrrdar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRRDAR AVHRR images for Darwin from BOM Active Dates 2003.05.01 - 2009.06.05 Measurement Categories Cloud Properties...

  8. ARM - Datastreams - ncepgfsdarsfc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    us at 1-888-ARM-DATA. Send Datastream : NCEPGFSDARSFC NCEP GFS: surface variables at Darwin Active Dates 2002.09.01 - 2010.07.26 Measurement Categories Atmospheric State, Cloud...

  9. ARM - Datastreams - ncepgfsdarflx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    call us at 1-888-ARM-DATA. Send Datastream : NCEPGFSDARFLX NCEP GFS: flux variables at Darwin Active Dates 2002.09.01 - 2010.07.26 Measurement Categories Atmospheric State, Cloud...

  10. ARM - Instrument - dl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Doppler Lidar (DL) Instrument Categories Cloud Properties Picture of the Doppler Lidar...

  11. ARM - Value-Added Products - Status

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    - Status Report Expand Orange | Expand Blue | Expand Green | Collapse All See Legend for Data Availability explanation. ARM - Value-Added Products - Status Last Update: March 21 2016 19:00:50 +/- Vap Name Translator Developer Frequency Tier Producer Data Availability ACRED (ARM Cloud Retrieval Ensemble Data) Shaocheng Xie Chuanfeng Zhao, Renata Mc Coy Periodically Evaluation Developer ARM Overview: Developer Description: The ARM Cloud Retrieval Ensemble Dataset (ACRED) is a multi-year cloud

  12. ARM - Instrument - ceil

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsceil Documentation CEIL : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ceilometer (CEIL) Instrument Categories Cloud Properties, Atmospheric Profiling Picture of the Vaisala Ceilometer (Model CL31) General Overview The ceilometer (CEIL) is a self-contained, ground-based, active, remote-sensing device designed to measure cloud-base height, vertical visibility, and potential

  13. ARM - Instrument - mpl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsmpl Documentation MPL : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Micropulse Lidar (MPL) Instrument Categories Cloud Properties Picture of the Micropulse Lidar (MPL) General Overview The Micropulse Lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar.

  14. ARM - VAP Process - mplnor

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsmplnor Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Normalized Backscatter Profiles from the Micropulse Lidar (MPLNOR) Instrument Categories Cloud Properties This VAP has two primary purposes: to apply the appropriate corrections to create normalized backscatter profiles from the MPL, and to detect all significant cloud

  15. ARM - Datastreams - mmcrpow

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsmmcrpow Documentation Data Quality Plots Citation DOI: 10.5439/1025233 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRPOW Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Active Dates 1996.11.07 - 2006.08.12 Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The measurements below provided by this product are

  16. ARM - Datastreams - mmcrspeccmaskcopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsmmcrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1025236 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECCMASKCOPOL Millimeter Wave Cloud Radar (MMCR), filtered spectral data, co-polarized mode Active Dates 2008.04.21 - 2010.08.02 Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The measurements

  17. ARM - Datastreams - mmcrspeccmaskpr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsmmcrspeccmaskpr Documentation Data Quality Plots Citation DOI: 10.5439/1025238 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECCMASKPR Millimeter Wave Cloud Radar (MMCR), filtered spectral data, precipitation mode Active Dates 2008.04.21 - 2011.02.27 Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The measurements below

  18. ARM - Datastreams - mmcrspeccmaskxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsmmcrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1025239 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECCMASKXPOL Millimeter Wave Cloud Radar (MMCR), filtered spectral data, cross-polarized mode Active Dates 2008.04.21 - 2010.08.02 Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The measurements

  19. ARM - Datastreams - mmcrspecmom

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamsmmcrspecmom Documentation Data Quality Plots Citation DOI: 10.5439/1025241 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECMOM Millimeter Wave Cloud Radar (MMCR), spectral data Active Dates 2003.09.09 - 2011.03.28 Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The measurements below provided by this product are those

  20. ARM - VAP Product - wsicloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productswsicloudwsicloud Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027762 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : WSICLOUD WSI: derived, cloud numbers, area, perimeter, & more Active Dates 1995.09.20 - 2004.01.12 Originating VAP Process Whole Sky Imager Cloud Products : WSICLOUD Measurements The measurements below

  1. ARM - VAP Product - aosccnavg

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsaosccnavgaosccnavg Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1095312 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : AOSCCNAVG Aerosol Observing System (AOS): cloud condensation nuclei data, averaged Active Dates 2007.05.19 - 2014.11.05 Originating VAP Process Aerosol Observing System (AOS): cloud condensation nuclei

  2. ARM - Instrument - xsapr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsxsapr Documentation XSAPR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : X-Band Scanning ARM Precipitation Radar (XSAPR) Instrument Categories Cloud Properties Picture of the X-band scanning ARM precipitation radar General Overview The X-band scanning ARM precipitation radar (X-SAPR) is an X-band dual-polarization Doppler weather radar manufactured by Radtec, Inc. The X-SAPR

  3. ARM - Feature Stories and Releases Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    HI-SCALE Finishes Collecting Data About Shallow Convective Clouds Bookmark and Share ARM field campaign gathers data that will be used to examine the life cycle of shallow convective clouds What controls the initiation, maintenance, and distribution of shallow convective clouds? The just-finished ARM campaign Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems, or HI-SCALE, collected data that will help answer that question. Making use of ARM's Southern Great Plains (SGP)

  4. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparison of ARM Cloud Property Observations with CRM Simulations Xu, K.-M. (a), Cederwall, R.T. (b), Xie, S.C. (b), and Yio, J.J. (b), NASA Langley Research Center (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud property observations are compared with cloud-resolving model simulated cloud properties in this study, using the Summer 1997 Intensive Observation Period (IOP) data of the ARM program. Midlatitude

  5. ARM Data Help Improve Precipitation in Global Climate Models...

    Office of Science (SC) [DOE]

    ARM Data Help Improve Precipitation in Global Climate Models Biological and Environmental ... ARM Data Help Improve Precipitation in Global Climate Models Cloud, radiation, and drizzle ...

  6. ARM - Field Campaign - Millimeter-wave Radiometric Arctic Winter...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsMillimeter-wave Radiometric Arctic Winter Measurements Experiment ARM Data ... at NSAAAO (in particular, ARM communication and housing facilities, MWRs, cloud ...

  7. ARM - Instruments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsCloud Properties

  8. ARM - Measurements

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govMeasurementsCloud Properties

  9. ARM - ARM Safety Policy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Safety Policy About Become a User Recovery Act Mission FAQ Outreach Displays History ... Send us a note below or call us at 1-888-ARM-DATA. Send ARM Safety Policy The ARM Climate ...

  10. DOE/SC-ARM/TR-095 The Microbase Value-Added Product: A Baseline Retrieval of Cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties M Dunn K Johnson M Jensen May 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  11. ARM - Events Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 14, 2010 [Events, Facility News, Feature Stories and Releases] ARM Climate Research Facility - Highlights at AMS Annual Meeting Bookmark and Share Scientists from around the world use data from the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility to study the interactions between clouds, aerosol, and radiation. At this year's meeting of the American Meteorological Society, scientists present results of their research, using ARM data for

  12. ARM - Instrument - irsi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsirsi Documentation IRSI : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Infra-Red Sky Imager (IRSI) Instrument Categories Radiometric, Cloud Properties Picture of the Doppler Lidar The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic,

  13. ARM - Data Announcements Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2, 2009 [Data Announcements] Data Plots Available for the ARM Mobile Facility Deployment in the Azores Bookmark and Share Data plots, like this one, are now available from the ARM Mobile Facility deployment on Graciosa Island in the Azores. The 20-month deployment of the ARM Mobile Facility on Graciosa Island in the Azores is well underway in support of the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign. Data are being collected to study the seasonal life cycle of

  14. ARM - Data Announcements Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    August 25, 2009 [Data Announcements] Shortwave Flux Analysis Extended to North Slope of Alaska Bookmark and Share This summer, the ARM Radiative Processes Working Group released an extension of the Shortwave Flux Analysis value-added product to include data from the ARM North Slope of Alaska locale. Originally released in 2004, the Shortwave Flux Analysis VAP was developed to infer clear-sky shortwave, shortwave cloud effects, and fractional sky cover from shortwave measurements at the ARM

  15. ARM - Campaign Instrument - dl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsdl Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Doppler Lidar (DL) Instrument Categories Cloud Properties Campaigns ARM Support for the Plains Elevated Convection at Night Experiment: Doppler Lidar Operations [ Download Data ] Southern Great Plains, 2015.06.01 - 2015.07.01 ARM Support for the Plains Elevated Convection at Night Experiment: Doppler Lidar Operations [ Download Data ] Southern Great Plains,

  16. ARM - Datastreams - kazrspeccmaskgecross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskgecross Documentation Data Quality Plots Citation DOI: 10.5439/1224716 [ What is this? ] Generate Citation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKGECROSS Ka ARM Zenith Radar (KAZR): filtered spectral data, general mode, Scan in Cross Mode Active Dates 2015.10.01 - 2016.11.19 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only

  17. ARM - Datastreams - kazrspeccmaskhicross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskhicross Documentation Data Quality Plots Citation DOI: 10.5439/1224718 [ What is this? ] Generate Citation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKHICROSS Ka ARM Zenith Radar (KAZR): filtered spectral data, high sensitivity mode, Scan in Cross Mode Active Dates 2015.10.01 - 2016.05.10 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements

  18. ARM - Datastreams - kazrspeccmaskhixpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskhixpol Documentation Data Quality Plots Citation DOI: 10.5439/1224806 [ What is this? ] Generate Citation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKHIXPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, high sensitivity mode, cross-polarized mode Active Dates 2011.01.27 - 2016.05.10 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements

  19. ARM - Datastreams - kazrspeccmaskmdcross

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskmdcross Documentation Data Quality Plots Citation DOI: 10.5439/1224807 [ What is this? ] Generate Citation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKMDCROSS Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate sensitivity mode, Scan in Cross Mode Active Dates 2015.10.01 - 2016.11.19 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements

  20. ARM - Datastreams - kazrspeccmaskprcopol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskprcopol Documentation Data Quality Plots Citation DOI: 10.5439/1224808 [ What is this? ] Generate Citation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKPRCOPOL Ka ARM Zenith Radar (KAZR), filtered spectral data, precipitation mode, co-polarized mode Active Dates 2015.10.01 - 2016.11.19 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only

  1. ARM - Datastreams - kazrspeccmaskprxpol

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskazrspeccmaskprxpol Documentation Data Quality Plots Citation DOI: 10.5439/1224810 [ What is this? ] Generate Citation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKPRXPOL Ka ARM Zenith Radar (KAZR), filtered spectral data, precipitation mode, cross-polarized mode Active Dates 2015.10.01 - 2016.11.19 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only

  2. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Automated Retrieval of ARM Nocturnal Cloud Properties From Multispectral Satellite Data Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., and Young, D.F., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Current retrievals of cloud properties at night from satellite imager data rely on single-channel infrared techniques to discern cloud amount and a crude estimate of cloud-top altitude. Because many clouds are semi-transparent,

  3. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparison of Cloud Information from the MMCR of ARM Sites with that from the Aqua MODIS Cloud Mask Mace, G.G. and Zhang, Q., University of Utah Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting CloudSat is an experimental satellite which will use Cloud Profiling Radar (CPR) to measure the vertical structure of clouds from space. It will fly in orbital formation as part of a constellation of satellites including Aqua, CALIPSO, PARASOL and Aura. We develop an algorithm that

  4. ARM - Datastreams - kasacrvpthrc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamskasacrvpthrc Documentation Data Quality Plots Citation DOI: 10.5439/1211543 DOI: 10.5439/1224840 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRVPTHRC Ka-Band Scanning ARM Cloud Radar (KASACR) Vertically Pointing High-Resolution Scan Active Dates 2016.03.28 - 2016.11.18 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning

  5. ARM - Instrument - tlcv

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentstlcv Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Time-Lapsed Cloud Video (TLCV) Note: tlcv is currently inactive and/or retired. Active Dates 1997.09.15 - 2001.09.14 Instrument Categories Cloud Properties General Overview The time-lapsed cloud video (TLCV) camera provides a record of sky conditions by recording color images of an approximately 100-degree field of view,

  6. ARM - Instrument - wsi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentswsi Documentation WSI : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Whole Sky Imager (WSI) Note: wsi is currently inactive and/or retired. Active Dates 1995.09.20 - 1999.02.02 Instrument Categories Cloud Properties Picture of the Whole Sky Imager (WSI) General Overview The whole-sky imager (WSI) is an automated imager used for assessing and documenting cloud fields and cloud

  7. ARM - Datastreams - tlcv

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Datastreamstlcv Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : TLCV Time-lapse cloud video (TLCV): qual. sky images, typ. ea 4-8 sec, Quicktime movies Active Dates 1997.09.15 - 2001.09.14 Measurement Categories Cloud Properties Originating Instrument Time-Lapsed Cloud Video (TLCV) Measurements The measurements below provided by this product are those considered

  8. ARM - Datastreams - aosccn1col

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    col Documentation XDC documentation Data Quality Plots Citation DOI: 10.5439/1256093 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AOSCCN1COL AOS: Cloud Condensation Nuclei Counter Active Dates 2014.01.25 - 2016.11.17 Measurement Categories Aerosols, Cloud Properties Originating Instrument Cloud Condensation Nuclei Particle Counter (CCN) Measurements Only

  9. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized

  10. Evaluation of high‐level clouds in cloud resolving model...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model 10.10022015MS000478 simulations with ARM and KWAJEX observations Key Points: * Two-moment microphysics improves simulated ...

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. ARM - Feature Stories and Releases Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    November 14, 2011 [Feature Stories and Releases] New Study Reveals and Quantifies Magnitude of Long-term Aerosol Effects on Clouds and Precipitation Bookmark and Share Cloud radars measure an incoming storm at the ARM Southern Great Plains site in Oklahoma. Cloud radars measure an incoming storm at the ARM Southern Great Plains site in Oklahoma. 10 years of data from ARM Southern Great Plains site corroborate satellite measurements; match model A study published in Nature Geoscience this week

  13. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparison of Boundary Layer Cloud Properties using Surface and GOES Measurements at the ARM SGP Site Dong, X. (a), Minnis, P. (b), Smith, W.L., Jr. (b), and Mace, G.G. (a), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Boundary layer cloud microphysical and radiative properties derived from GOES data during March 2000 cloud IOP at ARM SGP site are compared with simultaneous surface-based observations. The

  14. Liquid Water the Key to Arctic Cloud Radiative Closure

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Water the Key to Arctic Cloud Radiative Closure For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

  15. Intersecting Cold Pools: Convective Cloud Organization by Cold...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  16. A Lidar View of Clouds in Southeastern China

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lidar View of Clouds in Southeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight From May 2008...

  17. ARM - Campaign Instrument - spec-learjet

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns In Situ Support of the ARM UAV Fall 2002 Mission Download Data Southern Great Plains, ...

  18. ARM - Feature Stories and Releases Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    September 15, 2005 Facility News From Coastal Clouds to Desert Dust: ARM Mobile Facility ... international effort to study the effects of Saharan dust and the West African monsoons. ...

  19. ARM - CLASIC Workshop, March 26-27

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  20. ARM - Campaign Instrument - aeri-cf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cf Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : AERI Cloud Fraction (AERI-CF) Instrument Categories Cloud...

  1. ARM - Campaign Instrument - co2lidar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Carbon Dioxide Doppler Lidar (CO2LIDAR) Instrument Categories Cloud Properties Campaigns Remote Cloud...

  2. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparisons of Measurements of Cloud Lower Boundaries by the MPL, BLC, MMCR, BBSS and AERI Han, D., and Ellingson, R.G., University of Maryland Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud lower boundary is an important factor in radiative transfer under various cloud conditions. Several ground-based instruments at the ARM CART Central Facility, including the micro pulse lidar (MPL), the Belfort laser ceilometer (BLC), and the MilliMeter Cloud profiling Radar

  3. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Using ARM Radar Data to Parameterize the Moments of Cirrus Cloud Properties in Terms of Cloud Layer Thickness and Temperature Vernon, E.N.(a) and Mace, G.G.(b), University of Utah (a), University of Utah (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Improving the reperesentation of cirrus clouds in large-scale models has been identified as a way to reduce the uncertainty associated with climate change simulations in these models. Representing cirrus clouds in

  4. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A High-Altitude Cloud Climatology From Satellite Data Hobbs, R. and Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Tenuous, high-altitude cirrus clouds have, in recent years, been found to be very widespread in the tropics. These clouds, which are often nearly invisible from the ground and from satellite, impact the work of many groups, including the ARM community. Aeromet has long been concerned about the impact of these clouds on airborne

  5. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Over the Globe and at the ARM Site Zhang, M.H.(a) and Lin, W.Y.(a), Stony Brook University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We first compare seasonal climatology of the global distribution of ISCCP-type clouds in the NCAR CAM2 with observations from ISCCP. Model deficiencies in simulated clouds are highlighted. Model capability of simulating the observed response of different cloud

  6. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Anvil Cloud Top Temperatures: An Investigation Using ARM Data from the Tropical Western Pacific Sites Hollars, S.(a), Comstock, J.M.(b), Fu, Q.(a), and Ackerman, T.P. (a), University of Washington(a) Pacific Northwest National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The variation of cloud top heights due to climate change plays an important role in the cloud-climate feedback. This is especially true for the tropical high clouds. Tropical

  7. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improvements in Cloud Height Determination in ARM Satellite Retrievals Heck, P. W.(a), Minnis, P.(b), Khaiyer, M. M.(c), and Chakrapani, V.(c), CIMSS/University of Wisconsin-Madison (a), NASA Langley Research Center (b), Analytical Services and Materials, Inc. (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite observations of cloud properties continue to provide increasingly sophisticated insight into clouds’ role in climate, although an assessment of clouds’

  8. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Inferring Domain-Averaged Cloud Properties from the ARM Observations and Testing the PCLOS Models Ma, Y.(a) and Ellingson, R.G.(b), University of Maryland (a), Florida State University (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Clouds play a key role in regulating the Earth's climate. Real cloud fields are non-uniform in both the morphological and microphysical sense. However, most climate models neglect the 3D structure of real cloud fields and the inhomogeneity

  9. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Water Content at the North Slope of Alaska and the Adjacent Arctic Ocean Storvold, R. (a), Stamnes, K. (b), Marty, C. (a), and Zak, B.D. (c), University of Alaska Fairbanks (a), Stevens Institute of Technology (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting There is great seasonal variability in cloud cover, cloud base height, and cloud liquid water in the Arctic.

  10. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Overlap from a Cloud Resolving Model Oreopoulos, L.(a) and Khairoutdinov, M.F.(b), JCET-UMBC (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The overlap properties of ~850 snapshots of convective cloud fields generated by a Cloud Resolving Model are studied and compared with previously published results based on cloud radar observations. Total cloud fraction is overestimated by the random overlap assumption and underestimated by

  11. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model Evaluation Xu, K.-M.(a), Wielicki, B.A.(a), Wong, T.(a), and Randall, D.A.(b), NASA Langley Research Center (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting To systematically evaluate cloud models including large-eddy simulation (LES), cloud-resolving models (CRMs), cloud parameterizations in general circulation models (GCMs), one needs a large set of cloud, radiation

  12. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations Citation Details In-Document Search Title: Evaluation of high-level clouds in ...

  13. Macquarie Island Cloud and Radiation Experiment (MICRE) Science...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan RT Marchand SP ... DOESC-ARM-15-082 Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan ...

  14. Understanding and Improving CRM and GCM Simulations of Cloud...

    Office of Scientific and Technical Information (OSTI)

    of convection, clouds and radiative heating rate and fluxes using the ARM ... as well as cloud water contents in producing net radiative fluxes closer to observations. ...

  15. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  16. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Particle Size Distributions Estimated During the 2001 Multi-Frequency Radar IOP Williams, C.R.(a) and Sekelsky, S.M.(b), University of Colorado at Boulder (a), University of Massachusetts at Amherst (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The 2001 Multi-Frequency Radar Intensive Operational Period (IOP) was designed to collect a long dataset of W-band (95 GHz), Ka-band (35 GHz), and S-band (2.8 GHz) vertical profiling observations to investigate insect

  17. ARM - Events Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 9, 2009 [Events, Feature Stories and Releases] Program Highlights at American Meteorological Society Annual Meeting Bookmark and Share At the 2009 AMS Meeting in Phoenix, Arizona, scientists involved in the Department of Energy's Atmospheric Radiation Measurement (ARM) Program will share their latest research findings related to the interaction of clouds and radiation. Scientists from around the world use the ARM Climate Research Facility ground-based climate measurement capabilities for

  18. ARM - Instrument - hsrl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentshsrl Documentation HSRL : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : High Spectral Resolution Lidar (HSRL) Instrument Categories Cloud Properties, Aerosols Picture of the Doppler Lidar High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are

  19. ARM - Instrument - mwr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsmwr Documentation MWR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Microwave Radiometer (MWR) Instrument Categories Atmospheric Profiling, Radiometric, Cloud Properties Picture of the Microwave Radiometer (MWR) General Overview The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself

  20. ARM - Instrument - mwrhf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsmwrhf Documentation MWRHF : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Microwave Radiometer - High Frequency (MWRHF) Instrument Categories Cloud Properties, Atmospheric Profiling, Radiometric Picture of the Microwave Radiometer-High Frequency (MWRHF) General Overview The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures

  1. ARM - Instrument - omi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsomi Documentation OMI : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ozone Monitoring Instrument (OMI) Instrument Categories Satellite Observations General Overview The Ozone Monitoring Instrument (OMI) distinguishes between aerosol types, such as smoke, dust, and sulfates, and can measure cloud pressure and coverage, which provide data to derive tropospheric ozone.

  2. ARM - Instrument - skyrad

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsskyrad Documentation SKYRAD : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Sky Radiometers on Stand for Downwelling Radiation (SKYRAD) Instrument Categories Radiometric Picture of the SKYRAD General Overview The Sky Radiation (SKYRAD) collection of radiometers provides each Atmospheric Radiation and Cloud Station (ARCS) with continuous measurements of broadband shortwave

  3. ARM - Instrument - tdmadap

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentstdmadap Documentation TDMADAP : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aerosol Properties derived from TDMA Measurements (TDMADAP) Instrument Categories Aerosols Primary Measurements The following measurements are those considered scientifically relevant. Cloud condensation nuclei Locations Southern Great Plains SGP X1 Browse Data External Data (satellites and

  4. ARM - Measurement - Backscattered radiation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for

  5. ARM - Measurement - Convection

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govMeasurementsConvection ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Convection Vertical motion within the atmosphere due to thermal instability, with important impacts on the type cloud systems that can develop. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  6. ARM - Measurement - Hydrometeor Geometry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geometry ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor Geometry Measurements describing the geometry of hydrometeors, e.g. oblateness, diameters along different axes, volume, etc. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  7. ARM - Measurement - Hydrometeor image

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor image Images of hydrometeors from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  8. ARM - Measurement - Hydrometeor size

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor size The size of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  9. ARM - Meetings and Presentations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Meetings and Presentations Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Meetings and Presentations Next Meeting:

  10. ARM - Mission Summary Journal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mission Summary Journal Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  11. ARM - Science Questions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Questions Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  12. ARM - Science Questions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Questions Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Science Questions This experiment seeks to use a

  13. ARM - Steering Committee

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Steering Committee Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Steering Committee Michael Jensen, Brookhaven

  14. ARM - VAP Process - armbestns

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsarmbestns Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Station-based Surface Products (ARMBESTNS) Instrument Categories Radiometric, Cloud Properties, Surface Meteorology Surface pressure is shown in hPa from different SGP surface meteorological sites (color-coded) from ARMBESTNS data set for the Midlatitude

  15. ARM - VAP Process - mascparticles

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsmascparticles Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Multi-Angle Snowflake Camera Particle Anaylsis (MASCPARTICLES) Instrument Categories Cloud Properties Output Products mascparticles : Multi-angle Snowflake Camera, analysis per particle (images and their aggregation) mascparticlesavg : Multi-Angle Snowflake Camera

  16. ARM - VAP Process - mplavg

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsmplavg Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : MPL: data averaged to fixed 30 second interval, e.g. for polarized data (MPLAVG) Instrument Categories Cloud Properties Output Products mplpolavg : Micropulse Lidar polarized (MPLPOL) data averaged to fixed 30 second interval Primary Measurements The following measurements are

  17. ARM - VAP Process - qmeaerilbl

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsqmeaerilbl Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Comparison of Statistics or Clouds data from AERI vs. LBLRTM Model runs (QMEAERILBL) Instrument Categories Radiometric, Derived Quantities and Models \'typical\' channel 1 observed - calculated residuals \'typical\' channel 1 observed - calculated residuals The observed

  18. ARM - VAP Process - swfluxanal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsswfluxanal Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Shortwave Flux Analysis (SWFLUXANAL) Instrument Categories Radiometric, Cloud Properties The SW (shortwave) Flux Analysis VAP applies a clear-sky detection and fitting technique (Long and Ackerman 2000) to data from broadband SW radiometers located at the

  19. ARM - VAP Process - tdmadap

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productstdmadap Documentation & Plots tdmadap : XDC documentation Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Aerosol Properties derived from TDMA Measurements (TDMADAP) Instrument Categories Aerosols Output Products tdmaccncoll : Tandem Differential Mobility Analyzer: Cloud Condensation Nuclei -- D. Collins Primary Measurements The following measurements

  20. ARM Virtual Tour

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    With the rapid changes in the arctic environment, the North Slope of Alaska (NSA) has become a focal point for atmospheric and ecological research. Since 1997, the Atmospheric Radiation Measurement (ARM) Climate Research Facility has gathered climate data at its NSA site in Barrow, the northernmost city in the United States located on the edge of the Arctic Ocean. The ARM Facility established multiple climate research sites on the North Slope to provide data about Arctic clouds and