National Library of Energy BETA

Sample records for vehicle type description

  1. Acquisition Description/ Category Solicitation Method Contract Type

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    10/3/2016 Acquisition Description/ Category Solicitation Method Contract Type Period of Performance Contract Value Carlsbad Field Office Carlsbad Technical Assistance Portage, Inc. Full and Open Competition Time and Materials 7/1/10-6/30/15 $31.7M Carlsbad Technical Assistance Portage, Inc. DE-EM0004007 Full and Open Competition Firm-Fixed Price (Hybrid) 1/2/16-1/1/19 $42.4M Specialized Transportation Services Cast Specialty Transportation, Inc. DE-EM0001819 Small Business Set Aside Fixed price

  2. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for ...

  3. Type A Accident Report of the June 26, 2009 Vehicle Fatality...

    Office of Environmental Management (EM)

    Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National ...

  4. Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Description Expert operators from both military and civilian bomb squads and other public safety organizations use advanced skills to maneuver Hazardous Duty Robots in challenging, ...

  5. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Alternative Fuels and Advanced Vehicles Data Center

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  6. Safety Analysis of Type 4 Tanks in CNG Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis of Type 4 Tanks in CNG Vehicles Safety Analysis of Type 4 Tanks in CNG Vehicles These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_hansen.pdf (2.57 MB) More Documents & Publications Testing and Certification of Gaseous Storage Tanks for Vehicles: The European Commission (EC) Perspective International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Transportation and Stationary Power

  7. HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Name of Primary Selectee Project Type Project Title and Brief Project Description Project Locations Recovery Act Funding* Participant Share Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and

  8. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  9. A statistical description of the types and severities of accidents involving tractor semi-trailers

    SciTech Connect

    Clauss, D.B.; Wilson, R.K.; Blower, D.F.; Campbell, K.L.

    1994-06-01

    This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. Several accident databases were reviewed to determine their suitability to the task. The TIFA (Trucks Involved in Fatal Accidents) database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports for selected TIFA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, fire temperature, fire size, fire separation, and fire duration.

  10. VISION Model: Description

    SciTech Connect

    2009-01-18

    Description of VISION model, which is used to estimate the impact of highway vehicle technologies and fuels on energy use and carbon emissions to 2050.

  11. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Saver

    It tests a number of types of electric vehicle supply equipment (EVSE), including wireless charging, conductive EVSE, DC conductive EVSE, bi-directional transfer (vehicle-to-grid ...

  12. Other Alternative Fuel Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicles Jump to: navigation, search TODO: Add description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherAlternati...

  13. Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory

    Energy.gov [DOE]

    This report is an independent product of the Type A Accident Investigation Board appointed by Thomas P. D’Agostino, Administrator, National Nuclear Security Administration, U.S. Department of Energy and Glenn S. Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security.

  14. Friction Stir Welding Aluminum for Lightweight Vehicles | Department...

    Office of Environmental Management (EM)

    Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific ...

  15. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  16. Energy 101: Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Energy 101: Electric Vehicles Addthis Description This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. Text Version Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your

  17. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  18. Testbed Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Testbed Description Network R&D Overview Experimental Network Testbeds 100G SDN Testbed Testbed Description Testbed Results Proposal Process Terms and Conditions Dark Fiber Testbed...

  19. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  20. Household Vehicles Energy Use: Latest Data & Trends

    Energy Information Administration (EIA) (indexed site)

    vehicle type, and vehicle model year. "600" - represents a "match" based on EIA expert analysis using subject matter experience, in conjunction with past RTECS. Additionally,...

  1. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  2. Vehicle Technologies Program Results

    SciTech Connect

    2009-06-19

    The Vehicle Technologies Program's progress is closely monitored by both internal and external organizations. The Program's results are detailed in a wide range of documents and tools that can be accessed through the PIR website. Descriptions of these materials are provided on this program results page.

  3. LD Vehicles AFDC 11 25 13 TC.xlsx

    Alternative Fuels and Advanced Vehicles Data Center

    Model Year 2014: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 11252013) MY FuelPowertrain Type Make Model Vehicle Type Engine SizeCylinders Transmission...

  4. Research Project Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Project Description No job description found Current

  5. Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Description Inspiring girls to recognize their potential and pursue opportunities in science, technology, engineering and mathematics. Through Expanding Your Horizon (EYH) ...

  6. Vehicle Crashworthiness

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  7. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the ... from how they work to the different types of systems to the future of the technology. ...

  8. Description of CBECS Building Types

    Energy Information Administration (EIA) (indexed site)

    or public safety. jail, reformatory, or penitentiary courthouse or probation office fire or police station Top Religious Worship Buildings in which people gather for religious...

  9. Description of CBECS Building Types

    Energy Information Administration (EIA) (indexed site)

    Buildings used for the preservation of law and order or public safety. police station fire station jail, reformatory, or penitentiary courthouse or probation office Top Religious...

  10. Wireless Charging for Electric Vehicles | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless Charging for Electric Vehicles Wireless Charging for Electric Vehicles Addthis Description Below is the text version for the "Wireless Charging for Electric Vehicles" video. The video opens with a shot of an electric vehicle, showing the parts involved in charging: the transmitting plate, receiving plate, controller, and battery. Nay Chehab, Vehicle Technologies Office Charging is getting a whole lot easier for electric vehicles. Pretty soon you won't even have to plug-in to

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  12. Testbed Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Testbed Description Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Testbed Description Proposal Process Terms and Conditions Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  13. Vehicle Aerodynamics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  14. Light Duty Vehicle CNG Tanks

    Energy.gov [DOE] (indexed site)

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects ... Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity ...

  15. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  16. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  17. Plug-in Electric Vehicle Policy Effectiveness: Literature Review...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-in Electric Vehicle Policy Effectiveness: Literature Review Title Plug-in Electric Vehicle Policy Effectiveness: Literature Review Publication Type Report Year of Publication ...

  18. Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Description The Los Alamos STEM Challenge gives your students a unique opportunity to envision the future years of discovery at LANL. Students will develop 21st century skills as they collaborate in teams to research LANL projects and propose innovative future projects. They apply creativity and critical thinking skills as they visualize their own ideas through posters, videos, apps or essays describing potential future projects at LANL. Students are encouraged to learn about the

  19. Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Description SAGE, the Summer of Applied Geophysical Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research. The program emphasizes both teaching of field methods and research related to basic science and a variety of applied problems. SAGE is hosted by the National Security Education Center and the Earth and Environmental Sciences Division of the Los Alamos National

  20. TECHNOLOGY DESCRIPTION

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DESCRIPTION Decades of widespread antibiotic use has created antibiotic-resistant strains of bacteria that are becoming increasingly difficult to treat. In 2006, the Food & Drug Administration (FDA) approved the use of bacteriophages (phages) for food industry applications to eliminate the presence of bacteria, such as Listeria, E.coli, and Salmonella. Phages have also been approved for agricultural use as an alternative to chemical pesticides, and phage treatment is popular in other

  1. Propane Vehicle Demonstration Grant Program

    SciTech Connect

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  2. Electric Vehicles

    SciTech Connect

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  3. Electric Vehicles

    ScienceCinema

    Ozpineci, Burak

    2016-07-12

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Vehicle Technologies Office: Natural Gas Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and ...

  5. TRACKED VEHICLE Rev 75

    SciTech Connect

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  6. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore » of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.« less

  7. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  8. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  9. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Saver

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as ...

  10. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  11. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  12. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  13. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  14. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  15. Hybrid electric vehicles TOPTEC

    SciTech Connect

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  16. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  17. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, ...

  18. Alternative Fuel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative Fuel Vehicles Alternative Fuel Vehicles Check out our <a href="http://www.afdc.energy.gov/">Alternative Fuels Data Center</a> for information, maps, and tools related to all types of advanced vehicles. Check out our Alternative Fuels Data Center for information, maps, and tools related to all types of advanced vehicles. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel

  19. Methylotroph cloning vehicle

    DOEpatents

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  20. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  1. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  2. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  3. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  4. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  5. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  6. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  7. Alternative fuel vehicles: The emerging emissions picture. Interim results, Summer 1996

    SciTech Connect

    1996-10-01

    In this pamphlet, program goal, description, vehicles/fuels tested, and selected emissions results are given for light-duty and heavy-duty vehicles. Other NREL R&D programs and publications are mentioned briefly.

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  9. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae

    DOE PAGES [OSTI]

    Scheuner, Carmen; Tindall, Brian J.; Lu, Megan; Nolan, Matt; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Huntemann, Marcel; Liolios, Konstantinos; et al

    2014-12-08

    Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448 T, were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published andmore » the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. We study phylogenomic analyses that indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. Lastly, in addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the

  10. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect

    Siekmann, Adam; Capps, Gary J; Lascurain, Mary Beth

    2011-11-01

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer

  11. Vehicle & Systems Simulation & Testing

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary

  12. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  13. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  14. Vehicle barrier

    DOEpatents

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  15. Methylotroph cloning vehicle

    DOEpatents

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  16. STEP Intern Job Description

    Office of Energy Efficiency and Renewable Energy (EERE)

    STEP Intern Job Description, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  17. Assessment of Vehicle Sizing, Energy Consumption and Cost through Large

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scale Simulation of Advanced Vehicle Technologies | Argonne National Laboratory Assessment of Vehicle Sizing, Energy Consumption and Cost through Large Scale Simulation of Advanced Vehicle Technologies Title Assessment of Vehicle Sizing, Energy Consumption and Cost through Large Scale Simulation of Advanced Vehicle Technologies Publication Type Report Year of Publication 2016 Authors Moawad, A, Kim, N, Shidore, N, Rousseau, A Institution Argonne National Laboratory City Argonne, IL USA

  18. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Energy Saver

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  19. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy.gov [DOE] (indexed site)

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  20. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office ...

  1. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Office of Environmental Management (EM)

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes ...

  2. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model

    SciTech Connect

    Ehnert, Sabrina; Freude, Thomas; Ihle, Christoph; Mayer, Larissa; Braun, Bianca; Graeser, Jessica; Flesch, Ingo; and others

    2015-03-15

    Type 2 diabetes mellitus (T2DM) is one of the most frequent metabolic disorders in industrialized countries. Among other complications, T2DM patients have an increased fracture risk and delayed fracture healing. We have demonstrated that supraphysiological glucose and insulin levels inhibit primary human osteoblasts' maturation. We aimed at developing a more physiologically relevant in vitro model to analyze T2DM-mediated osteoblast changes. Therefore, SCP-1-immortalized pre-osteoblasts were differentiated with T2DM or control (non-obese and obese) sera. Between both control groups, no significant changes were observed. Proliferation was significantly increased (1.69-fold), while AP activity and matrix mineralization was significantly reduced in the T2DM group. Expression levels of osteogenic marker genes and transcription factors were altered, e.g. down-regulation of RUNX2 and SP-7 or up-regulation of STAT1, in the T2DM group. Active TGF-β levels were significantly increased (1.46-fold) in T2DM patients' sera. SCP-1 cells treated with these sera showed significantly increased TGF-β signaling (2.47-fold). Signaling inhibition effectively restored osteoblast maturation in the T2DM group. Summarizing our data, SCP-1 cells differentiated in the presence of T2DM patients' serum exhibit reduced osteoblast function. Thus, this model has a high physiological impact, as it can identify circulating factors in T2DM patients' blood that may affect bone function, e.g. TGF-β. - Highlights: • We present here a physiologically relevant in vitro model for diabetic osteopathy. • Blood of T2DM patients contains factors that affect osteoblasts' function. • The model developed here can be used to identify these factors, e.g. TGF-β. • Blocking TGF-β signaling partly rescues the osteoblasts' function in the T2DM group. • The model is useful to demonstrate the role of single factors in diabetic osteopathy.

  3. Electric Vehicle Supply Equipment (EVSE) Test Report: ClipperCreek

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type Li-ion Steady state ... demand curves are dependent upon the vehicle Features and Specifcations Reference: ...

  4. Electric Vehicle Supply Equipment (EVSE) Test Report: Leviton

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type Li-ion Steady state ... demand curves are dependent upon the vehicle Features and Specifcations Reference: ...

  5. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  6. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy.gov [DOE] (indexed site)

    project of electric drive vehicles and charging infrastructure ever, the VTO-supported EV Project wrote a number of white papers on plug-in electric vehicle community readiness. ...

  7. Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  8. Acquisition Description/ Category Solicitation Method Contract Type

    Energy Saver

    Energy Career Management Handbook Change 2011-01 Acquisition Career Management Handbook Change 2011-01 A recent review of the Department of Energy (DOE) Acquisition Career Management Program (ACMP), Financial Assistance Program certification identified opportunities for updating the courses required for Level I, Level II, and Level III certification. PF2011-38 Acquisition Career Management Handbook Change 2011-01 (8.44 KB) PF2011-38a.pdf (32.65 KB) More Documents & Publications

  9. Type A Accident Investigation Board Report on the July 1, 2008, of the Vehicle Fatality Accident-Western Area Power Marketing Administration

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type A Accident Investigation Board (Board) appointed by Anthony H. Montoya, Chief Operating Officer, Office of the Chief Operating Officer, Western Area Power Administration.

  10. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  11. Vehicle Emissions Review- 2012

    Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  12. Heavy Vehicle Simulator

    SciTech Connect

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  13. Propane Vehicle Basics

    Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  14. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  15. Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions...

    Energy.gov [DOE] (indexed site)

    Inc. Menlo Park, CA 4,998,336 This project will develop next generation, high-energy lithium ion cells leveraging silicon anodes, doubling the capacity of state of the art...

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Energy.gov [DOE] (indexed site)

    fry.pdf (257.11 KB) More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  17. Vehicle Technologies Office: Batteries | Department of Energy

    Energy Saver

    Plug-in Electric Vehicles & Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the ...

  18. HAZWOPER Training Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    55 Revision 0 Hanford Standardized HAZWOPER Training Program Description Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Approved for Public Release; Further Dissemination Unlimited Hanford Standardized HAZWOPER Training Program Description, DOE-0355 Page 2 of 12 Senior Management Team Approval Hanford Standardized HAZWOPER Training Program Description, DOE-0355 Page 3 of 12 Hanford Training Manager Approval Hanford Standardized HAZWOPER Training

  19. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  20. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Energy.gov [DOE] (indexed site)

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative ...

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011o.pdf (914.05 KB

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  3. TMACS version description document

    SciTech Connect

    GLASSCOCK, J.A.

    1999-05-13

    This document updates the Version Description Document with the changes incorporated in the Revision 11.0 software installation on the Tank Monitor and Control System (TMACS).

  4. Detailed Income Statement Descriptions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Description Sales Sales under the Transmission Rate Schedules Miscellaneous Revenue Sales that are not subject to Transmission rates schedules Inter-Business Unit...

  5. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  6. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  7. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and plug-in electric vehicles use electricity as their primary fuel or to improve the effciency of conventional vehicle designs. This new generation of vehicles, often called ...

  8. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifcations Grid connection Hardwired Connector type J1772 Test ...

  9. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  10. Department of Energy 2016 Vehicles and Fuel Cells Annual Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Department of Energy 2016 Vehicles and Fuel Cells Annual Merit Review Department of Energy 2016 Vehicles and Fuel Cells Annual Merit Review Addthis Description Below is the text version for the "Department of Energy 2016 Vehicles and Fuel Cells Annual Merit Review" video. The video switches between shots of the two speakers and the Annual Merit Review and Peer Evaluation Meeting. Christy Cooper: Acting Director, Vehicle Technologies Office This week we're

  11. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  12. Voltage Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  13. Hybrid Electric Vehicle Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look ...

  14. Fleet Vehicles | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  15. Unified description of superconducting pairing symmetry in electron...

    Office of Scientific and Technical Information (OSTI)

    Title: Unified description of superconducting pairing symmetry in electron-doped Fe-based-... Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal ...

  16. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center

    Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City ...

  17. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  18. Advanced Vehicle Testing & Evaluation

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Consumer Vehicle Technology Data

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Advanced Vehicle Electrification

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Advanced Vehicle Testing & Evaluation

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Vehicle Testing & Evaluation

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Advanced Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  7. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  8. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  9. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2016-07-12

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  10. Fact #614: March 15, 2010 Average Age of Household Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 4: March 15, 2010 Average Age of Household Vehicles Fact #614: March 15, 2010 Average Age of Household Vehicles The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first reported in the 1995 survey, have the youngest average age. Average Vehicle Age by Vehicle Type Graph showing the average vehicle age by type (car, van, pickup, SUV, all household

  11. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  12. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  13. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  14. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  15. VEHICLE FOR SLAVE ROBOT

    DOEpatents

    Goertz, R.C.; Lindberg, J.F.

    1962-01-30

    A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

  16. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  17. B Plant facility description

    SciTech Connect

    Chalk, S.E.

    1996-10-04

    Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

  18. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  19. Characteristics RSE Column Factor: All Vehicle Types

    Energy Information Administration (EIA) (indexed site)

    or More ... 19.1 13.0 12.3 0.7 1.0 1.7 Q 2.7 Q 21.8 Below Poverty Line 100 Percent ... 12.4 9.5 8.9 0.5 Q Q Q 1.8 Q...

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012o.pdf (1.42 MB

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012o.pdf (2.12 MB

  3. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Results | Department of Energy Medium and Heavy Duty Vehicle Data and Results Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data and Results The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity (AVTA). Idaho National Laboratory and the National Renewable Energy Laboratory (NREL) test and evaluate medium and heavy-duty fleet vehicles that use hybrid

  4. Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2008_avtae_hvso.pdf (13.32 MB) More Documents & Publications Vehicle Technologies

  5. BIA Description | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Description Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BIA Description Abstract Description of Bureau of Indian Affairs. Author Bureau of Indian...

  6. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  7. Vehicle underbody fairing

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  8. Vehicle Emissions Review- 2011

    Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  9. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Advanced Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Integrated Vehicle Thermal Management

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Ford's CNG vehicle research

    SciTech Connect

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  13. Railway vehicle body structures

    SciTech Connect

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  14. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  15. Vehicle Model Validation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  16. Advanced Vehicle Electrification

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Steering system for a train of rail-less vehicles

    DOEpatents

    Voight, Edward T.

    1983-01-01

    A steering system for use with a multiple vehicle train permits tracking without rails of one vehicle after another. This system is particularly useful for moving conveyor systems into and out of curved paths of room and pillar underground mine installations. The steering system features an elongated steering bar pivotally connected to each of adjacent vehicles at end portions of the bar permitting angular orientation of each vehicle in respect to the steering bar and other vehicles. Each end portion of the steering bar is linked to the near pair of vehicle wheels through wheel yoke pivot arms about king pin type pivots. Movement of the steering bar about its pivotal connection provides proportional turning of the wheels to effect steering and tracking of one vehicle following another in both forward and reverse directions.

  18. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  19. ASP Program Description

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ASP Program Description provides a general overview of the auditing, proficiency testing and field sampling planning activities in support of mission-critical DOE operations such as on-going environmental monitoring, environmental remediation, and long-term legacy management and surveillance of past field sites

  20. Description of GPRA08 scenarios

    SciTech Connect

    None, None

    2009-01-18

    Background information for the FY 2007 GPRA methodology review providing a description of GPRA08 scenarios.

  1. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown ... Population and Vehicle Growth Comparison, 1950-2012 Graph showing population and vehicle ...

  2. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Energy.gov [DOE] (indexed site)

    gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle ...

  3. Vehicle Technologies Office Merit Review 2015: Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and ...

  4. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and ...

  5. Laboratory to change vehicle traffic-screening regimen at vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  6. American Electric Vehicles Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  7. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  8. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric

  9. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  10. Vehicle Technologies Office: Natural Gas Vehicle Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (R&D) | Department of Energy Alternative Fuels » Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Natural gas offers opportunities for reducing the use of petroleum in transportation, especially in medium- and heavy-duty vehicles. These fleets, which include a variety of vehicles such as transit buses, refuse haulers, delivery trucks, and long-haul trucks, currently

  11. Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversions | Department of Energy USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The

  12. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  13. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  14. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview | Department of Energy Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle Technologies Office overview. 02_howell_plenary_2015_amr.pdf (3.45 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016:

  15. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009_avtae_hvso.pdf (22.02 MB) More Documents & Publications Well-to-Wheels Analysis

  16. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Vehicle Systems Annual Progress Report Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric

  17. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Results | Department of Energy Advanced Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced

  18. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. van003_singer_2015_o.pdf (546.73 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer

  19. Energy Star Concepts for Highway Vehicles

    SciTech Connect

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  20. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE ...

  1. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  2. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report ... FY 2013 annual report focuses on the following areas: ... Technologies Office: 2015 Vehicle Systems Annual ...

  3. Vehicle Technologies Office Merit Review 2016: Advanced Vehicle Testing & Evaluation

    Energy.gov [DOE]

    Presentation given by Intertek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  4. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results PDF icon 2010amr01.pdf More Documents & ...

  5. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  7. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many ...

  8. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  9. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INLEXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Final Report Kevin Morrow Dimitri Hochard Jeff Wishart ...

  10. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. defectanalysis_naturalgas_ostw.pdf (2.31 MB) More Documents & Publications Safety analysis of in-use vehicle wrapping cylinder International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Type 4 Tank Testing, Certification and Field

  11. ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S. Roy

    2004-06-24

    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  12. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  13. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae

    SciTech Connect

    Scheuner, Carmen; Tindall, Brian J.; Lu, Megan; Nolan, Matt; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Huntemann, Marcel; Liolios, Konstantinos; Pagani, Ioanna; Mavromatis, Konstantinos; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Jeffries, Cynthia D.; Hauser, Loren John; Land, Miriam L.; Mwirichia, Romano; Rohde, Manfred; Abt, Birte; Detter, John Chris; Woyke, Tanja; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2014-12-08

    Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448 T, were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. We study phylogenomic analyses that indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. Lastly, in addition to other features, the range of G + C values reported for

  14. TMACS system description

    SciTech Connect

    Scaief, C.C.

    1995-10-17

    This document provides a description of the Tank Monitor and Control System (TMACS). It is intended as an introduction for those persons unfamiliar with the system as well as a reference document for the users, maintenance personnel, and system designers. In addition to describing the system, the document outlines the associated drawing documentation, provides maintenance and spare parts information, and discusses other TMACS documents that provide additional detail

  15. Description of Proposed Action

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RECORD OF CATEGORICAL EXCLUSION DETERMINATION 1 Description of Proposed Action Performance of a three-dimensional seismic survey line on approximately 2,409 acres contained within the WIPP Land Withdrawal Area as part of a larger survey to determine whether hydrocarbons are present in the region in quantities that warrant extraction and development. Number and Title of Applicable Categorical Exclusion B3.1 Site Characterization/Environmental Monitoring Activities covered by this Categorical

  16. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  17. Vehicle Technologies Office: Propulsion Systems

    Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  18. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  19. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  20. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  1. Mars manned transportation vehicle

    SciTech Connect

    Perez-Davis, M.E.; Faymon, K.A.

    1987-07-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  2. Blast resistant vehicle seat

    DOEpatents

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  3. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  4. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  5. Fact #740: August 13, 2012 Interest in Smaller Vehicles is on the Rise |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 0: August 13, 2012 Interest in Smaller Vehicles is on the Rise Fact #740: August 13, 2012 Interest in Smaller Vehicles is on the Rise Consumer Reports conducted a survey of 1,702 adults in April 2012. Respondents were asked what type of vehicle they currently own and what type of vehicle they plan to buy next. The responses reveal a shift from larger vehicle types including large sedans, minivans and large SUVs, toward smaller cars and SUVs. Of those surveyed, 17% owned

  6. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  7. CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    'u ", lt~Fs::::N CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Southwestern Power Administration proposes to construct a maintenance garage for heavy vehicles and equipment at the Springfield, Missouri facility. PROPOSED BY: Southwestern Power Administration- U.S. Dept. of Energy DATE: December 7,2010 NUMBERS AND TITLES OF THE CATEGORICAL EXCLUSIONS BEING APPLIED: 10 CFR 1021, Appendix B to Subpart D, Part B1.15- Siting, construction or modification of

  8. CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Southwestern Power Administration (Southwestern) proposes to obtain an easement for an existing access road which is located in Carroll County, Arkansas. The easement will serve to facilitate Southwestern's electrical utility vehicles accessing electrical transmission line 3008, near structure 33, in Carroll County, Arkansas. PROPOSED BY: Southwestern Power Administration- U.S. Dept. of Energy DATE: January 28,2011

  9. Director, Vehicle Technologies Office

    Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to lead the efforts of the Vehicle...

  10. VEHICLE ACCESS PORTALS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jemez Road (Map 2) VEHICLE ACCESS PORTALS Changes Effective January 11, 2010 Traffc Lane 1: No stop required. Drivers must slow down to 15 MPH while nearing and driving through the ...

  11. VEHICLE ACCESS PORTALS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffc Lane 1: Closed except for emergencies and maintenance operations. Traffc Lanes 2-7: Drivers required to stop and present LANL ...

  12. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  13. Vehicle Cost Calculator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This ...

  14. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  15. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  16. Hybrid vehicle control

    SciTech Connect

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  17. Vehicle Technologies Program Overview

    SciTech Connect

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  18. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab Benchmarking - Level 1 | Department of Energy Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced technology vehicle lab benchmarking. vss030_stutenberg_2014_o.pdf (4.04 MB) More Documents

  19. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  20. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. vsst_overview_amr_2014_061114.pdf (3.12 MB) More Documents

  1. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010_vsst_report.pdf (25.23 MB)

  2. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing R&D Annual Progress Report | Department of Energy 1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2011 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011_vsst_report.pdf

  3. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing R&D Annual Progress Report | Department of Energy 2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012_vsst_report.pdf (32.4

  4. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013_vsst_report.pdf

  5. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  6. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative (18.61 MB) More Documents & Publications EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals

  7. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as PEVs or electric cars),

  8. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  9. TWRS baseline system description

    SciTech Connect

    Lee, A.K.

    1995-03-28

    This document provides a description of the baseline system conceptualized for remediating the tank waste stored within the Hanford Site. Remediation of the tank waste will be performed by the Tank Waste Remediation System (TWRS). This baseline system description (BSD) document has been prepared to describe the current planning basis for the TWRS for accomplishing the tank waste remediation functions. The BSD document is not intended to prescribe firm program management strategies for implementing the TWRS. The scope of the TWRS Program includes managing existing facilities, developing technology for new systems; building, testing and operating new facilities; and maintaining the system. The TWRS Program will manage the system used for receiving, safely storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all tank waste. The scope of the TWRS Program encompasses existing facilities such as waste storage tanks, evaporators, pipelines, and low-level radioactive waste treatment and disposal facilities. It includes support facilities that comprise the total TWRS infrastructure, including upgrades to existing facilities or equipment and the addition of new facilities.

  10. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  11. Literature review for vehicle correspondence and network modeling and analysis

    SciTech Connect

    Boakye, K; Kidwell, P; Konjevod, G; Lenderman, J

    2015-12-18

    The ability to recognize specific vehicle types (e.g., car make and model) is central to the correspondence task. Here we describe two recent efforts in this area.

  12. How Will You Shop for Your Next Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? July 28, 2011 - 11:41am Addthis On Monday, Shannon talked about how she's been using the online tools from the Advanced Technology Vehicle Data Center (AFDC) to help her decide what type of highly efficient vehicle may be best for her household. The AFDC provides excellent information such as a Light Duty Vehicle Search, an Alternative Fueling Station Locator, and a Hybrid and Plug-in Electric Vehicles section. All of these are

  13. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  14. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  15. Apparatus for stopping a vehicle

    DOEpatents

    Wattenburg, Willard H.; McCallen, David B.

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  16. Safety analysis of in-use vehicle wrapping cylinder | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    analysis of in-use vehicle wrapping cylinder Safety analysis of in-use vehicle wrapping cylinder The focus of this presentation is on the security analysis for wrapped cylinders used in vehicles and analyzing safety conditions and environmental effects through testing. ihfpv_lei.pdf (10.02 MB) More Documents & Publications Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Type 4 Tank Testing,

  17. BEEST: Electric Vehicle Batteries

    SciTech Connect

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  18. Vehicle brake testing system

    DOEpatents

    Stevens, Samuel S.; Hodgson, Jeffrey W.

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  19. "Title","Speaker","Publication Date","OSTI Identifier","Report Number(s)","DOE Contract Number","Other Number(s)","Resource Type","Specific Type","Coverage","Research Org.","Sponsoring Org.","Subject","Related Subject","Description/Abstract","Publisher","Country of Publication","Language","Format","Availability","Rights","System Entry Date"

    Office of Scientific and Technical Information (OSTI)

    "Title","Speaker","Publication Date","OSTI Identifier","Report Number(s)","DOE Contract Number","Other Number(s)","Resource Type","Specific Type","Coverage","Research Org.","Sponsoring Org.","Subject","Related Subject","Description/Abstract","Publisher","Country of

  20. Integrated analysis of hydrogen passenger vehicle transportation pathways

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    1998-08-01

    Hydrogen-powered fuel cell vehicles will reduce local air pollution, greenhouse gas emissions and oil imports. Other alternative vehicles such as gasoline- or methanol-powered fuel cell vehicles, natural gas vehicles and various hybrid electric vehicles with internal combustion engines may also provide significant environmental and national security advantages. This report summarizes a two-year project to compare the direct hydrogen fuel cell vehicle with other alternatives in terms of estimated cost and estimated societal benefits, all relative to a conventional gasoline-powered internal combustion engine vehicle. The cost estimates used in this study involve ground-up, detailed analysis of the major components of a fuel cell vehicle system, assuming mass production in automotive quantities. The authors have also estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers, electrolyzers, compressors and stationary storage systems. Sixteen different vehicle types are compared with respect to mass production cost, local air pollution and greenhouse gas emissions.

  1. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  2. ARM - Field Campaign - Unmanned Aerospace Vehicle (UAV) IOP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsUnmanned Aerospace Vehicle (UAV) IOP Campaign Links ARM UAV Program Science Plan ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Unmanned Aerospace Vehicle (UAV) IOP 1996.09.01 - 1996.09.30 Lead Scientist : John Vitko For data sets, see below. Abstract Fall 1996 Flight Series Campaign Data Sets IOP Participant Data Source Description Final Data Tooman UAV-Altus Order Data Tooman Tw

  3. US Ethanol Vehicle Coalition | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  4. hybrid vehicle systems | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicles systems perspective to the technology research and development (R&D) activities of...

  5. Advanced Vehicle Technologies | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an entire vehicle each time a component is changed Vehicle and Component Benchmarking Conducting vehicle benchmarking and testing activities that provide data critical...

  6. Solar Electrical Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  7. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction ...

  8. Vehicles Data Challenge | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Apps for Vehicles Challenge has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all...

  9. Miles Electric Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  10. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to ...

  11. Vehicle Technologies Office News | Department of Energy

    Office of Environmental Management (EM)

    Vehicle Technologies Office News Vehicle Technologies Office News RSS October 20, 2016 Electric Vehicle Charging: Coming to a Federal Workplace Near You Nearly 75% of Americans ...

  12. EVI Electric Vehicles International | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EVI Electric Vehicles International Jump to: navigation, search Name: EVI (Electric Vehicles International) Place: Stockton, California Product: California-based Electric Vehicle...

  13. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  14. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Energy Saver

    Research, Development and Deployment | Department of Energy Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment June 25, 2014 - 11:33am Addthis The DOE's Vehicle Technologies Office supports a variety of research, development, and deployment efforts in partnership with our national laboratories and private partners. The success of these projects relies on the hard work and

  19. Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool | Department of Energy Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  20. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Program Description | Robotics Internship Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 4, 2016. Apply Now for the Robotics Internship About the Internship Program Description Start of Appointment Renewal of Appointment End of Appointment Stipend Information...

  5. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    SciTech Connect

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  6. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing ...

  7. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  8. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  9. Heavy Vehicle Systems

    SciTech Connect

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  10. Electric vehicle climate control

    SciTech Connect

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  11. Vehicle Technologies Office

    Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  12. Registrations and vehicle miles of travel of light duty vehicles, 1985--1995

    SciTech Connect

    Hu, P.S.; Davis, S.C.; Schmoyer, R.L.

    1998-02-01

    To obtain vehicle registration data that consistently and accurately reflect the distinction between automobiles and light-duty trucks, Oak Ridge National Laboratory (ORNL) was asked by FHWA to estimate the current and historical vehicle registration numbers of automobiles and of other two-axle four-tire vehicles (i.e., light-duty trucks), and their associated travel. The term automobile is synonymous with passenger car. Passenger cars are defined as all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers. This includes taxicabs, rental cars, and ambulances and hearses on an automobile chassis. Light-duty trucks refer to all two-axle four-tire vehicles other than passenger cars. They include pickup trucks, panel trucks, delivery and passenger vans, and other vehicles such as campers, motor homes, ambulances on a truck chassis, hearses on a truck chassis, and carryalls. In this study, light-duty trucks include four major types: (1) pickup truck, (2) van, (3) sport utility vehicle, and (4) other 2-axle 4-tire truck. Specifically, this project re-estimates statistics that appeared in Tables MV-1 and MV-9 of the 1995 Highway Statistics. Given the complexity of the approach developed in this effort and the incompleteness and inconsistency of the state-submitted data, it is recommended that alternatives be considered by FHWA to obtain vehicle registration data. One alternative is the Polk`s NVPP data (via the US Department of Transportation`s annual subscription to Polk). The second alternative is to obtain raw registration files from individual states` Departments of Motor Vehicles and to decode individual VINs.

  13. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  14. Supercomputing Challenge Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Supercomputers' Pictorial Superpowers Supercomputers' Pictorial Superpowers Addthis 1 of 7 The Energy Department's INCITE program, which stands for the "Innovative and Novel Computational Impact on Theory and Experiment," recently put out a report highlighting the ways our supercomputers are catalyzing discoveries and innovations. Above, computing provides an unparalleled ability to model and simulate Type Ia (thermonuclear-powered) supernovas. The ability to do 3D, large-scale

  15. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  16. Gasoline Ultra Fuel Efficient Vehicle

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Gasoline Ultra Fuel Efficient Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Texas Propane Vehicle Pilot Project

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. Gasoline Ultra Fuel Efficient Vehicle

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab Benchmarking (L1&L2) | Department of Energy Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced technology vehicle lab benchmarking (L1&L2). vss030_stutenberg_2015_o.pdf (3.5 MB) More

  1. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Traveled (eVMT): On-road Results and Analysis | Department of Energy Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle Mile Traveled (eVMT): on-road results and

  2. Natural Gas Vehicle Basics | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicles & Fuels Vehicles Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads ...

  3. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  4. Chapter 3. Vehicle-Miles Traveled

    Energy Information Administration (EIA) (indexed site)

    3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important...

  5. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  6. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  8. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  9. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  10. Vehicle Technologies Office: Laboratory Facilities and Collaborative...

    Energy Saver

    Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) ...

  11. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  12. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  13. Rapid road repair vehicle

    DOEpatents

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  14. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  15. Vehicle Technologies Office: Plans and Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plans and Roadmaps Vehicle Technologies Office: Plans and Roadmaps These comprehensive documents provide in-depth descriptions of the plans for various Office of Energy Efficiency and Renewable Energy (EERE) programs, partnerships, and technologies. U.S. DRIVE Plans and Roadmaps (covers 12 technical teams) National Hydrogen Energy Roadmap A National Vision of America's Transition to a Hydrogen Economy-To 2030 and Beyond Roadmap and Technical White Papers as well as Appendix of Supporting

  16. Household vehicles energy consumption 1994

    SciTech Connect

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  17. Electric Drive Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles & Charging Stations Alleyn Harned Executive Director aharned@vacleancities.org October 19, 2016 Federal Agency Workplace Charging Workshop Clean Cities / 2 Agenda NREL Image Gallery #14922 & #23854  EVSE & PEV Basics  PEV Models  AFDC Station Locator  Policies & Incentives  Readiness Efforts Clean Cities / 3 * Hybrid Electric - Battery assisted - Gasoline engine * Plug-in Electric - Gasoline backup for limited electric range (53 miles) - 10 to 20

  18. Unmanned Aerospace Vehicle Workshop

    SciTech Connect

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  19. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  20. Hydrogen hybrid vehicle engine development: Experimental program

    SciTech Connect

    Van Blarigan, P.

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  1. Impact of Connectivity and Automation on Vehicle Energy Use | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Laboratory Connectivity and Automation on Vehicle Energy Use Title Impact of Connectivity and Automation on Vehicle Energy Use Publication Type Conference Paper Year of Publication 2016 Authors Michel, P, Karbowski, D, Rousseau, A Conference Name SAE 2016 World Congress and Exhibition Date Published 04/2016 Publisher SAE International Conference Location Detroit, MI, USA Other Numbers SAE Technical Paper 2016-01-0152 Abstract Connectivity and automation are increasingly being

  2. Hydrogen Fuel Cells for Small Unmanned Air Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells for Small Unmanned Air Vehicles U.S. Department of Energy Fuel Cell Technologies Office May 26 th , 2016 Presenter: Karen Swider-Lyons : US Naval Research Laboratory DOE Host: Pete Devlin : Market Transformation Manager, FCTO 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 U.S. Naval Research Laboratory Hydrogen Fuel Cells for Small Unmanned Air Vehicles Karen Swider-Lyons US Naval Research Laboratory Code

  3. Property:DeviceType | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DeviceType Property Type String Description Used for MHK ISDB Allows Values Instrument;Sensor Pages using the property "DeviceType" Showing 25 pages using this property. (previous...

  4. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  5. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  6. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  7. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Saver

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  8. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  9. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  11. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  12. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    use hybrid electric, plug-in electric, hydraulic hybrid, and alternative fuel technologies. ... help fleet managers better understand their options for purchasing and using vehicles. ...

  13. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Energy.gov [DOE] (indexed site)

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation (1.99 MB) More Documents & Publications Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery ...

  15. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  16. Mack LNG vehicle development

    SciTech Connect

    Southwest Research Institute

    2000-01-05

    The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

  17. Hybrid vehicle motor alignment

    SciTech Connect

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  18. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center

    Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to share

  19. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle

  20. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center

    AFDC » Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to

  1. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle

  2. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  3. Vehicle Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    You are here Transportation » Vehicle Technologies Office Vehicle Technologies Office News from the Vehicles Technologies Office News from the Vehicles Technologies Office Read more Find a Charging or Alternative Fueling Station Find a Charging or Alternative Fueling Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and Emissions for New and Used Vehicles Read more The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle

  4. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.

  5. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  6. Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Electric Vehicles Electric Vehicles Title XVII Clean Energy Projects Loan Guarantee Program The Title XVII innovative clean energy projects loan program (Title XVII) provides loan guarantees to accelerate the deployment of innovative clean energy technology. Loan guarantees are made to qualified projects and applicants who apply for funding in response to open technology-specific solicitations. On June 21, 2016, LPO published a supplement to its existing Renewable Energy and

  7. Idling Reduction for Personal Vehicles

    SciTech Connect

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  8. Electric Vehicles | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2015 Mercedes-Benz B-Class Electric Drive 2015 Volkswagen e-Golf 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities

  9. Heavy Duty Vehicle Modeling & Simulation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Vehicle Technologies Program Merit Review

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    a comparison between the 1991 and previous years RTECS designs; (2) the sample design; (3) the data-collection procedures; (4) the Vehicle Identification Number (VIN); (5)...

  12. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  13. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  14. Vehicle Technologies Office: Information Resources

    Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  15. economic hydrogen fuel cell vehicles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  16. Hybrid Vehicle Program. Final report

    SciTech Connect

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  17. Plug IN Hybrid Vehicle Bus

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. AVTA Vehicle Component Cost Model

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to choose hydrogen fuel cell vehicles by 2020. * Foster ... Green Gasoline & Olefins Green Diesel Petroleum Refinery 16 ... on land use o Avoids food vs fuel debate o Saline, ...

  20. Property:Description of Camera Types | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    3 video; 3 digital Haynes Wave Basin + 3 video; 3 digital Hinsdale Wave Basin 1 + Web, IEEE 1394, High speed GigE, and PIV systems Hinsdale Wave Basin 2 + Web, IEEE 1394, High...

  1. Advanced Vehicle Technologies Awards Table

    Energy.gov [DOE]

    The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project.

  2. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  3. Microscopic Description of Induced Nuclear Fission (Conference...

    Office of Scientific and Technical Information (OSTI)

    Microscopic Description of Induced Nuclear Fission Citation Details In-Document Search Title: Microscopic Description of Induced Nuclear Fission You are accessing a document ...

  4. Detailed Course Module Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Detailed Course Module Description Detailed Course Module Description This document lists the course modules for building science courses offered at Cornell's Collaborator...

  5. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  6. List of Other Alternative Fuel Vehicles Incentives | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana)...

  7. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. lightduty_vehicle_studies.pdf (561.55 KB) More Documents & Publications Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010 CAAFI Progress Update Light Duty Vehicle Pathways Chapter 1 - Energy Challenges

  8. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  9. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  10. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008

    Energy.gov [DOE]

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

  11. Design and development of a walking robotic vehicle

    SciTech Connect

    Shkolnik, N.

    1990-01-01

    Quest Systems, Inc., sponsored by DARPA, is developing a low-cost, high-efficiency walking robotic vehicle (WRV). This vehicle will be targeted for a variety of applications in waste management, hazardous materials transport and handling, nuclear plant operations, maintenance and decontamination, security, mining, and other areas in industrial and military sectors. The purpose of the development is twofold. The first goal is to demonstrate that, in spite of common beliefs, legged locomotion can be as efficient as wheeled (at low velocities), which could make a walking vehicle a prime candidate for an autonomously operated platform. The second goal is to show that this type of vehicle can be built rather inexpensively (below $100,000), which would allow it to compete on a cost/functionality basis with wheeled and tracked ones.

  12. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  13. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    Energy Information Administration (EIA) (indexed site)

    Provider Fleet Vehicles Fleet Vehicle Miles Traveled Propane Provider Survey In the analysis of annual vehicle miles traveled, the diesel vehicles tended to stand out. On...

  14. 2013 Annual Merit Review Results Report - Vehicle Analysis |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Analysis 2013 Annual Merit Review Results Report - Vehicle Analysis Merit review of DOE Vehicle Technologies research ... Vehicle Technologies Office Merit Review 2015: ...

  15. VIA Motors electric vehicle platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform (1.1 MB) More Documents ...

  16. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Energy.gov [DOE] (indexed site)

    Delivery Vehicles (4.63 MB) More Documents & Publications Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles Medium and Heavy-Duty Vehicle Field Evaluations ...

  17. AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nissan Leaf All-Electric Vehicle Testing Reports AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports The Vehicle Technologies Office's Advanced Vehicle Testing Activity ...

  18. GATE: Energy Efficient Vehicles for Sustainable Mobility | Department...

    Energy.gov [DOE] (indexed site)

    GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle ...

  19. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Original Workshop Proposal and Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Notes for Vis Requirements » Original Workshop Proposal and Description Original Workshop Proposal and Description Visualization Requirements for Computational Science and Engineering Applications Proposal for a DoE Workshop to Be Held 
at the Berkeley Marina Radisson Hotel,
Berkeley, California, June 5, 2002
(date and location are tenative) Workshop Co-organizers: Bernd Hamann 
University of California-Davis Lawrence Berkeley Nat'l Lab. E. Wes Bethel 
Lawrence Berkeley Nat'l Lab.

  2. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Model Year 2006: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal

  3. Models Move Vehicle Design Forward

    Energy.gov [DOE]

    These days, modeling software is as important to building a car as welding equipment. The Energy Department’s Vehicle Technologies Office is working to make these models as useful and accurate as possible so that manufacturers can build the next-generation of fuel efficient and advanced technology vehicles.

  4. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  5. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  6. 2012 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  7. PURPOSE FORM INSTRUCTIONS Item Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    types can be found on the "Contract Types" worksheet in the NETL Subcontractor Report Excel workbook. 21 Enter "Competitive" or "Non-Competitive" depending on the method used...

  8. Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Evaluation Josh Warner, Manager Contract Administration Mike Rose, Manager Smart GridDemand Response Lee Hall, Manager Programs Brent Barclay, Manager IndustrialAg Sector...

  9. Fact #814: January 27, 2014 More Choices when Buying Vehicles that Use

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Technology and Alternative Fuels | Department of Energy 4: January 27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels Fact #814: January 27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels The number of models and types of alternative fuel vehicles produced by manufacturers has varied considerably over the last 22 years. In 1991, there were a total of 19 models available that did not run on

  10. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  11. Alternative Fuels Vehicle Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicle Group Jump to: navigation, search Name: Alternative Fuels Vehicle Group Place: New York, New York Zip: 28 West 25th Street Sector: Vehicles Product: Focussed on news and...

  12. NREL: Transportation Research - Vehicle Thermal Management Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  13. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  14. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  15. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  16. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  17. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  18. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  19. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  20. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  1. Vehicle and Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle and Fuel Use Vehicle and Fuel Use Vehicle and Fuel Use Mission The team evaluates and incorporates the requirements for vehicle and fuel use, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates natural resource sustainability by evaluating vehicle and fuel use. Scope The team evaluates vehicle and fuel-use goals,

  2. Vehicle Technologies Office: Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of vehicles that can reduce the use of petroleum in transportation. The Vehicle Technologies Office holds an Annual Merit Review and Peer Evaluation each year, where advanced vehicle technologies projects funded by VTO are presented and reviewed for their merit. The Merit Review presentations and reports from past years

  3. Laboratory to change vehicle traffic-screening regimen at vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    inspection station Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  4. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  5. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel ...

  6. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center

    More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles ... Although all diesel vehicles can use biodiesel, be sure to check your engine warranty to ...

  7. Hitachi Electric Vehicle Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicle Ltd Jump to: navigation, search Name: Hitachi Electric Vehicle, Ltd Place: Japan Product: String representation "A Japan-based c ... le automobiles." is too long....

  8. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  9. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Energy Saver

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures HICEV Technical ...

  10. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Energy.gov [DOE] (indexed site)

    QTR Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents (6.05 MB) More Documents & ...

  11. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  12. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  13. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    winners of the Energy Department's latest advanced vehicle technology competition. Meet five of the teams and learn about their unique approaches to building innovative vehicles...

  14. Gasoline Ultra Fuel Efficient Vehicle Program Update

    Energy.gov [DOE]

    Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle.

  15. National Template: Hydrogen Vehicle and Infrastructure Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Hydrogen Vehicle and Infrastructure Codes and ...

  16. Water Emissions from Fuel Cell Vehicles

    Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  17. The Electric Vehicle Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: The Electric Vehicle Company Product: Holding company of battery-powered electric automobile manufacturers. References: The Electric Vehicle...

  18. Advanced Technology Vehicles Manufacturing Loan Program | Department...

    Office of Environmental Management (EM)

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

  19. Vehicle Technologies Office: Integration, Validation and Testing...

    Energy Saver

    the battery pack, the electric traction motor, the transmission, and the generator. ... hydrogen ICE vehicles Light-duty full-size all-electric vehicles Neighborhood ...

  20. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Office of Environmental Management (EM)

    AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for ...

  1. Vehicle Battery Basics | Department of Energy

    Office of Environmental Management (EM)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric ...

  2. EKO Vehicles Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicles Pvt Ltd Place: Bangalore, Karnataka, India Product: India-based manufacturer of electric scooters. References: EKO Vehicles Pvt Ltd1 This article is a stub. You can...

  3. WIPP Receives New Emergency Response Vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    February 19, 2015 WIPP Receives New Emergency Response Vehicle WIPP recently placed a new emergency response vehicle into service. The new fire engine "Engine 24" will enhance...

  4. List of Vehicles Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  5. Vehicle Cooling Systems - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improvements to efficiently, safely, and inexpensively cool vehicles during prolonged sun exposure National Renewable Energy Laboratory Contact NREL About This Technology Vehicles ...

  6. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  7. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center

    526 vehicles Search small New Search | Download | Print Spinner Filter by: Fuel/Technology: All | Class/Type: All | Manufacturer: All View: Matrix List Your search returned no results. You can modify your search using the filters on the right or start a new search. Acura RLX Hybrid (2016) 2016 acura rlx Hybrid Electric Sedan/Wagon Fuel Economy: 28 mpg city / 32 mpg hwy Emission Certification: LEV III SULEV30, Tier 2 Bin 3 Engine: 3.5L V6 Transmission: Auto Find a Dealer Audi A3 Sportback e-tron

  8. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  9. Vehicle Technologies Office Merit Review 2016: Connected and Automated Vehicles

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Analysis

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center

    Fuels and Advanced Vehicles Data Center (AFDC) Web site at www.afdc.energy.gov. ... Fuel Converters on its Web site at www.epa.govotaqcertdearmfr cisd0602.pdf. ...

  11. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  12. Blog Feed: Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    type-text-with-summary field-label-hidden">
    ...

  13. Vehicle Technologies Office News

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    type-text-with-summary field-label-hidden">
    ...

  14. All-terrain vehicle

    SciTech Connect

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  15. Nuclear Industry Job Descriptions Boilermaker

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry Job Descriptions Boilermaker Skilled craft who make, install, and repair boilers, closed vats, and other large vessels or containers that hold liquids and gases. Install and maintain boilers and other vessels, and help erect and repair air pollution equipment, blast furnaces, water treatment plants, storage and process tanks, and smoke stacks. Carpenter Skilled craft who construct, erect, install, and repair structures and fixtures made from wood and other materials. Includes

  16. Visiting Faculty Program Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Visiting Faculty Program Program Description The Visiting Faculty Program seeks to increase the research competitiveness of faculty members and their students at institutions historically underrepresented in the research community in order to expand the workforce vital to Department of Energy mission areas. As part of the program, selected university/college faculty members collaborate with DOE laboratory research staff on a research project of mutual interest. Program Objective The program is

  17. Student Internship Programs Program Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Student Internship Programs Program Description The objective of the Laboratory's student internship programs is to provide students with opportunities for meaningful hands- on experience supporting educational progress in their selected scientific or professional fields. The most significant impact of these internship experiences is observed in the intellectual growth experienced by the participants. Student interns are able to appreciate the practical value of their education efforts in their

  18. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  19. Complex System Method to Assess Commercial Vehicle Fuel Consumption

    Energy.gov [DOE]

    Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options.

  20. Cover Page of Household Vehicles Energy Use: Latest Data & Trends

    Gasoline and Diesel Fuel Update

    Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

  1. Deputy Director, Vehicle Technologies Office

    Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to help lead the efforts of the Vehicle...

  2. Electric Vehicles | Department of Energy

    Energy.gov [DOE] (indexed site)

    ... Tesla: In January 2010, the Department of Energy issued a 465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a ...

  3. Electric vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not...

  4. FreedomCAR and vehicle technologies heavy vehicle program FY 2006. Benefits analysis : methodology and results - final report.

    SciTech Connect

    Singh, M.; Energy Systems; TA Engineering, Inc.

    2006-01-31

    This report describes the approach to estimating benefits and the analysis results for the Heavy Vehicle Technologies activities of the Freedom Car and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identification of technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in the activities planned for FY 06. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. These benefits estimates, along with market penetrations and other results, are then modeled as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY06 Budget Request.

  5. Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.

    SciTech Connect

    SIngh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

  6. 2013 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  7. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  8. 2014 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  9. Explosion proof vehicle for tank inspection

    DOEpatents

    Zollinger, William T.; Klingler, Kerry M.; Bauer, Scott G.

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  10. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  11. Method and system for vehicle refueling

    DOEpatents

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  12. Method and system for vehicle refueling

    DOEpatents

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  13. Specialty Vehicles and Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Power Efficient Simple Clean Today Industrial Power Efficient Simple Clean Today Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching

  14. Optical guidance system for industrial vehicles

    DOEpatents

    Dyer, Robert D.; Eschbach, Eugene A.; Griffin, Jeffrey W.; Lind, Michael A.; Buck, Erville C.; Buck, Roger L.

    1990-01-01

    An automatically guided vehicle system for steering a vehicle. Optical sensing detects an image of a segment of track mounted above the path of the vehicle. Electrical signals corresponding to the position of the track are generated. A control circuit then converts these signals into movements for the steering of the vehicle.

  15. Electric Vehicle Service Personnel Training Program

    SciTech Connect

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  16. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect

    Hadley, Stanton W

    2006-11-01

    occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local

  17. SNF AGING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    L.L. Swanson

    2005-04-06

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the spent nuclear fuel (SNF) aging system and associated bases, which will allow the design effort to proceed. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD follows the design with regard to the description of the system. The description provided in the SDD reflects the current results of the design process. Throughout this SDD, the term aging cask applies to vertical site-specific casks and to horizontal aging modules. The term overpack is a vertical site-specific cask that contains a dual-purpose canister (DPC) or a disposable canister. Functional and operational requirements applicable to this system were obtained from ''Project Functional and Operational Requirements'' (F&OR) (Curry 2004 [DIRS 170557]). Other requirements that support the design process were taken from documents such as ''Project Design Criteria Document'' (PDC) (BSC 2004 [DES 171599]), ''Site Fire Hazards Analyses'' (BSC 2005 [DIRS 172174]), and ''Nuclear Safety Design Bases for License Application'' (BSC 2005 [DIRS 171512]). The documents address requirements in the ''Project Requirements Document'' (PRD) (Canori and Leitner 2003 [DIRS 166275]). This SDD includes several appendices. Appendix A is a Glossary; Appendix B is a list of key system charts, diagrams, drawings, lists and additional supporting information; and Appendix C is a list of

  18. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  19. vehicle technologies office | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Technologies Office The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the U.S. Department of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as

  20. Vehicle Emission Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles that use internal combustion engines. These vehicles can run on gasoline, diesel, biofuels, natural gas, or propane. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs)

  1. Vehicle Technologies Office: Lubricants Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Lubricants Research and Development Vehicle Technologies Office: Lubricants Research and Development Investigating technologies such as lubricants that will improve the efficiency of today's vehicles is essential, as most vehicles are on the road for more than 15 years before they are retired. The Vehicle Technologies Office (VTO) supports research and development (R&D) on lubricants that can improve the

  2. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  3. Vehicle Technologies Office: Workforce Development and Professional

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and Professional Education The Vehicle Technologies Office (VTO) invests in both research to develop cleaner, safer, more affordable vehicles and education to ensure a strong workforce that can develop, build, repair, and respond to these vehicles. VTO helps to develop the nation's workforce

  4. Hybrid Electric Vehicles | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  5. Descriptive Model of Generic WAMS

    SciTech Connect

    Hauer, John F.; DeSteese, John G.

    2007-06-01

    The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.

  6. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle...

    Energy.gov [DOE] (indexed site)

    in 1990 to one-third of the production in 2014 (counting both car SUVs and truck SUVs). ... Graph showing shares of light vehicle production by type (Car, Car SUV, Truck SUV, Van, ...

  7. Fact #558: February 16, 2009 Transit Vehicle Age and Cost | Department...

    Energy.gov [DOE] (indexed site)

    However, in terms of cost for purchasing a new rail car, heavy rail is by far the least expensive of all types of rail transit vehicles. Buses cost far less than rail transit ...

  8. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  9. EAGLES 1.1: A microcomputer software package for analyzing fuel efficiency of electric and gasoline vehicles

    SciTech Connect

    Marr, W.M.

    1994-05-15

    As part of the U.S. Department of Energy`s electric/hybrid vehicle research program, Argonne National Laboratory has developed a computer software package called EAGLES. This paper describes the capability of the software and its many features and potential applications. EAGLES version 1.1 is an interactive microcomputer software package for the analysis of battery performance in electric-vehicle applications, or the estimation of fuel economy for a gasoline vehicle. The principal objective of the electric-vehicle analysis is to enable the prediction of electric-vehicle performance (e.g., vehicle range) on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile, taking into consideration the effects of battery depth-of-discharge and regenerative braking. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements (e.g., range and driving patterns). For gasoline-vehicle analysis, an empirical model relating fuel economy, vehicle parameters, and driving-cycle characteristics is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be simulated. The software package includes many default data sets for vehicles, driving cycles, and battery technologies. EAGLES 1.1 is written in the FORTRAN language for use on IBM-compatible microcomputers.

  10. 2011 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  11. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  12. Consumer Vehicle Choice Model Documentation

    SciTech Connect

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  13. Vehicle security apparatus and method

    DOEpatents

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  14. Vehicle security apparatus and method

    DOEpatents

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  15. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Energy.gov [DOE]

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  16. Fact #743: September 3, 2012 Used Vehicle Sales are Three Times Higher than New Vehicle Sales

    Energy.gov [DOE]

    From 1990 to 2008, the number of used vehicles sold was between 2.5 and 3 times higher than new vehicle sales. During the recent recession, both new and used vehicle sales declined to sales volumes...

  17. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    Energy Information Administration (EIA) (indexed site)

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  18. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    Energy Information Administration (EIA) (indexed site)

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  19. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  20. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  1. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  2. 2010 Vehicle Technologies Market Report

    SciTech Connect

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  3. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  4. Vehicle to Grid Demonstration Project

    SciTech Connect

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  5. 2008 Vehicle Technologies Market Report

    SciTech Connect

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  6. Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Electric Vehicles Addthis BMW i8 1 of 13 BMW i8 The BMW i8 is a plug-in hybrid electric car packed with power. It goes 0-60 mph in 4.2 seconds according the automaker. Photo | BMW Date taken: 2016-09-07 12:40 McLaren P1 Bahrain 2 of 13 McLaren P1 Bahrain This limited production plug-in hybrid electric vehicle can reach speeds up to 217 mph according the automaker. Photo | McLaren Automotive Date taken: 2016-09-07 12:40 Porsche 918 Spyder 3 of 13 Porsche 918 Spyder The Spyder is

  7. Table 5.14. U.S. Vehicle Fuel Consumption by Vehicle Type, 1994

    Energy Information Administration (EIA) (indexed site)

    or More ... 11.9 7.0 6.6 0.4 0.7 1.4 Q 2.0 Q 23.6 Below Poverty Line 100 Percent ... 6.9 4.9 4.6 0.3 Q Q Q 1.2 Q...

  8. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  9. Costs of lithium-ion batteries for vehicles

    SciTech Connect

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  10. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  11. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  12. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  13. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  14. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  15. Low floor mass transit vehicle

    DOEpatents

    Emmons, J. Bruce; Blessing, Leonard J.

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  16. Vehicle barrier with access delay

    DOEpatents

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  17. Micro-unmanned aerodynamic vehicle

    DOEpatents

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  18. Thermoelectric generator for motor vehicle

    DOEpatents

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  19. Vehicle Technologies Program Funding Opportunities

    SciTech Connect

    2011-12-13

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  20. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs are

  1. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  2. Vehicle Technologies Program Educational Activities

    SciTech Connect

    2011-12-13

    Description of educational activities including: EcoCAR2: Plugging In to the Future, EcoCAR: The NeXt Challenge, Green Racing, Automotive X Prize, Graduate Technology Automotive Education (GATE), and Hydrogen Education.

  3. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize their car is an FFV and

  4. The impact of electric vehicles on CO{sub 2} emissions. Final report

    SciTech Connect

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

  5. The impact of electric vehicles on CO[sub 2] emissions

    SciTech Connect

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. , Inc., Cambridge, MA )

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

  6. ,"Illinois Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  7. ,"Iowa Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  8. Advanced hybrid vehicle propulsion system study

    SciTech Connect

    Schwarz, R.

    1982-05-01

    Results of a study of an advanced heat engine/electric automotive hybrid propulsion system are presented. The system uses a rotary stratified charge engine and an ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system parameters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 l/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  9. Motor vehicle fuel analyzer

    DOEpatents

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1997-01-01

    A gas detecting system for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable "signature". The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use.

  10. Motor vehicle fuel analyzer

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1997-08-05

    A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

  11. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  12. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per ...

  13. Shanghai Fuel Cell Vehicle Powertrain Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Cell Vehicle Powertrain Co Ltd Jump to: navigation, search Name: Shanghai Fuel Cell Vehicle Powertrain Co Ltd Place: Shanghai Municipality, China Sector: Vehicles Product: A...

  14. Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Florida Natural Gas Prices Natural Gas ...

  15. Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Virginia Natural Gas Prices Natural Gas ...

  16. West Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Vehicle ... Referring Pages: Natural Gas Vehicle Fuel Price West Virginia Natural Gas Prices Natural ...

  17. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  18. Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Vehicle Fuel Price ... Referring Pages: Natural Gas Vehicle Fuel Price Nevada Natural Gas Prices Natural Gas ...

  19. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  20. Natural Gas Vehicle Incentive Program | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicle Incentive Program Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Natural Gas Vehicle Incentive Program AgencyCompany Organization: Natural Gas Vehicles for...