National Library of Energy BETA

Sample records for vehicle specifications engine

  1. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Energy Saver

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures HICEV Technical ...

  2. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test

    Energy Saver

    Procedures | Department of Energy Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures HICEV Technical Specifications (127.53 KB) HICEV America Test Sequence (71.27 KB) ETA-HITP01 Implementation of SAE Standard J1263 - Road Load Measurements and Dynamometer Simulation Using Coast Down Techniques (114.28 KB) ETA-HITP02 Implementation of SAE Standard J1666 May93 - HICE Vehicle

  3. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  4. Hydrogen hybrid vehicle engine development: Experimental program

    SciTech Connect

    Van Blarigan, P.

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  5. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  6. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  7. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  8. Urban Electric Vehicle (UEV) Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    URBAN ELECTRIC VEHICLE (UEV) TECHNICAL SPECIFICATIONS Effective January 1, 2003 Prepared by Electric Transportation Applications UEV AMERICA January 1, 2003 TECHNICAL ...

  9. NEV America: Neighborhood Electric Vehicle Technical Specification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NEV AMERICA: NEIGHBORHOOD ELECTRIC VEHICLE TECHNICAL SPECIFICATION Revision 3 Effective September 21, 2007 Prepared by Electric Transportation Applications NEV AMERICA September ...

  10. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  11. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Energy Saver

    Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test ...

  12. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures...

    Energy Saver

    Full-Size Electric Vehicle Specifications and Test Procedures AVTA: Full-Size Electric Vehicle Specifications and Test Procedures EV America Test Specifications (97.12 KB) ...

  13. AVTA: Urban Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Urban Electric Vehicle Specifications and Test Procedures AVTA: Urban Electric Vehicle Specifications and Test Procedures UEVAmerica Specifications (252.08 KB) ETA-UTP001 ...

  14. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    in EcoCAR 2 Competition College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Twitter Bookmark Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Google Bookmark Alternative

  15. AVTA: Neighborhood Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Neighborhood Electric Vehicle Specifications and Test Procedures AVTA: Neighborhood Electric Vehicle Specifications and Test Procedures NEVAmerica Technical Specifications (135.99 KB) NEVAmerica Test Sequence (66.19 KB) ETA-NTP002 Implementation of SAE Standard J1666 May 93 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (334.01 KB) ETA-NTP004 Electric Vehicle Constant Speed Range Test (138.66 KB) ETA-NTP005 Electric Vehicle Rough Road

  16. Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research (DEER) Conference | Department of Energy Events » Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference From 2002 to 2012, the Directions in Engine-Efficiency and Emissions Research (DEER) Conference gathered professionals in the engine community to share the latest in advanced combustion engine research and development. The DEER

  17. AVTA: Transit Vehicle Specifications and Test Procedures | Department of

    Energy Saver

    Energy Transit Vehicle Specifications and Test Procedures AVTA: Transit Vehicle Specifications and Test Procedures All Advanced Vehicle Testing Activity transit projects follow a rigorous data collection and analysis protocol. Refer to "General Evaluation Plan: Fleet Test and Evaluation Projects" for information about fleet selection, data collection, and products related to new evaluation projects. More Documents & Publications Vehicle Technologies Office: 2010 Vehicle and

  18. Vehicle Technologies Office Merit Review 2015: Engine Friction Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about engine friction...

  19. Vehicle Technologies Office Merit Review 2014: Engine Friction Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about engine friction...

  20. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  1. Computer-Aided Engineering for Electric-Drive Vehicle Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computer-Aided Engineering for Electric-Drive Vehicle Batteries - Sandia Energy Energy ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  2. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  3. Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  4. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Advanced Combustion Engines Vehicle Technologies Office: Advanced Combustion Engines Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Improving the efficiency of internal combustion engines is one of the most promising and cost-effective

  5. AVTA: Urban Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Urban Electric Vehicle Specifications and Test Procedures AVTA: Urban Electric Vehicle Specifications and Test Procedures UEVAmerica Specifications (252.08 KB) ETA-UTP001 Implementation of SAE Standard J1263, Feb. 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques (50.53 KB) ETA-UTP002 Implementation of SAE Standard J1666, May 1993 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (65.68 KB) ETA-UTP003

  6. EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV AMERICA: HYBRID ELECTRIC VEHICLE (HEV) TECHNICAL SPECIFICATIONS Revision 1 Effective November 1, 2005 Prepared by Electric Transportation Applications HEV AMERICA November 1, ...

  7. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Energy.gov [DOE] (indexed site)

    Natural gas engine technology has evolved to meet the requirements of HD vehicle applications. deer09kamel.pdf (835.23 KB) More Documents & Publications Light-Duty Diesel Market ...

  8. 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pam Fletcher is the executive chief engineer for electric vehicles at General Motors, including Chevrolet's plug-in electric car: the Volt. She spoke with Energy.gov about what ...

  9. Vehicle Technologies Office Merit Review 2016: Ionic Liquids as Engine

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings | Department of Energy Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings Vehicle Technologies Office Merit Review 2016: Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office

  10. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect

    Pesaran, A. A.

    2011-05-01

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  11. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace16wagner.pdf More Documents & Publications Achieving and Demonstrating Vehicle Technologies ...

  12. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace017wagner2010o.pdf More...

  13. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for ...

  14. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for ...

  15. AVTA: Neighborhood Electric Vehicle Specifications and Test Procedures...

    Energy.gov [DOE] (indexed site)

    NEVAmerica Technical Specifications (135.99 KB) NEVAmerica Test Sequence (66.19 KB) ETA-NTP002 Implementation of SAE Standard J1666 May 93 - Electric Vehicle Acceleration, ...

  16. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    SciTech Connect

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for its platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.

  17. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Fleet Test and Evaluation Procedure (231.85 KB) HEVAmerica Technical Specifications (164.3 KB) HEV Baseline Test Sequence (46.65 KB) HEV End of Life Test Sequence (29.89 KB) ETA-HTP01 Implementation of SAE Standard J1263 February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques (118.71 KB) ETA-HTP02 Implementation

  18. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) (2.33 MB) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  19. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Internal Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Internal Combustion Engines Chapter 8: Technology Assessments Introduction to the Technology/System Overview of Internal Combustion Engines and Potential Role Internal Combustion Engines (ICEs) already offer outstanding drivability and reliability to over 240 million on-road passenger vehicles in the U.S. Over 16 million ICE-powered new passenger and commercial vehicles are sold annually, some replacing older vehicles and the remainder adding to the vehicle population. Currently, on-road

  20. Series hybrid vehicles and optimized hydrogen engine design

    SciTech Connect

    Smith, J.R.; Aceves, S.; Van Blarigan, P.

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  1. Throttle valve position-detecting device for a vehicle engine

    SciTech Connect

    Minagawa, K.

    1987-08-25

    A throttle valve position-detecting device is described for a vehicle, for detecting the position of a throttle valve in a throttle body provided for an engine mounted on the vehicle, by detecting rotation of a throttle shaft of the throttle valve, and in which the throttle shaft is supported to the throttle body through a bearing. The throttle valve position-detecting device consists of: a first rotary element fixed to the throttle shaft for rotating together with the throttle shaft; a second rotary element contacting the first rotary element for rotating with the first rotary element by receiving rotary power from the first rotary element; spring means for pressing the second rotary element towards the first rotary element against the rotary power; and detecting means for detecting from a rotary position of the second rotary element at least a position of the throttle valve corresponding to an idling condition of the engine; the first and second rotary elements being positioned with such a relationship as a crossing angle of a moving direction of the throttle shaft by clearance between the throttle shaft and the bearing and a transmitting direction of the rotary power from the first rotary element to the second rotary element during the idling condition of the engine being within a range from 45 to 90 degrees.

  2. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  3. Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles May 4, 2016 - 10:57am Addthis As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories As part of the Co-Optimization of Fuels & Engines initiative, researchers are

  4. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Incidents in Plug-in Electric Vehicles (EV) | Department of Energy Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) AVTA: Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results

  5. HCNG Engine Testing and HCNG Vehicle Marketing in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy HCNG Engine Testing and HCNG Vehicle Marketing in China HCNG Engine Testing and HCNG Vehicle Marketing in China These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_f_ma.pdf (4.22 MB) More Documents & Publications H2 Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol

  6. HICEV America: Hydrogen Internal Combustion Engine Vehicle (HICEV...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... or under any vehicle structure. (25) Fuel storage tank ... vent pipe where relative motion between the two can ... Vehicles should not be susceptible to externally generated ...

  7. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE Vehicle Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE rationale for addressing transportation oil dependency, programs, specifically Vehicle Technologies Program, R&D areas, including advanced combustion engines

  9. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures...

    Energy.gov [DOE] (indexed site)

    (118.71 KB) ETA-HTP02 Implementation of SAE Standard J1666 May 1993 - Hybrid Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (230.69 KB) ETA-HTP03 ...

  10. Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review

    Energy.gov [DOE]

    Presentation given by Detroit Diesel at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck program: engine...

  11. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  12. Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about simulating internal combustion engines using high performance computing.

  13. 50% thermo-mechanical efficiency utilizing a free-piston engine in Hybrid vehicles

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  16. Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Medium and Heavy Duty Vehicle and Engine Testing

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  19. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology

  20. Engineering antigen-specific immunological tolerance.

    SciTech Connect

    Kontos, Stephan; Grimm, Alizee J.; Hubbell, Jeffrey A.

    2015-05-01

    Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigenspecific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatory responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.

  1. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect

    Not Available

    2003-09-01

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  2. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  3. Evaluation of the hydrogen-fueled rotary engine for hybrid vehicle applications

    SciTech Connect

    Salanki, P.A.; Wallace, J.S.

    1996-09-01

    The hydrogen-fueled engine has been identified as a viable power unit for ultra-low emission series-hybrid vehicles. The Wankel engine is particularly well suited to the use of hydrogen fuel, since its design minimizes most of the combustion difficulties. In order to evaluate the possibilities offered by the hydrogen fueled rotary engine, dynamometer tests were conducted with a small (2.2 kW) Wankel engine fueled with hydrogen. Preliminary results show an absence of the combustion difficulties present with hydrogen-fueled homogeneous charge piston engines. The engine was operated unthrottled and power output was controlled by quality governing, i.e. by varying the fuel-air equivalence ratio on the lean side of stoichiometric. The ability to operate with quality governing is made possible by the wide flammability limits of hydrogen-air mixtures. NO{sub x} emissions are on the order of 5 ppm for power outputs up to 70% of the maximum attainable on hydrogen fuel. Thus, by operating with very lean mixtures, which effectively derates the engine, very low NO{sub x} emissions can be achieved. Since the rotary engine has a characteristically high power to weight ratio and a small volume per unit power compared to the piston engine, operating a rotary engine on hydrogen and derating the power output could yield an engine with extremely low emissions which still has weight and volume characteristics comparable to a gasoline-fueled piston engine. Finally, since engine weight and volume affect vehicle design, and consequently in-use vehicle power requirements, those factors, as well as engine efficiency, must be taken into account in evaluating overall hybrid vehicle efficiency.

  4. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other. deer11zhang.pdf (2.07 MB) ...

  5. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es099pesaran2011p.pdf (1.5 MB) More Documents & Publications ...

  6. Vehicle Technologies Office Merit Review 2016: Engine Friction Reduction Technologies

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel ...

  7. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

    Energy.gov [DOE]

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

  8. New Vehicle Initiative Aims to Make Fuel and Engines Work Together More Efficiently

    Energy.gov [DOE]

    Recently I had the pleasure of briefing members of Congress on EERE’s groundbreaking fuel-engine co-optimization initiative. The new, multi-year project combines previously independent areas of biofuels and engine combustion research and development (R&D) to design new fuels and engines that are co-optimized—designed in tandem to both maximize vehicle performance and carbon efficiency.

  9. Vehicle Technologies Office Merit Review 2015: Engine Friction Reduction – Part II (Base fluid and additive technologies)

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about engine friction...

  10. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

  11. Acoustic noise reduction for vehicle engines. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations of selected patents concerning methods, devices, and materials to reduce acoustic noise in vehicle engines. Vehicles covered include automobiles, railway locomotives, agricultural tractors, and aircraft. Internal combustion, diesel, and gas turbine engines are covered. (Contains a minimum of 188 citations and includes a subject term index and title list.)

  12. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis

  13. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full

  14. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test

  15. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1

    SciTech Connect

    Knoll, Keith; West, Brian; Clark, Wendy; Graves, Ronald; Orban, John; Przesmitzki, Steve; Theiss, Timothy

    2009-02-01

    This report (February 2009) is an update of the original version, which was published in October 2008. This report is the result of the U.S. Department of Energy's test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels.

  16. Vehicle Technologies Office Merit Review 2014: High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology

    Energy.gov [DOE]

    Presentation given by Envera LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine...

  17. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  18. Vehicle Technologies Office Merit Review 2016: High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envera LLC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  19. Vehicle Technologies Office Merit Review 2015: High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology

    Energy.gov [DOE]

    Presentation given by Envera LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine with...

  20. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  1. Federal certification test results for 1992 model year. Control of air pollution from new motor vehicles and new motor vehicle engines

    SciTech Connect

    Not Available

    1992-01-01

    Each manufacturer of a passenger car, (light-duty-vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. This report contains all of the individual tests that were required by the certification-procedures found in Title 40 of the Code of Federal Regulations in Part 86. These data were submitted to the Environmental Protection Agency's Certification Division at the National Vehicle and Fuel Emissions Laboratory.

  2. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  3. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect

    Reader, G.T.; Potter, I.J.

    1995-12-31

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  4. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  5. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  6. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  7. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non‑Road Engines, Report 1 - Updated

    SciTech Connect

    Knoll, Keith; West, Brian H; Clark, Wendy; Graves, Ronald L; Orban, John; Przesmitzki, Steve; Theiss, Timothy J

    2009-02-01

    In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2

  8. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  9. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles (Fact Sheet), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimization of Fuels & Engines FOR TOMORROW'S ENERGY-EFFICIENT VEHICLES CO-OPTIMIZATION FOR NEAR- AND LONG-TERM TRANSPORTATION SOLUTIONS A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance.

  10. Vehicle Technologies Office Merit Review 2014: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by USAMP at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

  11. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  12. Vehicle Technologies Office Merit Review 2016: Integrated Computational Materials Engineering (ICME) Development of Carbon Fiber Composites for Lightweight Vehicles

    Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  13. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Program: Impacts of a Cluster of Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies, May 2010.

  14. Categorical Exclusion Determinations: Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Loan Program | Department of Energy Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD September 6, 2011 CX-006488: Categorical Exclusion Determination Chrysler Group LLC, Revised Specific Project Application 2, Retooling, Reequipping and Engineering

  15. Vehicle Technologies Office Merit Review 2016: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  16. Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Energy.gov [DOE]

    A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

  17. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  18. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  19. Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines

    Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  1. Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE rationale for addressing transportation oil dependency, programs, specifically Vehicle ... Overview of the DOE High Efficiency Engine Technologies R&D U.S. Department of Energy ...

  4. Vehicle Aerodynamics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  5. Vehicle Technologies Office Merit Review 2016: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Energy.gov [DOE]

    Presentation given by Navistar at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  6. Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report

    SciTech Connect

    Wong, H. C.

    2003-07-01

    Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

  7. Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  8. Vehicle Technologies Office Merit Review 2015: Applied Integrated Computational Materials Engineering (ICME) for New Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Applied...

  9. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  10. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  11. Vehicle Technologies Office Merit Review 2015: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stretch...

  12. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  13. Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)

    Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Internal...

  14. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  16. Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Vehicle Technologies Office Merit Review 2016: Model Development and Analysis of Clean & Efficient Engine Combustion

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory (LLNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  18. Vehicle Technologies Office Merit Review 2014: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about large eddy...

  19. Vehicle Technologies Office Merit Review 2015: Chemical Kinetic Models for Advanced Engine Combustion

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  1. Vehicle Technologies Office Merit Review 2016: Computer Aided Battery Engineering Consortium

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  2. Vehicle Technologies Office Merit Review 2016: High Efficiency GDI Engine Research with Emphasis on Ignition Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  3. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  4. Vehicle Technologies Office Merit Review 2015: Spray Combustion Cross-Cut Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about spray combustion...

  5. Vehicle Technologies Office Merit Review 2014: Spray Combustion Cross-Cut Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about spray conbustion...

  6. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Vehicle Technologies Office Merit Review 2015: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  8. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  11. Vehicle Technologies Office Merit Review 2016: Spray Combustion Cross-Cut Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  12. Vehicle Technologies Office Merit Review 2015: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  13. Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  14. Vehicle Technologies Office Merit Review 2016: Improved Solvers for Advanced Engine Combustion Simulation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Livermore National Laboratory (LLNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  15. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  16. Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Large Eddy...

  17. Vehicle Technologies Office Merit Review 2014: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stretch...

  18. Vehicle Technologies Office Merit Review 2015: Improved Solvers for Advanced Engine Combustion Simulation

    Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2014: Improved Solvers for Advanced Engine Combustion Simulation

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2014: Model Development and Analysis of Clean & Efficient Engine Combustion

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  1. Vehicle Technologies Office Merit Review 2016: Nanoscale Interfacial Engineering for Stable Lithium Metal Anodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Stanford University at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  2. Vehicle Technologies Office Merit Review 2016: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  3. Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  4. Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  5. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  6. Linkages from DOEs Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines June 2011 Prepared by: Rosalie Ruegg, TIA Consulting, Inc. Emerald Isle, NC and Patrick Thomas, 1790 Analytics, LLC Haddonfield, NJ Acknowledgments This report uses bibliometric analysis to trace linkages from knowledge outputs of Advanced Combustion Engine research and development (ACE R&D) by the Vehicle Technologies Program (VTP) of the U.S. Department of Energy, to downstream innovations

  7. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

  8. Methanol/ethanol/gasoline blend-fuels demonstration with stratified-charge-engine vehicles: Consultant report. Final report

    SciTech Connect

    Pefley, R.; Adelman, H.; Suga, T.

    1980-03-01

    Four 1978 Honda CVCC vehicles have been in regular use by California Energy Commission staff in Sacramento for 12 months. Three of the unmodified vehicles were fueled with alcohol/gasoline blends (5% methanol, 10% methanol, and 10% ethanol) with the fourth remaining on gasoline as a control. The operators did not know which fuels were in the vehicles. At 90-day intervals the cars were returned to the Univerity of Santa Clara for servicing and for emissions and fuel economy testing in accordance with the Federal Test Procedures. The demonstration and testing have established the following: (1) the tested blends cause no significant degradation in exhaust emissions, fuel economy, and driveability; (2) the tested blends cause significant increases in evaporative emissions; (3) analysis of periodic oil samples shows no evidence of accelerated metal wear; and (4) higher than 10% alcohols will require substantial modification to most existing California motor vehicles for acceptable emissions, performance, and fuel economy. Many aspects of using methanol and ethanol fuels, both straight and in blends, in various engine technologies are discussed.

  9. Vehicle Technologies Office Merit Review 2015: Integrated Computationa...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Vehicle Technologies Office Merit Review 2015: Integrated Computational Materials Engineering ...

  10. Vehicle Technologies Office Merit Review 2014: Impact of Advanced Technologies on Engine Targets

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the impact of...

  11. Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review

    Energy.gov [DOE]

    Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck Program...

  12. Vehicle Technologies Office Merit Review 2016: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  13. Vehicle Technologies Office Merit Review 2016: Emissions Control for Lean Gasoline Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  14. Fundamental Studies in Catalysis Enabled the use of Efficient Lean-Burn Engines for Vehicle Transportation

    Energy.gov [DOE]

    Building on a catalysis research program sponsored by EEREs Vehicles Technology Office (VTO) and DOEs Office of Science, researchers at Cummins, Inc. and Pacific Northwest National Laboratory ...

  15. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  16. Vehicle Technologies Office Merit Review 2016: High Temperature Materials for High Efficiency Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  17. Process for cooling the passenger compartments of vehicles with hydrogen-consuming engines by mechanical refrigerating procedure

    SciTech Connect

    Bernauer, O.; Holzt, H.P.; Lenz, H.

    1984-04-10

    A process for cooling a passenger compartment of a vehicle equipped with a hydrogen-consuming engine by mechanical refrigeration involves compressing a gaseous coolant, condensing the resulting compressed and heated gaseous coolant with heat removal to liquefy the coolant, and evaporating the liquefied coolant under the action of a pressure relief valve so that the cold generated during the pressure relief is used to cool the passenger compartment. This process is improved by removing additional heat from the compressed coolant by passing the coolant through a metal hydride cooler.

  18. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1

    SciTech Connect

    2000-03-02

    The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

  19. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Energy.gov [DOE] (indexed site)

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf (951.51 KB) More Documents & Publications Accelerating ...

  20. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel Engine Powered Vehicle

    Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  1. Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  2. TRACKED VEHICLE Rev 75

    SciTech Connect

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  3. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore » of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.« less

  4. Engineering Basis Document Review Supporting the Double Shell Tank (DST) System Specification Development

    SciTech Connect

    LEONARD, M.W.

    2000-03-14

    The Double-Shell Tank (DST) System is required to transition from its current storage mission to a storage and retrieval mission supporting the River Protection Project Phase 1 privatization, defined in HNF-SD-WM-MAR-008, Tank Waste Remediation System Mission Analysis Report. Requirements for the DST subsystems are being developed using the top-down systems engineering process outlined in HNF-SD-WM-SEMP-002, Tank Waste Remediation System Systems Engineering Management Plan. This top-down process considers existing designs to the extent that these designs impose unavoidable constraints on the Phase 1 mission. Existing engineering-basis documents were screened, and the unavoidable constraints were identified. The constraints identified herein will be added to the DST System specification (HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System). While the letter revisions of the DST System specification were constructed with a less rigorous review of the existing engineering-basis documents, the Revision 0 release of the specification must incorporate the results of the review documented herein. The purpose of this document is to describe the screening process and criteria used to determine which constraints are unavoidable and to document the screening results.

  5. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction ...

  6. WIPP Receives New Emergency Response Vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    February 19, 2015 WIPP Receives New Emergency Response Vehicle WIPP recently placed a new emergency response vehicle into service. The new fire engine "Engine 24" will enhance...

  7. Fact #606: January 18, 2010 New Vehicles Trend Toward Smaller Engines

    Energy.gov [DOE]

    In 2008, the number of 4-cylinder engine installations rose to 57% of all cars manufactured in that year. The graph below shows that the cars produced in 1999 and 2003 were very close to the same...

  8. On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles

    SciTech Connect

    Not Available

    2003-06-01

    Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

  9. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones

    Energy.gov [DOE]

    The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

  10. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  11. Turbine engine lubricant foaming due to silicone basestock used in non-specification spline lubricant

    SciTech Connect

    Centers, P.W.

    1995-05-01

    Dependent upon molecular weight and distribution, concentration, temperature, air flow, and test details or field application, polydimethylsiloxane (PDMS) may be neutral, profoamant or antifoamant in polyolesters. This understanding was critical in the solution of a turbine engine lubrication system foaming problem occurring at several military locations. Suspect turbine engine-accessory gearbox assembly materials gathered from several sites were evaluated. One non-specification PDMS-based spline lubricant caused copious foaming of the lubricant at less than ten parts-per-million concentration, while a specification polymethyl-phenylsiloxane (PMPS)-based lubricant required a concentration nearly 2000 times greater to generate equivalent foam. Use of the profoamant PDMS spline lubricant was then prohibited. Since prohibition, foaming of turbine engine lubricants used in the particular application has not been reported. PMPS impact on foaming of ester lubricants is similar to a much more viscous PDMS attributed to the reduced interaction of PMPS in esters due to pendant phenyl structure of PMPS absent in PDMS. These data provide significant additional insight and methodology to investigate foaming tendencies of partially miscible silicone-ester and other fluid systems. 7 refs., 2 figs., 1 tab.

  12. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  13. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations

    SciTech Connect

    Nika, Denis L. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of CaliforniaRiverside, Riverside, California, 92521 (United States); Cocemasov, Alexandr I. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Balandin, Alexander A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of CaliforniaRiverside, Riverside, California, 92521 (United States)

    2014-07-21

    We have studied the phonon specific heat in single-layer, bilayer, and twisted bilayer graphene. The calculations were performed using the Born-von Karman model of lattice dynamics for intralayer atomic interactions and spherically symmetric interatomic potential for interlayer interactions. We found that at temperature T?specific heat varies with temperature as T{sup n}, where n?=?1 for graphene, n?=?1.6 for bilayer graphene, and n?=?1.3 for the twisted bilayer graphene. The phonon specific heat reveals an intriguing dependence on the twist angle in bilayer graphene, which is particularly pronounced at low temperature. The results suggest a possibility of phonon engineering of thermal properties of layered materials by twisting the atomic planes.

  14. Hybrid options for light-duty vehicles.

    SciTech Connect

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  15. Software requirements specification for the GIS-T/ISTEA pooled fund study phase C linear referencing engine

    SciTech Connect

    Amai, W.; Espinoza, J. Jr.; Fletcher, D.R.

    1997-06-01

    This Software Requirements Specification (SRS) describes the features to be provided by the software for the GIS-T/ISTEA Pooled Fund Study Phase C Linear Referencing Engine project. This document conforms to the recommendations of IEEE Standard 830-1984, IEEE Guide to Software Requirements Specification (Institute of Electrical and Electronics Engineers, Inc., 1984). The software specified in this SRS is a proof-of-concept implementation of the Linear Referencing Engine as described in the GIS-T/ISTEA pooled Fund Study Phase B Summary, specifically Sheet 13 of the Phase B object model. The software allows an operator to convert between two linear referencing methods and a datum network.

  16. Vehicle Technologies Office Merit Review 2016: Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines

    Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  17. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  18. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  19. Vehicle Technologies Office Merit Review 2016: Ash-Durable Catalyzed Filters for Gasoline Direct Injection (GDI) Engines

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  1. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  2. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  3. Vehicle Technologies Office Merit Review 2016: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  4. Vehicle Technologies Office Merit Review 2016: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  5. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  6. Vehicle Technologies Office Merit Review 2016: Hybrid Ionic-Nano-Additives for Engine Lubrication to Improve Fuel Efficiency

    Energy.gov [DOE]

    Presentation given by University of Tennessee at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel &...

  7. Vehicle Technologies Office Merit Review 2014: Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  8. Vehicle Technologies Office Merit Review 2015: Class 8 Truck...

    Office of Environmental Management (EM)

    Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review

  9. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center

    More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles ... Although all diesel vehicles can use biodiesel, be sure to check your engine warranty to ...

  10. Water Emissions from Fuel Cell Vehicles

    Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  11. Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima)—Fuel Properties and Chemical Kinetics and Thrust I Engine Projects

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel & Lubricants

  12. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  13. Vehicle Technologies Office Merit Review 2016: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2015: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  15. Vehicle Technologies Office Merit Review 2015: Overview of the VTO Advanced Combustion Engine R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the Advanced...

  16. Vehicle Technologies Office Merit Review 2016: Efficiency-Optimized Duel Fuel Engine with In-Cylinder Gasoline/CNG Blending

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel ...

  17. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  18. Vehicle Technologies Office Merit Review 2016: GEFORCE: Gasoline Engine and Fuels Offering Reduced Fuel Consumption and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel...

  19. Vehicle Technologies Office Merit Review 2016: Overview of the VTO Advanced Combustion Engine R&D Program

    Energy.gov [DOE]

    Presentation given by Department of Energy (DOE) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion...

  20. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

  1. Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  2. Vehicle Technologies Office Merit Review 2014: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Chrysler at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a multiair/multifuel approach to...

  3. Vehicle Technologies Office Merit Review 2015: 2015 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 2015 KIVA...

  4. Vehicle Technologies Office Merit Review 2016: 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory (LANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  6. Vehicle Technologies Office Merit Review 2016: Fuel Design for LTC Applications: Quantifing Fuel Performance in GCI Engines

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel ...

  7. Vehicle Technologies Office Merit Review 2016: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  8. Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications

    Energy.gov [DOE]

    Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

  9. Gaseous-fuel engine technology

    SciTech Connect

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  10. Ford's CNG vehicle research

    SciTech Connect

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  11. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  12. Idling Reduction for Personal Vehicles

    SciTech Connect

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  13. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  14. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  15. Vehicle Technologies Office: Materials by Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by Design Vehicle Technologies Office: Materials by Design According to the Materials Genome Initiative, it generally requires more than 20 years to develop and implement a new or improved material for automotive applications. To accelerate this process, the Vehicle Technologies Office (VTO) supports research to develop and implement new or improved application-specific materials through Integrated Computational Materials Engineering (ICME). This approach combines advanced characterization,

  16. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  17. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  18. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  19. vehicle technologies office | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Technologies Office The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the U.S. Department of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as

  20. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  1. MARS Flight Engineering Status

    SciTech Connect

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  2. Vehicle Technologies Office Merit Review 2014: Can hard coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Driveline for Vehicles Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

  3. LD Vehicles AFDC 11 25 13 TC.xlsx

    Alternative Fuels and Advanced Vehicles Data Center

    Model Year 2014: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 11252013) MY FuelPowertrain Type Make Model Vehicle Type Engine SizeCylinders Transmission...

  4. Status of the Application of Thermoelectric Technology in Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Application of Thermoelectric Technology in Vehicles Status of the Application of Thermoelectric Technology in Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference ...

  5. Vehicle Technologies Office Merit Review 2015: Analyzing Real...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER) Vehicle Technologies Office Merit Review 2015: 12 ...

  6. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine ...

  7. Vehicle Technologies Office: Propulsion Materials for Cars and Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine,...

  8. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  9. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    SciTech Connect

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards.

  10. Railway vehicle body structures

    SciTech Connect

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  11. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  12. Overview of Computer-Aided Engineering of Batteries (CAEBAT)...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle ...

  13. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  14. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  15. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  16. ENGINEERING

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  17. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.

  18. Recommendations for Guidelines for Environment-Specific Magnetic-Field Measurements, Rapid Program Engineering Project #2

    SciTech Connect

    Electric Research and Management, Inc.; IIT Research Institute; Magnetic Measurements; Survey Research Center, University of California; T. Dan Bracken, Inc.

    1997-03-11

    The purpose of this project was to document widely applicable methods for characterizing the magnetic fields in a given environment, recognizing the many sources co-existing within that space. The guidelines are designed to allow the reader to follow an efficient process to (1) plan the goals and requirements of a magnetic-field study, (2) develop a study structure and protocol, and (3) document and carry out the plan. These guidelines take the reader first through the process of developing a basic study strategy, then through planning and performing the data collection. Last, the critical factors of data management, analysis reporting, and quality assurance are discussed. The guidelines are structured to allow the researcher to develop a protocol that responds to specific site and project needs. The Research and Public Information Dissemination Program (RAPID) is based on exposure to magnetic fields and the potential health effects. Therefore, the most important focus for these magnetic-field measurement guidelines is relevance to exposure. The assumed objective of an environment-specific measurement is to characterize the environment (given a set of occupants and magnetic-field sources) so that information about the exposure of the occupants may be inferred. Ideally, the researcher seeks to obtain complete or "perfect" information about these magnetic fields, so that personal exposure might also be modeled perfectly. However, complete data collection is not feasible. In fact, it has been made more difficult as the research field has moved to expand the list of field parameters measured, increasing the cost and complexity of performing a measurement and analyzing the data. The guidelines address this issue by guiding the user to design a measurement protocol that will gather the most exposure-relevant information based on the locations of people in relation to the sources. We suggest that the "microenvironment" become the base unit of area in a study, with

  19. Vehicle Technologies Office Merit Review 2015: Integrated Computational

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly | Department of Energy Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Vehicle Technologies Office Merit Review 2015: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit

  20. Vehicle Technologies Office Merit Review 2016: Integrated Computational

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly | Department of Energy Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Vehicle Technologies Office Merit Review 2016: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Presentation given by USAMP at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit

  1. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  2. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated ...

  3. Vehicle Technologies Office: Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Emission Control Vehicle Technologies Office: Emission Control The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned

  4. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions ...

  5. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Energy.gov [DOE] (indexed site)

    ... Gross vehicle weight rating ICE Internal combustion engine MMC Metal matrix composites NVH ... the engine, transmission, turbocharger, differential, drive shafts, fuel ...

  6. 2008 Advanced Vehicle Technology Analysis and Evaluation Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... C. Hydrogen Internal Combustion Engine (ICE) Vehicle Testing ......The companies using PSAT also provided engine (i.e., ethanol, twin turbocharger)...

  7. Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES) Applied to Advanced Engine ...

  8. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at ...

  9. Vehicle Technologies Office Merit Review 2015: Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation ...

  10. Vehicle Technologies Office Merit Review 2015: High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by ...

  11. Fuel Efficiency Potential of Hydrogen Vehicles | Department of...

    Energy.gov [DOE] (indexed site)

    Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions E85 Optimized Engine Vehicle Technologies Office Merit Review 2015: Impacts of Advanced ...

  12. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel ...

  13. Vehicle Technologies Office Merit Review 2015: Use of Low Cetane...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Combustion Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Sandia Optical Hydrogen-fueled Engine

  14. Vehicle Technologies Office Issues Notice of Intent for Multi...

    Office of Environmental Management (EM)

    of 2007 (EISA) Section 131. 2) Direct Injection Propane Engine - research, develop, and demonstrate a direct injection (DI) propane engine for on-road vehicles approved for highway ...

  15. Internal Combustion Engine Basics

    Energy.gov [DOE]

    Internal combustion engines provide outstanding drivability and durability, with more than 250 million highway transportation vehicles in the United States relying on them.

  16. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Automotive Thermoelectric Generator Design Issues Engineering and ...

  17. TEG On-Vehicle Performance & Model Validation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Thermoelectric Generator Performance for Passenger Vehicles Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Thermoelectric Waste ...

  18. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  19. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than 50%, and some vehicle simulation models estimate potential improvements of up to 75%. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains

  20. Vehicle Emission Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles that use internal combustion engines. These vehicles can run on gasoline, diesel, biofuels, natural gas, or propane. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs)

  1. Household Vehicles Energy Use: Latest Data & Trends

    Energy Information Administration (EIA) (indexed site)

    Laboratory (ORNL), Engineering Science Technology Division, Center for Transportation Analysis. For 1,262 vehicles, the work conducted by ORNL did not result in a viable annual VMT...

  2. 2015 Annual Merit Review, Vehicle Technologies Office

    Energy.gov [DOE] (indexed site)

    Along with work in individual technologies such as combustion engines, batteries, electric ... technologies within an overarching "vehicle systems perspective": Benchmarking is ...

  3. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  4. Vehicle Crashworthiness

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  5. Vehicle Technologies Office Merit Review 2014: CFD Simulations and Experiments to Determine the Feasibility of Various Alternate Fuels for Compression Ignition Engine Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CFD simulations...

  6. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  7. A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF Applications/Data-Logger for Vehicle Data Acquisition

    Energy.gov [DOE]

    This project describes a novel system of sensors that continuously monitor emissions in real time and a data logger to gather real-time data from a vehicle

  8. Vehicle Technologies Office Merit Review 2015: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  9. Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  10. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  12. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  13. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  14. Vehicle Technologies Office: Laboratory Facilities and Collaborative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research for Advanced Combustion Engines | Department of Energy Laboratory Facilities and Collaborative Research for Advanced Combustion Engines Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Advanced Combustion Engines The Vehicle Technologies Office (VTO) works with a variety of Department of Energy National Laboratories to maintain unique user facilities and conduct research on advanced combustion engines and emission control. VTO collaborates with 10

  15. Light-duty diesel engine development status and engine needs

    SciTech Connect

    Not Available

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  16. Mack LNG vehicle development

    SciTech Connect

    Southwest Research Institute

    2000-01-05

    The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

  17. Hybrid vehicle motor alignment

    SciTech Connect

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  18. PHEV Engine and Aftertreatment Model Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis System Simulations of Hybrid Electric Vehicles with Focus ...

  19. Vehicle Technologies Office: Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Waste Heat Recovery Vehicle Technologies Office: Waste Heat Recovery Along with high efficiency engine technologies and emission control, the Vehicle Technologies Office (VTO) is supporting research and development to increase vehicle fuel economy by recovering energy from engine waste heat. In current gasoline vehicles, only about 25 percent of the fuel's energy is used to drive the wheels; in contrast, more than 70 percent is lost

  20. Perturbing engine performance measurements to determine optimal engine control settings

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  1. Explore Careers in Energy Efficient Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficient Vehicles Explore Careers in Energy Efficient Vehicles Transformation of the U.S. transportation sector will secure existing jobs and create new opportunities. Transformation of the U.S. transportation sector will secure existing jobs and create new opportunities. Technology Developers Mechanical engineers Electrical engineers Chemical engineers Materials scientists Laboratory technicians Technology Manufacturers Factory workers Machinists Industrial engineers Technology Users

  2. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  3. Ladies and Gentlemen, Start Your Engines

    DOE R&D Accomplishments

    Lang, Kathryn

    2011-03-28

    Fundamental studies in catalysis enabled the use of efficient �lean-burn� engines for vehicle transportation.

  4. Vehicle Technologies Office Merit Review 2016: Cummins-ORNL\\Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Office Merit Review 2015: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about fuel effects on...

  6. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  7. Vehicle Technologies Office Merit Review 2014: Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling of mechanical behavior of cell...

  8. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  9. Vehicle Technologies Office Merit Review 2014: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel effects...

  10. Vehicle Technologies Office Merit Review 2016: Utilizing Alternative Fuel Ignition Properties to Improve Spark-Ignited and Compression-Ignited Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Michigan at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel & Lubricants

  11. Vehicle Technologies Office Merit Review 2016: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Energy.gov [DOE]

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  12. Propane Vehicle Demonstration Grant Program

    SciTech Connect

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  13. Shockwave Engine: Wave Disk Engine

    SciTech Connect

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  14. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize their car is an FFV and

  15. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about impacts of advanced combustion engines. vss140_curran_2015_p.pdf (5.06 MB) More Documents & Publications Vehicle Technologies Office Merit

  16. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impacts of advanced combustion engines. vss140_curran_2014_p.pdf (5.71 MB) More Documents & Publications Vehicle Technologies Office Merit

  17. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  18. Heavy Vehicle Propulsion Materials Program

    SciTech Connect

    Diamond, S.; Johnson, D.R.

    1999-04-26

    The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

  19. The Role of the Internal Combustion Engine in our Energy Future

    Energy.gov [DOE]

    Reviews heavy-duty vehicle market, alternatives to internal combustion engines, and pathways to increasing diesel engine efficiency

  20. Boosting Small Engines to High Performance- Boosting Systems and Combustion Development Methodology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview on combustion approaches and challenges for smaller boosted engines to improve vehicle fuel economy, particularly downsizing gasoline engines

  1. Michigan: Universities Train Next Generation of Automotive Engineers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    out Advanced Electric Drive Vehicle Education programs to educate future engineers about electric drive vehicles. All three universities are developing courses for undergraduate...

  2. Defining a region of optimization based on engine usage data

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  3. Electric Vehicles

    SciTech Connect

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electric Vehicles

    ScienceCinema

    Ozpineci, Burak

    2016-07-12

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. Idling Reduction for Emergency and Other Service Vehicles

    SciTech Connect

    2015-05-07

    This is a fact sheet about reducing idling for emergency and service vehicles. Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling.

  6. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect

    Not Available

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  7. Electric Drive Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles & Charging Stations Alleyn Harned Executive Director aharned@vacleancities.org October 19, 2016 Federal Agency Workplace Charging Workshop Clean Cities / 2 Agenda NREL Image Gallery #14922 & #23854  EVSE & PEV Basics  PEV Models  AFDC Station Locator  Policies & Incentives  Readiness Efforts Clean Cities / 3 * Hybrid Electric - Battery assisted - Gasoline engine * Plug-in Electric - Gasoline backup for limited electric range (53 miles) - 10 to 20

  8. Conventional engine technology. Volume I. Status of OTTO cycle engine technology

    SciTech Connect

    Dowdy, M.W.

    1981-12-15

    Federally-mandated emissions standards have led to mator changes in automotive technology during the last decade. Efforts to satisfy the new standards have been directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described in this volume, and the improvements brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines, i.e., uniform charge engines with and without fuel injection, stratified charge engines, and rotary engines, are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  9. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  10. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Saver

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as ...

  11. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy ...

  12. Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Electric Vehicles Electric Vehicles Title XVII Clean Energy Projects Loan Guarantee Program The Title XVII innovative clean energy projects loan program (Title XVII) provides loan guarantees to accelerate the deployment of innovative clean energy technology. Loan guarantees are made to qualified projects and applicants who apply for funding in response to open technology-specific solicitations. On June 21, 2016, LPO published a supplement to its existing Renewable Energy and

  13. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  14. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  15. Clean Cities 2014 Vehicle Buyer's Guide

    SciTech Connect

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  16. Vehicle Technologies Office Merit Review 2014: Significant Enhancement of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering | Department of Energy Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2014: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle

  17. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  18. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  1. Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimization of Fuels and Engines John Farrell BioEnergy 2016 July 14, 2016 Fuel and Engine Co-Optimization o What fuel properties maximize engine performance? o How do engine parameters affect efficiency? o What fuel and engine combinations are sustainable, affordable, and scalable? Goal: better fuels and better vehicles sooner 30% per vehicle petroleum reduction via efficiency and displacement efficiency and displacement Governing Co-Optima hypotheses: There are engine architectures and

  2. Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimization of Fuels and Engines John Farrell SAE High Efficiency Internal Combustion Engine Symposium April 11, 2016 2 Goal: better fuels and better vehicles sooner Fuel and Engine Co-Optimization o What fuel properties maximize engine performance? o How do engine parameters affect efficiency? o What fuel and engine combinations are sustainable, affordable, and scalable? 3 30% per vehicle petroleum reduction via efficiency and displacement source: EIA 2014 reference case Fuel selection

  3. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  4. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  5. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  6. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  7. Hybrid Vehicle Program. Final report

    SciTech Connect

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  8. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  9. Vehicle Technologies Office: Student Competitions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development » Vehicle Technologies Office: Student Competitions Vehicle Technologies Office: Student Competitions The Vehicle Technologies Office (VTO) sponsors advanced vehicle technology competitions (AVTCs) to educate and develop the next generation of automotive engineers with hands-on, real-world experience. For more than 25 years, the Department of Energy has sponsored vehicle student competitions in partnership with the North American auto industry. Launched in

  10. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  11. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company anderson_bioenergy_2015.pdf (217.53 KB) More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Vehicle Technologies Office Merit Review 2016: Overview of the DOE Fuel and Lubricant

  12. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  13. Cost Effectiveness of Technology Solutions for Future Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the ... European Diesel Engine Technology: An Overview 3-Cylinder Turbocharged Gasoline Direct ...

  14. Under Secretary Nominee Sees INL Advanced Vehicle Technology...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Under Secretary Nominee Sees INL Advanced Vehicle Technology Facilities Acting Under Secretary of Energy and ARPA-E Director Dr. Arun Majumdar listens to INL engineers explain the ...

  15. Alternative Fuels and Advanced Vehicle Data Center Creates New...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Would using a biodiesel blend or investing in onboard power sources that reduce engine ... techniques, hybrid electric vehicles, biodiesel blends and other alternative fuels, or ...

  16. Vehicle Technologies Office Merit Review 2014: Model Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Analysis of Clean & Efficient Engine Combustion ... 2014 DOE Hydrogen and Fuel Cells Program and Vehicle ... Efficient Modeling of High-Efficiency Clean Combustion ...

  17. Vehicle Technologies Office Merit Review 2016: Chemical Kinetic...

    Office of Environmental Management (EM)

    Vehicle Technologies Office Merit Review 2016: Chemical Kinetic Models for Advanced Engine Combustion Presentation given by Lawrence Livermore National Laboratory (LLNL) at the ...

  18. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    vehicles decreases with time. * Manufacturing costs associated with batteries and electric machines fall faster than those of conventional technologies (i.e., engine,...

  19. Vehicle Technologies Office Merit Review 2016: Co-Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications City of Tulare Renewable Biogas Fuel Cell Project Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima) ...

  20. Vehicle Technologies Office Merit Review 2014: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2014: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery ...

  1. Vehicle Technologies Office Merit Review 2015: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery ...

  2. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Energy.gov [DOE] (indexed site)

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and ...

  3. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  4. Vehicle Technologies Office Merit Review 2015: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  5. Vehicle Technologies Office Merit Review 2014: Low-Temperature...

    Energy Saver

    Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen ...

  6. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  7. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  8. Enabling the Next Generation of High Efficiency Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy

  9. Friction Modeling for Lubricated Engine and Drivetrain Components...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling for Lubricated Engine and Drivetrain Components Friction Modeling for Lubricated Engine and Drivetrain Components 2010 DOE Vehicle Technologies and Hydrogen Programs...

  10. Friction and Wear Enhancement of Titanium Alloy Engine Components...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Wear Enhancement of Titanium Alloy Engine Components Friction and Wear Enhancement of Titanium Alloy Engine Components 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  11. Engineering of High Energy Cathode Materials | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engineering of High Energy Cathode Materials Engineering of High Energy Cathode Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit ...

  12. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Energy.gov [DOE] (indexed site)

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  13. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  14. High Efficiency Engine Systems Development and Evaluation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Engine Systems Development and Evaluation High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  15. Engineering Property Prediction Tools for Tailored Polymer Composite...

    Energy.gov [DOE] (indexed site)

    Engineering Property Prediction Tools for Tailored Polymer Composite Structures Vehicle Technologies Office Merit Review 2014: Predictive Engineering Tools for Injection-Molded ...

  16. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review SuperTruck Program: Engine Project Review View from the ...

  17. Examining Effects of Lubricant Composition in Engine Component...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (LFEEE) in Modern Internal Combustion Engines Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies R&D Annual Progress Report Engine Friction Reduction Through ...

  18. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ...

  19. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  20. Tailored Materials for Advanced CIDI Engines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced CIDI Engines Tailored Materials for Advanced CIDI Engines 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer ...

  1. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Energy.gov [DOE] (indexed site)

    The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle ...

  2. OTEC (Ocean Thermal Energy Conversion) plant optimal design, fabrication and inspection specifications for OTEC ocean engineering systems

    SciTech Connect

    Fjeld, S.; Stokke, K.; Roenning, B.; Mjelde, K.M.; Tvedt, L.

    1981-09-30

    The purpose of the report is to give recommendations for possible modifications of the minimum technical requirements for the OTEC pilot plant to obtain optimal technical specifications considering total lifetime costs, lost income associated with production downtime, etc., without infringing on the minimum required safety level.

  3. Co-Optimization of Fuels and Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Fuels and Vehicles Jim Anderson, Ford Motor Company Bioenergy 2015 June 24, 2015 Sustainable Personal Transportation Materials, Manufacturing, End-of-Life Use Less Fuel Use "Renewable" Low-GHG Fuel Reduce Vehicle Work - weight, friction, drag C x H y O z Hydrogen Electricity Increase Primary Efficiency - Engine (GTDI, CR, diesel, fuel cell) - Transmission Increase Average Efficiency - HEV Sustainable LDV transportation requires actions on multiple fronts: vehicle, fuel, and user.

  4. Executive Fleet Vehicles Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Executive Fleet Vehicles Report Executive Fleet Vehicles Report On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize

  5. Vehicle Energy Management | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Management Vehicle Energy Management Vehicles are complex systems with multiple power sources (such as an internal combustion engine and battery), multiple power conversion components (such as the motor and gearbox) and must satisfy numerous safety and comfort constraints, under various environmental constraints (such as temperature or grade). At Argonne, we explore how to control all these variables to make cars and trucks as energy-efficient as possible. Furthermore, vehicles are increasingly

  6. Categorical Exclusion Determinations: Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reequipping and Engineering CX(s) Applied: B1.31, B5.1 Date: 09062011 ... Aptera All-Electric and Hybrid Electric Vehicles CX(s) Applied: B1.31, B5.1 Date: 0620...

  7. Fuel Efficiency of New European HD Vehicles

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Google Archives by Fiscal Year — Vehicles

    Energy.gov [DOE]

    From the EERE Web Statistics Archive: Vehicle Technologies Office, retired Google Analytics profiles for the AFDC Ethanol FY12 and the Directions in Engine-Efficiency and Emissions Research Conference FY12-FY14 sites.

  9. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect

    Not Available

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  10. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  11. Vehicle Technologies Office: Proceedings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Proceedings Vehicle Technologies Office: Proceedings Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 DOE Vehicle Technologies Office Annual Merit Review 2015 2014 2013 2012 2011 2010 2009 Thermoelectrics Applications Workshop 2012 2011 2009 A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

  12. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  13. Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction...

    Alternative Fuels and Advanced Vehicles Data Center

    ... A very small electric pump is connected to the water line, which keeps the vehicle's cooling system and heater operating after the engine is turned off, using engine heat that ...

  14. ETA-HITP11 - Vehicle Verification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Appendix A identifies all mandatory requirements of the HICEV America Vehicle Specification. Many mandatory requirements can be verified by a physical inspection or document review ...

  15. Vehicle-Grid Interoperability | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    as well as charging interoperability, to ensure future electric vehicles and charging stations worldwide work together seamlessly Specifications and Test Procedures ...

  16. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  17. Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature gasoline combustion engine research. ace004_dec_2014_o.pdf (1.5 MB) More

  18. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  19. Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature gasoline combustion engine research. ace004_dec_2015_o.pdf (1.46 MB) More

  20. Vehicle Technologies Office Merit Review 2016: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2016: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines ace004_dec_2016_o_web.pdf (1.4 MB) More Documents &

  1. Vehicle Technologies Office Merit Review 2015: High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion in Multi-Cylinder Light-Duty Engines | Department of Energy High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about clean combustion in multi-cylinder light-duty engines.

  2. Vehicle Technologies Office Merit Review 2015: High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for High Efficiency Engines | Department of Energy High Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high temperature materials for high efficiency engines. pm053_muralidharan_2015_o.pdf (1.51 MB) More

  3. Comparison of indirect cost multipliers for vehicle manufacturing

    SciTech Connect

    Vyas, A.; Santini, D.; Cuenca, R.

    2000-05-16

    In the process of manufacturing and selling vehicles, a manufacturer incurs certain costs. Among these costs are those incurred directly as a part of manufacturing operations and those incurred indirectly in the processes of manufacturing and selling. The indirect costs may be production-related, such as R and D and engineering; business-related, such as corporate staff salaries and pensions; or retail-sales-related, such as dealer support and marketing. These indirect costs are recovered by allocating them to each vehicle. Under a stable, high-volume production process, the allocation of these indirect costs can be approximated as multipliers (or factors) applied to the direct cost of manufacturing. A manufacturer usually allocates indirect costs to finished vehicles according to a corporation-specific pricing strategy. Because the volumes of sales and production vary widely by model within a corporation, the internal corporate percent allocation of various accounting categories (such as profit or corporate overheat) can vary widely among individual models. Approaches also vary across corporations. For these purposes, an average value is constructed, by means of a generic representative method, for vehicle models produced at high volume. To accomplish this, staff at Argonne National Laboratory's (ANL's) Center for Transportation Research analyzed the conventional vehicle cost structure and developed indirect cost multipliers for passenger vehicles. This memorandum summarizes the results of an effort to compare and put on a common basis the cost multipliers used in ANL's electric and hybrid electric vehicle cost estimation procedures with those resulting from two other methodologies. One of the two compared methodologies is derived from a 1996 presentation by Dr. Chris Borroni-Bird of Chrysler Corporation, the other is by Energy and Environmental Analysis, Inc. (EEA), as described in a 1995 report by the Office of Technology Assessment (OTA), Congress of the United

  4. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  5. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  6. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  7. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  8. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  9. Engineering Technician

    Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  10. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Interim report, October 1997--April 1998

    SciTech Connect

    Sirman, M.B.; Owens, E.C.; Whitney, K.A.

    1998-09-01

    Exhaust emissions mappings were conducted for six alternative diesel fuels in a Daimler-Benz (DB) OM6l1 diesel engine. The OM6l 1 engine is a 2.2L, direct-injection diesel with a Bosch, high-pressure, common-rail, fuel-injection system. The engine design closely matches the specifications of the Partnership for a New Generation Vehicle (PNGV) target compression-ignition engine. Triplicate 13-mode, steady-state test sequences were performed for each fuel, with a 2-D control fuel serving as the baseline. No adjustments were made to the engine to compensate for any performance differences resulting from fuel property variations.

  11. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Saver

    It tests a number of types of electric vehicle supply equipment (EVSE), including wireless charging, conductive EVSE, DC conductive EVSE, bi-directional transfer (vehicle-to-grid ...

  12. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  13. Transport vehicle for manned Mars missions powered by inertial confinement fusion

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-06-26

    Inertial confinement fusion (ICF) is an ideal engine power source for manned spacecraft to Mars because of its inherently high power-to-mass ratios and high specific impulses. We have produced a concept for a vehicle powered by ICF and utilizing a magnetic thrust chamber to avoid plasma thermalization with wall structures and the resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. This vehicle is capable of 100-day manned Mars missions with a 100-metric-ton payload and a total vehicle launch mass near 6000 metric tons, based on advanced technology assumed to be available by A.D. 2020. Such short-duration missions minimize radiation exposures and physiological deterioration of astronauts.

  14. Vehicle Technologies Office: Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Vehicle Technologies Office » Vehicle Technologies Office: Budget Vehicle Technologies Office: Budget Activities FY 2014* ($K) FY 2015♦ ($K) FY 2016♦ ($K) FY 2017 Request** ($K) Batteries & Electric Drive Technologies $105,449 $103,701 $141,100 $169,000 Vehicle Systems $42,474 $40,393 $30,600 $90,000 Advanced Combustion Engine R&D $48,371 $49,000 $37,141 $74,800 Materials Technology $36,197 $35,602 $26,959 $82,700 Fuel and Lubricant Technologies $15,478 $20,000 $22,500

  15. Automotive HCCI Engine Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive HCCI Engine Research Automotive HCCI Engine Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace006_steeper_2012_o.pdf (6.04 MB) More Documents & Publications Automotive HCCI Engine Research Automotive HCCI Engine Research Automotive HCCI Engine Research

  16. Vehicle & Systems Simulation & Testing

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary

  17. Survey Date Agent CAS Limit Type TWA/STEL/Excur % OEL OEL Air Conc Farm Specific Location Work Activity Required Analysis Engineering Controls

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Personal Sampling Data 05-2005 through 12-2007 05/27/2015 Survey Date Agent CAS Limit Type TWA/STEL/Excur % OEL OEL Air Conc Farm Specific Location Work Activity Required Analysis Engineering Controls 5/6/2005 Ammonia 7664-41-7 25 ppm <0.791 ppm S FARM S109 Construction Activities NH3 8 Hr TWA <0.147 ppm 5/6/2005 1-Butanol 71-36-3 20 ppm <0.111 ppm S FARM 5109 Construction Activities VOC 8 Hr TWA <0.021 ppm 5/6/2005 2-Butanone 78-93-3 200 ppm <0.19 ppm S FARM S109 Construction

  18. Think City Electric Vehicle Demonstration Program

    SciTech Connect

    Ford Motor Company

    2005-03-01

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  19. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  20. Engine Maturity, Efficiency, and Potential Improvement

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program

  1. Biodiesel Impact on Engine Lubricant Oil Dilution

    Office of Energy Efficiency and Renewable Energy (EERE)

    Heavy-duty engine and light-duty vehicle experiments were conducted to investigate the potential for lubricant dilution by fuel during DPF regeneration events.

  2. Integrated Computational Materials Engineering (ICME) for Mg...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm012li2011o.pdf More Documents & Publications Integrated Computational Materials Engineering ...

  3. Integrated Computational Materials Engineering (ICME) for Mg...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project (Part 1) Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project (Part 1) 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  4. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  5. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  6. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  8. Vehicle Technologies Office Merit Review 2016: Lean Miller Cycle System Development for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  9. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles Performance Data

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Performance and testing data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  10. NASA Lewis Stirling engine computer code evaluation

    SciTech Connect

    Sullivan, T.J.

    1989-01-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was /minus/11 percent for the P-40 and 12 percent for the RE-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvement to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions. 13 refs., 26 figs., 3 tabs.

  11. Electric vehicle climate control

    SciTech Connect

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  12. Thermoelectric generator for motor vehicle

    DOEpatents

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  13. Electric machine for hybrid motor vehicle

    SciTech Connect

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  14. Transportation and Vehicle Energy Modeling | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation and Vehicle Energy Modeling Transportation and Vehicle Energy Modeling For the past 15 years, Argonne has been at the forefront of research in energy-efficient transportation. In recent years, the vehicle technologies have become increasingly complex with the introduction of new powertrain configurations (such as electrified vehicles), new component technologies (such as advanced transmissions and engines) and control strategies (such eco-routing). In addition, with increased

  15. Vehicle Technologies Office: Information for Members of Media | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy News » Vehicle Technologies Office: Information for Members of Media Vehicle Technologies Office: Information for Members of Media The Vehicle Technologies Office provides photos, videos, and contact information for members of the media to cover Vehicle Technologies Office-related news. Photos Members of the media may use the following photos. For low-resolution images, click on an image below. Photo of an engine. Photo of a hybrid electric bus. Photo of a man fueling a natural

  16. Vehicle Technologies Office: Parasitic Loss Reduction Research and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development (R&D) | Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Parasitic Loss Reduction Research and Development (R&D) Vehicle Technologies Office: Parasitic Loss Reduction Research and Development (R&D) Non-engine losses such as wind resistance and drag, braking, and rolling resistance can account for up to a 45% decrease in efficiency for heavy-duty vehicles. The Vehicle Technologies Office (VTO) supports research and development

  17. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  18. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Brochure), Vehicle Technologies Program (VTP) | Department of Energy Program: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) vtp_goals-strategies-accomp.pdf (1.41 MB) More Documents & Publications Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Materials Technologies: Goals, Strategies, and Top

  19. Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines (Co-Optima) -- Thrust II Engine Projects, Sprays, and Emissions Control Research | Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) -- Thrust II Engine Projects, Sprays, and Emissions Control Research Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima) -- Thrust II Engine Projects, Sprays, and Emissions Control Research Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office

  20. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  1. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  2. Vehicle barrier

    DOEpatents

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  3. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  4. New Calculator Helps You Buy the Energy-Saving Vehicle of Your...

    Energy Saver

    costs of specific vehicle models, including conventional cars and trucks, as well as vehicles running on alternative fuels such as electricity, ethanol, natural gas, or biodiesel. ...

  5. Electric vehicles move closer to market

    SciTech Connect

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  6. Methanol as a fuel for commercial vehicles

    SciTech Connect

    Heinrich, W.; Marquardt, K.J.; Schaefer, A.J.

    1986-01-01

    This paper discusses two possibilities for using methanol in heavy-duty engines. If the engine is modified according to the fuel properties, pure methanol can be used as fuel for a spark ignition methanol-gas engine. When the fuel is adapted to meet the requirements of the engine additized methanol serves as a fuel for an only slightly modified direct-injection diesel engine. The comparison takes into consideration fuel cost, convertibility of vehicles already in use, operational safety and reliability, requirements regarding fuel production and distribution, conventional fuel/alternative fuel reversibility, and environmental aspects.

  7. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  8. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Energy Saver

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  9. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy.gov [DOE] (indexed site)

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  10. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office ...

  11. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Office of Environmental Management (EM)

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes ...

  12. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improved Energy Efficiency and Reduced Emissions in Engines | Department of Energy Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced

  13. Vehicle Technologies Office Merit Review 2016: Accelerating Predictive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Simulation of IC Engines with High Performance Computing | Department of Energy Accelerating Predictive Simulation of IC Engines with High Performance Computing Vehicle Technologies Office Merit Review 2016: Accelerating Predictive Simulation of IC Engines with High Performance Computing Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion

  14. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  15. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  16. Co-Optimization of Fuels and Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines Co-Optimization of Fuels and Engines Breakout Session 3D: Opportunities for Innovation in Fuel-Engine Co-Optimization Co-Optimization of Fuels and Engines John Farrell, Laboratory Program Manager - Vehicles Technology Office, National Renewable Energy Laboratory farrell_bioenergy_2016.pdf (1.98 MB) More Documents & Publications Co-Optimization of Fuels and Engines Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima) Overview CO-OPTIMIZATION

  17. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  18. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  19. ETA-NTP011 Vehicle Verification - Revision 4

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    testing of electric vehicles, provided in the NEV America Technical Specifications. ... 5.1 7.3 Vehicles using HIGH VOLTAGE traction systems shall be equipped with a key ...

  20. Next Generation Diesel Engine Control

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  1. Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications

    Energy.gov [DOE]

    Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  2. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies to Meet Fuel Economy Requirements

    Energy.gov [DOE]

    Vehicle manufacturers are turning to vehicle technologies to improve efficiency and meet strict fuel economy requirements. Over the last 10 years, the use of engine technologies like multi-valves...

  3. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy.gov [DOE] (indexed site)

    project of electric drive vehicles and charging infrastructure ever, the VTO-supported EV Project wrote a number of white papers on plug-in electric vehicle community readiness. ...

  4. System and method of vehicle operating condition management

    DOEpatents

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  5. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using lightweight components and high-efficiency engines enabled by advanced materials in one quarter of the U.S. fleet could save more than 5 billion gallons of fuel annually by 2030. The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) collaborates with industry to improve materials that will increase vehicle efficiency while meeting consumer and industry expectations. It does this through work on both Lightweight Materials and Propulsion Materials. In the case of Propulsion

  6. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  7. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  8. Control system and method for a hybrid electric vehicle

    DOEpatents

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  9. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    SciTech Connect

    Not Available

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  10. Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  11. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Combustion: Heavy-Duty Optical-Engine Research Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research 2009 DOE Hydrogen Program and Vehicle Technologies ...

  12. Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

    Energy.gov [DOE]

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

  13. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan

    Energy.gov [DOE]

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  14. Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines (Co-Optima) -- Fuel Properties and Chemical Kinetics and Thrust I Engine Projects | Department of Energy Fuel Properties and Chemical Kinetics and Thrust I Engine Projects Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima) -- Fuel Properties and Chemical Kinetics and Thrust I Engine Projects Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual

  15. Method and apparatus for controlling continuously variable transmission for vehicle

    SciTech Connect

    Osanai, A.; Niwa, T.; Gono, T.

    1987-04-14

    A method is described of controlling a speed ratio of a continuously variable transmission for a vehicle for transmitting a rotary motion of an engine of the vehicle to drive wheels of the vehicle with a stepless speed change. The speed ratio of the transmission is regulated such that an actual speed of the engine coincides with a target engine speed. The method comprises: determining a first target speed of the engine based on a predetermined currently required output of the engine and according to a predetermined relation between the first target speed of the engine and the required output of the engine. The first target speed of the engine is normally used as the target engine speed to regulate the speed ratio of the transmission; detecting a running speed of the vehicle; and determining a second target speed of the engine based on a predetermined transmission efficiency of the transmission and on the first target speed of the engine. The second target speed of the engine is lower than the first target speed.

  16. Vehicle Technologies Office Merit Review 2015: Significant Enhancement of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering | Department of Energy Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel

  17. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  18. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  19. 2014 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  20. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  1. 2014 Vehicle Technologies Market Report Released

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory recently released the Vehicle Technologies Market Report, which details the past year’s major trends in light-, medium-, and heavy-duty car and truck markets as well as patterns in the underlying economic and transportation systems. The report specifically focuses on developments in high-efficiency and alternative-fuel vehicle technologies over the course of 2014.

  2. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that

  3. Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell

  4. Feasibility study of air-breathing turbo-engines for horizontal take-off and landing space plane

    SciTech Connect

    Minoda, M.; Sakata, K.; Tamaki, T.; Saitoh, T.; Yasuda, A.

    1989-01-01

    Various concepts of air-breathing engines (ABEs) that could be used for a horizontal take-off and landing SSTO vehicle are investigated. The performances (with respect to thrust and the specific fuel consumption) of turboengines based on various technologies, including a turbojet with and without afterburner (TJ), turboramjet, and air-turbo-ram jet engines are compared. The mission capabilities of these ABEs for SSTO and TSTO vehicles is examined in terms of the ratio of the effective remaining weight (i.e., the weight on the orbit) to the take-off gross weight, using two-dimensional flight analysis. It was found that the dry TJ with the turbine inlet temperature 2000 C is one of the most promising candidates for the propulsion system of the SSTO vehicle, because of its small weight and high specific impulse. 6 refs.

  5. Vehicle Emissions Review- 2012

    Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  6. Heavy Vehicle Simulator

    SciTech Connect

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  7. Propane Vehicle Basics

    Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  8. All-terrain vehicle

    SciTech Connect

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  9. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle automation is a promising petroleum reduction technology, and platooning systems for heavy-duty vehicles are likely to be a frst step towards acceptance of vehicle automation. These systems may employ existing technologies such as radar or laser range fnders, global positioning system (GPS), dedicated vehicle-to-vehicle communications (V2V), and braking and engine torque authority to enable vehicles to follow safely in close proximity with the goal of reducing fuel consumption, traffc

  10. Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020

    Office of Energy Efficiency and Renewable Energy (EERE)

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

  11. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  12. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  13. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  14. Vehicle Technologies Office: Batteries | Department of Energy

    Energy Saver

    Plug-in Electric Vehicles & Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the ...

  15. Sandia National Laboratories: Careers: Aerospace Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerospace Engineering Aerospace imagery Sandia's aerospace engineers have provided critical data for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic to hypersonic, through their collaborative work on multidisciplinary teams. Our aerodynamics and astronautics specialists integrate the results from experiments, analysis, and simulation to solve complex problems of

  16. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D One dimensional 3D Three dimensional A/C Air-Conditioning ABR Advanced Battery Research AC Alternating current ACE Advanced combustion engine ACEC Advanced Combustion and Emissions Control ADP Advanced drying process AEC Automotive Electronics Council AEC Advanced Engine Combustion AFCI Advanced Fuel Cycle Initiative AFDC Alternative Fuels Data Center AFR Air to fuel ratio AFV Alternative fuel vehicle Ah Ampere-hour AKI Anti-knock index Al Aluminum ALD Atomic Layer Deposition AlF 3 Aluminum

  17. Using Natural Gas for Vehicles: Comparing Three Technologies

    SciTech Connect

    2015-12-01

    Natural gas could be used as a transportation fuel, especially with the recent expansion of U.S. resource and production. This could mean burning natural gas in an internal combustion engine like most of the vehicles on the road today. Or, with the advanced vehicles now becoming available, other pathways are possible to use natural gas for personal vehicles. This fact sheet summarizes a comparison of efficiency and environmental metrics for three possible options.

  18. Using Natural Gas for Vehicles: Comparing Three Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Natural gas could be used as a transportation fuel, especially with the recent expansion of U.S. resource and production. This could mean burning natural gas in an internal combustion engine like most of the vehicles on the road today. Or, with the advanced vehicles now becoming available, other pathways are possible to use natural gas for personal vehicles. This fact sheet summarizes a comparison of efficiency and environmental metrics for three possible options.

  19. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  20. Heavy Vehicle Systems Optimization Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy Vehicle Systems Optimization Peer Review Heavy Vehicle Systems Optimization Peer Review This report is a summary and analysis of comments from the Review Panel at the FY 2006 DOE Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation, held April 18-20, 2006. Merit Review and Peer Evaluation (876.09 KB) More Documents & Publications Advanced Combustion Engine R&D and Fuels Technology Merit Review 2013 Annual Merit Review Results Report 2013 Annual Merit Review Results

  1. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Offers Opportunity Nationwide | Department of Energy Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide September 11, 2014 - 2:38pm Addthis A fuel cell electric vehicle (FCEV) in Hawaii. Engineers from Idaho National Laboratory and National Renewable Energy Laboratory identified a new way to launch economically viable hydrogen fueling

  2. Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuels | Department of Energy Unconventional Hydrocarbon Fuels Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon Fuels Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about unconventional hydrocarbon fuels. ft027_bays_2015_o.pdf (2.79 MB) More Documents & Publications Fuels for Advanced Combustion Engines Vehicle Technologies

  3. Predicting and Utilizing the Vehicle's Past and Futuer Road Grade

    Office of Energy Efficiency and Renewable Energy (EERE)

    Predicted road grade may be used to estimate the power required to propel the vehicle through the upcoming terrain so that the engine controller can deliver the necessary power.

  4. Predicting and Utilizing the Vehicle's Past and Futuer Road Grade...

    Energy.gov [DOE] (indexed site)

    Predicted road grade may be used to estimate the power required to propel the vehicle through the upcoming terrain so that the engine controller can deliver the necessary power. ...

  5. Integrated Vehicle and Powertrain Technology for EPA 2010 and Beyond

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side ...

  7. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram ...

  8. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Energy.gov [DOE] (indexed site)

    about SuperTruck Program: Engine Project Review. ace058singh2014o.pdf (1.9 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck ...

  9. Vehicle Technologies Office Merit Review 2015: SuperTruck Program...

    Energy.gov [DOE] (indexed site)

    about SuperTruck program: engine project review. ace058singh2015o.pdf (2.57 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: SuperTruck ...

  10. NREL Innovation Improves Safety of Electric Vehicle Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Improves Safety of Electric Vehicle Batteries October 30, 2015 A man holds a sheet of copper discs. NREL Senior Engineer Mathew Keyser holds a sheet of copper discs, one ...

  11. Vehicle Technologies Office Merit Review 2014: Overview of the...

    Energy Saver

    Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Combustion Engine R&D Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel ...

  12. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  13. High Efficiency GDI Engine Research, with Emphasis on Ignition Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy GDI Engine Research, with Emphasis on Ignition Systems High Efficiency GDI Engine Research, with Emphasis on Ignition Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace084_wallner_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Vehicle Technologies Office Merit

  14. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  15. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about NOx control ...

  16. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  17. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Energy.gov [DOE] (indexed site)

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative ...

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011o.pdf (914.05 KB

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  20. Automotive Stirling Engine Mod I design review report. Volume III

    SciTech Connect

    Not Available

    1982-08-01

    This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)