National Library of Energy BETA

Sample records for vehicle market driving

  1. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  2. Advanced Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Advanced Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Environmental Management (EM)

    Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies ...

  6. Electric drive mechanism for vehicles

    SciTech Connect

    Bader, C.

    1983-06-21

    An electric drive mechanism is disclosed for vehicles, especially buses with overhead trolley routes, which routes are provided with relatively short interruptions in the overhead trolley. The drive mechanism includes a flywheel two externally excited electric motors which are adapted to be switched over from prime mover operation to generator operation, and which motors are effective as a ward-leonard drive during flywheel operation. The first electric motor is constructed for half of a maximum drive power and the second electric motor is likewise constructed for half or for square root 2/2 times the maximum drive power. Both electric motors are connected electrically in parallel during operation from the main electrical supply. The first and second motors are electrically connected in parallel during operation of the vehicle from the main electrical supply when a change-speed transmission is provided for connecting a drive shaft of one of the motors with driven vehicle wheels. A planetary gear transmission and a further transmission are provided for mechanically connecting the drive shaft of one of the motors with the second motor and with the flywheel.

  7. Electric Drive Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles & Charging Stations Alleyn Harned Executive Director aharned@vacleancities.org October 19, 2016 Federal Agency Workplace Charging Workshop Clean Cities / 2 Agenda NREL Image Gallery #14922 & #23854  EVSE & PEV Basics  PEV Models  AFDC Station Locator  Policies & Incentives  Readiness Efforts Clean Cities / 3 * Hybrid Electric - Battery assisted - Gasoline engine * Plug-in Electric - Gasoline backup for limited electric range (53 miles) - 10 to 20

  8. US DRIVE Driving Research and Innovation for Vehicle Efficiency...

    Energy Saver

    US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan This document describes the vision, mission, scope, and governing ...

  9. Vehicle Technologies Office: Electric Drive Systems Research...

    Energy.gov [DOE] (indexed site)

    Vehicle Technologies Office: Electric Drive Systems Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board ...

  10. Drive reconfiguration mechanism for tracked robotic vehicle

    DOEpatents

    Willis, W. David

    2000-01-01

    Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

  11. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive ...

  12. Fluid cooled vehicle drive module

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  13. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Energy Saver

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text ...

  14. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  15. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy.gov [DOE] (indexed site)

    Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011o.pdf (914.05 KB

  17. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012o.pdf (2.12 MB

  19. 2012 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  20. The drive toward hydrogen vehicles just got shorter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the ...

  1. Driving Change in Residential Energy Efficiency: Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs (301) Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs ...

  2. Green Innovation for Global Vehicle Markets....How Can SAE Help...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation for Global Vehicle Markets....How Can SAE Help? Green Innovation for Global Vehicle Markets....How Can SAE Help? Government and industry will continue to drive green ...

  3. Vehicle Technologies Office: U.S. DRIVE 2015 Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. DRIVE 2015 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2015 Technical Accomplishments Report The U.S. DRIVE 2015 Highlights of Technical ...

  4. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership ...

  5. 2014 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  6. Vehicle Technologies Office: U.S. DRIVE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: U.S. DRIVE Vehicle Technologies Office: U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related energy infrastructure technology research and development (R&D). Specifically, the Partnership is a

  7. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  8. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  9. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating ...

  10. 2013 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  11. 2011 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  12. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium and Heavy-Duty Vehicle Field Evaluations Battery Pack Requirements and ...

  13. Electric Drive Vehicle Climate Control Load Reduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Climate Control Load Reduction Electric Drive Vehicle Climate Control Load Reduction 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  14. US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Systems and Analysis Technical Team Roadmap US DRIVE Vehicle Systems and Analysis Technical Team Roadmap VSATT provides the analytic support and subsystem characterizations ...

  15. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries ...

  16. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments Report The U.S. DRIVE 2013 Highlights of Technical Accomplishments Report ...

  17. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments Report The U.S. DRIVE 2014 Highlights of Technical Accomplishments Report ...

  18. Vehicle Technologies Office Merit Review 2014: Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) ...

  19. Computer-Aided Engineering for Electric-Drive Vehicle Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computer-Aided Engineering for Electric-Drive Vehicle Batteries - Sandia Energy Energy ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  20. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  1. Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder,

  2. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program ...

  3. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities ...

  4. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  5. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es129_eitouni_2012_p.pdf (644.7 KB) More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for

  6. 2010 Vehicle Technologies Market Report

    SciTech Connect

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  7. 2008 Vehicle Technologies Market Report

    SciTech Connect

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  8. Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership focuses primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks). Mass reduction also enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed. This roadmap lays out

  9. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  10. 2014 Vehicle Technologies Market Report (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national...

  11. Vehicle Technologies Office Merit Review 2016: Electric Drive...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Inverter R&D Vehicle Technologies Office Merit Review 2014: Inverter R&D

  12. Vehicle Technologies Office Merit Review 2015: Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and ...

  13. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  14. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles...

    Energy.gov [DOE] (indexed site)

    The figure below shows the Environmental Protection Agency (EPA) driving ranges for ... not directly match EPA-stated ranges that were obtained through actual vehicle testing. ...

  15. Driving Change in Residential Energy Efficiency: Electric Vehicles (301)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Peer Exchange Call Series: Driving Change in Residential Energy Efficiency: Electric Vehicles (301), call slides and discussion summary.

  16. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric ...

  17. NREL Team Investigates Secondary Uses for Electric Drive Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Team Investigates Secondary Uses for Electric Drive Vehicle Batteries April 5, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), industry and ...

  18. Electric Drive Vehicle Level Control Development Under Various...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Level Control Development Under Various Thermal Conditions Electric Drive Vehicle Level Control Development Under Various Thermal Conditions 2012 DOE Hydrogen and Fuel Cells ...

  19. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Outreach Program | Department of Energy Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt034_ti_ferdowsi_2012_o.pdf (1.02 MB) More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach

  20. US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainability Partnership Plan | Department of Energy Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan This document describes the vision, mission, scope, and governing policies of the U.S. DRIVE Partnership ("Partnership"). Dated November 2016. US DRIVE Partnership Plan with ADDENDUM_NOV 2016.pdf (787.81 KB) More Documents

  1. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  2. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy 4 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments Report The U.S. DRIVE 2014 Highlights of Technical Accomplishments Report summarizes key technical accomplishments in the development of advanced automotive and related energy infrastructure technologies achieved in 2014 by the U.S. DRIVE partnership. 2014 U.S. DRIVE Technical Accomplishments Report (4.84 MB) More Documents & Publications Vehicle

  3. Vehicle drive module having improved EMI shielding

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. Vehicle drive module having improved terminal design

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  5. Vehicle drive module having improved cooling configuration

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. 2014 Vehicle Technologies Market Report Released

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory recently released the Vehicle Technologies Market Report, which details the past year’s major trends in light-, medium-, and heavy-duty car and truck markets as well as patterns in the underlying economic and transportation systems. The report specifically focuses on developments in high-efficiency and alternative-fuel vehicle technologies over the course of 2014.

  7. DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)

    SciTech Connect

    Not Available

    2013-04-01

    This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

  8. Vehicle Technologies Office: U.S. DRIVE 2015 Technical Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy U.S. DRIVE 2015 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2015 Technical Accomplishments Report The U.S. DRIVE 2015 Highlights of Technical Accomplishments Report summarizes key technical accomplishments in the development of advanced automotive and related energy infrastructure technologies achieved in 2015 by the U.S. DRIVE partnership. 2015 U.S. DRIVE Technical Accomplishments Report (3.56 MB) More Documents & Publications

  9. Release of 2015 Vehicle Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory has published the 2015 Vehicle Technologies Market Report.  The report is supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy...

  10. Electric Drive Vehicle Level Control Development Under Various Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conditions | Department of Energy Level Control Development Under Various Thermal Conditions Electric Drive Vehicle Level Control Development Under Various Thermal Conditions 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss070_kim_2012_o.pdf (1.63 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal

  11. Vehicle Technologies Office Merit Review 2015: E-drive Vehicle Sales Analyses

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about E-drive Vehicle...

  12. Electric Drive Vehicle Climate Control Load Reduction

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accomplishments | Department of Energy US DRIVE Partnership Plan, Roadmaps, and Accomplishments Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps, and Accomplishments U.S. DRIVE roadmaps and previous accomplishments reports are available for reference and information. Partnership Plan U.S. DRIVE Partnership Plan - November 2016 Roadmaps Advanced Combustion and Emissions Control: Advanced Combustion and Emission Control Technical Team Roadmap Electrical and Electronics:

  14. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy 3 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments Report The U.S. DRIVE 2013 Highlights of Technical Accomplishments Report summarizes key technical accomplishments in the development of advanced automotive and related energy infrastructure technologies achieved in 2013 by the U.S. DRIVE partnership. 2013USDRIVEAccomplishmentsReport.pdf (14.75 MB) More Documents & Publications US DRIVE Electrochemical

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  19. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  20. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of ...

  1. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis PI: Jeff Gonder (NREL) Team: Laurie Ramroth and Aaron Brooker May 15, 2012 Project ID : VSS043 This ...

  2. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis DOE VTP Annual Merit Review PI: Robb A. Barnitt Organization: NREL May 10, 2011 Project ID: VSS043 This ...

  3. #LabChat Recap: Innovations Driving More Efficient Vehicles ...

    Energy.gov [DOE] (indexed site)

    Addthis Related Articles LabChat Recap: The Future of Biofuels LabChat Recap: What is Dark Energy What improvements are making vehicles drive farther? Learn about the ...

  4. #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...

    Energy.gov [DOE] (indexed site)

    ... Related Articles LabChat Recap: Innovations Driving More Efficient Vehicles What is dark energy? Learn about the force we think accounts for three-quarters of the mass and energy ...

  5. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Voltage Solid Polymer Batteries for Electric Drive Vehicles Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik The purpose of this project was for Seeo to develop a...

  6. Advanced Electric Drive Vehicle Education Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt031tiebron2011p.pdf (248.66 KB

  7. Advanced Electric Drive Vehicle Education Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  9. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  10. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  12. Electric vehicles move closer to market

    SciTech Connect

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  13. Advanced Electric Drive Vehicle Education Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt031tiebron2012o.pdf (1.45 MB

  14. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect

    Pesaran, A. A.

    2011-05-01

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  15. Strategies for Marketing and Driving Demand for Commercial Financing Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Neighborhood Program Financing and Commercial Peer Exchange Call: Strategies for Marketing and Driving Demand for Commercial Financing Products, Call Slides and Discussion Summary, February 2, 2012.

  16. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  17. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introduction...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering ICEPAG Conference University of California, ...

  18. Distributing Urea for the On-Road Vehicle Market | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributing Urea for the On-Road Vehicle Market Distributing Urea for the On-Road Vehicle Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored ...

  19. Revolution...Now Rewind: Revving up the Electric Vehicle Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revving up the Electric Vehicle Market Revolution...Now Rewind: Revving up the Electric Vehicle Market October 5, 2016 - 3:00pm Addthis RevolutionNow Rewind: Revving up the ...

  20. Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

  1. EU Pocketbook - European Vehicle Market Statistics | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - European Vehicle Market Statistics AgencyCompany Organization: International Council on Clean Transportation Website: eupocketbook.theicct.org Transport Toolkit...

  2. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2014-01-01

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  3. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    DOE PAGES [OSTI]

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empiricalmore » application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.« less

  4. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  5. 2010 Vehicle Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Vehicle Technologies Market Report 2010 Vehicle Technologies Market Report Vehicle Technologies 2010_vt_market_rpt.pdf (4.55 MB) More Documents & Publications QER - Comment of Energy Innovation 6 QER - Comment of Energy Innovation 7 Annual DOE Occupational Radiation Exposure | 2008 Report

  6. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    SciTech Connect

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  7. Heel and toe driving on fuel cell vehicle

    SciTech Connect

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  8. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  9. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE PAGES [OSTI]

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimalmore » electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  10. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  11. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Energy.gov [DOE]

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  12. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles

    SciTech Connect

    Prohaska, Robert; Duran, Adam; Ragatz, Adam; Kelly, Kenneth

    2015-05-03

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  13. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  14. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructu...

    Energy Saver

    Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm ...

  15. EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle...

    Office of Environmental Management (EM)

    You Can Now Drive a Fuel Cell Electric Vehicle EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle April 10, 2015 - 11:45am Addthis Toyota Mirai FCEV (top left), ...

  16. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss043_gonder_2012_o.pdf (2.42 MB) More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle

  17. National Drive Electric Week: Celebrating the Growth of Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    As we bid farewell to summer and transition to fall, there are many things to look forward to, such as kids in school, cooler temperatures, colorful leaves, and National Drive Electric Week. This year’s celebration spans eight days from Sept. 10-18, with nearly 200 events across the country to familiarize people with the power, convenience, and widespread availability of electric vehicles.

  18. Using Community-Based Social Marketing to Drive Demand for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the ...

  19. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations 20080910_state_regional_vision.pdf (780.66 KB) More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Innovation and Coordination at the Callifornia Fuel Cell Partnership FCEVs and Hydrogen in California

  20. Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric drive inverter R&D. edt053_chinthavali_2015_o.pdf (2.32 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Electric Drive Inverter

  1. Vehicle Technologies Office Merit Review 2016: Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2016: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems edt053_chinthavali_2016_o_web.pdf (1.97 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive

  2. Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth November 24, 2014 - 11:06am Addthis Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain Class 5 bucket truck at the White House event on November 18, 2014. The truck, which is owned by Pacific Gas and Electric (PG&E), features up to 40 miles of all-electric range and

  3. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect

    O'Keefe, M.; Vlahinos, A.

    2009-08-01

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  4. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  5. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  6. Compact vehicle drive module having improved thermal control

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  8. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  9. Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters

    Energy.gov [DOE]

    Plenary III: Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Nancy N. Young, Vice President, Environmental Affairs, Airlines for America

  10. Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and

  11. Transportation Energy Data Book, Vehicle Technologies Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    report details the major trends in U.S. light-duty ... of high efficiency and alternative fuel technologies, in ... The Mission of the Vehicle Technologies Office (VTO) is ...

  12. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  13. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Fact #946: October 10, 2016 Driving Alone in a Private Vehicle is the Most

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Common Means of Transportation to Work | Department of Energy 946: October 10, 2016 Driving Alone in a Private Vehicle is the Most Common Means of Transportation to Work Fact #946: October 10, 2016 Driving Alone in a Private Vehicle is the Most Common Means of Transportation to Work SUBSCRIBE to the Fact of the Week According to data from the U.S. Bureau of the Census, driving alone in a private vehicle is by far the most common mode of transportation to work in the United States and

  1. Dynamic driving cycle analyses using electric vehicle time-series data

    SciTech Connect

    Staackmann, M.; Liaw, B.Y.; Yun, D.Y.Y.

    1997-12-31

    Dynamic analyses of time-series data collected from real-world driving-cycle field testing of electric vehicles is providing evidence that certain driving-cycle conditions can significantly impact vehicle performance. In addition, vehicle performance results derived from time-series data show relationships that help to characterize driving cycles. Such findings confirm the advantages of time-series data over statistical data, in allowing correlation of vehicle performance characteristics with driving cycles. The driving-cycle vehicle performance analyses were performed using time-series data collected at the Electric and Hybrid Vehicle (EHV) National Data Center (NDC). A total of 71 EHVs are registered in the NDC and over 4,000 trips files have already been uploaded into the NDC database, as of may 1997. Numerous EHVs on multiple trips have been analyzed over the past two years. This paper presents the results of time-series data collected and analyzed for two specific vehicles of the overall program, to illustrate the value of time-series data. The data were analyzed to establish criteria for defining different driving cycles for the day-to-day trips made by vehicles in the program. The authors examined specific parameters such as average vehicle speed, number of stops during a trip, average distance traveled between stops, vehicle acceleration, and average DC kWh consumed per kilometer. Correlation among various parameters is presented in relationship to three driving cycles (highway, suburban, and urban), along with suggested ranges of parametric values defining the regimes of the different cycles.

  2. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  3. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  4. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  5. Fact #946: October 10, 2016 Driving Alone in a Private Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SUBSCRIBE to the Fact of the Week According to data from the U.S. Bureau of the Census, driving alone in a private vehicle is by far the most common mode of transportation to work ...

  6. Advanced Electric Drive Vehicle Education Program: CSU Ventures

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt028apeboan2012

  8. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt028apeboan2011

  9. Advanced Electric Drive Vehicle Education Program: CSU Ventures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt033ticaille2011p.pdf (783.76 KB

  10. Driving Change in Residential Energy Efficiency: Electric Vehicles...

    Energy.gov [DOE] (indexed site)

    Change in Residential Energy Efficiency: Electric Vehicles (301), call slides and discussion summary. Call Slides and Discussion Summary (4.41 MB) More Documents & Publications ...

  11. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Highway vehicle MPG and market shares report: Model year 1990

    SciTech Connect

    Williams, L.S. ); Hu, P.S. )

    1991-04-01

    This issue of Highway Vehicle MPG and Market Shares Report: Model Year 1990 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of new automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1990. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. The new automobile fleet experienced a fuel economy loss of 0.4 mpg from the previous model year, dropping to 27.6 mpg. This is the second consecutive decline in the fuel economy of new automobiles since model year 1983. The main reason for the fuel economy decline in automobiles was that the compact, midsize, and large size classes, which together claimed more than 75% of the new automobile market, each experienced fuel economy declines of 0.4 mpg or more. In contrast, the new light truck fleet showed an increase of 0.3 mpg from the previous year to a current mpg of 20.5. The fuel economy increase in light trucks was primarily due to the fact that the large pickup class, which represents 35.0% of the new 1990 light truck market experienced a gain of 0.7 mpg in its fuel economy. Overall, the sales-weighted fuel economy of the new light-duty vehicle fleet (automobiles and light trucks) dropped to 24.8 mpg in model year 1990, a reduction of 0.2 mpg from model year 1989. 9 refs., 29 figs., 55 tabs.

  13. Advanced Electric Drive Vehicle Education Program: CSU Ventures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt033caille2010o...

  14. Vehicle Technologies Office Merit Review 2016: Drive Electric Orlando

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Florida Department of Agriculture and Consumer Services/Office of Energy at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review...

  15. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es099pesaran2011p.pdf (1.5 MB) More Documents & Publications ...

  16. Advanced Electric Drive Vehicle Education Program: CSU Ventures...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt033ticaille2012o.pdf (2.8 MB

  17. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon apearravt028boan2010...

  18. US DRIVE Vehicle Systems and Analysis Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    VSATT provides the analytic support and subsystem characterizations that guide technology and system selections and assist U.S. DRIVE Technical Teams in determining performance goals and validation metrics.

  19. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012

    Energy.gov [DOE]

    In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

  20. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect

    Jehlik, Forrest; LaClair, Tim J.

    2014-04-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  1. Marketing and Driving Demand Collaborative: Social Media Tools and Strategies Webinar

    Energy.gov [DOE]

    Marketing and Driving Demand Collaborative: Social Media Tools and Strategies Webinar, from the U.S. Department of Energy's Better Buildings program.

  2. Using Community-Based Social Marketing to Drive Demand for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency | Department of Energy Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the "What's Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C. Using Community-Based Social Marketing (1.14 MB) More Documents & Publications Targeted Marketing and Program

  3. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  4. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

    SciTech Connect

    Thomas, John

    2014-10-13

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  12. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

    DOE PAGES [OSTI]

    Thomas, John

    2014-10-13

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine asmore » a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.« less

  13. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect

    Thomas, John F

    2014-01-01

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  14. Vehicle Technologies Office Merit Review 2016: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ames at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  15. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  16. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220

  17. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  18. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    Energy Information Administration (EIA) (indexed site)

    Provider Fleet Vehicles Fleet Vehicle Miles Traveled Propane Provider Survey In the analysis of annual vehicle miles traveled, the diesel vehicles tended to stand out. On...

  19. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  1. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  2. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect

    Bennion, K.

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  3. U.S. DRIVE Releases Cradle-to-Grave Analysis of Light-Duty Vehicles

    Energy.gov [DOE]

    On June 1, the U.S. DRIVE Cradle-to-Grave Working Group published the "Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies" Argonne National Lab Report.

  4. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  5. Owning and Driving a Car You Plug In Scott Wilson, Electric Vehicle Association of Greater Washington DC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Owning and Driving a Car You Plug In Scott Wilson, Electric Vehicle Association of Greater Washington DC US Patent and Trademark Office Electric Vehicle Association of Greater Washington DC www.evadc.org Electric Vehicle Association of Greater Washington DC www.evadc.org EVADC - Owners, Drivers, Builders of Electric Vehicles * Education of the public, promotion of EV's Electric Vehicle Association of Greater Washington DC www.evadc.org 2012 Nissan Leaf 36k miles 2016 Kia Soul EV 7k miles 2014

  6. Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

  7. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  8. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  9. Strategies for Marketing and Driving Demand for Commercial Financing...

    Energy.gov [DOE] (indexed site)

    Using Partnerships to Drive Demand and Provide Services in Communities Creative Financing Approaches for Residential Energy Efficiency Programs The Dog Days of Summer - ...

  10. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES [OSTI]

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  11. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  12. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles: Preprint

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-01

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy’s (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  13. Illinois Home Performance: DOE REES-- Driving Demand: Successful Marketing Strategies

    Energy.gov [DOE]

    Presents Illinois Home Performance's successful marketing strategies, from more than 100,000 direct mailings to multi-pronged online outreach, July 2012.

  14. Fact #946: October 10, 2016 Driving Alone in a Private Vehicle is the Most Common Means of Transportation to Work- Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Driving Alone in a Private Vehicle is the Most Common Means of Transportation to Work

  15. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect

    Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-12-06

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  16. Motor vehicle MPG and market shares report: model year 1984

    SciTech Connect

    Hu, P.S.; Holcomb, M.C.

    1985-01-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly MPG changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 16.6% from model year 1983. An even more striking increase was observed in the sales of light trucks: 30.5% from model year 1983. The 1984 model year experienced a gain of 0.23 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.59 mpg in fuel economy, from 20.50 mpg in model year 1983 to 19.91 mpg in model year 1984.

  17. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  18. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy America's Plug-In Electric Vehicle Market Charges Forward EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward January 22, 2014 - 6:35pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah

  19. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles

    Energy.gov [DOE]

    In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

  20. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  1. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  2. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  3. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  4. Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 8: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010 Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010 From a total of 274,210 hybrid vehicle sales in 2010, over two thirds (69%) were manufactured by the Toyota Motor Company. Ford and Honda together accounted for about a quarter of hybrid vehicle sales while GM and Nissan together sold about 5%. Other manufacturers including Porsche, Mazda, Mercedes and BMW totaled less than 1% of

  5. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  6. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Honda Daimler CaFCP VEHICLES 250 vehicles - 1.9 million miles 25 STATIONS * Zero emissions * Reduced greenhouse gas emissions - Enables goal of 80% GHG reduction by 2050 * ...

  7. Fact #703: November 28, 2011 Hybrid Vehicles Lose Market Share in 2010

    Energy.gov [DOE]

    For the first time since hybrid vehicles entered the market, the share of hybrid registrations declined in 2010 – from 2.9% in 2009 to 2.6% in 2010. Reasons for this include the relatively lower...

  8. HCNG Engine Testing and HCNG Vehicle Marketing in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy HCNG Engine Testing and HCNG Vehicle Marketing in China HCNG Engine Testing and HCNG Vehicle Marketing in China These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_f_ma.pdf (4.22 MB) More Documents & Publications H2 Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol

  9. Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings by Dan Santini, Anant Vyas Center for Transportation Research Argonne National Laboratory Doug Saucedo, Bryan Jungers Electric Power Research Institute Presented at: Light-Duty Vehicle Workshop July 26, 2010 U.S. Department of Energy Washington DC The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No.

  10. Plug-in electric vehicle market penetration and incentives: a...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Book Title Mitigation and Adaptation Strategies for Global Change Volume 20 Publisher Springer Keywords global vehicle sales, government incentive policies, plug-in electric...

  11. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  12. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  13. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  14. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  15. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  16. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  17. Vehicle Technologies Office Merit Review 2016: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Wolfspeed at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  18. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  19. 2010 Vehicle Technologies Market Report | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    them. The report opens with a summary of the economic sector, including sector-wide energy consumption trends. The second section includes a discussion on light-duty vehicles,...

  20. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    Energy Information Administration (EIA) (indexed site)

    Energy, and Safety Data" on alternative fuels and alternative-fuel vehicles. No specific projects are currently underway. Some related data may be developed as part of the EPACT...

  1. Method and system for determining the torque required to launch a vehicle having a hybrid drive-train

    DOEpatents

    Hughes, Douglas A.

    2006-04-04

    A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

  2. Airlines and Aviation Alternative Fuels: Our Drive to Be Early Market Adopters

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Bioenergy 2015 Nancy N. Young, VP-Environment; CAAFI Environment Team Co-Lead June 23, 2015 Why Airlines Want Alternative Fuels airlines.org 2 » New Supply Chain * Energy Security/Supply Reliability * Competitor to Petroleum-Based Fuels » Environmental Benefit/Imperative * Greenhouse Gas (Carbon) Emissions Benefits * Reduce Emissions Affecting Local Air Quality * Do Not Induce Other Environmental Problems U.S.

  3. Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles

    SciTech Connect

    Ungar, Edward; Mueller, Howard; Smith, Brett

    2010-08-01

    The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome

  4. Composition of motor-vehicle organic emissions under elevated-temperature summer driving conditions (75 to 105 deg F)

    SciTech Connect

    Stump, F.D.; Knapp, K.T.; Ray, W.D.; Snow, R.; Burton, C.

    1992-01-01

    Emissions from seven late-model popular V-6 and V-8 motor vehicles were characterized at three test temperatures. The Urban Dynamometer Driving Schedule was used for vehicle tailpipe testing. Six vehicles fueled by port fuel injection (PFI) and one vehicle with a carbureted fuel system were tested at temperatures of 75, 90, and 105 F with unleaded regular summer grade gasoline. Tailpipe and evaporative emissions were determined at each test temperature. Measured emissions were the total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene. In general, tailpipe emissions of THC, benzene, and 1,3-butadiene from the vehicles were not temperature sensitive, but the CO and NOx emissions showed some temperature sensitivity. Formaldehyde, acetaldehyde, and total aldehyde emissions from the PFI vehicles were also not temperature dependent, while formaldehyde emissions from the carbureted vehicle decreased slightly with increasing test temperature. Evaporative THC emissions generally increased with increasing test temperature. Hydrocarbon emissions saturated and broke through the evaporative carbon canister of one PFI vehicle during the 105 F hot soak while the other six vehicles showed no hydrocarbon breakthrough.

  5. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  6. AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  7. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  8. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  9. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  10. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  11. Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits

    SciTech Connect

    Lin, Zhenhong; Dong, Jing; Greene, David L

    2013-01-01

    Hydrogen vehicles (H2V), including H2 internal combustion engine, fuel cell and fuel cell plugin hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers towidespread commercialization of H2Vs. This study estimates the market acceptance of H2Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H2Vs could reach 20e70% market shares by 2050, depending on progress in achieving the technical targets.With a basic hydrogen infrastructure (w5% hydrogen availability), the H2V market share is estimated to be 2e8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H2Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleumuse and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H2Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons.

  12. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  13. Policies and Market Factors Driving Wind Power Development in the United States

    SciTech Connect

    Bird, L.; Parsons, B.; Gagliano, T.; Brown, M.; Wiser, R.; Bolinger, M.

    2003-07-01

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24% annually during the past five years. With this growth, an increasing number of states are experiencing investment in wind energy. Wind installations currently exist in about half of all U.S. states. This paper explores the policies and market factors that have been driving utility-scale wind energy development in the United States, particularly in the states that have achieved a substantial amount of wind energy investment in recent years. Although there are federal policies and overarching market issues that are encouraging investment nationally, much of the recent activity has resulted from state-level policies or localized market drivers. In this paper, we identify the key policies, incentives, regulations, and markets affecting development, and draw lessons from the experience of leading states that may be transferable to other states or regions. We provide detailed discussions of the drivers for wind development in a dozen leading states-California, Colorado, Iowa, Kansas, Minnesota, New York, Oregon, Pennsylvania, Texas, Washington, West Virginia, and Wyoming.

  14. Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Motor vehicle MPG and market shares report: model year 1985

    SciTech Connect

    Hu, P.S.

    1986-02-01

    Sales of automobiles jumped dramatically from 10,211,058 units in model year 1984 to 10,968,515 units in model year 1985, an incease of 7.4%. Light trucks had an even more striking increase in sales, rising 17.2% from the previous model year. The sales-weighted fuel economy for the entire automobile fleet continued to climb in model year 1985, from 26.3 mpg in model year 1984 to 27.0 mpg in this model year. The sales-weighted fuel economies in light trucks have remained relatively constant since model year 1979. The trends of various vehicle characteristics from model year 1978 through 1985 are illustrated. 34 figs., 45 tabs.

  2. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    SciTech Connect

    Ng, Simon

    2013-09-30

    The Electric-drive Vehicle Engineering (EVE) MS degree and graduate certificate programs have been continuing to make good progress, thanks to the funding and the guidance from DOE grant management group, the support from our University and College administrations, and to valuable inputs and feedback from our Industrial Advisory Board as well as our project partners Macomb Community College and NextEnergy. Table 1 below lists originally proposed Statement of Project Objectives (SOPO), which have all been completed successfully. Our program and course enrollments continue to be good and increasing, as shown in later sections. Our graduating students continue to get good job offers from local EV-related companies. Following the top recommendation from our Industrial Advisory Board, we were fortunate enough to be accepted into the prestigious EcoCAR2 (http://www.ecocar2.org/) North America university design competition, and have been having some modest success with the competition. But most importantly, EcoCAR2 offers the most holistic educational environment for integrating real-world engineering and design with our EVE graduate curriculum. Such integrations include true real-world hands-on course projects based on EcoCAR2 related tasks for the students, and faculty curricular and course improvements based on lessons and best practices learned from EcoCAR2. We are in the third and last year of EcoCAR2, and we have already formed a core group of students in pursuit of EcoCAR”3”, for which the proposal is due in early December.

  3. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  4. Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences

    SciTech Connect

    Greene, David L; Lin, Zhenhong; Dong, Jing

    2013-01-01

    The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

  5. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

    Energy.gov [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

  6. Light-duty vehicle MPG (miles per gallon) and market shares report, Model year 1989

    SciTech Connect

    Williams, L.S. ); Hu, P.S. )

    1990-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1989 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1989. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. Both new automobile and new light truck fleets experienced fuel economy losses of 0.5 mpg from the previous model year, dropping to 28.0 mpg for automobiles and 20.2 mpg for light trucks. This is the first observed decline in fuel economy of new automobiles since model year 1983 and the largest decline since model year 1976. The main reason for the fuel economy decline in automobiles was that every automobile size class showed either losses or no change in their fuel economies. The fuel economy decline in light trucks was primarily due to the fact that two popular size classes, large pickup and small utility vehicle, both experienced losses in their fuel economies. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks) dropped to 25.0 mpg, a reduction of 0.5 mpg from model year 1988. 9 refs., 32 figs., 50 tabs.

  7. Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Would You Consider Driving a Vehicle that Can Run on Biodiesel?

    Energy.gov [DOE]

    DOE has an Alternative Fuel Station Locator that can help drivers find the nearest fueling station to fill up their vehicles.

  9. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Micro Climate Assessment of Grid-Connected Electric Drive Vehicles and Charging Infrastructure. Final Report

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-12-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune, located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.

  13. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  14. Vehicle Technologies Office Merit Review 2015: GATE Center for Electric Drive Transportation

    Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  15. Vehicle Technologies Office Merit Review 2015: Overview of the TO Electric Drive Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of the TO...

  16. Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department...

    Office of Environmental Management (EM)

    Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, ...

  17. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  18. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Energy.gov [DOE]

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  19. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  20. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (62 miles) while the Tesla Model S with an 85 kW-hr battery pack has a range of 265 miles. ... Both Tesla models exceed 200 miles of range. Driving Ranges for Model Year 2014 Electric ...

  1. Vehicle Technologies Office: Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Vehicle Technologies Office » Vehicle Technologies Office: Partnerships Vehicle Technologies Office: Partnerships Partnerships are at the heart of the Vehicle Technologies Office's (VTO) work, driving innovation, technology development, and market adoption. VTO carries out its mission through the collaborative efforts of many Department of Energy organizations, national laboratories, community leaders, and the automotive industry. Partners within the Department of Energy such as the

  2. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  3. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

  4. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  5. Steering with prices: Fuel and vehicle taxation as market incentives for higher fuel economy

    SciTech Connect

    Gordon, D.; DeCicco, J.

    1993-12-31

    This paper reviews economic studies to develop estimates of the likely responses of car buyers and automakers to higher fuel taxes or feebates. It finds that feebates averaging 5%--10% of vehicle price are likely to achieve substantial fuel conservation while much larger taxes (amounting to a 100%--200% increase in gas price) would be needed to achieve similar petroleum savings. Since response to either type of pricing incentive is uncertain, stronger fuel economy standards would remain a necessary complement to market incentives.

  6. Vehicle Technologies Office: Laboratory Facilities and Collaborative...

    Energy Saver

    Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) ...

  7. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  8. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  9. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  10. Vehicle Technologies Office Merit Review 2016: Multi-Speed Transmission for Commercial Delivery Medium Duty Plug-In Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Eaton at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  11. Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings

    Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  12. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  13. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  14. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Find More Like This Return to Search Electrical Motor Drive Apparatus and Method Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis invention discloses an electrical motor drive topology that can significantly reduce the inverter dc bus ripple currents and thus the requirement of the dc bus capacitance. It enables the inverter to cost-effectively operate in

  15. Motor vehicle mpg and market shares report: first six months of model year 1984

    SciTech Connect

    Hu, P.S.; Greene, D.L.; Till, L.E.

    1984-10-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the first six months of model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly mpg changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 21.8% from the first half of model year 1983. An even more striking increase was observed in the sales of light trucks: 42.2% from the first half of model year 1983. The first six months of model year 1984 experienced a gain of 0.21 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.83 mpg in fuel economy, from 20.52 mpg in model year 1983 to 19.69 mpg in the first half of model year 1984.

  16. Vehicle Technologies Office Merit Review 2016: Evaluation of Vehicle Technology Benefits on Real World Driving Cycles using Regional Transportation System Model

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle...

  17. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  18. NGVs: Driving to the 21st Century. 17th National Natural Gas Vehicle Conference and Exhibition, October 3-5, 1999 [conference organizational literature and agenda

    SciTech Connect

    1999-10-05

    By attending the conference, participants learn about new and planned OEM vehicle and engine technologies; studies comparing Diesel and gasoline emissions to natural gas; new state and federal legislation; and innovative marketing programs they can use to help sell their products and services.

  19. Vehicle Technologies Office Merit Review 2015: MA3T—Modeling Vehicle Market Dynamics with Consumer Segmentation

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about MA3T—modeling...

  20. Electric Vehicles

    SciTech Connect

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  1. Electric Vehicles

    ScienceCinema

    Ozpineci, Burak

    2016-07-12

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  2. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  3. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-01-2049 Measured Laboratory and In-Use Fuel Economy Published Observed over Targeted Drive Cycles for 09/24/2012 Comparable Hybrid and Conventional Package Delivery Vehicles Michael P. Lammert, Kevin Walkowicz, Adam Duran and Petr Sindler National Renewable Energy Laboratory ABSTRACT This research project compares the in-use and laboratory- derived fuel economy of a medium-duty hybrid electric drivetrain with "engine off at idle" capability to a conventional drivetrain in a typical

  4. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-01-2049 Measured Laboratory and In-Use Fuel Economy Published Observed over Targeted Drive Cycles for 09/24/2012 Comparable Hybrid and Conventional Package Delivery Vehicles Michael P. Lammert, Kevin Walkowicz, Adam Duran and Petr Sindler National Renewable Energy Laboratory ABSTRACT This research project compares the in-use and laboratory- derived fuel economy of a medium-duty hybrid electric drivetrain with "engine off at idle" capability to a conventional drivetrain in a typical

  5. Drive Cycle Analysis Tool - DriveCAT | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Drive Cycle Analysis Tool - DriveCAT National Renewable Energy Laboratory Use the Drive Cycle Analysis Tool (DriveCAT) to find drive cycle data for modeling, simulating, and testing vehicle systems and components, or to understand the real-world benefits of drive cycles for specific vehicle applications. This tool was created by NREL's fleet test and evaluation team, which conducts in-service performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results help

  6. Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts

    Reports and Publications

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States.

  7. Vehicle Crashworthiness

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  8. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  9. Vehicle Technologies Office Merit Review 2015: Multi-Speed Transmission for Commercial Delivery Medium Duty Plug-In Electric Drive Vehicles

    Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed transmission for commercial...

  10. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  11. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  12. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  13. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles - SECOND EDITION

    SciTech Connect

    Nelson, Paul A.; Gallagher, Kevin G.; Bloom, Ira D.; Dees, Dennis W.

    2012-01-01

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publicly available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publicly peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on

  14. A microcomputer-based control and simulation of an advanced IPM (interior permanent magnet) synchronous machine drive system for electric vehicle propulsion

    SciTech Connect

    Bose, B.K.; Szczesny, P.M.

    1987-01-01

    Advanced digital control and computer-aided control system design techniques are playing key roles in the complex drive system design and control implementation. The paper describes a high performance microcomputer-based control and digital simulation of an inverter-fed interior permanent magnet (IPM) synchronous machine which uses Neodymium-Iron-Boron magnet. The fully operational four-quadrant drive system includes constant-torque region with zero speed operation and high speed field-weakening constant-power region. The control uses vector or field-oriented technique in constant-torque region with the direct axis aligned to the stator flux, whereas the constant-power region control is based on torque angle orientation of the impressed square-wave voltage. All the key feedback signals for the control are estimated with precision. The drive system is basically designed with an outer torque control loop for electric vehicle appliation, but speed and position control loops can be added for other industrial applications. The distributed microcomputer-based control system is based on Intel-8096 microcontroller and Texas Instruments TMS32010 type digital signal processor. The complete drive system has been simulated using the VAX-based simulation language SIMMON to verify the feasibility of the control laws and to study the performances of the drive system. The simulation results are found to have excellent correlation with the laboratory breadboard tests. 19 refs., 14 figs., 5 tabs.

  15. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  16. Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing...

  17. Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets Adoption and Growth

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Greater Washington Region Clean Cities Coalition at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  18. Vehicle Technologies Office Merit Review 2015: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unified...

  19. Vehicle Technologies Office Merit Review 2014: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  20. Driving/Idling Resources

    Energy.gov [DOE]

    While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing vehicle miles traveled. Find driving/idling...

  1. New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sandia National Laboratories, supported by the DOE’s Vehicle Technologies and Fuel Cell Technologies Offices, recently released the workshop report “Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles.” Held in September 2014, the workshop considered common opportunities and challenges in expanding the use of hydrogen and natural gas as transportation fuels.

  2. Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn

    Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  3. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

  4. Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis

    Energy.gov [DOE]

    This study addresses the question “What is the impact of state-level electric vehicle incentives on electric vehicle adoption?”. It focus on rebates, tax credits, and HOV-lane access for battery electric vehicles (BEVs) but also examines the influence of public BEV charging infrastructure on BEV adoption so far. The analysis uses state-level, temporal variation in BEV incentives to identify variation in BEV registrations through econometric methods. This presentation will review initial findings of the project and gather your feedback on future research needs.

  5. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Alternative Fuels and Advanced Vehicles Data Center

    Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles Preprint M. Melaina National Renewable Energy Laboratory J. Bremson University of California Davis K. Solo Lexidyne, LLC Presented at the 31st USAEE/IAEE North American Conference Austin, Texas November 4-7, 2012 Conference Paper NREL/CP-5600-56898

  6. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  7. Vehicle Technologies Office Merit Review 2014: Southeast Regional Alternative Fuels Market Initiatives Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Center for Transportation and the Environment, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  8. Airlines & Aviation Alternative Fuels: Our Drive to Be Early...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market ...

  9. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  12. Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis (Presentation), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis Bentley Clinton 1,2 , Austin Brown 1 , Carolyn Davidson 1 , Daniel Steinberg 1 1 National Renewable Energy Laboratory 2 Department of Economics, University of Colorado - Boulder February 2015 NREL/PR-6A20-63263 2 Overview Question * How have incentives changed purchasing for battery electric vehicles in the United States? Method * Regression analysis at the state level to isolate

  13. Electric Vehicle Grid Interaction Exploration: Cooperative Research and Development Final Report, CRADA Number CRD-11-431

    SciTech Connect

    Simpson, Mike

    2013-09-01

    Under this agreement NREL plans to collect, analyze, and share with Xcel Energy data regarding the driving and charging performance of plug-in electric vehicles. NREL will research activities critical to energy storage, electric propulsion, and the emerging issues surrounding the integration of vehicles into the current and future grid. It will provide NREL with access to one of the firstall-electric vehicles available in the market as part of NREL's Advanced Technology Vehicle Fleet (ATVF).

  14. Variable Frequency Drives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Marketing Toolkit The Benefits of Variable Frequency Drives (VFDs) VFDs help adjust motor speeds to match loads and improve efficiency while conserving energy. The benefits...

  15. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy.gov [DOE] (indexed site)

    project of electric drive vehicles and charging infrastructure ever, the VTO-supported EV Project wrote a number of white papers on plug-in electric vehicle community readiness. ...

  16. Summary of Market Opportunities for Electric Vehicles and Dispatchable Load in Electrolyzers

    SciTech Connect

    Denholm, Paul; Eichman, Joshua; Markel, Tony; Ma, Ookie

    2015-05-19

    Electric vehicles (EVs) and electrolyzers are potentially significant sources of new electric loads. Both are flexible in that the amount of electricity consumed can be varied in response to a variety of factors including the cost of electricity. Because both EVs and electrolyzers can control the timing of electricity purchases, they can minimize energy costs by timing the purchases of energy to periods of lowest costs.

  17. Century-Midas steps slowly into the RV (recreational vehicles) LPG conversion market

    SciTech Connect

    Kincaid, J.

    1980-02-01

    Midas International will obtain LPG carburetion equipment from Century for installation in up to 20,000 RV. The market for gasoline-powered RV has been depressed since the surge in gasoline prices, and the installation of Century's equipment represents an attempt to attract customers by reducing RV operating costs. According to J. Kincaid (Midas Inst.), propane, besides being cheaper than gasoline, is also cheaper than diesel fuel, despite the better mileage obtained with diesel fuel, because the use of diesel fuel requires the installation of a diesel engine, which is far more expensive than installation of LPG carburetion. Although most of the LPG carburetion manufacturers, with a backlog of orders, did not evince interest in Midas' search for conversion equipment for RV, Century responded, at least partly because Midas also manufactures fleet delivery trucks, which represent a potentially much larger market for LPG conversion and use.

  18. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES [OSTI]

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  19. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    SciTech Connect

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.

  20. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Saver

    Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost ...

  1. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  2. Ride and Drive Webinar

    Energy.gov [DOE]

    Listen to this webinar and follow along using the slides below to learn how on-site plug-in electric vehicle (PEV) Ride and Drives can create value for your organization, your employees, and your...

  3. Traction Drive Systems Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies ...

  4. Driving Green com | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Driving Green com Jump to: navigation, search Name: Driving Green.com Place: Melbourne, Florida Zip: 32904 Sector: Vehicles Product: Driving green.com is a website that allows...

  5. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Energy.gov [DOE] (indexed site)

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative ...

  6. Vehicle to Grid Demonstration Project

    SciTech Connect

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  7. FMC high power density electric drive technology

    SciTech Connect

    Shafer, G.A.

    1994-12-31

    FMC has developed a unique capability in energy-efficient, high-performance AC induction electric drive systems for electric and hybrid vehicles. These drives will not only be important to future military ground combat vehicles, but will also provide significant competitive advantages to industrial and commercial machinery and vehicles. The product line under development includes drive motors and associated power converters directed at three power/vehicle weight classes. These drive systems cover a broad spectrum of potential vehicle applications, ranging from light pickup trucks to full-size transit buses. The drive motors and power converters are described.

  8. How Would You Use a Neighborhood Electric Vehicle? | Department...

    Energy.gov [DOE] (indexed site)

    We know many of you are driving hybrid electric vehicles, but what do you think about neighborhood electric vehicles? How would you use a neighborhood electric vehicle? Each ...

  9. U.S. First Responder Safety Training for Advanced Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    First Responder Safety Training for Advanced Electric Drive Vehicle Presentation U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation 2010 DOE...

  10. Construction, Qualification, and Low Rate Production Start‐up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. Vehicle Battery Basics | Department of Energy

    Office of Environmental Management (EM)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric ...

  13. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  14. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  15. Impact of Lithium Availability on Vehicle Electrification (Presentation)

    SciTech Connect

    Neubauer, J.

    2011-07-01

    This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

  16. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  17. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. Vehicle Technologies Office Merit Review 2014: Removing Barriers, Implementing Policies and Advancing Alternative Fuels Markets in New England

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Greater Portland Council of Governments at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  20. Workplace Charging Challenge: Workplace PEV Ride and Drive |...

    Energy.gov [DOE] (indexed site)

    Workplace Charging Challenge: Workplace PEV Ride and Drive Workplace plug-in electric vehicle ... Manage vehicle liability by requesting that car companies administer waivers and send ...

  1. Construction, Qualification, and Low Rate Production Start‐up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Vehicle ...

  3. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle ...

  4. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery ...

  5. Vehicle Technologies Office: AVTA - Battery Testing Data | Department...

    Energy Saver

    Battery Testing Data Vehicle Technologies Office: AVTA - Battery Testing Data For plug-in electric vehicles to achieve widespread market adoption, vehicle batteries must have ...

  6. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  7. Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    cityhighway driving, and fuel price (example vehicle is a Toyota Camry Hybrid XLE). ... Driving and Fuel Price (Example Vehicle Toyota Camry Hybrid XLE) 2012 Toyota Camry ...

  8. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  9. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  10. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  11. Driving the Future | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Driving the Future At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help...

  12. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  13. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  14. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department...

    Energy.gov [DOE] (indexed site)

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt030apesmith2011p.pdf (331.83 KB) More Documents & Publications Electric Drive Semiconductor ...

  15. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  17. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  18. VEHICLE ACCESS PORTALS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jemez Road (Map 2) VEHICLE ACCESS PORTALS Changes Effective January 11, 2010 Traffc Lane 1: No stop required. Drivers must slow down to 15 MPH while nearing and driving through the ...

  19. U.S. DRIVE

    SciTech Connect

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  20. Vehicle Technologies Office Merit Review 2014: EV Project Data...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems Electric Drive Vehicle Demonstration and Vehicle ...

  1. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  2. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: October 22, 2012 Electric Vehicle Energy Requirements for Combined CityHighway Driving Fact 750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City...

  3. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  4. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  5. Electric Vehicles | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2015 Mercedes-Benz B-Class Electric Drive 2015 Volkswagen e-Golf 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities

  6. iDriving (Intelligent Driving)

    Energy Science and Technology Software Center

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less

  7. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  8. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative (18.61 MB) More Documents & Publications EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals

  9. Stop/Start: Driving

    Alternative Fuels and Advanced Vehicles Data Center

    highlighted Braking button subbanner graphic: gray bar PULLING OUT & DRIVING PART 1 The gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator uses electricity from the battery to instantly start the gasoline engine---the sole source of propulsion for the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. The car is stopped at an intersection.

  10. Vehicle Technologies Program Overview

    SciTech Connect

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  11. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  12. Advanced Vehicles and Fuels Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. A photo of NREL employees driving a Toyota Highlander fuel cell hybrid vehicle. ...

  13. Microsoft Word - Vehicle Battery EA_Pyrotek

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    20 Environmental Assessment for Pyrotek, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Project, Sanborn, NY April 2010 Prepared for: Department of ...

  14. Microsoft Word - Vehicle Battery EA_BASF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 Environmental Assessment for BASF Catalysts LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Elyria, OH March 2010 Prepared for: Department of ...

  15. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  16. DOE Releases U.S. DRIVE Technical Accomplishments Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE's Vehicle Technologies Office recently released the 2013 U.S. DRIVE Technical Accomplishments report, which describes nearly 70 key achievements of DOE-funded projects carried out by U.S. DRIVE partners.

  17. Test Driving the Toyota Mirai | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Driving the Toyota Mirai Test Driving the Toyota Mirai Watch Secretary Ernest Moniz take a spin in the Toyota Mirai, the first fuel cell electric vehicle available for sale.

  18. U.S. DRIVE Highlights of Technical Accomplishments 2012 | Department...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments Report Overview of Battery R&D Activities Progress of DOE Materials, ...

  19. Driving Battery Production in Ohio | Department of Energy

    Energy Saver

    Advanced hybrid and electric drive vehicles will provide Americans with cleaner and more fuel efficient options while also safeguarding us from fluctuations in oil prices. I ...

  20. GIZ Sourcebook Module 4f: Eco Driving | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is not the only one in the chain of actors involved in transport to influence fuel consumption. Manufacturers, legislators, driving schools and vehicle holders- they all can...

  1. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ... Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric ...

  2. FY2015 Electric Drive Technologies Annual Progress Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  3. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and ... BREAKOUT SESSION 1: (three groups) * Traction Drive System * Power Electronics and ...

  4. Charging Up with the Electric Drive Transportation Association | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Charging Up with the Electric Drive Transportation Association Charging Up with the Electric Drive Transportation Association May 20, 2014 - 4:51pm Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar drives a Chevrolet Spark EV during the Electric Drive Transportation Association conference in Indianapolis, Indiana on May 20, 2014. The conference brings together industry leaders who are advancing electric vehicle technologies and

  5. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined City/Highway Driving | Department of Energy 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving The efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient-converting about 60% of the energy from the grid to power at the wheels. There are energy losses of about 16-19% from

  6. Vehicle Technologies Office Merit Review 2014: Transportation Energy Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Book, Vehicle Technologies Market Report, and VT Fact of the Week | Department of Energy Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation

  7. Vehicle Technologies Office Merit Review 2015: Transportation Energy Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Book, Vehicle Technologies Market Report, and VT Fact of the Week | Department of Energy Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation

  8. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  9. Idling Reduction for Personal Vehicles

    SciTech Connect

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  10. Electric Drive Vehicle Infrastructure Deployment | Department...

    Energy.gov [DOE] (indexed site)

    73vsscarleson2011o.pdf (315.3 KB) More Documents & Publications ChargePoint America ChargePoint America Grid Connectivity Research, Development & Demonstration Projects

  11. Vehicle Technologies Office: Laboratory Facilities and Collaborative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research for Electric Drive Technologies | Department of Energy Laboratory Facilities and Collaborative Research for Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) works with a variety of U.S. Department of Energy (DOE) National Laboratories to maintain unique user facilities and conduct research and development (R&D) on power electronics, electric motors, and

  12. Emissions from US waste collection vehicles

    SciTech Connect

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  13. MARKET BASED APPROACHES

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MARKET BASED APPROACHES K.G. DULEEP MANAGING DIRECTOR EEA BACKGROUND * Introduction of fuel-cell vehicles and jump- starting the market will require significant government actions in the near term * Widespread understanding that command- and-control regulations can work for only very low sales volume. * Increased public sales and acceptance will need development of market based policies. ANALYSIS OBJECTIVES * EEA currently evaluating a number of market based approaches to enhancing fuel economy

  14. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Fuel Cell Electric Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Electric Vehicles Chapter 8: Technology Assessments Introduction to the Technology/System Overview of Fuel Cell Electric Vehicles Energy planning models demonstrate that electric drive vehicles and low-carbon fuels are needed to address climate change, energy security, and criteria pollutant emissions goals, among others. 1,2,3,4,5 Hydrogen fuel cell electric vehicles (FCEVs) are a promising electric vehicle technology that could meet petroleum and emission reduction goals and be

  15. EERE Success Story—Michigan, Missouri: Innovative Mobile Exhibits Bring Electric Vehicles to Students and Public

    Energy.gov [DOE]

    EERE has supported two innovative projects bringing hands-on education on electric drive vehicles to students.

  16. Michigan, Missouri: Innovative Mobile Exhibits Bring Electric Vehicles to Students and Public

    Energy.gov [DOE]

    EERE has supported two innovative projects bringing hands-on education on electric drive vehicles to students.

  17. Traction drive automatic transmission for gas turbine engine driveline

    DOEpatents

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  18. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated

  19. HybriDrive Propulsion System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HybriDrive Propulsion System HybriDrive Propulsion System Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, Washington DC, June 7, 2010 buswksp10_mancini.pdf (735.34 KB) More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport II Vehicle Technologies Office Merit Review 2016: Zero Emission Cargo Transport II: San Pedro Bay Ports Hybrid & Fuel Cell Electric Vehicle Project

  20. Market Implications of Synergism Between Low Drag Area and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Presented at ...

  1. Center for Electric Drive Transportation at the University of Michigan -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dearborn | Department of Energy Center for Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti020_mi_2012_p.pdf (777.6 KB) More Documents & Publications Center for Electric Drive Transportation at the University of Michigan - Dearborn Vehicle Technologies Office

  2. Next Generation Environmentally Friendly Driving Feedback Systems Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Development | Department of Energy Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and Development 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss086_barth_2012_o.pdf (1.48 MB) More Documents & Publications Next Generation Environmentally Friendly Driving Feedback Systems Research and Development Vehicle

  3. EERE Success Story-Multi-Material Lightweight Vehicle Helps Bring

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies to Market | Department of Energy Multi-Material Lightweight Vehicle Helps Bring Technologies to Market EERE Success Story-Multi-Material Lightweight Vehicle Helps Bring Technologies to Market July 26, 2016 - 11:26am Addthis Although the Multi-Material Lightweight Vehicle (MMLV) is never going to appear on a dealership lot, this project demonstrated the feasibility of integrating lightweight materials and joining technologies into current production vehicles. Built by Vehma

  4. Near term hybrid passenger vehicle development program. Phase I. Appendices A and B. Final report

    SciTech Connect

    Not Available

    1980-01-01

    In this report vehicle use patterns or missions are defined and studied. The three most promising missions were found to be: all-purpose city driving which has the maximum potential market penetration; commuting which requires mainly a two-passenger car; and family and civic business driving which have minimal range requirements. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, DC origin-destination studies data presented by General Research Corporation in Volume II of this report. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  5. VEHICLE ACCESS PORTALS TA-48 Vicinity TA-36 Vicinity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pajarito Corridor (Map 4) VEHICLE ACCESS PORTALS TA-48 Vicinity TA-36 Vicinity Drivers of delivery vehicles entering Pajarito Road bounded by NM Highway 4 and Diamond Drive must...

  6. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  7. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOEpatents

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  8. BEEST: Electric Vehicle Batteries

    SciTech Connect

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  9. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Energy.gov [DOE] (indexed site)

    ... Gross vehicle weight rating ICE Internal combustion engine MMC Metal matrix composites NVH ... the engine, transmission, turbocharger, differential, drive shafts, fuel ...

  10. Vehicle Technologies Office Merit Review 2015: High-Efficiency...

    Energy Saver

    Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation ... Drive Technologies Annual R&D Progress Report

  11. State of the Art Prototype Vehicle with a Thermoelectric Generator.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Highlights BMW and partners buildup and testing of state-of-the-art prototype vehicle with the thermoelectric generator that produced over 600W under highway driving conditions

  12. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  13. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... may require reduction in generic fire size. Direction and location of fire based ... Electric Power Control Electric Drive Motor 16 SAE J2578 Fuel Cell Vehicles (FCVs) A ...

  14. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Energy.gov [DOE] (indexed site)

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and ...

  15. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version...

    Alternative Fuels and Advanced Vehicles Data Center

    ... El Crdito Federal por Vehculos Enchufables con Motor de Direccin Elctrica que Califiquen (Qualified Plug-In Electric Drive Motor Vehicle Tax Credit) est disponible para ...

  16. NREL Efforts Push Hydrogen Vehicles Further Along - News Feature...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... and those stations have to replicate the experience drivers have long had with gas stations. "Mainstream America has been used to driving internal combustion vehicles for 100 ...

  17. Propane Vehicle Demonstration Grant Program

    SciTech Connect

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  19. U.S. DRIVE Highlights of Technical Accomplishments Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page i | Preface U.S. DRIVE Highlights of Technical Accomplishments Overview Through precompetitive collaboration and technical information exchange, U.S. DRIVE partners are accelerating the development and availability of clean, efficient automotive and energy technologies. The U.S. DRIVE Partnership (Driving Research for Vehicle efficiency and Energy sustainability) is a voluntary government-industry partnership focused on precompetitive, advanced automotive and related infrastructure

  20. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)

    SciTech Connect

    Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

    2013-05-01

    This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

  1. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  2. Vehicle Aerodynamics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  3. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the first time a domestic automaker is building electric motors for an electric vehicle ... electric drive system in a plug-in electric vehicle bridges two different types of energy. ...

  4. Fact #791: August 5, 2013 Comparative Costs to Drive an Electric...

    Energy.gov [DOE] (indexed site)

    On average, it costs about three times less to drive an electric vehicle than a conventional gasoline-powered vehicle. The Department of Energy has created a new term, called the ...

  5. Close Look at Hybrid Vehicle Loyalty and Ownership

    SciTech Connect

    Hwang, Ho-Ling; Chin, Shih-Miao; Wilson, Daniel W; Oliveira Neto, Francisco Moraes; Taylor, Rob D

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk

  6. Vehicles and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity & Fuel » Vehicles and Fuels Vehicles and Fuels You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and costs. | Photo courtesy of Melissa Howell/NREL. You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and costs. | Photo courtesy of Melissa

  7. Vehicle Technologies Office: Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Emission Control Vehicle Technologies Office: Emission Control The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned

  8. Electrifying the Automotive Market | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrifying the Automotive Market Argonne is developing battery technology that extends the range for electric vehicles while increasing safety and decreasing price. PDF icon...

  9. LNG: new driving force

    SciTech Connect

    Adkins, R.E.

    1981-11-01

    Spurred by recent legislation promoting the use of methane as a motor fuel, Beech Aircraft is gearing up for market production of a complete vehicular conversion kit and ground support equipment for a liquefied-methane fuel system that is suitable for the use of conventional LNG or methane collected from coalbeds, sewage plants, or landfills and liquefied on site. As demonstrated in field tests of prototype fuel systems, liquefied methane stores conveniently and is safe in motor vehicles. Compared with compressed methane, the liquefied form provides more horsepower and longer mileage between fuelings. Fully fueled, the Beech system weighs less than a gasoline or diesel tank of the same size. The system features electronic-capacitance gaging for direct dashboard quantity reading, a standby time of 14 days (from filling time until the time it reaches the maximum allowable vapor pressure of 60 psi), and the choice of vapor or liquid withdrawal.

  10. The eGallon: How Much Cheaper Is It to Drive on Electricity? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy The eGallon: How Much Cheaper Is It to Drive on Electricity? The eGallon: How Much Cheaper Is It to Drive on Electricity? June 10, 2013 - 11:00pm Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state

  11. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  12. Vehicle Technologies Office: Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Waste Heat Recovery Vehicle Technologies Office: Waste Heat Recovery Along with high efficiency engine technologies and emission control, the Vehicle Technologies Office (VTO) is supporting research and development to increase vehicle fuel economy by recovering energy from engine waste heat. In current gasoline vehicles, only about 25 percent of the fuel's energy is used to drive the wheels; in contrast, more than 70 percent is lost

  13. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Energy.gov [DOE]

    Presentation given by Vehicle Technologies Office analyst Jake Ward at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  14. Climate Control Load Reduction Strategies for Electric Drive...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Drive Cycle Simulations The vehicle simulation tool Autonomie was used to calculate ... The Focus Electric uses a 23-kWh capacity lithium-ion battery pack. The battery utilization ...

  15. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department posted a video of ‪Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  16. The Compelling Case for Natural Gas Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Compelling Case for Natural Gas Vehicles The Compelling Case for Natural Gas Vehicles Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more. Download the The Compelling Case for Natural Gas Vehicles presentation. (2.92 MB) More Documents & Publications QER - Comment of American Gas Association 3 Growth of the NGV Market: Lessons Learned

  17. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  18. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  19. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  20. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) focuses on reducing the cost, volume, and weight of batteries, while simultaneously improving the vehicle batteries' performance (power, energy, and durability) and ability to tolerate abuse conditions. Reaching the Office's goals in these areas and commercializing advanced energy storage technologies will allow more people to purchase and use electric drive vehicles. It will also help DOE meet the EV Everywhere Grand Challenge of

  1. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  2. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  3. eGallon and Electric Vehicle Sales: The Big Picture

    Office of Energy Efficiency and Renewable Energy (EERE)

    This month, we're updating eGallon prices and taking a look at how the U.S. electric vehicle market continues to strengthen.

  4. Fact #860 February 16, 2015 Relationship of Vehicle Miles of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Excel file and dataset for Relationship of Vehicle Miles of Travel and the Price of ... Move in Opposition - Dataset 2012 Data File 2013 Wind Technologies Market Report Data

  5. Awards To Advanced Vehicle Development | Department of Energy

    Office of Environmental Management (EM)

    Salem, OR 485,000 The project will develop a comprehensive strategic plug-in electric vehicle market and community plan to address next-generation deployment strategies. ...

  6. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  7. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  8. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  9. Passive pavement-mounted acoustical linguistic drive alert system and method

    DOEpatents

    Kisner, Roger A.; Anderson, Richard L.; Carnal, Charles L.; Hylton, James O.; Stevens, Samuel S.

    2001-01-01

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  10. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the

  11. Electric vehicles. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning design techniques of electric and hybrid vehicles for road transportation. Topics include drive, control, and braking systems for electric vehicle operation; and battery charging, onboard recharging, monitoring methods and systems. The impact of electric vehicles on the environment is also presented. (Contains 250 citations and includes a subject term index and title list.)

  12. Electric vehicles. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning design techniques of electric and hybrid vehicles for road transportation. Topics include drive, control, and braking systems for electric vehicle operation; and battery charging, onboard recharging, monitoring methods and systems. The impact of electric vehicles on the environment is also presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Electric vehicles. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1997-02-01

    The bibliography contains citations concerning design techniques of electric and hybrid vehicles for road transportation. Topics include drive, control, and braking systems for electric vehicle operation; and battery charging, onboard recharging, monitoring methods and systems. The impact of electric vehicles on the environment is also presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Early Market Applications for Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Applications for Fuel Cell Technologies Early Market Applications for Fuel Cell Technologies Fuel Cell Technologies Office market transformation efforts focus on several key early market applications: Specialty vehicles Emergency backup power Prime power for critical loads Specialty Vehicles For specialty vehicles such as forklifts, fuel cells can be a cost-competitive alternative to traditional lead-acid batteries because: Photo of a Hydrogenics hydrogen-powered forklift in front of an

  15. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  16. Vehicle Technologies Office: Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: Success Stories Vehicle Technologies Office: Success Stories July 26, 2016 EERE Success Story-Multi-Material Lightweight Vehicle Helps Bring Technologies to Market Although the Multi-Material Lightweight Vehicle (MMLV) is never going to appear on a dealership lot, this project demonstrated the feasibility of integrating lightweight materials and joining technologies into current production vehicles. Built by Vehma International and Ford, with support from EERE's

  17. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  18. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Saver

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as ...

  19. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  20. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  1. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  2. Energy Management and Marketing Specialist

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region Power Marketing Merchant Real Time N6500 114 Parkshore Drive...

  3. Development of Radically Enhanced alnico Magnets (DREAM) for Traction Drive

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Motors | The Ames Laboratory Development of Radically Enhanced alnico Magnets (DREAM) for Traction Drive Motors Research Personnel Publications Synthesis In order to enable domestic automobile makers to offer a broad range of vehicles with electric drive motors with either hybrid or purely electric motor drives, this project will utilize a demonstrated science-based process to design and synthesize a high energy product permanent magnet of the alnico type in bulk final shapes without rare

  4. U.S. DRIVE Technical Team Technology Roadmaps

    SciTech Connect

    none,

    2012-03-16

    U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). As the Partnership updates its documents to reflect the transition to U.S. DRIVE, current roadmaps and previous accomplishments reports are available for reference and information.

  5. All-terrain vehicle

    SciTech Connect

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  6. Vehicle Technologies Program - Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil

    SciTech Connect

    2011-08-01

    R&D drives innovation while lowering technology costs, which then enables the private sector to accelerate clean technology deployment. Along with R&D, DOE's Vehicles Technologies Program deploys clean, efficient vehicle technologies and renewable fuels, which reduce U.S. demand for petroleum products.

  7. Visualizing Electric Vehicle Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15

  8. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainable Transportation Vehicle & Systems Simulation & Testing Lee Slezak, David Anderson June 16, 2014 2 Outline * Goals and Objectives * Challenges and Strategy * Current Portfolio * Strategies * Sample Project Targets & Objectives * Budget * Accomplishments * 2013 Progress * Collaborations * Competitively Awarded Projects * Summary * Contacts 3 Goals and Objectives Accelerate market penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG

  9. Visualizing Electric Vehicle Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More on eGallon: Read more about electric vehicle sales and eGallon's continued

  10. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  11. Vehicle Technologies Office: Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Vehicle Technologies Office » Vehicle Technologies Office: Budget Vehicle Technologies Office: Budget Activities FY 2014* ($K) FY 2015♦ ($K) FY 2016♦ ($K) FY 2017 Request** ($K) Batteries & Electric Drive Technologies $105,449 $103,701 $141,100 $169,000 Vehicle Systems $42,474 $40,393 $30,600 $90,000 Advanced Combustion Engine R&D $48,371 $49,000 $37,141 $74,800 Materials Technology $36,197 $35,602 $26,959 $82,700 Fuel and Lubricant Technologies $15,478 $20,000 $22,500

  12. Holiday Food Drive 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Food Drive 2016 Holiday Food Drive 2016 Helping feed Northern New Mexico families...reaching out to Northern New Mexico communities. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Annual Food & Holiday Gift Drives Mike Martinez (505) 699-3388 Community Partnerships Office (505) 665-4400 Email Participate in Laboratory's annual food collection drive-through Nov. 17 Laboratory employees can continue to make a difference in the lives of others in local

  13. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect

    Ward, J.; Stephens, T. S.; Birky, A. K.

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  14. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2014 | Department of Energy 8: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 The International Energy Agency released the 2015 report Hybrid and Electric Vehicles, The Electric Drive Delivers which shows the total number of plug-in electric vehicles (PEVs) in selected countries. PEVs include both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles or PHEVs. The United

  15. Vehicle Technologies Office: Working with Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Vehicle Technologies Office » Vehicle Technologies Office: Working with Us Vehicle Technologies Office: Working with Us Partnerships are essential to carrying out the Vehicle Technologies Office's mission to develop and deploy on-road transportation technologies that will reduce the use of petroleum. VTO currently collaborates with industry on research through the US DRIVE and 21st Century Truck partnerships and on deployment with Clean Cities and the Workplace Charging Challenge.

  16. NREL: Transportation Research - Fleet DNA: Commercial Fleet Vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operating Data Fleet DNA: Commercial Fleet Vehicle Operating Data Contribute Data Learn how to contribute to Fleet DNA anonymously to help other fleets analyze and improve their drive cycle metrics. The Fleet DNA clearinghouse of commercial fleet vehicle operating data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool provides data summaries and visualizations similar to real-world

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  20. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  1. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  2. Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles

    SciTech Connect

    Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

    2010-01-01

    As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

  3. Sample Employee Newsletter Articles: Plug-In Electric Vehicles 101

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles 101 This document introduces the basics of Plug-In Electric Vehicles (PEV) and includes a list of engaging top 10 facts about PEVs that will peak the interest of your employees.  Vehicle Basics: Hybrid and Plug-In Electric Vehicles Use this article to explain the difference between various ways of referring to electric drive vehicles.  Energy 101: Plug-In Electric Vehicles (with video) Your employees have seen your workplace charging installation, now use this article and video to

  4. Battery Electric Vehicles: Range Optimization and Diversification for the U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2012-01-01

    Properly selecting the driving range is critical for accurately predicting the market acceptance and the resulting social benefits of BEVs. Analysis of transportation technology transition could be biased against battery electric vehicles (BEV) and mislead policy making, if BEVs are not represented with optimal ranges. This study proposes a coherent method to optimize the BEV driving range by minimizing the range-related cost, which is formulated as a function of range, battery cost, energy prices, charging frequency, access to backup vehicles, and the cost and refueling hassle of operating the backup vehicle. This method is implemented with a sample of 36,664 drivers, representing U.S. new car drivers, based on the 2009 National Household Travel Survey data. Key findings are: 1) Assuming the near term (2015) battery cost at $405/kWh, about 98% of the sampled drivers are predicted to prefer a range below 200 miles, and about 70% below 100 miles. The most popular 20-mile band of range is 57 to77 miles, unsurprisingly encompassing the Leaf s EPA-certified 73-mile range. With range limited to 4 or 7 discrete options, the majority are predicted to choose a range below 100 miles. 2) Found as a statistically robust rule of thumb, the BEV optimal range is approximately 0.6% of one s annual driving distance. 3) Reducing battery costs could motivate demand for larger range, but improving public charging may cause the opposite. 4) Using a single range to represent BEVs in analysis could significantly underestimate their competitiveness e.g. by $3226/vehicle if BEVs are represented with 73-mile range only or by $7404/BEV if with 150-mile range only. Range optimization and diversification into 4 or 7 range options reduce such analytical bias by 78% or 90%, respectively.

  5. Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020

    Office of Energy Efficiency and Renewable Energy (EERE)

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

  6. Microsoft Word - Vehicle Battery Final EA Celgard 4-29-10.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 Environmental Assessment for Celgard LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Concord, NC April 2010 Prepared for: Department of Energy ...

  7. Microsoft Word - Vehicle Battery Final EA_Toda 3-19-10

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 Environmental Assessment for Toda America, Incorporated Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Battle Creek, MI March 2010 Prepared for: ...

  8. Vehicles and Fuels Technologies - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Marketing Summaries (139) Success Stories (2) Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  9. Traction Drive System Modeling

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Hydrogen Market Challenges and Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Challenges and Opportunities Stagnant, but stable, Market: Supply = Demand Stagnant Pricing: Not attractive to producers Transportation Costs Largest New Market has Downward Pricing Pressure (FCEV's) Challenges  Transportation  LOHC (Hydrogenious)  Gas at close to liquid prices  Product Differentiation  High Pressure Transfill  Material Handling Vehicles  Cell tower backup  Vertical Integration  Noble United Joint Venture with Noble Gas for Northeast

  11. Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Transformation Market Transformation Significant research and development progress has paved the way for fuel cells to enter today's commercial marketplace for a variety of applications, including specialty vehicles and stationary and portable power. The growing number of commercial products, in combination with the federal and state financial incentives available now, are instrumental in supporting the role that fuel cells play in our nation's energy portfolio. Through its market

  12. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

  13. Workplace Charging Challenge Partner: MOM's Organic Market |...

    Office of Environmental Management (EM)

    To encourage employees to drive plug-in electric vehicles, MOM's offers access to three charging stations at its headquarters and stores. It also offers full-time employees a 15% ...

  14. Fact #805: November 25, 2013 Vehicle Technology Penetration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 5: November 25, 2013 Vehicle Technology Penetration Fact #805: November 25, 2013 Vehicle Technology Penetration As new vehicle technologies are introduced into the market their initial and overall adoption rate can vary widely. The figure below shows select technologies and their production share over time since first significant use. Fuel injection was adopted fairly quickly after its introduction nearly 40 years ago and reached 100% of the market share, completely replacing the

  15. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  16. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle

  17. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  18. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  19. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  20. EV Everywhere: Drive Electric Vermont Case Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Drive Electric Vermont Case Study EV Everywhere: Drive Electric Vermont Case Study In this case study, the U.S. Department of Energy's EV Everywhere Grand Challenge looks carefully at the barriers and opportunities that exist to enable small and midsize communities to partake in the PEV market and benefit from the economic and environmental advantages of PEVs. In order to gain insight into these challenges and barriers, DOE selected Drive Electric Vermont as the subject of a case