National Library of Energy BETA

Sample records for vehicle charging infrastructure

  1. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  2. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: January 2014 through March 2014 ...

  3. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: October 2014 through December ...

  4. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: July 2014 through September 2014 ...

  5. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: April 2014 through June 2014 " " ...

  6. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: October 2013 through December ...

  7. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  8. Guiding Principles to Promote Electric Vehicles and Charging Infrastructure

    Energy.gov [DOE]

    On July 21, 2016, the White House announced that nearly 50 industry members signed on to Guiding Principles to Promote Electric Vehicles and Charging Infrastructure. This commitment signified the...

  9. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    OpenEI (Open Energy Information) [EERE & EIA]

    Municipal Fleets ... further results Find Another Tool FIND TRANSPORTATION TOOLS A major component of winning public acceptance for plug-in vehicles is the streamlining of the...

  10. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Alternative Fuels and Advanced Vehicles Data Center

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  11. Charging Infrastructure for Electric Vehicles (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    level and remote onoff functionality. A onestopshop charging offer was tested on the market and further developed within the project. An internal development plan for charging...

  12. Electric vehicle preparedness Task 3: Detailed assessment of charging infrastructure for plug-in electric vehicles at Joint Base Lewis McChord

    SciTech Connect

    Schey, Steve; Francfort, Jim

    2014-10-01

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  13. Micro Climate Assessment of Grid-Connected Electric Drive Vehicles and Charging Infrastructure. Final Report

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-12-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune, located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.

  14. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  15. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

  16. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.

  17. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

  18. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Marine Corps Base Camp Lejeune. Task 3

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense-based studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at Marine Corps Base Camp Lejeune to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 vehicle utilization report provided results of the data analysis and observations related to the replacement of current vehicles with PEVs. Finally, this report provides an assessment of charging infrastructure required to support the suggested PEV replacements. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from Marine Corps Base Camp Lejeune personnel.

  19. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    SciTech Connect

    Francfort, Jim; Bennett, Brion; Carlson, Richard; Garretson, Thomas; Gourley, LauraLee; Karner, Donal; McGuire, Patti; Scoffield, Don; Kirkpatrick, Mindy; Shrik, Matthew; Salisbury, Shawn; Schey, Stephen; Smart, John; White, Sera; Wishard, Jeffery

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  20. Vehicle Technologies Office Merit Review 2016: EV Everywhere Charging Infrastructure Roadmap

    Energy.gov [DOE]

    Presentation given by EAI at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  1. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Energy.gov [DOE] (indexed site)

    per charge time, vehicle charge ports, and vehicle manufacturers that use charge ports. ... Infrastructure to Charge Plug-In Electric Vehicles," website accessed 3042016. ...

  2. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  3. National Template: Hydrogen Vehicle and Infrastructure Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Hydrogen Vehicle and Infrastructure Codes and ...

  4. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Saver

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as ...

  5. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  6. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect

    Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R; Chinthavali, Madhu Sudhan

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  7. Guiding Principles to Promote Electric Vehicles and Charging...

    Office of Environmental Management (EM)

    This commitment signified the beginning of a collaboration between the government and industry to increase the deployment of electric vehicle charging infrastructure. Building on ...

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  9. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. tv_05_sell.pdf (8.4 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers Lean Gasoline System Development for Fuel Efficient Small

  10. Consumers (Consumer Acceptance and Charging Infrastructure) Consumer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... day charging) * Lack of full range of vehicle choices * Consumer confidence * Behavioral changes * Better access to charging at home (Multi-Dwelling, cost, on-street parking) ...

  11. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C ...

  13. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Energy.gov [DOE] (indexed site)

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  16. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  17. EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure...

    Office of Environmental Management (EM)

    Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, ...

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Energy.gov [DOE] (indexed site)

    fry.pdf (257.11 KB) More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  19. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  20. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011o.pdf (914.05 KB

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012o.pdf (2.12 MB

  4. Hydrogen Vehicle and Infrastructure Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (318.31 KB) More Documents & Publications Stationary and Portable Fuel Cell Systems Codes and Standards Citations National Template: Hydrogen Vehicle and Infrastructure

  5. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    December 2014 Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors Page i U.S. Department of Energy |December 2014 Evaluating Electric Vehicle Charging ...

  6. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In ...

  7. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  8. Electric Vehicle Workplace Charging

    Energy.gov [DOE] (indexed site)

    for annual capital fleet purchases 10 of 17 locations currently have charging stations Agreement with employees to provide workplace charging Ultimate goal is ...

  9. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  10. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  11. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  12. Policy Option for Hydrogen Vehicles and Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Policy Option for Hydrogen Vehicles and Infrastructure Policy Option for Hydrogen Vehicles and Infrastructure Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. scenario_analysis_unnasch_0_07.pdf (272.37 KB) More Documents & Publications Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements Scenario Analysis Meeting

  13. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  14. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  15. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  16. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  17. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Energy.gov [DOE]

    Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  18. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Energy Saver

    Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle ...

  19. Policy Option for Hydrogen Vehicles and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stefan Unnasch (408) 517-1563 Unnasch.stefan@tiaxllc.com Daniel Rutherford, Ph.D. (408) 517-1555 Rutherford.daniel@tiaxllc.com Policy Options for Hydrogen Vehicles and Infrastructure January 31, 2007 TIAX, LLC 15 Acorn Park Cambridge, Massachusetts 02140-2390 TIAXLLC.com © 2006 TIAX LLC Posted with permission from TIAX Summary based on NREL Task Order NO. KACX-4-44452-02 Policy Options for Hydrogen Vehicles Presentation Outline 1 1 Background 2 Study methodology 3 Policy options for early

  20. Hydrogen Vehicles and Fueling Infrastructure in China

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons

  1. Hydrogen Vehicles and Refueling Infrastructure in India

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HYDROGEN VEHICLES AND FUELLING INFRASTRUCTURE IN INDIA Prof. L. M. Das Centre for Energy Studies Indian Institute of Technology Delhi INDIA " The earth was not given to us by our parents , it has been loaned to us by our children" Kenyan Proverb Same feeling exists in all societies Our moral responsibility---to handover a safer earth to future generation IIT Delhi August 18, 2004 -:Hydrogen:- Not a Radically New Concept JULES VERNE Mysterious Island (1876) ...." I believe that

  2. AVTA: ARRA EV Project Public Charging Infrastructure Maps

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of public chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  3. AVTA: ARRA EV Project Residential Charging Infrastructure Maps

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of residential chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  4. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  5. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Energy Saver

    Charging Infrastructure Group D Breakout Report | Department of Energy D Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group D Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA group_d_report_out_caci.pdf (148.33 KB) More Documents & Publications EV Everywhere Consumer

  6. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Energy Saver

    Charging Infrastructure Group E Breakout Report | Department of Energy E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA group_e_report_out_caci.pdf (115.32 KB) More Documents & Publications EV Everywhere Consumer

  7. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  8. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis | Department of Energy HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. welch_hydive.pdf (921.33 KB) More Documents & Publications Discrete Choice Analysis: Hydrogen FCV Demand Potential Technical

  9. Vehicle and Infrastructure Cash-Flow Evaluation (VICE) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Toolkit Region(s): Australia & North America UN Region: Northern America Language: English Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Screenshot Related Tools...

  10. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    40-47951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative ...

  11. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  12. Orlando Plugs into Electric Vehicle Charging Stations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging ...

  13. Fact Sheet for Supplement for Electric Vehicle Charging | Department...

    Energy Saver

    Fact Sheet for Supplement for Electric Vehicle Charging Fact Sheet for Supplement for Electric Vehicle Charging Fact Sheet for Supplement for Electric Vehicle Charging (379.47 KB) ...

  14. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible

    Energy Saver

    EV Design | Department of Energy Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA 5_slezak_caci.pdf (2 MB) More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop- Backsplash

    Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  16. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. csd_workshop_2_elrick.pdf (1004.25 KB) More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  17. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  18. Consumer Acceptance and Public Policy Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Swap * Flow Batteries: Electrolyte swap for long distance traveling * Dynamic Wireless Charging * Strategically placed and visible * Widespread and visible Charging ...

  19. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  20. Nevada Strengthens Electric Vehicle Infrastructure on Major U...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governors Office of Energy, announces the new...

  1. Electric Drive Vehicle Infrastructure Deployment | Department...

    Energy.gov [DOE] (indexed site)

    73vsscarleson2011o.pdf (315.3 KB) More Documents & Publications ChargePoint America ChargePoint America Grid Connectivity Research, Development & Demonstration Projects

  2. Hydrogen Vehicles and Fueling Infrastructure in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_10_zheng.pdf (1.35 MB) More Documents & Publications Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen | Department of Energy Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. 43669.pdf (1.5 MB) More Documents & Publications IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen

  4. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Fact Sheet), NREL (National Renewable Energy Laboratory) | Department of Energy Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen. 48609.pdf (2.52 MB) More Documents

  5. Energy Jobs: Electric Vehicle Charging Station Installer | Department...

    Office of Environmental Management (EM)

    Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, ...

  6. Help Your Employer Install Electric Vehicle Charging

    Energy.gov [DOE]

    Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace...

  7. Consumer Acceptance and Public Policy Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    availability, energy costsdemand costs * Electrification and automation * Wireless charging, platooning, let the grid be the energy carrier July 30, 2012 Charging ...

  8. Evaluating Electric Vehicle Charging Impacts and Customer Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) | Department of Energy Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) The electric power industry expects a 400% growth in annual sales of plug-in

  9. Level 1 Electric Vehicle Charging Stations at the Workplace ...

    Energy Saver

    Level 1 Electric Vehicle Charging Stations at the Workplace Level 1 Electric Vehicle Charging Stations at the Workplace Workplace charging programs are successful when ...

  10. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers Lean Gasoline System Development for Fuel Efficient Small Car HYDROGEN TO THE ...

  11. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More

  13. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop

    Energy Saver

    Introduction | Department of Energy Workshop Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA 1_sandalow_caci.pdf (3.39 MB) More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand Challenge

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Energy Saver

    Consumer Acceptance Group A Breakout Report | Department of Energy Consumer Acceptance Group A Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA group_a_report_out_caci.pdf (130.81 KB) More Documents & Publications EV

  16. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Energy Saver

    Consumer Acceptance and Public Policy Group C Breakout Report | Department of Energy Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA group_c_report_out_caci.pdf

  17. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric

  18. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  19. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Hydrogen Vehicles and Refueling Infrastructure in India | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Refueling Infrastructure in India Hydrogen Vehicles and Refueling Infrastructure in India Presentation given by L.M. Das of the India Institute of Technology at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_11_das.pdf (7.37 MB) More Documents & Publications Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Overview of Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel

  4. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  5. EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Major U.S. Highway | Department of Energy Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governor’s Office of Energy, announces the new Nevada Electric Highway Joint Initiative in Carson City, Nevada. He was joined at the event by Carson City Mayor Bob Crowell, left, NV Energy CEO Paul Caudill, and

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    SciTech Connect

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  8. Alternative Fuels Data Center: Electric Vehicle Charging Station...

    Alternative Fuels and Advanced Vehicles Data Center

    Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about ...

  9. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data ...

  10. DOE Announces Webinars on Electric Vehicle Charging at Colleges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Charging at Colleges, a Hydrogen Leak Detector and More DOE Announces Webinars on Electric Vehicle Charging at Colleges, a Hydrogen Leak Detector and More March 7, ...

  11. AVTA: ChargePoint America Recovery Act Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory. ...

  12. Level 1 Electric Vehicle Charging at the Workplace | Department...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Workplace Charging Presentation Workplace Charging Toolkit: Workshop Outreach Presentation Template Richmond Electric Vehicle Initiative Electric ...

  13. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  14. Wireless Charging for Electric Vehicles | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless Charging for Electric Vehicles Wireless Charging for Electric Vehicles Addthis Description Below is the text version for the "Wireless Charging for Electric Vehicles" video. The video opens with a shot of an electric vehicle, showing the parts involved in charging: the transmitting plate, receiving plate, controller, and battery. Nay Chehab, Vehicle Technologies Office Charging is getting a whole lot easier for electric vehicles. Pretty soon you won't even have to plug-in to

  15. How Loan Guarantees Can Put a Charge in Electric Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy How Loan Guarantees Can Put a Charge in Electric Vehicles How Loan Guarantees Can Put a Charge in Electric Vehicles July 20, 2016 - 2:55pm Addthis How Loan Guarantees Can Put a Charge in Electric Vehicles Mark A. McCall Mark A. McCall Executive Director of the Loan Programs Office What are the key facts? EV charging infrastructure, including associated hardware and software, may be a qualifying technology under the Title XVII Renewable Energy and Efficient Energy (REEE) Projects loan

  16. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  17. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  18. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  19. Vehicle Technologies Office Merit Review 2014: Wireless Charging |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Wireless Charging Vehicle Technologies Office Merit Review 2014: Wireless Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless charging. vss103_jones _2014_o.pdf (4.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Wireless Charging of Electric Vehicles Vehicle Technologies Office Merit

  20. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  1. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast ... AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  2. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  3. Workplace Charging Challenge Plug-In Electric Vehicle Support...

    Office of Environmental Management (EM)

    Plug-In Electric Vehicle Support Networks Workplace Charging Challenge Plug-In Electric Vehicle Support Networks When promoting PEV deployment, it can be helpful to tap into ...

  4. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  5. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Bill Elrick California Fuel Cell Partnership 3/19/2013 The cars are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 The buses are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017

  6. Polymers for hydrogen infrastructure and vehicle fuel systems :

    SciTech Connect

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  7. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wireless Charging Vehicle Technologies Office Merit Review 2014: Wireless Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program ...

  8. Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge

    Energy.gov [DOE]

    The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

  9. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Energy.gov [DOE] (indexed site)

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  10. Plug-In Electric Vehicle Handbook for Public Charging Station...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 ...

  11. Electric Vehicle Charging Stations, Coming Soon to a City Near...

    Energy Saver

    Vehicle Charging Stations, Coming Soon to a City Near You Electric Vehicle Charging Stations, Coming Soon to a City Near You October 19, 2010 - 10:00am Addthis Erin R. Pierce Erin ...

  12. Electric Vehicle Charging: Coming to a Federal Workplace Near...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Charging: Coming to a Federal Workplace Near You Electric Vehicle Charging: Coming to a Federal Workplace Near You October 20, 2016 - 12:45pm Addthis Sarah Olexsak ...

  13. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  14. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  15. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting

    Energy.gov [DOE]

    This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  17. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form

  18. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Prepared for: California Energy Commission Prepared by: National Renewable Energy Laboratory A l t e r n a t i v e a n d R e n e w a b l e F u e l a n d V e h i c l e T e c h n o l o g y P r o g r a m F I N A L P R O J E C T R E P O R T CALIFORNIA STATEWIDE PLUG-IN ELECTRIC VEHICLE INFRASTRUCTURE ASSESSMENT May 2014 CEC-600-2014-003 Prepared by: Primary Author(s): Marc Melaina, Ph.D. Michael Helwig, Ph.D. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Agreement

  19. Vehicle Technologies Office: Workplace Charging Challenge Progress Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2014 - Employers Take Charge | Department of Energy Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their communities and helped identify best practices for workplace charging. The Workplace Charging Challenge Progress Update

  20. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  1. DC Fast Charge Impacts on Battery Life and Vehicle Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing AVTA: 2011 Honda CRZ HEV Testing Results AVTA: 2011 ...

  2. Washington DC's First Electric Vehicle Charging Station | Department...

    Energy.gov [DOE] (indexed site)

    Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo ...

  3. Fact #795: September 2, 2013 Electric Vehicle Charging Stations...

    Energy.gov [DOE] (indexed site)

    Charger installations have risen in nearly all states, but a dozen states, shown in the graph below, account for a majority of all installations. Electric Vehicle Charging Stations ...

  4. Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging System University of Colorado Contact CU About This Technology Publications: ...

  5. Vehicle-to-Grid Integration | Energy Systems Integration | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of a solar-powered electric vehicle charging station Our work focuses on building the infrastructure and integration needed for vehicles-primarily electric vehicles and ...

  6. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  7. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  8. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  9. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel ... Refueling Infrastructure 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - ...

  10. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  11. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Biodiesel Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  12. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  13. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  14. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  15. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  17. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  18. An Optimal Deployment of Wireless Charging Lane for Electric Vehicles on Highway Corridors

    SciTech Connect

    Huang, Yongxi

    2016-01-01

    We propose an integrated modeling framework to optimally locate wireless charging facilities along a highway corridor to provide sufficient in-motion charging. The integrated model consists of a master, Infrastructure Planning Model that determines best locations with integrated two sub-models that explicitly capture energy consumption and charging and the interactions between electric vehicle and wireless charging technologies, geometrics of highway corridors, speed, and auxiliary system. The model is implemented in an illustrative case study of a highway corridor of Interstate 5 in Oregon. We found that the cost of establishing the charging lane is sensitive and increases with the speed to achieve. Through sensitivity analyses, we gain better understanding on the extent of impacts of geometric characteristics of highways and battery capacity on the charging lane design.

  19. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through...

  20. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  1. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect

    Shawn Salisbury

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  2. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GREAT MINDS THINK ELECTRIC WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May ...

  3. Plug-in Electric Vehicles Charge Forward in Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... EV Everywhere Charges Up the Workplace Project Overview Positive Impact More plug-in hybrid and all-electric vehicles in Oregon. Oregon is planning for the large-scale deployment ...

  4. Vehicle Infrastructure Cash-Flow Estimation--VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Mitchell, G.

    2015-04-02

    This presentation discusses the differences between the original Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model and the revamped version, VICE 2.0. The enhanced tool can now help assess projects to acquire vehicles and infrastructure, or to acquire vehicles only.

  5. Workplace Charging Challenge Partner: Boulder County | Department...

    Office of Environmental Management (EM)

    By becoming a part of the Workplace Charging Challenge, Boulder County hopes to not only showcase and expand our existing electric vehicle charging infrastructure, but also lead by ...

  6. Alternative Fuels Data Center: Developing Infrastructure to Charge...

    Alternative Fuels and Advanced Vehicles Data Center

    ... equipment (often referred to simply as Level 2) offers charging through 240V (typical in residential applications) or 208V (typical in commercial applications) electrical service. ...

  7. Hydrogen Infrastructure for the Next Generation of Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for the Next Generation of Fuel Cell Vehicles Sustainable Transportation Summit July 12, 2016 Dave Edwards Air Liquide 2 Air Liquide, the world leader in gases, technologies and services for Industry and Health Air Liquide - Hydrogen Hydrogen: 40 years in industry * $2.5B Revenue (refinery and chemicals) * 1850 km of pipelines * 1000 trucks * 18 Billion Nm3/year from 46 large plants (enough for 15M vehicle refills) * 75 filling stations * 300+ fuel cell installations Air Liquide Hydrogen

  8. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear ...

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lessons Learned for Hydrogen Dean Fry, BP April 3, 2008 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 UNITED STATES Department of Energy Infrastructure Lessons Learned Fueling Station Location and Customer Selection Coordination between the OEM and Hydrogen Station Developer is crucial for optimal selection of sites / customers ISSUE Suboptimal site selection has resulted in low station utilization SOLUTIONS Clear understanding /

  10. Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation

    SciTech Connect

    Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher; Boundy, David; Pratt, Annabelle

    2014-11-03

    With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same low voltage residential distribution feeder.

  11. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  12. Vehicle Technologies Office: Workplace Charging Challenge Reports...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Their efforts have resulted in more than 600 workplaces with over 5,500 charging stations accessible to nearly one million employees. In 2015, more than 9,000 PEV-driving employees ...

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy.gov [DOE] (indexed site)

    project of electric drive vehicles and charging infrastructure ever, the VTO-supported EV Project wrote a number of white papers on plug-in electric vehicle community readiness. ...

  14. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  15. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  16. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE PAGES [OSTI]

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  17. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    SciTech Connect

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts to the grid.

  18. Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure The facility houses equipment such as glove box, fume hoods, oxygen-free nanopure water system and ultrasonic processors. Schlenk-type techniques are routinely used...

  19. Intelligent Vehicle Charging Benefits Assessment Using EV Project Data

    SciTech Connect

    Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

    2013-12-01

    PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

  20. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    SciTech Connect

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  1. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Energy.gov [DOE] (indexed site)

    Plug-in Electric Vehicle Charging Options and Times Vary Considerably fotw919web.xlsx (372.17 KB) More Documents & Publications Codes and Standards Support Vehicle ...

  2. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    , upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

  3. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  4. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  5. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  6. ETA-NTP013 Level III Charging of Neighborhood Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Different charging strategies shall not be mixed during a single test program unless the ... the vehicle's onboard SOC indicator reading prior to commencing the charge on ...

  7. Charging Your Plug-in Electric Vehicle at Home | Department of...

    Energy Saver

    Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an ...

  8. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    Alternative Fuels and Advanced Vehicles Data Center

    951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive

  9. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  10. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  11. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  12. Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit

    Alternative Fuels and Advanced Vehicles Data Center

    Dwellings Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Google Bookmark

  13. Robust broadcast-communication control of electric vehicle charging

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  14. Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure (D2SA) Co-Chairs: Christopher Beggio, Sandia National Laboratories Robin Goldstone, Lawrence Livermore National Laboratories 1 Contributors * Bill Allcock, Argonne Leadership Computing Facility * Chris Beggio, Sandia National Laboratories * Clay England, Oak Ridge Leadership Computing Facility * Doug Fuller, Oak Ridge Leadership Computing Facility * Robin Goldstone, Lawrence Livermore National Laboratory * Jason Hick, National Energy Research Scientific Computing Center * Kyle

  15. EERE Success Story-Plug-in Electric Vehicles Charge Forward in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Energizing Oregon plan described building code revisions to simplify infrastructure installation, a marketing campaign to raise awareness, a workplace charging strategy, a PEV ...

  16. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  17. Now Available: Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors- Experiences from Six SGIG Projects (December 2014)

    Energy.gov [DOE]

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. The report is now available for downloading.

  18. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Times Vary Considerably - Dataset | Department of Energy 9: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably - Dataset Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably - Dataset Excel file and dataset for Plug-in Electric Vehicle Charging Options and Times Vary Considerably fotw#919_web.xlsx (372.17 KB) More Documents & Publications Codes and Standards Support Vehicle Electrification Codes and Standards to

  19. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage | Department of Energy Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss076_markel_2012_o.pdf (718.79 KB) More Documents & Publications Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage AVTA: Bidirectional Fast

  20. Electric vehicle system for charging and supplying electrical power

    DOEpatents

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  1. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HyDIVE(tm) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) model analysis Cory Welch Hydrogen Analysis Workshop, August 9-10 Washington, D.C. Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government

  2. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  3. EERE Success Story-Plug-in Electric Vehicles Charge Forward in Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Plug-in Electric Vehicles Charge Forward in Oregon EERE Success Story-Plug-in Electric Vehicles Charge Forward in Oregon March 10, 2015 - 12:00am Addthis EERE Success Story—Plug-in Electric Vehicles Charge Forward in Oregon Plug-in electric vehicles (PEVs) are charging forward in Oregon, with the help of EERE's Vehicle Technologies Office. A Clean Cities community readiness award provided a major step forward, helping the state develop a comprehensive market

  4. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  5. Wireless Electric Charging: The Future of Plug-In Electric Vehicles...

    Office of Environmental Management (EM)

    In the future, the engineers hope to reach 10kW and eventually 19kW to facilitate faster charging. What if charging your plug-in electric vehicle was as easy as parking it? No need ...

  6. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the

  7. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    SciTech Connect

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  8. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy America's Plug-In Electric Vehicle Market Charges Forward EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward January 22, 2014 - 6:35pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah

  9. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Times Vary Considerably | Department of Energy 9: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably SUBSCRIBE to the Fact of the Week There are currently four basic power levels for charging plug-in electric vehicles (PEVs). Level 1 charging is the slowest, adding just two to five miles of range per hour but requiring only a standard 120 volt household outlet.

  10. Workplace Charging Challenge Partner: Riverside County | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    One of the steps toward this brighter future involves building plug-in electric vehicle (PEV) charging infrastructure. A grant award in 2012 resulted in seven PEV charging stations ...

  11. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    SciTech Connect

    Wei, Dong; Haas, Harry; Terricciano, Paul

    2015-09-30

    (NREL) shows that an increased PEV penetration would significantly increase pressure on the peak generation, if no controlled charging strategy was put in place. Investigations from Oak Ridge National Laboratory (ORNL) show that in many regions, additional power generation facilities must be put in place and operate in evening times to recharge the EVs [12]. By all accounts, large PEV penetration will bring to the power grid enormous challenges due to the excessive and stochastic demand, and can entirely change the peak time distribution and behavior, perhaps, into a bi-modal distribution capable of exhausting primary, secondary and even reserves (spinning or non-spinning). To minimize the infrastructure upgrade costs and risks to the grid, and to ensure that power quality and reliability remain within the set standards, the demand for EV plug-ins must then be controlled and coordinated locally and at regional levels. Novel control techniques must be devised to allow for close collaboration between neighboring plug-in requestors, between neighboring communities, and between these and more central power authorities. The concept of electric drive vehicle is not new. The development of electric vehicle has been around since 19th century [13]. But due to a number of reasons and practical limitations at the time, including lower cost of gasoline compared to electricity, excessive refueling times, and abundance of gasoline, the automobile industry embraced gasoline-powered vehicles worldwide [13]. With the global warming, ever reducing reservoirs of fossil oil around the world and increasing political pressure to reduce the national dependency on foreign oil, the last decade of the 20th century witnessed major technological breakthroughs in Alternative Fueled Vehicle (AFV) technologies, including electric vehicles. With GHG emissions and carbon footprint in the minds of many more consumers and politicians, the first decade of the 21stCentury witnessed more breakthroughs with

  12. Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 – Dataset

    Energy.gov [DOE]

    Excel file with dataset for Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

  13. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management

    SciTech Connect

    Young, Stanley E.

    2015-11-16

    The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant to research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct

  15. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  16. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles...

    Alternative Fuels and Advanced Vehicles Data Center

    ... Refer to these resources from the National Institute of Science and Technology (NIST): NIST Handbook 130 Method of Sale for Electrical Energy as Vehicle Fuel Handbook 44 Device ...

  17. Wireless Plug-in Electric Vehicle (PEV) Charging | Department...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss061miller2011o.pdf (760.91 KB

  18. Plug-In Electric Vehicle Fast Charge Station Operational Analysis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery, Hybrid and Fuel Cell Electric Vehicle Symposium ... Proper integration of a solar array and stationary battery ... a viable alternative to petroleum-fueled automobiles ...

  19. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  20. Power Charging and Supply System for Electric Vehicles - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DescriptionThe technology integrates the battery-charging function into the electrical motor drive system. By using only the onboard inverter and motor without adding any inductors ...

  1. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Energy.gov [DOE]

    Jurisdiction's can use this template to develop a standard permit for residential charging stations that allows for quick, safe installation of EVSE.

  2. Smart Frequency-Sensing Charge Controller for Electric Vehicles...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology available for licensing:System uses frequency-sensing charge controllers that provide automatic demand response and regulation service to the grid by reducing or turning ...

  3. Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless

    Education - Teach & Learn

    What if charging your plug-in electric vehicle was as easy as parking it? No need for cords or cards. Just as Wi-Fi has freed consumers of wires when accessing the Internet, wireless charging technology may soon be as widespread, thanks to research supported by the Energy Department.

  4. Clean Cities Coalitions Charge Up Plug-In Electric Vehicles ...

    Office of Environmental Management (EM)

    May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of ...

  5. Wireless Plug-in Electric Vehicle (PEV) Charging | Department...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss061miller2012o.pdf (2.99 MB

  6. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  7. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect

    Miller , John M.; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene; Sepe, Raymond B; Steyerl, Anton

    2014-01-01

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  8. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14

  9. "Smart" Frequency-Sensing Charge Controller for Electric Vehicles...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Their emergence also raises a host of issues regarding how, where and when car batteries should be charged-and the resulting load on the power grid. Electric utilities strive to ...

  10. Vehicle Technologies Office: Workplace Charging Challenge 2015 Annual Survey Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar provides an update on the Workplace Charging Challenge initiative, describes the survey, discusses why the Survey input is essential, and walks through the log-in and submission process.

  11. Workplace Charging Challenge Overview Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workplace Charging Challenge Overview Factsheet Workplace Charging Challenge Overview Factsheet Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping build our nation's PEV charging infrastructure and offering a valuable employee benefit. A full transition to electric-drive vehicles (including all-electric vehicles, plug-in hybrid

  12. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  13. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  14. Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless...

  15. Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same

    SciTech Connect

    Karner, Donald B

    2014-04-29

    Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

  16. Energy Department Supporting Nevada’s Effort to Increase Electric Vehicle Infrastructure along Major U.S. Highway

    Energy.gov [DOE]

    The Nevada Governor’s Office of Energy and the local utility NV Energy recently announced the Nevada Electric Highway joint initiative, an effort to facilitate electric vehicle (EV) transportation on U.S. Route 95. The roadway connects Las Vegas and Reno. To help offset costs for installing the charging stations along the route, Nevada will leverage funds allocated by the Energy Department’s State Energy Program.

  17. As Electric Vehicles Take Charge, Costs Power Down | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been

  18. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  19. Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway

    Energy.gov [DOE]

    In June, theNevada Governors Office of Energyand the local utility NV Energy announced theNevada Electric Highway joint initiative, an effort to facilitate electric vehicle (EV) transportation...

  20. Vehicle Technologies Office Merit Review 2016: Wireless Charging of Electric Vehicles

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  1. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect

    John Smart

    2013-09-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  2. Materials used in new generation vehicles: supplies, shifts, and supporting infrastructure

    SciTech Connect

    Das, S.; Curlee, T.R.; Schexnayder, S.M.

    1997-08-01

    The Partnership for a New Generation of Vehicles (PNGV) program intends to develop new designs for automobiles that will reduce fuel consumption by two thirds but otherwise have price, comfort, safety, and other measures of performance similar to the typical automobile now on the market. PNGV vehicle designs are expected to substitute lightweight materials, such as aluminum, magnesium, carbon-reinforced polymer composites, glass-reinforced polymer composites, and ultra- light steel, for heavier materials such as steel and iron in automobile components. The target mass of a PNGV vehicle is 1,960 pounds, as compared to the average current vehicle that weights 3,240 pounds. Other changes could include the use of different ferrous alloys, engineering changes, or incorporation of advanced ceramic components. Widespread adoption of these vehicle designs would affect materials markets and require concurrent development and adoption of supporting technologies to supply the materials and to use and maintain them in automobiles. This report identifies what would be required to bring about these changes and developments in materials substitution; identifies reasons that might make these substitutions difficult to accomplish within the overall objectives and timetable of the PNGV program; and identifies any issues arising from the substitution that could prompt consideration of policies to deal with them. The analysis in this paper uses scenarios that assume the production of new generation vehicles will begin in 2007 and that their market share will increase gradually over the following 25 years. The scenarios on which the analysis is based assume a maximum substitution of each potential replacement material considered. This maximum substitution of individual materials (i.e., the amount of replacement material by weight that would be added to the baseline vehicle`s composition) is as follows: ULSAB (high strength steel), 298 lbs.; glass-reinforced composites, 653 lbs.; carbon

  3. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  4. Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    Dispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. CONTROLLING AUTHORITIES: State and Federal Energy Regulatory Commissions CONTROLLING AUTHORITIES: Local Building and Fire Departments CONTROLLING AUTHORITIES: DOT/NHTS Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel

  5. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  6. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and

  7. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed to prepare for the commercialization of alternative fuel vehicle technologies. This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen. National Template: Hydrogen

  8. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  9. EV Everywhere Workplace Charging Challenge: Benefits of Joining |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy EV Everywhere Workplace Charging Challenge: Benefits of Joining EV Everywhere Workplace Charging Challenge: Benefits of Joining Workplace charging plays a critical role in America's plug-in electric vehicle (PEV) charging infrastructure. Installing workplace charging is a sign of corporate leadership, showing a willingness to adopt advanced technology as well as increasing consumer exposure and access to PEV charging opportunities. Employer-provided PEV charging also

  10. Hydrogen Transition Infrastructure Analysis

    SciTech Connect

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  11. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

  12. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  13. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect

    Miller, John M; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene

    2014-01-01

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  14. Primary Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect

    Miller, John M; Onar, Omer C; Chinthavali, Madhu Sudhan

    2015-01-01

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. This paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  15. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  16. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORNL/TM-2013/222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July 2013 1 Prepared by David L. Greene Oak Ridge National Laboratory Gopal Duleep HD Systems 1 This is a revised version of the paper originally published in June 2013. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web

  17. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    Publication and Product Library

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

  18. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    SciTech Connect

    Onar, Omer C; Seiber, Larry Eugene; White, Cliff P; Chinthavali, Madhu Sudhan; Campbell, Steven L

    2016-01-01

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.

  19. EV Everywhere: Workplace Charging | Department of Energy

    Office of Environmental Management (EM)

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  20. Hydrogen Infrastructure Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategies Prof. Joan Ogden University of California, Davis Presented at the NREL Workshop on Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Sacramento, CA April 3, 2008 H 2 2 H 2 TRANSITION => MULTIPLE TRANSITIONS Vehicle technology Fuel Supply infrastructure New, low carbon primary supply ALL ALT FUELS/VEHICLES FACE THESE ISSUES TO SOME DEGREE FIRST STEPS OF THESE TRANSITIONS ARE UNDERWAY (Though Not Exclusively Tied to H 2 ) FOCUS OF THIS TALK THE ROLE

  1. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor

  2. Energy Department and Edison Electric Institute Sign Agreement to Advance Electric Vehicle Technologies

    Energy.gov [DOE]

    Today Energy Secretary Ernest Moniz signed a Memorandum of Understanding between the Department and the Edison Electric Institute, strengthening collaborative action to accelerate plug-in electric vehicle and charging infrastructure deployment.

  3. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and

  4. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    DOE PAGES [OSTI]

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less

  5. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    SciTech Connect

    Greene, David L.; Leiby, Paul N.; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnash, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-14

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself.

  6. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  7. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  8. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  9. Charge

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): Summary of Recommendations January 2001 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): Summary of Recommendations The Atmospheric Radiation Measurement (ARM) Program Infrastructure Review committee feels that the organization of the ARM

  10. Charge

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2. SUMMARY OF ACRF INFRASTRUCTURE REVIEW PANEL COMMENTS...... 3 2.1 ... of Energy Review of the ACRF: Review Panel ......C.1 iii DOE...

  11. Vehicle Technologies Office Merit Review 2016: Wireless & Conductive Charging Testing to Support Code & Standards

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory (INL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle...

  12. Vehicle Technologies Office Merit Review 2016: Evaluation of Dynamic Wireless Charging Demand

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  13. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  14. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. AVTA: ChargePoint America Recovery Act project map of charging units

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe the distribution of charging infrastructure through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  17. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries

    SciTech Connect

    Rowlette, J.J.

    1981-01-15

    Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  18. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy.gov [DOE] (indexed site)

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  19. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect

    Stephen Schey; Jim Francfort

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  20. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless and...

  1. Vehicle Technologies Office Merit Review 2015: Lessons Learned about Workplace Charging in The EV Project

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about lessons learned...

  2. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  3. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon...

  4. Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of...

  5. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  6. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sample Employee Survey for Workplace Charging Planning Plug-in electric vehicles (PEVs) use electricity as either their primary fuel or to improve fuel efficiency. Today, over 25 PEV models are available, expanding driver options. We are considering the installation of charging infrastructure to assist employees who drive PEVs to work. Your responses to this survey will be used to determine employee interest in this benefit. Participation in this survey is voluntary and you do not need to

  7. Utilization Assessment of Target Electrification Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect

    Schey, Steve

    2015-05-01

    Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.

  8. Alternative Fuels Data Center: States Enact Natural Gas Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center

    States Enact Natural Gas Vehicle and Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure ...

  9. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Saver

    It tests a number of types of electric vehicle supply equipment (EVSE), including wireless charging, conductive EVSE, DC conductive EVSE, bi-directional transfer (vehicle-to-grid ...

  10. Electric Vehicles

    SciTech Connect

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Electric Vehicles

    ScienceCinema

    Ozpineci, Burak

    2016-07-12

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Lessons and Challenges for Early Hydrogen Refueling Infrastructure

    Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  13. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Policies: The Directive for Alternative Fueling Infrastructure Deployment (AFI) ... and 45 buses * 6 vehicle fueling stations and 8 bus fueling stations FCH2JU ...

  14. GIS-Based Infrastructure Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  15. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  17. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report by Oak Ridge National Laboratory assesses the current status of automotive fuel cell technology and the plans for the deployment of refueling infrastructure.

  18. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  19. Vehicle Technologies Office Merit Review 2016: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Energy.gov [DOE]

    Presentation given by Hyundai at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  20. Impact of Fast Charging on Life of EV Batteries

    SciTech Connect

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  1. Hydrogen Infrastructure Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategies Hydrogen Infrastructure Strategies Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California ogden.pdf (4.18 MB) More Documents & Publications Geographically-Based Infrastructure Analysis for California H2FIRST Reference Station Design Task: Project Deliverable 2-2 Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

  2. Infrastructure Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  3. California Hydrogen Infrastructure Project

    SciTech Connect

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  4. Wireless Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charging Wireless Charging 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss103_miller_2013_o.pdf (4.68 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Wireless Charging Wireless Plug-in Electric Vehicle (PEV) Charging Wireless Plug-in Electric Vehicle (PEV)

  5. Dynamic Wireless Charging

    SciTech Connect

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  6. Utilities and Workplace Charging

    Energy.gov [DOE] (indexed site)

    for workplace charging Aid in forecasting similar workplace charging needs with ... of plug-in vehicle technology, costs, and benefits? 50% 40% 30% 20% 10% 0% 1 2 ...

  7. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  8. Electric Vehicle Preparedness: Task 2, Identification of Vehicles for Installation of Data Loggers for Marine Corps Base Camp Lejeune

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-02-01

    In Task 1, a survey was completed of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization was used to select vehicles for further monitoring, which involves data logging of vehicle movements in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the list of vehicles selected by MCBCL and Intertek for further monitoring and fulfills the Task 2 requirements.

  9. PHEVs are More about the grid than the vehicles

    SciTech Connect

    2009-01-15

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  10. U.S. Employers Drive Change with Workplace Charging | Department...

    Energy.gov [DOE] (indexed site)

    An electric vehicle charging at a Zappos workspace. | Photo credit Ron Carney An electric vehicle charging at a Zappos workspace. | Photo credit Ron Carney Electric vehicle ...

  11. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Environmental Management (EM)

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  12. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  13. Workplace Charging Challenge: Signage Guidance | Department of...

    Office of Environmental Management (EM)

    Challenge: Signage Guidance Workplace Charging Challenge: Signage Guidance Electric vehicle parking signage. No parking except for electric vehicle charging. Signage for plug-in ...

  14. Workplace Charging Challenge Partner: Baxter International Inc...

    Office of Environmental Management (EM)

    At its Illinois locations, Baxter has installed four duel head Level 2 plug-in electric vehicle (PEV) charging stations, capable of charging eight vehicles simultaneously. With ...

  15. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  16. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  18. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Saver

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries ...

  19. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  20. Vehicle Technologies Office News | Department of Energy

    Office of Environmental Management (EM)

    Vehicle Technologies Office News Vehicle Technologies Office News RSS October 20, 2016 Electric Vehicle Charging: Coming to a Federal Workplace Near You Nearly 75% of Americans ...

  1. AVTA: ARRA EV Project Vehicle Placement Maps

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  2. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  3. A Guide to the Lessons Learned from the Clean Cities Community Electric Vehicle Readiness Projects

    Alternative Fuels and Advanced Vehicles Data Center

    Guide to the Lessons Learned from the Clean Cities Community Electric Vehicle Readiness Projects January 2014 ACKNOWLEDGEMENTS This guide summarizes and synthesizes the work of a series of projects carried out by the Clean Cities Community Readiness and Planning for Plug-In Electric Vehicles and Charging Infrastructure awardee organizations and partnering local Clean Cities coalitions. A full list of these organizations can be found in Appendix I of this report. On behalf of the U.S. Department

  4. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    SciTech Connect

    Neubauer, J.

    2013-05-01

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  5. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle | Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote

  6. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  7. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  8. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  9. Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  10. Geographically Based Hydrogen Demand and Infrastructure Analysis

    Energy.gov [DOE]

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  11. Geographically-Based Infrastructure Analysis for California

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  12. Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Energy.gov [DOE]

    Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  13. Vehicle Technologies Office Merit Review 2015: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Energy.gov [DOE]

    Presentation given by Hyundai at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  14. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles

    Energy.gov [DOE]

    In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

  15. Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory

    SciTech Connect

    Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

    2009-08-01

    Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

  16. Workplace Charging Challenge: Promote Charging at Work

    Energy.gov [DOE]

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that...

  17. Car Charging Group Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  18. Workplace Charging Challenge Partner: OSRAM SYLVANIA | Department...

    Energy.gov [DOE] (indexed site)

    ChargePoint and SYLVANIA Lighting Services Announce Reseller Agreement for Electric Vehicle Charging Stations in United States Campbell, CA and Danvers, MA - ChargePoint, the ...

  19. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  20. Energy Infrastructure Events and Expansions Infrastructure Security...

    Energy.gov [DOE] (indexed site)

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. ...

  1. Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

    Energy.gov [DOE]

    The U.S. Department of Energy’s Workplace Charging Challenge began in early 2013 and currently has about 150 businesses/universities/organizations that are partners in the Challenge. A survey of...

  2. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  3. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  4. Methanol/ethanol/gasoline blend-fuels demonstration with stratified-charge-engine vehicles: Consultant report. Final report

    SciTech Connect

    Pefley, R.; Adelman, H.; Suga, T.

    1980-03-01

    Four 1978 Honda CVCC vehicles have been in regular use by California Energy Commission staff in Sacramento for 12 months. Three of the unmodified vehicles were fueled with alcohol/gasoline blends (5% methanol, 10% methanol, and 10% ethanol) with the fourth remaining on gasoline as a control. The operators did not know which fuels were in the vehicles. At 90-day intervals the cars were returned to the Univerity of Santa Clara for servicing and for emissions and fuel economy testing in accordance with the Federal Test Procedures. The demonstration and testing have established the following: (1) the tested blends cause no significant degradation in exhaust emissions, fuel economy, and driveability; (2) the tested blends cause significant increases in evaporative emissions; (3) analysis of periodic oil samples shows no evidence of accelerated metal wear; and (4) higher than 10% alcohols will require substantial modification to most existing California motor vehicles for acceptable emissions, performance, and fuel economy. Many aspects of using methanol and ethanol fuels, both straight and in blends, in various engine technologies are discussed.

  5. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    SciTech Connect

    Neubauer, Jeremy; Wood, Eric; Pesaran, Ahmad

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  6. NREL Acquires Fuel Cell Hybrid Vehicles from Toyota to Support...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Acquires Fuel Cell Hybrid Vehicles from Toyota to Support Hydrogen Infrastructure, Production, and Vehicle Performance Studies January 28, 2013 The U.S. Department of Energy's ...

  7. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions

  8. Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report

    SciTech Connect

    Melendez, M.; Milbrandt, A.

    2006-10-01

    In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

  9. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for ...

  10. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Testing Reports DC Fast Charge Impacts on Battery Life and Vehicle Performance INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

  11. Workplace Charging Challenge Partner: Nissan North America, Inc...

    Energy Saver

    Nissan offers plug-in electric vehicle (PEV) charging to its employees at its headquarters, regional offices, and vehicle assembly plants, with a significant number of the charging ...

  12. Workplace Charging Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of...

  13. Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis

    Energy.gov [DOE]

    This study addresses the question “What is the impact of state-level electric vehicle incentives on electric vehicle adoption?”. It focus on rebates, tax credits, and HOV-lane access for battery electric vehicles (BEVs) but also examines the influence of public BEV charging infrastructure on BEV adoption so far. The analysis uses state-level, temporal variation in BEV incentives to identify variation in BEV registrations through econometric methods. This presentation will review initial findings of the project and gather your feedback on future research needs.

  14. Workplace Charging Challenge: Install and Manage PEV Charging | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Plug-in Electric Vehicles & Batteries » Workplace Charging Challenge » Workplace Charging Challenge: Install and Manage PEV Charging Workplace Charging Challenge: Install and Manage PEV Charging pev_workplace_charging_hosts_150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. The PEV Handbook for Workplace Charging Hosts is particularly helpful for employers deciding if and

  15. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center

    Workplace Charging: Charging Up University Campuses Carrie Giles, ICF International Carrie Ryder, ICF International Stephen Lommele, National Renewable Energy Laboratory March 2016 DRAFT REPORT Workplace 2 Workplace Charging: Charging Up University Campuses As leading regional employers, colleges and universities are on the front line of local- and national-level technology trends. To remain competitive, many schools are offering plug-in electric vehicle (PEV) charging to their faculty, staff,

  16. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  17. Workplace Charging Challenge Partner: Ulster County | Department...

    Energy Saver

    Ulster County installed plug-in electric vehicle (PEV) charging stations at nine County government facility parking lots (a total of 18 electric vehicle supply equipment EVSE), ...

  18. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy. Sample Municipal Workplace Charging Agreement (271.58 KB) More Documents & Publications Workplace Charging Challenge: Sample Workplace Charging Policy Level 1 Electric Vehicle Charging at the Workplace AFGE Local 928

  19. Workplace Charging: Safety and Management Policy For Level 1 Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Receptacles | Department of Energy Charging: Safety and Management Policy For Level 1 Charging Receptacles Workplace Charging: Safety and Management Policy For Level 1 Charging Receptacles Organizations offering plug-in electric vehicle (PEV) charging at Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the following safety and management policies below. More helpful tips on workplace charging administration,

  20. NREL: Transportation Research - NREL's Hydrogen Fueling Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research: Year in Review NREL's Hydrogen Fueling Infrastructure Research: Year in Review Photo of two fuel cell vehicles parked next to NREL's hydrogen fueling station. FCEVs at NREL's Hydrogen Infrastructure Testing and Research Facility. Photo by Dennis Schroeder, NREL 40155 October 7, 2016 This week the National Renewable Energy Laboratory (NREL) joins others across the United States to celebrate National Hydrogen and Fuel Cell Day on Oct. 8-10.08-a date chosen to represent the atomic

  1. Hydrogen Infrastructure Market Readiness Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen Infrastructure Market Readiness Workshop Agenda Page 1 of 2 NREL/DOE Workshop at the Gaylord National, Washington D.C., February 16-17, 2011 Transitioning to an economically viable hydrogen infrastructure requires near-term cost reductions in hydrogen fueling equipment. This workshop will convene stakeholders and technology experts to review and discuss fueling equipment costs, market readiness, and business strategies for early markets such as fuel cell electric vehicles, material

  2. Vehicle Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    You are here Transportation » Vehicle Technologies Office Vehicle Technologies Office News from the Vehicles Technologies Office News from the Vehicles Technologies Office Read more Find a Charging or Alternative Fueling Station Find a Charging or Alternative Fueling Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and Emissions for New and Used Vehicles Read more The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle

  3. Utilization Assessment of Target Electrification Vehicles at Marine Corps Base Camp Lejeune. Task 3

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.

  4. Hybrid vehicle control

    SciTech Connect

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  5. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect

    Wu, Xing; Dong, Jing; Lin, Zhenhong

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  6. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    KB) More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of Tulare Renewable Biogas Fuel Cell Project Microsoft Word - AL2003-04.doc

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Energy.gov [DOE] (indexed site)

    Moderator: Stefan Unnasch, Life Cycle Associates, Innovation and Coordination (PDF 484 KB) Minnesota E85 Test Market (PDF 1.4 MB), Tim Gerlach, American Lung Association of the ...

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... retail hydrogen stations. Industrial gas companies or other hydrogen equipment suppliers have less access to capital than energy companies and lack expertise with retail stations. ...

  9. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  10. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Angeles, CA 1sandalowcaci.pdf (3.39 MB) More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand ...

  11. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Grand ...

  12. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Energy.gov [DOE] (indexed site)

    73 mi (99 MPGe); 62-138 mi (Nissan) 3 13 mi 38 mi (98 MPGe) 2 Prius Hybrid 514850 MPG 1 354037 MPG 1 (Gas only) Electric Operation 382 mi total range 595 mi range Gasoline...

  13. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    November 9, 2015 This electric vehicle charging station at the Charles Hotel in Cambridge, Massachusetts, was one of the first charging stations in the state. Massachusetts...

  14. Vehicle-Grid Interoperability | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    as well as charging interoperability, to ensure future electric vehicles and charging stations worldwide work together seamlessly Specifications and Test Procedures ...

  15. PosiCharge | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  16. Workplace Charging Management Policies: Sharing | Department...

    Energy Saver

    Sharing Workplace Charging Management Policies: Sharing Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the ...

  17. Workplace Charging Challenge Partner: Alliant Energy | Department...

    Energy Saver

    Joined the Challenge: March 2016 Headquarters: Madison, WI Charging Locations: Madison, WI Domestic Employees: 4,000 Alliant Energy is excited to offer electric vehicle charging at ...

  18. Workplace Charging Management Policies: Administration | Department...

    Energy Saver

    Workplace Charging Management Policies: Administration Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas ...

  19. Workplace Charging Management Policies: Pricing | Department...

    Energy.gov [DOE] (indexed site)

    they have implemented to ensure a positive employee charging experience. Plug-in Electric Vehicle Handbook for Workplace Charging Hosts - Use this handbook as a guide from ...

  20. Workplace Charging Challenge Partner: NRG Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NRG offers workplace charging to its employees, alongside a corporate incentive for employees to drive plug-in electric vehicles (PEVs). NRG employee charging stations are ...

  1. Workplace Charging Challenge Partner: Argonne National Laboratory...

    Energy Saver

    Argonne provides its employees with access to electric vehicle charging stations for a nominal fee. Program participants are able to reserve charging time at plug-in stations ...

  2. workplace Charging Challenge Partner: Advanced Micro Devices...

    Energy Saver

    its commuter benefits to include workplace plug-in electric vehicle (PEV) charging, making AMD the first company in Austin, Texas to install multiple PEV charging stations. ...

  3. Workplace Charging Challenge Partner: Lewis & Clark Community...

    Office of Environmental Management (EM)

    Lewis & Clark views plug-in electric vehicle workplace charging as a key component of reducing commuter emissions. The College has installed two charging stations at its main ...

  4. Workplace Charging Challenge Partner: Melink Corporation | Department...

    Energy Saver

    Melink Message on Sustainability Melink Corporate Lifestyle Workplace Charging News February 3, 2015 Workplace Electric Vehicle Charging Stations Installed at Melink Corporation ...

  5. Workplace Charging Challenge Partner: Purchase College, State...

    Office of Environmental Management (EM)

    Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition to the two charging stations installed in 2012, ...

  6. Energy Transmission and Infrastructure

    SciTech Connect

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  7. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  8. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  9. Workplace Charging Challenge: Higher Education PEV Charging Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Challenge: Higher Education PEV Charging Webinar Workplace Charging Challenge: Higher Education PEV Charging Webinar Review the slides from our webinar which highlighted workplace charging on higher education campuses across the country. Contact us for more information about this webinar and the Workplace Charging Challenge! Higher Education PEV Charging Webinar Slides (6.16 MB) More Documents & Publications Vehicle Technologies Office: Workplace Charging Challenge

  10. Workplace Charging Challenge: Sample Workplace Charging Policy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully. Sample Workplace Charging Policy (277.11 KB) More Documents & Publications PEV Outreach Resources for Your Employees Workplace Charging Challenge Summit 2014: Session 1, Track A Vehicle Technologies Office: Workplace Charging Challenge Reports

  11. ADA Requirements for Workplace Charging Installation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADA Requirements for Workplace Charging Installation ADA Requirements for Workplace Charging Installation ADA Requirements for Workplace Charging Installation (619.74 KB) More Documents & Publications Level 1 Electric Vehicle Charging at the Workplace Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging Presentation

  12. Recovery - Strategy to Accelerate U.S. Transition to Electric Vehicles

    SciTech Connect

    Leach, Richard; LoGrasso, Joseph; Monterosso, Sandra

    2014-04-30

    The objective of this project was to develop Extended Range Electric Vehicle (EREV) advanced propulsion technology and demonstrate a fleet of 146 Volt EREVs to gather data on vehicle performance and infrastructure to understand the impacts on commercialization while also creating or retaining a significant number of jobs in the United States. This objective was achieved by developing and demonstrating EREVs in real world conditions with customers in several diverse locations across the United States and installing, demonstration and testing charging infrastructure while also continuing development on second generation EREV technology. The project completed the development of the Chevrolet Volt and placed the vehicle in the hands of consumers in diverse locations across the United States. This demonstration leveraged the unique telematics platform of OnStar, standard on all Chevrolet Volts, to capture the operating experience that lead to better understanding of customer usage. The project team included utility partners that installed, demonstrated and tested charging infrastructure located in home, workplace and public locations to understand installation issues, customer usage and interaction with the electric grid. Development and demonstration of advanced technologies such as smart charging, fast charging and battery to grid interface were completed. The recipient collected, analyzed and reported the data generated by the demonstration. The recipient also continued to advance the technology of the Chevrolet Volt technology by developing energy storage system enhancements for the next-generation vehicle. Information gathered from the first generation vehicle will be utilized to refine the technology to reduce cost and mass while also increasing energy storage capacity to enhance adoption of the second generation technology into the marketplace. The launch of the first generation Chevrolet Volt will provide additional opportunities to further enhance the RESS

  13. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  14. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  15. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructu...

    Energy Saver

    Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm ...

  16. AVTA: Bidirectional Fast Charging Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  17. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Research Facility Video (Text Version) Hydrogen Infrastructure Testing and Research Facility Video (Text Version) Below is the text version of the Hydrogen Infrastructure Testing and Research Facility video. Welcome to the U.S. Department of Energy's National Renewable Energy Laboratory. Through DOE support and in collaboration with industry, NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen

  18. Controlled Hydrogen Fleet & Infrastructure Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Infrastructure Analysis Controlled Hydrogen Fleet & Infrastructure Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. tv_01_wipke.pdf (2.89 MB) More Documents & Publications Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning Demonstration Status

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project | Department of Energy and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. tv_03_veenstra.pdf (1.27 MB) More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS

  20. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt051_ti_feinberg_2012_o.pdf (2.07 MB) More Documents & Publications CX-005345: Categorical Exclusion Determination NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure

  1. Hydrogen Infrastructure Market Readiness Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Market Readiness Workshop Hydrogen Infrastructure Market Readiness Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) hosted the Hydrogen Infrastructure Market Readiness Workshop February 16-17, 2011, in Washington, D.C. Stakeholders and technology experts convened to review and discuss fueling equipment costs, market readiness, and business strategies for early markets such as fuel cell electric vehicles, material handling equipment, and

  2. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure | Department of Energy Systems Analysis » 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near-term, when markets are very small and the technology and infrastructure are immature.

  3. Workplace Charging Challenge: Promote Charging at Work | Department...

    Energy Saver

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one ...

  4. Smart Charge Adaptor | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smart EV-charging infrastructure with applications world-wide across residential, workplace, and public locations. The SCA is EV and EVSE agnostic, so customers are not limited...

  5. Workplace Charging Challenge Partner: Westar Energy | Department...

    Energy Saver

    Since 2010, Westar has been installing the infrastructure to allow employee and customers the availability of charging stations. These installations have allowed Westar to evaluate ...

  6. Level 1 Electric Vehicle Charging

    Office of Environmental Management (EM)

    3 Scenario A: Making a Level 1 Electrical Outlet Available ......Costs for Scenario A (Making an Electrical Outlet Available) ......

  7. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  8. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  9. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  10. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Energy Saver

    Infrastructure Workshop Attendence List | Department of Energy Attendence List EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA companies_in_attendance_caci.pdf (137.02 KB) More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure

  11. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  12. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  13. Electric vehicle fleet operations in the United States

    SciTech Connect

    Francfort, J.E.; O`Hara, D.

    1997-10-01

    The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

  14. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  15. Vehicle Technologies Office Merit Review 2014: EV Project Data...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems Electric Drive Vehicle Demonstration and Vehicle ...

  16. The Facts On Electric Vehicles: Interview with Pat Davis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric vehicles have been an extremely hot topic lately and no stranger to the Energy Blog. When the first public curbside electric vehicle charging station rolled out in ...

  17. Vehicle Testing and Integration Facility (Brochure), NREL (National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Integrated PEV Charging Solutions and Reduced Energy Use for Occupant Comfort Vehicle Testing and Integration Facility Plug-in electric vehicles (PEVs) offer the opportunity to ...

  18. "smart water" infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  19. Infrastructure Impacts | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    content top National Population, Economic, and Infrastructure Impacts of Pandemic Influenza with Strategic Recommendations Posted by Admin on Mar 2, 2012 in | Comments 0...

  20. Workplace Charging Tools and Resources for Employees | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to the cost of fueling a similar vehicle that ... Vehicle Cost Calculator - This calculator on the Alternative ... that are available for PEVs and charging stations. ...

  1. Workplace Charging Challenge Partner: University at Albany: State...

    Energy Saver

    off campus, and offers active bike and car share programs. ... & Mass Transit Services Electric Vehicles Website ... charging stations for plug-in electric vehicles (PEVs) ...

  2. Workplace Charging Challenge: Workplace PEV Ride and Drive |...

    Energy.gov [DOE] (indexed site)

    Workplace Charging Challenge: Workplace PEV Ride and Drive Workplace plug-in electric vehicle ... Manage vehicle liability by requesting that car companies administer waivers and send ...

  3. Workplace Charging Challenge Partner: The Venetian and The Palazzo...

    Energy.gov [DOE] (indexed site)

    member of the Electric Auto Association and the Las Vegas Electric Vehicle Association, published a fantastic article today about The Venetian's electric vehicle charging stations. ...

  4. Workplace Charging Challenge Partner: Paris Autobarn LLC | Department...

    Office of Environmental Management (EM)

    The company believes that plug-in electric vehicles (PEVs) are an environmentally friendly alternative to conventional vehicles, and Paris Autobarn offers 3 PEV charging stations ...

  5. Chapter 8 - Advancing Clean Transportation and Vehicle Systems...

    Energy Saver

    and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of goods, construction, agriculture, and mining as well as associated infrastructure. ...

  6. The Department of Energy Vehicle Technologies Program's $135...

    Energy Saver

    In 2009, Ecotality was awarded a Recovery Act grant for about 100 million for electric vehicle demonstration and infrastructure evaluation. The Recovery Act award was intended to ...

  7. Infrastructure Institutional Change Principle

    Energy.gov [DOE]

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  8. Workplace Charging: Safety and Management Policy For AC Level 1 Charging Receptacles

    Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at AC Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the...

  9. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2014-01-01

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  10. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    DOE PAGES [OSTI]

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empiricalmore » application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.« less

  11. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  12. Preparing for the Arrival of Electric Vehicle | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Preparing for the Arrival of Electric Vehicle This webinar covers how to prepare for electric vehicles and elements of developing an EV infrastructure plan. Presentation (1.84 MB) ...

  13. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  14. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  15. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Growth of the NGV Market: Growth of the NGV Market: Lessons Learned Lessons Learned Roadmap for Infrastructure Development Roadmap for Infrastructure Development Stephe Yborra Director of Market Analysis, Education & Communications Clean Vehicle Education Foundation Director of Marketing & Communications NGVAmerica " " Roadmap For Development of Roadmap For Development of NGV Fueling Infrastructure NGV Fueling Infrastructure and and Analysis of Vehicular Analysis of Vehicular

  16. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Final List of Attendees | Department of Energy Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees scenario_analysis_attendees.pdf (431.11 KB) More Documents & Publications Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31,

  17. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wireless & Conductive Charging Testing to support Code & Standards Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards ...

  18. Vehicle Technologies Office Merit Review 2016: Wireless & Conductive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wireless & Conductive Charging Testing to Support Code & Standards Vehicle Technologies Office Merit Review 2016: Wireless & Conductive Charging Testing to Support Code & Standards ...

  19. Vehicle Technologies Office Merit Review 2014: INL Testing of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at ...

  20. Vehicle Technologies Office Merit Review 2015: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lessons Learned about Workplace Charging in The EV Project Vehicle Technologies Office Merit Review 2015: Lessons Learned about Workplace Charging in The EV Project Presentation...

  1. PEV Grid Integration Research: Vehicles, Buildings, and Renewables...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    electric vehicle (PEV) charging on local distribution circuits * 15 EVSE (charging stations) connected to ESIF's REDB, grid simulator, and load banks ESIF MVOTA xf ES ...

  2. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while

  3. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Beaty, Kevin D.; Zou, Zhanijang; Kang, Xiaosong

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  4. Workplace Charging at Federal Facilities | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    at Federal Facilities Workplace Charging at Federal Facilities Providing plug-in electric vehicle (PEV) charging stations at the workplace is one strategy by which agencies can ...

  5. NASCAR and Sprint Join Energy Department's Workplace Charging...

    Energy.gov [DOE] (indexed site)

    As part of today's announcement, NASCAR unveiled five Eaton Level 2 electric vehicle (EV) charging stations at its Charlotte location, bringing the total number of EV charging ...

  6. Workplace Charging Challenge Partner: Hewlett-Packard | Department...

    Energy.gov [DOE] (indexed site)

    Palo Alto, CA Charging Locations: Boise, ID; Corvallis, OR; Fort Collins, CO; Fremont, ... Woman charging electric vehicle at outdoor charing station. Meet Challenge Partners More ...

  7. Workplace Charging Challenge Partner: SemaConnect, Inc. | Department...

    Office of Environmental Management (EM)

    Joined the Challenge: July 2014 Headquarters: Bowie, MD Charging Location: Bowie, MD Domestic Employees: 25 SemaConnect develops and produces electric vehicle charging stations and ...

  8. Sample Employee Survey for Workplace Charging Planning | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Employers considering whether workplace charging is right for their organization or employers considering how many plug-in electric vehicle charging stations to install will want ...

  9. Workplace Charging Challenge Partner: Lane Regional Air Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Employees and the public are encouraged to charge their vehicles at LRAPA's office. As of September 2014, LRAPA has four Level 2 charging stations. Meet Challenge Partners Worplace ...

  10. NREL: Transportation Research - NREL's Campus EV Charging Stations...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's Campus EV Charging Stations are Now More Integrated with the Grid Researcher looks at computer in parking garage standing near electric vehicle charging station. Myungsoo ...

  11. Workplace Charging Challenge Partner: Freudenberg-NOK Sealing...

    Energy.gov [DOE] (indexed site)

    Freudenberg-NOK Partners with US Department of Energy on Electric Vehicle Charging Station Initiative Freudenberg-NOK pledges to install additional charging stations at ...

  12. Workplace Charging Challenge Partner: Sierra Nevada Brewing Co...

    Energy Saver

    In 2009, the company installed two plug-in electric vehicle (PEV) charging stations at its brewery in Chico, California which offers free charging to employees, venders, and ...

  13. Workplace Charging Challenge Partner: Hannah Solar, LLC | Department...

    Office of Environmental Management (EM)

    Hannah Solar installed three plug-in electric vehicle (PEV) charging stations at the company's energy net positive office building in Atlanta. The company installed the charging ...

  14. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  15. PNNL Electricity Infrastructure Operations Center | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  16. PNNL Electricity Infrastructure Operations Center | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  17. IPHE Infrastructure Workshop Proceedings

    Publication and Product Library

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  18. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  19. Modernizing Infrastructure Permitting

    Energy.gov [DOE]

    On May 14, 2014, the Obama Administration released a comprehensive plan to accelerate and expand Federal infrastructure permitting reform government-wide. The Office of Electricity Delivery and Energy Reliability is actively engaged in this process for transmission development.

  20. IPHE Infrastructure Workshop Proceedings

    SciTech Connect

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  1. Partnership Helps Alleviate Electric Vehicle Range Anxiety (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle charging stations.

  2. Infrastructure Improvements - SRSCRO

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Improvements As the designated Community Reuse Organization for the Department of Energy's (DOE) Savannah River Site (SRS), our 22-member citizen-led Board of Directors has undertaken a study to point out the critical need for improving the deteriorating infrastructure at SRS. Priority attention needs to be made now to maximize SRS contributions and potential in the years ahead. SRS has all the assets required in people, land, expertise and community support to continue to play a

  3. Location and Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facts, Figures » Location and Infrastructure Location and Infrastructure The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Aerial View of Los Alamos National Laboratory The central Laboratory technical area is featured in this aerial view. Boundary Peak, separating the Santa Fe National Forest and

  4. Hydrogen and Infrastructure Costs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of Energy Fuel Cell Technologies Program Fuel Cells: Diverse Fuels and Applications More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells Recovery Act Funding for Fuel Cells COMPANY AWARD APPLICATION Delphi Automotive $2.4 M Auxiliary Power FedEx

  5. MFC Communications Infrastructure Study

    SciTech Connect

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  6. Plug-in Electric Vehicle Outreach

    Energy.gov [DOE] (indexed site)

    Plug-in Electric Vehicle Outreach Resources for Employees After you've installed plug-in electric vehicle (PEV) charging stations at your work site, you'll want to educate your ...

  7. Vehicle Technology and Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  8. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  9. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  10. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  11. Midstream Infrastructure Improvements Key to Realizing Full Potential of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Domestic Natural Gas | Department of Energy Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas October 30, 2014 - 9:20am Addthis Natural gas provides numerous benefits to millions of Americans daily, whether it's being used to heat or air condition homes and businesses, cook meals, or power vehicles. But most people who take advantage of this versatile and

  12. Charging Up in King County, Washington

    ScienceCinema

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David

    2016-07-12

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  13. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    such as driving plug-in electric vehicles (PEVs), to reduce their personal carbon footprints. ... VEIC employees own a plug-in vehicle and are now able to charge their car at work. ...

  14. Charging Up in King County, Washington

    Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  15. Workplace Charging Challenge Partner: DIRECTV | Department of...

    Energy Saver

    DIRECTV currently provides 21 plug-in electric vehicle charging stations for employee vehicles and is evaluating the demand for more. DIRECTV has reduced its Scope 1 and Scope 2 ...

  16. Charging Up in King County, Washington

    SciTech Connect

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David

    2011-01-01

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  17. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  18. Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charging | Department of Energy 2: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Data from a survey conducted between November 2010 and May 2011 show consumer preferences on electric vehicle (EV) charging times. Respondents from 17 different countries were asked for their longest acceptable charge time for an EV. In Taiwan, the country with the greatest number of respondents accepting longer

  19. Vehicle Technologies Office Recognizes Individuals and Teams...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... (ORNL) received a Distinguished Achievement (Team) Award for developing and demonstrating the world's first 20-kW wireless power transfer charging system for electric vehicles. ...

  20. Implementation Approach for Electric Vehicles at Marine Corps Base Camp Lejeune. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Marine Corps Base Camp Lejeune (MCBCL) located in North Carolina. Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the MCBCL fleet. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.

  1. LNG infrastructure and equipment

    SciTech Connect

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  2. Workplace Charging Challenge Partners: EV Connect | Department...

    Office of Environmental Management (EM)

    Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Fast Facts Joined the Workplace Charging ...

  3. ETA-UTP008 - Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This procedure identifies the proper method for the conduct of charging the main propulsion batteries installed in an electric vehicle while it is being tested during the UEV ...

  4. Workplace Charging Management Policies: Registration & Liability...

    Energy.gov [DOE] (indexed site)

    The California Plug-In Electric Vehicle Collaborative recently found that liability is one of employers' top concerns around workplace charging stations. Some Challenge partners ...

  5. Workplace Charging Challenge: Ambassadors | Department of Energy

    Office of Environmental Management (EM)

    are organizations that are knowledgeable about local incentives, best practices for workplace charging, and other aspects of plug-in electric vehicle (PEV) community readiness. ...

  6. Workplace Charging Challenge Partner: Eastern Washington University...

    Office of Environmental Management (EM)

    Installing electric vehicle charging stations in 2016 is one of many efforts that publically demonstrates Eastern's commitment toward sustainability and emissions reduction. Meet ...

  7. ETA-NTP008 Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    proper method for the conduct of charging the main propulsion batteries installed in an electric vehicle while it is being tested during the NEV America Performance Test Program. ...

  8. Workplace Charging Challenge Partner: Clarkson University | Department...

    Energy Saver

    The establishment of two plug-in electric vehicle charging stations on campus helps to encourage employees to also bring sustainability actions into their own personal choices. ...

  9. Workplace Charging Challenge Partner: Vernier Software & Technology...

    Energy.gov [DOE] (indexed site)

    that are Earth friendly, Vernier Software & Technology provide to employees a variety of alternative transportation options, which include charging stations for electric vehicles. ...

  10. Workplace Charging Challenge Partner: Stanford University | Department...

    Office of Environmental Management (EM)

    As part of its emission-reduction efforts, Stanford University Parking & Transportation Services (P&TS) has increased the number of Level 2 electric vehicle charging stations on ...

  11. Workplace Charging Challenge Partner: Appalachian State University...

    Office of Environmental Management (EM)

    The University's transportation department has installed two charging stations on campus and a plug-in electric vehicle (PEV) is available to all campus members. The university has ...

  12. Workplace Charging Challenge Partner: WESCO International, Inc...

    Office of Environmental Management (EM)

    As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting ...

  13. Workplace Charging Challenge Partner: Kaiser Permanente | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    As part of its commitment to reducing greenhouse gas emissions and creating healthy communities, Kaiser Permanente plans to host plug-in electric vehicle charging stations at an ...

  14. Workplace Charging Challenge Partner: The Hartford | Department...

    Energy Saver

    In 2011, The Hartford installed 6 charging stations at its three main campuses in Hartford, Simsbury and Windsor, Connecticut, for a total of 12 electric vehicle supply equipment ...

  15. Workplace Charging Challenge Partner: Sears Holdings Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sears Holdings Corporation (SHC) strives to build a team of engaged associates who embrace change and technology. Offering plug-in electric vehicle (PEV) charging stations at its ...

  16. Workplace Charging Challenge Partner: Avista Utilities | Department...

    Energy Saver

    Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista first installed three charging stations with a ...

  17. Workplace Charging Challenge Partner: Raytheon | Department of...

    Office of Environmental Management (EM)

    Raytheon has installed fifteen dual 220-volt plug-in electric vehicle (PEV) charging stations spread across six operating locations in California, Colorado, Massachusetts, Texas ...

  18. Workplace Charging Challenge Partner: Prairie State College ...

    Energy Saver

    As part of Prairie State College's sustainability initiatives, the college installed two Level 2 plug-in electric vehicle (PEV) charging stations that are available for employee, ...

  19. Workplace Charging Challenge Partner: Organic Valley | Department...

    Office of Environmental Management (EM)

    Organic Valley believes that the installation of plug-in electric vehicle charging stations coupled with their use of renewable energy demonstrates their commitment to this goal. ...

  20. NREL: Technology Deployment - Fuels, Vehicles, and Transportation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of a hand holding a Blackberry phone with the Alternative Fueling Station Locator on the screen. A ChargePoint electric vehicle charging station is in the background. NREL ...