National Library of Energy BETA

Sample records for valley au thority

  1. West Valley Demonstration Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    West Valley Demonstration Project West Valley Demonstration Project West Valley Demonstration Project Aerial View West Valley Demonstration Project Aerial View The West Valley ...

  2. Melton Valley Watershed

    Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding the Melton Valley Watershed.

  3. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a $646 million loan guarantee to finance Antelope Valley Solar Ranch 1, a 242-MW photovoltaic (PV) solar generation project.

  4. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a $1.2 billion loan guarantee to finance California Valley Solar Ranch, a 250-MW photovoltaic (PV)

  5. Categorical Exclusion Determinations: West Valley Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration ...

  6. Surprise Valley water geochmical data

    DOE Data Explorer

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  7. Surprise Valley water geochmical data

    DOE Data Explorer

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  8. Union Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Union Valley Union Valley This document discusses Union Valley. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Union Valley (809.31 KB) More Documents & Publications Melton Valley Watershed Groundwater Contamination and Treatment at Department of Energy Sites Groundwater Contamination and Treatment at Department of Energy Sites - 2008

  9. NV PFA - Steptoe Valley

    SciTech Connect

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  10. All Valley Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Solar Jump to: navigation, search Logo: All Valley Solar Name: All Valley Solar Address: 6851 Cahuenga Park Trail Place: Los Angeles, California Region: Southern CA Area...

  11. Bolton Valley Resort | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  12. Hyder Valley Aquaculture Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector...

  13. Site Programs & Cooperative Agreements: West Valley Demonstration...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has ...

  14. Scotts Valley Band of Pomo Indians: Scotts Valley Energy Office...

    Energy.gov [DOE] (indexed site)

    ... The goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). Scotts Valley Energy Office and Human Capacity Project SUMMARY Two Key Elements of SVEDO ...

  15. Blue Valley Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    References: Blue Valley Energy Web Site1 On Jan 1st 2008, Valley Geothermal and Blue Sky Energy Solutions merged to form Blue Valley Energy LLC. Valley Geothermal, led by Monte...

  16. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 ...

  17. AMF Deployment, Ganges Valley, India

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    India Ganges Valley Deployment AMF Home Ganges Valley Home Data Plots and Baseline Instruments Campaign Images Experiment Planning GVAX Full Proposal Abstract and Related Campaigns Science Plan Field Campaign Report Outreach GVAX Backgrounder (PDF, 1.4MB) News Education Flyer (PDF, 2.1MB) AMF Poster, 2011 Images Contacts V. Rao Kotamarthi AMF Deployment, Ganges Valley, India GVAX will take place in the Ganges Valley region of India, gathering cloud and aerosol data. Location: 29° 21'

  18. Elk Valley Rancheria- 2010 Project

    Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  19. Bethel Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bethel Valley Watershed Bethel Valley Watershed This document discusses the Bethel Valley Watershed. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Bethel Valley Watershed (377.2 KB) More Documents & Publications Bear Creek Valley Watershed Oak Ridge National Laboratory Cleanup Melton Valley Watershed

  20. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  1. Ganges Valley Aerosol Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  2. MONUMENT VALLEY, ARIZONA

    Office of Legacy Management (LM)

    VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems

  3. Magnetoresistance of Au films

    DOE PAGES [OSTI]

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  4. Case Study - Sioux Valley Energy

    Energy.gov [DOE] (indexed site)

    This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) ...

  5. Pennsylvania Nuclear Profile - Beaver Valley

    Energy Information Administration (EIA) (indexed site)

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  6. Rationalization of Au concentration and distribution in AuNi...

    Office of Scientific and Technical Information (OSTI)

    Here, using density functional theory, we report the effect of adding Au as the third ... Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, ...

  7. Valley Forge Corporate Center

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and

  8. Great Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  9. Platte Valley Fuel Ethanol | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  10. Dixie Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  11. Chuckawalla Valley State Prison | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chuckawalla Valley State Prison Jump to: navigation, search Name: Chuckawalla Valley State Prison Place: Blythe, California Zip: 92226 Sector: Solar Product: Prison located in...

  12. Dakota Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  13. Smoky Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766, -97.683563...

  14. Tippecanoe Valley School Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN...

  15. River Valley Technology Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Technology Center Jump to: navigation, search Name: River Valley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  16. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  17. Anderson Valley Brewing Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Brewing Company Jump to: navigation, search Name: Anderson Valley Brewing Company Place: Mendocino Country, California Product: A microbrewery. The brewery is known for...

  18. Tees Valley Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  19. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  20. Pumpernickel Valley Geothermal Project Thermal Gradient Wells...

    OpenEI (Open Energy Information) [EERE & EIA]

    the geothermal activity in the valley are two areas with hot springs, seepages, and wet groundvegetation anomalies near the Pumpernickel Valley fault, which indicate that the...

  1. Golden Valley Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy Saver

    West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June 9-13, 2014. Enterprise Assessments Review, West Valley Demonstration Project - ...

  3. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy.gov [DOE] (indexed site)

    management program at the West Valley Demonstration Project (WVDP) was conducted prior to ... Assessments Review, West Valley Demonstration Project - December 2014 (245.41 KB) ...

  4. West Valley Demonstration Project | Department of Energy

    Energy.gov [DOE] (indexed site)

    West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here. West Valley Demonstration Project Administrative Consent Order, ...

  5. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial Valley is approximately 327 net megawatts. Photo of the Leathers geothermal power plant

  6. Aire Valley Environmental | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  7. Whitewater Valley Rural EMC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Rural EMC Jump to: navigation, search Name: Whitewater Valley Rural EMC Address: P.O. Box 349 Place: Liberty, Indiana Zip: 47353 Sector: Transmission Phone Number: (765)...

  8. Hoopa Valley Tribe- 1994 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe is located in a northern California valley about 45 miles from the nearest city. The tribe is located in remote and mountainous area. The tribe was experiencing high energy costs to operate its community swimming pool due to the equipment's age, inefficient design, and the lack of a pool cover.

  9. WEST VALLEY DEVELOPMENT PROJECT WEST VALLEY, NEW YORK NEWS MEDIA...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of high-level waste (HLW) that had been generated by commercial reprocessing of spent nuclear fuel at the Western New York Nuclear Service Center in West Valley, New ...

  10. Bear Creek Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bear Creek Valley Watershed Bear Creek Valley Watershed This document discusses the Bear Creek Valley Watershed. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Bear Creek Valley Watershed fact sheet (814.29 KB) More Documents & Publications Melton Valley Watershed Upper East Fork Poplar Creek Cleanup Progress Report - 2010

  11. Valley Electric Association- Net Metering

    Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  12. Swauk Valley | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163,...

  13. Dixie Valley Bottoming Binary Cycle

    Energy.gov [DOE]

    Project objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature brine at the Dixie Valley Geothermal Power Plant.

  14. Case Study - Sioux Valley Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and

  15. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School ...

  16. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  17. Kittitas Valley Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  18. Valley Center Municipal Water District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Center Municipal Water District Jump to: navigation, search Name: Valley Center Municipal Water District Place: Valley Center, California Zip: 92082 Product: VCMWD is the...

  19. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  20. Bureau Valley School District Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  1. South Valley Archived Soil & Groundwater Master Reports | Department...

    Energy.gov [DOE] (indexed site)

    South Valley Archived Soil & Groundwater Master Reports South Valley - South Valley Plume (16.5 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master ...

  2. Fish Lake Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  3. AU Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Organization Chart AU Organization Chart AU Organization Chart: October 2016 AU Organization Chart: October 2016 (107.44 KB) More Documents & Publications AU Functional Area Points of Contact by Office Directors USW Health Safety and Environment Conference - HSS Workshop Senior Technical Safety Manager Status Report

  4. Monument Valley Open House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Monument Valley Open House Monument Valley Open House July 18, 2016 - 12:22pm Addthis What does this project do? Goal 6. Engage the public, governments, and interested parties Monument Valley Open House 01.jpg An open house was held at Monument Valley High School in Utah. The U.S. Department of Energy Office of Legacy Management (LM) hosted the Uranium Issues Open House on Saturday, April 9, 2016, at Monument Valley High School in Monument Valley, Utah. Multiple federal agencies and their Navajo

  5. DOE Awards Contract for the West Valley Demonstration Project...

    Office of Environmental Management (EM)

    the West Valley Demonstration Project Probabilistic Performance Assessment DOE Awards Contract for the West Valley Demonstration Project Probabilistic Performance Assessment ...

  6. West Valley Demonstration Project Phase I Decommissioning - Facility...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project ...

  7. City of Sunset Valley- PV Rebate Program

    Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  8. Monument Valley, Arizona, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    Monument Valley, Arizona, Processing Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Monument Valley, Arizona. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, approximately 15 miles south of Mexican Hat, Utah, on the west side of Cane Valley. A uranium-ore

  9. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH DOE-LPO_Project-Posters_PV_AVSR.pdf (633.27 KB) More Documents & Publications CRESCENT DUNES ANTELOPE VALLEY SOLAR RANCH Powering New Markets: Utility-scale Photovoltaic Solar Hearing Before the House Natural Resources Subcommittee on Oversight and Investigations

  10. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH DOE-LPO_Project-Posters_PV_CVSR.pdf (898.61 KB) More Documents & Publications EA-1840: Finding of No Significant Impact EA-1840: Final Environmental Assessment California Valley Solar Ranch Biological Assessment

  11. Hoopa Valley Tribe- 1995 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe is located in remote area about 45 miles from the nearest city. There is not much to keep the youth busy. The tribe purchased a 3,672-square-foot metal building and dedicated it to be used as a youth center.

  12. Hoopa Valley Tribe- 2006 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe will assess the feasibility of smaller-scale hydroelectric facilities (between 100 KW and 5 MW). The feasibility study will focus on analyzing, qualifying, and quantifying the opportunity for the tribe to develop, own and operate hydroelectric plants on tribal lands, either for direct use by the tribe, or for selling power.

  13. Global polarization measurement in Au+Au collisions

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev,V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-08-02

    The system created in non-central relativisticnucleus-nucleus collisions possesses large orbital angular momentum. Dueto spin-orbit coupling, particles produced in such a system could becomeglobally polarized along the direction of the system angular momentum. Wepresent the results of Lambda and anti-Lambda hyperon global polarizationmeasurements in Au+Au collisions at sqrt sNN=62.4 GeV and 200 GeVperformed with the STAR detector at RHIC. The observed globalpolarization of Lambda and anti-Lambda hyperons in the STAR acceptance isconsistent with zero within the precision of the measurements. Theobtained upper limit, lbar P Lambda, anti-Lambda rbar<= 0.02, iscompared to the theoretical values discussed recently in theliterature.

  14. James Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    James Valley Ethanol LLC Place: Gronton, South Dakota Zip: 57445 Product: Farmers owned cooperative that built and operates an ethanol production facility. Coordinates: 29.72369,...

  15. Silicon Valley Biodiesel Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Inc Jump to: navigation, search Name: Silicon Valley Biodiesel Inc. Place: Sunnyvale, California Zip: CA 94086 Product: Manufactures biodiesel for the local diesel fuel...

  16. Poudre Valley REA- Commercial Lighting Rebate Program

    Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  17. Dixie Valley Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  18. Dixie Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  19. Golden Valley Electric Association - Residential Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    30 Timer Controlling Exterior Vehicle Plug-In Outlet: 20 Switch Controlling Exterior Vehicle Plug-In Outlet: 10 Summary Golden Valley Electric Association's (GVEA) Builder...

  20. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti,...

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Phil...

  1. Tennessee Valley Authority | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Authority Jump to: navigation, search Name: Tennessee Valley Authority Place: Tennessee Phone Number: (865) 632-2101 Website: www.tva.gov Twitter: @tvanewsroom Facebook: https:...

  2. Squirrel Mountain Valley, California: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866, -118.4098058 Show Map Loading map......

  3. Minnesota Valley Electric Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    https:www.facebook.compagesMinnesota-Valley-Electric-Cooperative212971310374 Outage Hotline: 1-800-232-2328 Outage Map: outage.mvec.net References: EIA Form EIA-861...

  4. Hydrologic Monitoring Summary Long Valley Caldera, California...

    OpenEI (Open Energy Information) [EERE & EIA]

    Summary Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published ORMAT internal report, 2010 DOI Not Provided Check for DOI...

  5. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish ...

  6. Workplace Charging Challenge Partner: Organic Valley | Department...

    Office of Environmental Management (EM)

    Organic Valley believes that the installation of plug-in electric vehicle charging stations coupled with their use of renewable energy demonstrates their commitment to this goal. ...

  7. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Waste Management Environmental Impact Statement ... June 7, 2006 WVDP Waste Management US - Supplement Analysis Table of Contents 1.0 PURPOSE ...

  8. Valley Electric Association- Solar Water Heating Program

    Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  9. American Ref-Fuel of Delaware Valley Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ref-Fuel of Delaware Valley Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley...

  10. Dixie Valley, Nevada: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Dixie Valley is a city in Churchill County, Nevada. Energy Generation Facilities in Dixie Valley, Nevada Dixie Valley...

  11. Poudre Valley R E A, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Poudre Valley R E A, Inc Jump to: navigation, search Name: Poudre Valley R E A, Inc Place: Colorado Website: www.pvrea.com Twitter: @PoudreValleyREA Facebook: https:...

  12. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Energy Saver

    Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar ...

  13. Monument Valley Phytoremediation Pilot Study:

    Office of Legacy Management (LM)

    1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page

  14. The electrical and mechanical properties of Au-V and Au-V{sub...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The electrical and mechanical properties of Au-V and Au-Vsub 2Osub 5 thin films for wear-resistant RF MEMS switches Citation Details In-Document Search Title: ...

  15. Interpretation of the first data on central Au+Au collisions...

    Office of Scientific and Technical Information (OSTI)

    production in central Au+Au collisions taken at RHIC by the PHOBOS Collaboration as well as to existing data on central Pb+Pb collisions taken at the SPS by the NA49 Collaboration. ...

  16. Santa Clara Valley Transportation Authority and San Mateo County...

    Office of Environmental Management (EM)

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San ...

  17. Lichuan City Yujiang River Valley Hydro Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lichuan City Yujiang River Valley Hydro Co Ltd Jump to: navigation, search Name: Lichuan City Yujiang River Valley Hydro Co., Ltd. Place: Hubei Province, China Zip: 445400 Sector:...

  18. Langel Valley Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel...

  19. Surprise Valley Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal...

  20. Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration Activity...

  1. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Energy.gov [DOE] (indexed site)

    DOE energy assessments and Silicon Valley Power utility incentives to save 252,000 annually through plant-wide improvements. Owens Corning and Silicon Valley Power Partner to ...

  2. Micro-Earthquake At Dixie Valley Geothermal Area (Katz & J.,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area (Katz & J., 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Dixie Valley Geothermal Area...

  3. City of Water Valley, Mississippi (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, Mississippi (Utility Company) Jump to: navigation, search Name: City of Water Valley Place: Mississippi Phone Number: (662) 473-3243 Outage Hotline: (662) 473-3243...

  4. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  5. Long Valley Caldera Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and...

  6. Santa Clara Valley Transportation Authority and San Mateo County...

    Office of Environmental Management (EM)

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell ...

  7. Smith Creek Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and...

  8. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Title: Single-valley engineering in graphene superlattices Authors: ...

  9. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Long Valley Caldera...

  10. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  11. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

  12. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  13. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  14. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  15. Compound and Elemental Analysis At Fish Lake Valley Area (DOE...

    OpenEI (Open Energy Information) [EERE & EIA]

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  16. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley...

  17. Fish Lake Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  18. Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

  19. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley...

  20. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley...

  1. Valley Fish Farms Aquaculture Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Valley Fish Farms Aquaculture Low Temperature Geothermal Facility Facility Valley Fish...

  2. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  3. Contract Awarded for West Valley Demonstration Project Data Management...

    Office of Environmental Management (EM)

    Contract Awarded for West Valley Demonstration Project Data Management System, Technical Services Contract Awarded for West Valley Demonstration Project Data Management System, ...

  4. Enforcement Letter, West Valley Nuclear Services- March 30, 1998

    Energy.gov [DOE]

    Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project

  5. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not...

  6. Hydrology of the Geothermal System in Long Valley Caldera, California...

    OpenEI (Open Energy Information) [EERE & EIA]

    System in Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published Unpublished report for the Long Valley Hydrologic Advisory Committee,...

  7. Soil Sampling At Dixie Valley Geothermal Area (Nash & D., 1997...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area (Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Dixie Valley Geothermal Area...

  8. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Energy Saver

    RFP for West Valley Demonstration Project Probabilistic Performance Assessment DOE Issues RFP for West Valley Demonstration Project Probabilistic Performance Assessment April 2, ...

  9. DOE - Office of Legacy Management -- West Valley Demonstration...

    Office of Legacy Management (LM)

    Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site ...

  10. Enterprise Assessments Review of the West Valley Demonstration...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Fire Protection Program - March 2016 Enterprise Assessments Review of the West Valley Demonstration Project Site Fire Protection Program - ...

  11. West Valley Demonstration Project: A Short History and Status...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project: A Short History and Status West Valley Demonstration Project: A Short History and ... 2013 in Buffalo, NY. West Valley Demonstration Project: A Short History and Status ...

  12. FTCP Site Specific Information - West Valley Demonstration Project...

    Energy Saver

    West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012

  13. Compound and Elemental Analysis At Little Valley Area (Wood,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  14. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  15. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  16. Hoopa Valley Tribe - Small Hydropower Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Micro-Hydro Feasibility Study Hoopa Valley Tribe Curtis Miller The Hoopa Valley Reservation was established in 1868 by executive order of Ulysses S. Grant and contains the aboriginal homeland of the Hupa People. It encompasses approximately 100,000 acres and is 96% owned by the Hoopa Tribe. Salmon are the life blood of the Hupa and Yurok and Karuk people There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon and Rainbow trout. 50-60 inches of

  17. Cumberland Valley Electric Cooperative- Business Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Cumberland Valley Electric Cooperative offers businesses rebates for energy efficient lighting and compressed air delivery retrofits.

  18. Enterprise Assessments Review, West Valley Demonstration Project – December 2014

    Energy.gov [DOE]

    Review of the West Valley Demonstration Project Emergency Management Program Technical Basis and Emergency Preparedness

  19. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  20. Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer...

    Office of Scientific and Technical Information (OSTI)

    Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer Biosensors Citation Details In-Document Search Title: Graphene-Au Nanoparticles Composite-Based Electrochemical ...

  1. Formation, Migration, and Reactivity of Au CO Complexes on Gold...

    Office of Scientific and Technical Information (OSTI)

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex ... and density functional theory calculations point to Au CO complex formation and migration. ...

  2. Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer...

    Office of Scientific and Technical Information (OSTI)

    Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer Biosensors Citation Details In-Document Search Title: Graphene-Au Nanoparticles Composite-Based ...

  3. Workplace Charging Challenge Partner: The Valley Health System | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Valley Health System Workplace Charging Challenge Partner: The Valley Health System Workplace Charging Challenge Partner: The Valley Health System Joined the Challenge: June 2016 Headquarters: Ridgewood, NJ Charging Location: Ridgewood, NJ Domestic Employees: 4,000 The Valley Hospital and the Valley Health System have a longstanding commitment to environmental sustainability. As an award-winning member of Practice GreenHealth and as a recipient of the 2016 Vizient Excellence Award

  4. Elkhorn Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Elkhorn Valley Ethanol LLC Place: Norfolk, Nebraska Zip: 68701 Product: Operates a 40m gallon ethanol plant in Norfolk, Nebraska. Coordinates: 36.846825, -76.285069 Show Map...

  5. Carroll Valley, Pennsylvania: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Carroll Valley is a borough in Adams County, Pennsylvania. It falls under Pennsylvania's 19th congressional district.12...

  6. Poudre Valley REA- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  7. Fort Valley Utility Comm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fort Valley Utility Comm Place: Georgia Phone Number: 478-825-7701 Website: fvutil.com Twitter: @fvutil Facebook: https:www.facebook.comfvutil Outage Map: fvutil.comnews...

  8. Bear Valley Electric Service- Solar Initiative Program

    Energy.gov [DOE]

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  9. Lower Valley Energy Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LowerValleyEnergy Outage Hotline: 800-882-5875 References: Energy Information Administration.1 EIA Form 861 Data Utility Id 11273 This article is a stub. You can help OpenEI...

  10. Tennessee Valley Authority (Mississippi) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Tennessee Valley Authority Place: Mississippi References: Energy Information Administration.1 EIA Form 861 Data Utility Id 18642 This article is a stub. You can help OpenEI...

  11. VALMET-A valley air pollution model

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  12. Lighthouse Solar Indian Valley | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lighthouse Solar Indian Valley Address: 5062 McLean Station Road Place: Green Lane, PA Zip: 18054 Sector: Solar Phone Number: (215) 541-5464 Website: www.lighthousesolar.com...

  13. Au-Pt heteroaggregate dendritic nanostructures and Au-Pt alloy nanoparticles and their use as catalysts

    DOEpatents

    Eichhorn, Bryan W.; Zhou, Shenghu; Jackson, Gregory Scott

    2011-10-18

    Au--Pt heteroaggregate dendritic nanostructures and AuPt alloy nanoparticles, and their use as anodic catalysts in fuel cells.

  14. West Valley Demonstration Project Unique Remote Operations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Approved for Public Release; Further Dissemination Unlimited West Valley Demonstration Project 2016 EM Success Story Jeff Bradford, President and General Manager CH2M HILL BWXT West Valley, LLC. September 14, 2016 www.energy.gov/EM 2 2016 Goals * Excellent Safety Performance * Complete the High-Level Waste Relocation and Storage Project * Complete the offsite shipment and disposal of the vitrification components (Melter, CFMT and MHFT) * Complete demolition preparations in the Extraction Cells

  15. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  16. DFT study on cysteine adsorption mechanism on Au(111) and Au(110)

    SciTech Connect

    Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan

    2013-11-13

    Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

  17. Jets and dijets in Au+Au and p+p collisions at RHIC

    SciTech Connect

    Hardtke, D.; STAR Collaboration

    2002-12-09

    Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.

  18. Pearl River Valley El Pwr Assn | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley El Pwr Assn Jump to: navigation, search Name: Pearl River Valley El Pwr Assn Place: Mississippi Phone Number: Columbia: 601-736-2666 -- Hattiesburg: 601-264-2458 -- Purvis:...

  19. Sulphur Springs Valley E C Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Valley E C Inc Jump to: navigation, search Name: Sulphur Springs Valley E C Inc Abbreviation: SSVEC Place: Arizona Phone Number: 1-(800) 422-3275 Website: www.ssvec.org...

  20. Kankakee Valley Rural E M C | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kankakee Valley Rural E M C Jump to: navigation, search Name: Kankakee Valley Rural E M C Place: Indiana Phone Number: 219.733.2511 or 800.552.2622 Website: www.kvremc.com Outage...

  1. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    OpenEI (Open Energy Information) [EERE & EIA]

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  2. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  3. Red River Valley Coop Pwr Assn | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Red River Valley Coop Pwr Assn Jump to: navigation, search Name: Red River Valley Coop Pwr Assn Place: Minnesota Website: www.rrvcoop.com Facebook: https:www.facebook.comRRVCPA...

  4. Long Valley Caldera Field Trip Log | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to library Conference Paper: Long Valley Caldera Field Trip Log Abstract NA Authors Gene A. Suemnicht and Bastien Poux Conference NGA Long Valley Field Trip, July 5-7, 2012;...

  5. Minnesota Valley Coop L&P Assn | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Minnesota Valley Coop L&P Assn Jump to: navigation, search Name: Minnesota Valley Coop L&P Assn Place: Minnesota Phone Number: 320-269-2163 or 1-800-247-5051 Website:...

  6. Tallahatchie Valley E P A | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley E P A Jump to: navigation, search Name: Tallahatchie Valley E P A Place: Mississippi Phone Number: 662.563.4742 Website: www.tvepa.comhome.aspx Outage Hotline: 662-563-4742...

  7. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lower Valley Energy offers rebates for residential customers who wish to increase the energy efficiency of eligible homes. Contact Lower Valley Energy by phone for more specific information on the...

  8. West Valley Demonstration Project Prepares to Relocate High-Level...

    Office of Environmental Management (EM)

    Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration ...

  9. West Valley Demonstration Project Low-Level Waste Shipment |...

    Office of Environmental Management (EM)

    Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment (406.16 KB) More Documents & ...

  10. San Luis Valley R E C, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Luis Valley R E C, Inc Jump to: navigation, search Name: San Luis Valley R E C, Inc Place: Colorado Phone Number: 1.800.332.7634 Website: www.slvrec.com Twitter: @SLVREC Facebook:...

  11. Copper Valley Elec Assn, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Elec Assn, Inc Jump to: navigation, search Name: Copper Valley Elec Assn, Inc Place: Alaska Phone Number: Copper Basin: 907-822-3211 or Valdez: 907-835-4301 Website:...

  12. Cumberland Valley Rural E C C | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Rural E C C Jump to: navigation, search Name: Cumberland Valley Rural E C C Place: Kentucky Phone Number: 1-800-513-2677 Website: www.cumberlandvalley.coop Twitter:...

  13. The Near-Surface Hydrothermal Regime of Long Valley Caldera ...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Long Valley Caldera Citation Arthur H. Lachenbruch,Michael L. Sorey,Robert Edward Lewis,John H. Sass. 1976. The Near-Surface Hydrothermal Regime of Long Valley Caldera....

  14. Hoopa Valley Tribe - Small Hydro Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydro Power Feasibility Study Hoopa Valley Tribe Curtis Miller cmiller@hoopa-nsn.gov (530)-625-5515 There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon, Steelhead and Rainbow trout. 50-60 inches of rainfall /year In the beginning In FY 2005 the Hoopa Tribal EPA received a grant from DOE to conduct a 2 year feasibility study for small scale hydropower on 7 major tributaries of the Reservation that flow into the Trinity River Concept of

  15. Synthesis and characterization in AuCu–Si nanostructures

    SciTech Connect

    Novelo, T.E.; Amézaga-Madrid, P.; Maldonado, R.D.; Oliva, A.I.; Alonzo-Medina, G.M.

    2015-03-15

    Au/Cu bilayers with different Au:Cu concentrations (25:75, 50:50 and 75:25 at.%) were deposited on Si(100) substrates by thermal evaporation. The thicknesses of all Au/Cu bilayers were 150 nm. The alloys were prepared by thermal diffusion into a vacuum oven with argon atmosphere at 690 K during 1 h. X-ray diffraction analysis revealed different phases of AuCu and CuSi alloys in the samples after annealing process. CuSi alloys were mainly obtained for 25:75 at.% samples, meanwhile the AuCuII phase dominates for samples prepared with 50:50 at.%. Additionally, the Au:Cu alloys with 75:25 at.%, produce Au{sub 2}Cu{sub 3} and Au{sub 3}Cu phases. The formed alloys were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to study the morphology and the elemental concentration of the formed alloys. - Highlights: • AuCu/Si alloy thin films were prepared by thermal diffusion. • Alloys prepared with 50 at.% of Au produce the AuCuII phase. • Alloys prepared with 75 at.% of Au produce Au{sub 3}Cu and Au{sub 2}Cu{sub 3} phases. • All alloys present diffusion of Si and Cu through the CuSi alloy formation.

  16. Kinarot Jordan Valley Technological Incubator | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Jordan Valley Technological Incubator Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Kinarot - Jordan...

  17. Progress Moves West Valley Closer to Finishing Canister Relocation Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Moves West Valley Closer to Finishing Canister Relocation Project Progress Moves West Valley Closer to Finishing Canister Relocation Project October 17, 2016 - 12:10pm Addthis Workers place a vertical storage cask liner on a construction pad. Workers place a vertical storage cask liner on a construction pad. WEST VALLEY, N.Y. - EM's West Valley Demonstration Project (WVDP) is about 70 percent complete toward relocating all high-level waste canisters from a building to

  18. 2014 Annual Planning Summary for the West Valley Demonstration Project

    Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the West Valley Demonstration Project.

  19. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  20. California Valley Solar Ranch Biological Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Valley Solar Ranch Biological Assessment California Valley Solar Ranch Biological Assessment Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California High Plains Ranch II, LLC (HPR II), a wholly owned subsidiary of SunPower Corporation, Systems ("SunPower") proposes to construct a 250-megawatt (MW) solar photovoltaic (PV) energy plant, the California Valley Solar Ranch Project (CVSR Project or Project), on a 4,747acre site in

  1. Lobbyist Disclosure Form - Silicon Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Silicon Valley Lobbyist Disclosure Form - Silicon Valley Jonathan Silver, Energy Department executive director loans program, gave Colleen Quinn, Silicon Valley Leadership Group vice president of government relations and public policy, a broad overview of the work done by the LPO, and discussed the possible future of clean energy investment. Lobbyist Disclosure Form - Silicon Valley.pdf (35.2 KB) More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First

  2. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  3. Enterprise Assessments Review of the West Valley Demonstration Project Site

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fire Protection Program - March 2016 | Department of Energy West Valley Demonstration Project Site Fire Protection Program - March 2016 Enterprise Assessments Review of the West Valley Demonstration Project Site Fire Protection Program - March 2016 March 2016 Review of the Fire Protection Program at the West Valley Demonstration Project The U.S. Department of Energy (DOE) independent Office of Enterprise Assessments (EA) conducted a review of the fire protection program at the West Valley

  4. Project Reports for Hoopa Valley Tribe- 2006 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe will assess the feasibility of smaller-scale hydroelectric facilities (between 100 KW and 5 MW).

  5. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  6. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration...

  7. West Valley Demonstration Project - 2016 EM Success Story | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy - 2016 EM Success Story West Valley Demonstration Project - 2016 EM Success Story Presentation from the 2016 DOE National Cleanup Workshop by Jeff Bradford, President and General Manager, CH2M HILL BWXT West Valley, LLC. West Valley Demonstration Project - 2016 EM Success Story (1.75 MB) More Documents & Publications Probabilistic Modeling and Phase 2 Decision Making at the West Valley Demonstration Project and the Western New York Nuclear Service Center The Path to Success Beyond

  8. Field Mapping At Lualualei Valley Area (Thomas, 1986) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  9. 2012 Annual Planning Summary for West Valley Demonstration Project

    Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within West Valley Demonstration Project.

  10. Santa Clara Valley Transportation Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Validation » Santa Clara Valley Transportation Authority Santa Clara Valley Transportation Authority Santa Clara Valley Transportation Authority logo Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual

  11. Project Reports for Elk Valley Rancheria- 2010 Project

    Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  12. Geothermal Literature Review At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  13. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  14. Indian Wells Valley FORGE Aeromagnetic Data

    DOE Data Explorer

    Doug Blankenship

    1994-11-01

    Aeromagnetic data was collected over the Indian Wells Valley, CA in November 1994. It consisted of 9,033 line-kilometers covering ~4,150 square kilometers, flown at a 250 meter drape with principal line spacing of 0.54 kilometers and 10% cross-lines. The principal orientation is N65E.

  15. Suppression of Upsilon production in d + Au and Au + Au collisions at root s(NN) = 200 GeV (vol 735, pg 127, 2014)

    SciTech Connect

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D.G.

    2014-07-30

    We report measurements of ? meson production in p + p, d +Au, and Au+Aucollisions using the STAR detector at RHIC. We compare the ? yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d +Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p +p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for ? (1S + 2S + 3S) in the rapidity range |y| < 1 in d + Aucollisions of RdAu = 0.79 0.24(stat.) 0.03(syst.) 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 0.1(stat.) 0.02(syst.) 0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state ? mesons in Au + Aucollisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined QuarkGluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.

  16. Electronic Structure of Thiol-Covered Gold Nanoparticles: Au102...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structure of Thiol-Covered Gold Nanoparticles: Au102(MBA)44 Authors: Li, Y., Galli, G., ... properties of thiolate-protected gold nanoparticles Au102(MBA)44 that have ...

  17. Microsoft PowerPoint - Attachment 2 AU Org Chart [Compatibility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bill R. McArthur Director AU-12 Office of Worker Safety and Health Assistance Bradley K. Davy Director AU-13 Office of Domestic and International Health Studies Dr. Gerald R. ...

  18. Identified particle distributions in pp and Au+Au collisions atsqrt sNN=200 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M; Arkhipkin, D.; Averichev, G.S.; Badyal,S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele,S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj,S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar,A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez,M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Ganti, M.S.; Gutierrez, T.D.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Cronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris,J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang,S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.S.; Kopytine,S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger,K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2003-10-06

    Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for {radical}sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.

  19. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    DOE PAGES [OSTI]

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squaredmore » Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  20. Hudson Valley Clean Energy Office and Warehouse

    Building Catalog

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks. 06/01/2015 - 14:11

  1. Valley Entrepreneurs' Network (VEN) Monthly Network Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    VEN Monthly Network Meeting Valley Entrepreneurs' Network (VEN) Monthly Network Meeting WHEN: Mar 05, 2015 5:30 PM - 7:00 PM WHERE: Anthony's At the Delta North Paseo De Onate, Española, NM CATEGORY: Community INTERNAL: Calendar Login Event Description An evening of exciting enterprise networking with like-minded entrepreneurs. For more information, contact Alejandro, VEN Coordinator, at (505) 410-0959

  2. West Valley Demonstration Project Unique Remote Operations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Path to Success Beyond Phase 1 Facility Disposition Bryan Bower U.S. Department of Energy West Valley Demonstration Project September 14, 2016 www.energy.gov/EM 2 Approved for Public Release; Further Dissemination Unlimited Where we are . . . www.energy.gov/EM 3 Approved for Public Release; Further Dissemination Unlimited and where we are going. 4 Decision Making Process Phase 2 Decommissioning (Decisions made by 2020) Phase 2 Decisions Decisions for disposition of remaining facilities : 

  3. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  4. Collision-spike sputtering of Au nanoparticles

    DOE PAGES [OSTI]

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For this specific case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31% of the impact energy remains in the nanoparticles after impact; the remaindermore » is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80% of that of free nanoparticles due to the suppression of forward sputtering.« less

  5. OPERATION OF THE RHIC AU ION SOURCE.

    SciTech Connect

    STESKI,D.B.; ALESSI,J.; BENJAMIN,J.; CARLSON,C.; MANNI,M.; THIEBERGER,P.; WIPLICH,M.

    2001-09-02

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is beginning its second year of operation. A cesium sputter ion source injecting into a tandem Van de Graaff provides the gold ions for RHIC. The ion source is operated in the pulsed beam mode and produces a 500{micro}sec long pulse of Au{sup -} with a peak intensity of 290pA at the entrance of the tandem. After acceleration in the tandem and post stripping, this results in a beam of Au{sup +32} with an intensity of 80e{micro}A and an energy of 182MeV. Over the last several years, a series of improvements have been made to increase the intensity of the pulsed beam from the ion source. Details of the source performance and improvements will be presented. In addition, an effort is under way to provide other beam species for RHIC collisions.

  6. Collision-spike sputtering of Au nanoparticles

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For this specific case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31% of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80% of that of free nanoparticles due to the suppression of forward sputtering.

  7. Santa Clara Valley Transportation Authority and San Mateo County Transit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    District -- Fuel Cell Transit Buses: Evaluation Results | Department of Energy Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

  8. Imperial Valley Renewable Energy Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Imperial Valley Renewable Energy Summit Imperial Valley Renewable Energy Summit The Energy Department's Geothermal Technologies Office presented on major funding initiatives in 2015 at the eighth annual Imperial Valley Renewable Energy Summit, in southern California in March. Laura Garchar - science and technology policy fellow through DOE's Institute for Science and Education at Oak Ridge, Tennessee (ORISE) - presented. click below for the full presentation IVRES Presentation_Garchar.pdf (2 MB)

  9. NERSC Hosts 50 Enthusiastic Computer Science Students from Dougherty Valley

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Hosts 50 Enthusiastic Computer Science Students from Dougherty Valley High NERSC Hosts 50 Enthusiastic Computer Science Students from Dougherty Valley High May 31, 2016 A group of 50 enthusiastic computer science students from Dougherty Valley High School in San Ramon, CA visited NERSC May 26, where they toured the computer room and participated in lively discussions about the facility and how supercomputers work. They asked great questions, such as "In the future, will there be

  10. Santa Clara Valley Transportation Authority and San Mateo County Transit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    District | Department of Energy Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vta_prelim_eval_results.pdf (1.04 MB) More Documents & Publications Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results VTA, SamTrans Look into Future with Bus

  11. West Valley Demolition Marks Important Accomplishment for EM | Department

    Energy Saver

    of Energy Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM June 13, 2013 - 12:00pm Addthis Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Demolition work is shown in February 2013. Demolition work is shown in February 2013. Demolition continues in April 2013 with removal of

  12. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    OpenEI (Open Energy Information) [EERE & EIA]

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  13. Valley wins 2015 Science Bowl | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Valley Seated (l-r) Ryan Thompson, Charles Napier, Gabriel Mintzer. Back row (l-r): coach Nate Speichinger, Sunita Kolareth, Arun Velamuri and Ames Laboratory Director Adam...

  14. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  15. Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney...

    OpenEI (Open Energy Information) [EERE & EIA]

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration...

  16. Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...

    OpenEI (Open Energy Information) [EERE & EIA]

    Photography At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al., 2003) Aerial Photography At Dixie Valley...

  17. Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...

    OpenEI (Open Energy Information) [EERE & EIA]

    Okaya & Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985)...

  18. Valley County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fort Peck, Montana Frazer, Montana Glasgow, Montana Nashua, Montana Opheim, Montana St. Marie, Montana Retrieved from "http:en.openei.orgwindex.php?titleValleyCounty,Montana...

  19. Valley Brook, Oklahoma: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Brook, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4020066, -97.4814258 Show Map Loading map... "minzoom":false,"mappin...

  20. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Exploration Activity Page Technique Activity Start Date Activity End Date Reference Material Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Isotopic...

  1. Silicon Valley Clean Tech Alliance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alliance Jump to: navigation, search Name: Silicon Valley Clean Tech Alliance Address: Box 1855 Place: Cupertino, California Zip: 95015 Region: Bay Area Website:...

  2. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Using Magnetotelluric and Time-domain Electromagnetic Measurements Stephen K. Park, Carlos Torres-Verdin (1988) A Systematic Approach to the Interpretation of...

  3. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    beneath the resurgent dome. References Christopher Farrar, Jacob DeAngelo, Colin Williams, Frederick Grubb, Shaul Hurwitz (2010) Temperature Data From Wells in Long Valley...

  4. Columbine Valley, Colorado: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Columbine Valley, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6010988, -105.032206 Show Map Loading map......

  5. Spokane Valley, Washington: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    city in Spokane County, Washington.1 Utility Companies in Spokane Valley, Washington Modern Electric Water Company References US Census Bureau Incorporated place and minor...

  6. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  7. Prescott Valley, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit with form History Prescott Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6100243, -112.315721 Show Map Loading...

  8. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    OpenEI (Open Energy Information) [EERE & EIA]

    Associates, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)...

  9. Long Valley Caldera Geothermal and Magmatic Systems | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Magmatic Systems Abstract Long Valley Caldera in eastern California has been explored for geothermal resources since the 1960s. Early shallow exploration wells (<300m) were located...

  10. Technical Geologic Overview of Long Valley Caldera for the Casa...

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Abstract Long Valley Caldera in eastern California has been explored for geothermal resources since the 1960s. Early exploration wells (<300m) were drilled around...

  11. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  12. Magic Valley Electric Coop Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Twitter: @magicvalleyEC Facebook: https:www.facebook.comMagicValleyEC?refts Outage Hotline: 1-866-225-5683 Outage Map: www.magicvalley.coopmapoutag...

  13. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Energy.gov [DOE] (indexed site)

    today recognized the Oklahoma Municipal Power Authority (OMPA) and Silicon Valley Power (SVP) of Santa Clara, California, as the winners of the 2014 Public Power Wind Awards. ...

  14. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  15. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Dixie...

  16. Deformation of the Long Valley Caldera, California: Inferences...

    OpenEI (Open Energy Information) [EERE & EIA]

    of the Long Valley Caldera, California: Inferences from Measurements from 1988 to 2001 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  17. Pioneer Valley Resource Recovery Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314, -72.6624209...

  18. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  19. Grass Valley, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, California Connect Renewable Energy Inc DayStar Solar LLC formerly International Energy Trading LLC Environmental Capital Group LLC SMA America References US Census...

  20. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    OpenEI (Open Energy Information) [EERE & EIA]

    Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  1. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  2. Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990...

    OpenEI (Open Energy Information) [EERE & EIA]

    Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  3. Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  4. Office of Enterprise Assessments Review of the West Valley Demonostrat...

    Energy Saver

    ... West Valley, LLC CRAD Criteria and Review Approach ... EMCBC Environmental Management Consolidated Business ... Head End Vent HLW High Level Waste I&C Instrumentation and ...

  5. Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...

    OpenEI (Open Energy Information) [EERE & EIA]

    N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

  6. Bear Valley Springs, California: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1591307, -118.6284245 Show Map Loading map......

  7. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  8. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  9. Indian Valley Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian...

  10. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    (2003) The Mechanics of Unrest at Long Valley Caldera, California. 2. Constraining the Nature of the Source Using Geodetic and Micro-Gravity Data John O. Langbein (2003)...

  11. DOE - Office of Legacy Management -- Tennessee Valley Authority...

    Office of Legacy Management (LM)

    Valley Authority, Muscle Shoals Alabama; Circa 1987 AL.01-3 - TVA Letter; Siegel to Mott; Subject: Comments on Radiological Report; May 15, 1980. Attachment: Preliminary Survey...

  12. Makaha Valley, Hawaii: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Makaha Valley, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4822222, -158.2038889 Show Map Loading map... "minzoom":false,"mappin...

  13. EA-239 Aroostook Valley Electric Company | Department of Energy

    Energy.gov [DOE] (indexed site)

    EA-239 Aroostook Valley Electric Company (25.57 KB) More Documents & Publications EA-193 Energy Atlantic, LLC EA-380 Freeport Commodities EA-249 Exelon Generation Company LLC

  14. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  15. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  16. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

  17. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Exploration...

  18. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details...

  19. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    OpenEI (Open Energy Information) [EERE & EIA]

    Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

  20. Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity...

  1. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration...

  2. Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  3. Water Sampling At Long Valley Caldera Geothermal Area (Goff,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Exploration...

  4. Elkhorn Valley Public Schools Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  5. Mesa County Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  6. USD 384 Blue Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  7. Cherry Valley Elementary School Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Yankton School District Wind Project

  8. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...

    OpenEI (Open Energy Information) [EERE & EIA]

    the geothermal power plants. References Gene A. Suemnicht, Michael L. Sorey, Joseph N. Moore, Robert Sullivan (2007) The Shallow Hydrothermal System of Long Valley Caldera,...

  9. Exploratory Boreholes At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    the hydrothermal flow system. References Gene A. Suemnicht, Michael L. Sorey, Joseph N. Moore, Robert Sullivan (2007) The Shallow Hydrothermal System of Long Valley Caldera,...

  10. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    OpenEI (Open Energy Information) [EERE & EIA]

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  11. Remote Sensing For Geothermal Exploration Over Buffalo Valley...

    OpenEI (Open Energy Information) [EERE & EIA]

    and spectral resolution of the data allows for the identification of carbonate, sulfate, silica and clay minerals. Quartz- and clay-rich regions of Buffalo Valley were...

  12. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  13. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area (Taylor & Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long...

  14. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Ileana M....

  15. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  16. Conceptual Model At Dixie Valley Geothermal Area (Iovenitti,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  17. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Christoph...

  18. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  19. Geothermal Literature Review At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  20. Ground Magnetics At Dixie Valley Geothermal Area (Iovenitti,...

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  1. Geographic Information System At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  2. Waterville Valley, New Hampshire: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Waterville Valley, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9500695, -71.4995204 Show Map Loading map......

  3. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley caldera groundwater system based on detailed integration of results from pump tests, fluid level monitoring, temperature logging, and fluid samplinganalysis of the...

  4. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley caldera groundwater system based on detailed integration of results from pump tests, fluid level monitoring, temperature logging, and fluid samplinganalysis of the...

  5. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    in an ion-beam inertial confinement fusion pellets by numerical simulation. The simulation results show that the radiation energy is confined in the density valley, and the ...

  6. Apple Valley, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Apple Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5008311, -117.1858759 Show Map Loading map... "minzoom":false,"map...

  7. Exploration and Development at Dixie Valley, Nevada- Summary...

    OpenEI (Open Energy Information) [EERE & EIA]

    at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

  8. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &...

  9. Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....

    OpenEI (Open Energy Information) [EERE & EIA]

    Smith, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001)...

  10. DOE Releases Request for Information for the West Valley Demonstration...

    Office of Environmental Management (EM)

    Request for Information for the West Valley Demonstration Project Technical Services to Develop a Supplemental Environmental Impact Statement Procurement DOE Releases Request for ...

  11. Direct-Current Resistivity At Lualualei Valley Area (Thomas,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  12. Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas...

    OpenEI (Open Energy Information) [EERE & EIA]

    Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  13. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  14. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003)...

  15. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Exploration...

  16. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  17. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

  18. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area Exploration Technique Hyperspectral Imaging Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis This Study was...

  19. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis The Goals of this...

  20. Longwall mining thrives in Colorado's North Fork Valley

    SciTech Connect

    Buchsbaum, L.

    2006-08-15

    With mining units poised for record-setting capacity and rail service restored, these mines in Colorado's North Fork valley are ready to cut coal. 4 photos.

  1. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  2. Poudre Valley REA- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential heat pumps, air conditioners...

  3. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Through 30 September Activity T. Winnett, Cathy J. Janik (1986) Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of...

  4. Clean Cities: Clean Cities Coachella Valley Region coalition

    Alternative Fuels and Advanced Vehicles Data Center

    achievements, and from DOE for outstanding public outreach. Through his leadership, hydrogen fueling infrastructure and vehicles were also implemented in the Coachella Valley. In...

  5. Multispectral Imaging At Dixie Valley Geothermal Area (Pal &...

    OpenEI (Open Energy Information) [EERE & EIA]

    effort of remote sensing specialists and industry sponsored by the U.S. Department of Energy. They are using Hyperspectral data for mineralogy mapping of outcrops. Dixie valley...

  6. Radar At Dixie Valley Geothermal Area (Foxall & Vasco, 2008)...

    OpenEI (Open Energy Information) [EERE & EIA]

    DOE-funding Unknown Exploration Basis This study was conducted to image ground subsidence over the Dixie Valley Geothermal Field Notes An interferometric synthetic aperture...

  7. Summary Of Recent Research In Long Valley Caldera, California...

    OpenEI (Open Energy Information) [EERE & EIA]

    Caldera, California Abstract Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the...

  8. Oro Valley, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oro Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3909071, -110.966488 Show Map Loading map... "minzoom":false,"mappingse...

  9. Conceptual Model At Dixie Valley Geothermal Area (Reed, 2007...

    OpenEI (Open Energy Information) [EERE & EIA]

    mean residence times, large surface areas, and adjacent damage zones that provide permeability. The tracers were injected in the center of the Dixie Valley Geothermal Field and...

  10. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling...

  11. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    OpenEI (Open Energy Information) [EERE & EIA]

    Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  12. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  13. Hydrothermal Alteration Mineral Studies in Long Valley, In- Proceeding...

    OpenEI (Open Energy Information) [EERE & EIA]

    in the Long Valley Caldera; Mammoth Lakes, CA; 07151986 Published Lawrence Berkeley Laboratory, 1986 DOI Not Provided Check for DOI availability: http:crossref.org...

  14. Magnetotelluric Studies In Grass Valley, Nevada | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central...

  15. Geochemistry of Thermal Waters in Long Valley, Mono County, California...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley, California, issue sodium bicarbonate-chloride waters containing 1000-1420 mgl of dissolved solids. Thermal waters of sodium bicarbonate-chloride composition are...

  16. Geographic Information System At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Dixie Valley Geothermal Area (Nash & D., 1997)...

  17. Hyperspectral Imaging At Dixie Valley Geothermal Area (Nash ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area (Nash & D., 1997)...

  18. A Fresh Take on Groundwater at Amargosa Valley Open House

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 25, 2012 A Fresh Take on Groundwater at Amargosa Valley Open House From drilling ... Interactive stations on Monitoring, Drilling, Sampling, Modeling, Protection and ...

  19. Poudre Valley REA- Commercial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  20. Canton Valley, Connecticut: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canton Valley, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8342645, -72.8917676 Show Map Loading map......

  1. Enterprise Assessments Review of the West Valley Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review of the West Valley Demonstration Project Site Fire ... Office of Environment, Safety and Health Assessments ... In this report, EA uses the terms "deficiencies, findings, ...

  2. North Valley, New Mexico: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1733771, -106.6233591 Show Map Loading map... "minzoom":false,"mappingse...

  3. South Valley, New Mexico: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0100487, -106.6780809 Show Map Loading map... "minzoom":false,"mappingse...

  4. Voluntary Protection Program Onsite Review, West Valley Demonstration...

    Energy.gov [DOE] (indexed site)

    8 Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during...

  5. Aerial Photography At Dixie Valley Geothermal Area (Helton, Et...

    OpenEI (Open Energy Information) [EERE & EIA]

    analyze faults in southern Dixie Valley. The study was done for the Department of the Navy Geothermal Program Office's NAS Fallon Geothermal Exploration Project. Notes High...

  6. Silicon Valley Technology Centre SVTC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Silicon Valley Technology Centre (SVTC) Place: San Jose, California Zip: 915134 Product: Development foundry which offers start-up and...

  7. Roaring Fork Valley- Energy Smart Colorado Renewable Energy Rebate Program

    Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  8. Roaring Fork Valley- Energy Smart Colorado Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  9. Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer...

    OpenEI (Open Energy Information) [EERE & EIA]

    m of alluvial and lacustrine deposits. The model also indicated that the central depression of the valley is offset to the west closer to the Stillwater Range. References...

  10. Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

  11. Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

  12. Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

  13. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

  14. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  15. Dixie Valley - Geothermal Development in the Basin and Range...

    OpenEI (Open Energy Information) [EERE & EIA]

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie...

  16. Chino Valley, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7575227, -112.4537809 Show Map Loading map... "minzoom":false,"mappingservi...

  17. Mohave Valley, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9330585, -114.5888533 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5311541, -111.9426452 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Yucca Valley, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yucca Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1141743, -116.432235 Show Map Loading map... "minzoom":false,"mapp...

  20. DOE - Office of Legacy Management -- MonValley

    Office of Legacy Management (LM)

    ... at the Monument Valley, Arizona, DOE Legacy Waste Site-2008 Pilot Study Status Report ... Arizona, and Shiprock, New Mexico, DOE Legacy Waste Sites-2007 Pilot Study Status ...

  1. Ground water in Animas Valley, Hidalgo County, New Mexico | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    to library Report: Ground water in Animas Valley, Hidalgo County, New Mexico Author H. O. Reeder Published New Mexico State Engineer's Office, 1957 Report Number Technical...

  2. Seismotectonics of the Coso Range-Indian Wells Valley region...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jeffrey R. Unruh, Egill Hauksson, Francis C. Monastero, Robert J. Twiss and Jonathan C. Lewis. 2002. Seismotectonics of the Coso Range-Indian Wells Valley region, California:...

  3. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Energy.gov [DOE]

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  4. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    OpenEI (Open Energy Information) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details...

  5. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Compound and Elemental Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  6. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  7. Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2006-03-31

    Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.

  8. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  9. VWZ-0011- In the Matter of West Valley Nuclear Services Co., Inc.

    Energy.gov [DOE]

    This decision considers a Motion to Dismiss filed by West Valley Nuclear Services, Inc. (West Valley) on May 18, 1999. In its Motion, West Valley seeks the partial dismissal of a Complaint filed...

  10. DOE Tour of Zero Floorplans: Glendale by Kalamazoo Valley Habitat for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Humanity | Department of Energy Glendale by Kalamazoo Valley Habitat for Humanity DOE Tour of Zero Floorplans: Glendale by Kalamazoo Valley Habitat for Humanity DOE Tour of Zero Floorplans: Glendale by Kalamazoo Valley Habitat for Humanity

  11. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force Presentation...

  12. VWZ-0010- In the Matter of West Valley Nuclear Services Co., Inc.

    Energy.gov [DOE]

    This decision considers a “Motion to Dismiss” filed by West Valley Nuclear Services, Inc. (West Valley) on April 27, 1999. In its Motion, West Valley seeks the dismissal of a Complaint filed by...

  13. RHIC performance for FY2011 Au+Au heavy ion run

    SciTech Connect

    Marr, G.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Drees, K.A.; Fedotov, A.V.; Fischer, W.; Fu, W.; Gardner, C.J.; Gassner, D.M.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Ingrassia, P.F.; Jamilkowski, J.P.; Kling, N.; Lafky, M.; Laster, J.S.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mernick, K.; Michnoff, R.J.; Minty, M.G.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Polizzo, S.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Sandberg, J.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; VanKuik, B.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-09-04

    Following the Fiscal Year (FY) 2010 (Run-10) Relativistic Heavy Ion Collider (RHIC) Au+Au run, RHIC experiment upgrades sought to improve detector capabilities. In turn, accelerator improvements were made to improve the luminosity available to the experiments for this run (Run-11). These improvements included: a redesign of the stochastic cooling systems for improved reliability; a relocation of 'common' RF cavities to alleviate intensity limits due to beam loading; and an improved usage of feedback systems to control orbit, tune and coupling during energy ramps as well as while colliding at top energy. We present an overview of changes to the Collider and review the performance of the collider with respect to instantaneous and integrated luminosity goals. At the conclusion of the FY 2011 polarized proton run, preparations for heavy ion run proceeded on April 18, with Au+Au collisions continuing through June 28. Our standard operations at 100 GeV/nucleon beam energy was bracketed by two shorter periods of collisions at lower energies (9.8 and 13.5 GeV/nucleon), continuing a previously established program of low and medium energy runs. Table 1 summarizes our history of heavy ion operations at RHIC.

  14. Preliminary Notice of Violation, West Valley Nuclear Services- EA-1999-09

    Energy.gov [DOE]

    Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration Project,(EA-1999-09)

  15. Slim Holes At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Gabbs Valley Area (DOE GTP) Exploration Activity...

  16. LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details...

  17. Core Analysis At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Gabbs Valley Area (DOE GTP) Exploration Activity...

  18. Density Log at Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley...

  19. 2-M Probe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley...

  20. Over Core Stress At Gabbs Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Stress At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Over Core Stress At Gabbs Valley Area (DOE GTP) Exploration...

  1. VWA-0033- In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    This decision considers a Complaint filed by John L. Gretencord (Gretencord) against West Valley Nuclear Services, Inc. (West Valley) under the Department of Energy's (DOE) Contractor Employee...

  2. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Sampling At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Gabbs Valley Area (DOE GTP)...

  3. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Sampling At Gabbs Valley Area (DOE GTP) (Redirected from Water-Gas Samples At Gabbs Valley Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  4. Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

  5. Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  6. Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fish Lake Valley Area (DOE GTP) Exploration...

  7. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP)...

  8. Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008)...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Fish Lake Valley Area (Deymonaz, Et...

  9. Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

  10. Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

  11. Resistivity Log At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Log At Fish Lake Valley Area (DOE GTP) Exploration...

  12. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  13. Field Mapping At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley...

  14. EA-1980: Spar Canyon-Round Valley Access Road System Improvements...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    80: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho Summary...

  15. DOE Issues Draft Request for Proposals for the West Valley Demonstrati...

    Energy Saver

    West Valley Demonstration Project Supplemental Environmental Impact Statement Support Service DOE Issues Draft Request for Proposals for the West Valley Demonstration Project ...

  16. DOE Issues Final Request for Proposals for the West Valley Demonstrati...

    Energy Saver

    Valley Demonstration Project Supplemental Environmental Impact Statement Support Service DOE Issues Final Request for Proposals for the West Valley Demonstration Project ...

  17. Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area...

  18. Laminin receptor specific therapeutic gold nanoparticles (198AuNP...

    Office of Scientific and Technical Information (OSTI)

    prostate cancer Citation Details In-Document Search Title: Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer ...

  19. Microsoft Word - AU Funtional Area Points of Contact by Office...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (301) 903-3526 AU-30 Headquarters Security Representative Garrett Smith Garrett.Smith@hq.doe.gov (301) 903-7440 Beryllium-Associated Worker Registry Pat Worthington ...

  20. Supported bimetallic PdAu nanoparticles with superior electrocatalytic...

    Office of Scientific and Technical Information (OSTI)

    nanoparticles with superior electrocatalytic activity towards methanol oxidation Citation Details In-Document Search Title: Supported bimetallic PdAu nanoparticles with superior ...

  1. Competition between Order and Phase Separation in Au-Ni

    SciTech Connect

    Reichert, H.; Schoeps, A.; Ramsteiner, I.B.; Bugaev, V.N.; Shchyglo, O.; Udyansky, A.; Dosch, H.; Asta, M.; Drautz, R.; Honkimaeki, V.

    2005-12-02

    We have measured and theoretically analyzed the diffuse scattering in the binary alloy system Au-Ni, which has been proposed as a testing ground for theories of alloy phase stability. We found strong evidence that in the alloys Au{sub 3}Ni and Au{sub 3}Ni{sub 2}, fluctuations of both ordering- and clustering-type are competing with each other. Our results resolve a long-standing controversy on the balance of relaxation and mixing energies in this alloy system and explain recent findings of ordering in thin Au-Ni films.

  2. Preparations for p-Au run in 2015

    SciTech Connect

    Liu, C.

    2014-12-31

    The p-Au particle collision is a unique category of collision runs. This is resulted from the different charge mass ratio of the proton and fully stripped Au ion (1 vs.79/197). The p-Au run requires a special acceleration ramp, and movement of a number of beam components as required by the beam trajectories. The DX magnets will be moved for the first time in the history of RHIC. In this note, the planning and preparations for p-Au run will be presented.

  3. TFC-0004- In the Matter of Tri-Valley CARES

    Energy.gov [DOE]

    Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. § 552.

  4. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  5. Reflow of AuSnSolder Creates Strong Joints [Local Reflow of AuSn Solder: Relating Strength to Microstructure

    SciTech Connect

    Golosker, Ilya V.; Florando, Jeff N.

    2013-02-01

    Local heating of AuSn solder creates reliable bonds. However, small changes in the heat schedule result in significant changes to bond strength and microstructure.

  6. Identification of Au–S complexes on Au(100)

    DOE PAGES [OSTI]

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Yang, Hyun Jin; Kim, Yousoo; Thiel, P. A.

    2016-01-25

    In this study, using a combination of scanning tunneling microscopy and density functional theory (DFT) calculations, we have identified a set of related Au–S complexes that form on Au(100), when sulfur adsorbs and lifts the hexagonal surface reconstruction. The predominant complex is diamond-shaped with stoichiometry Au4S5. All of the complexes can be regarded as combinations of S–Au–S subunits. The complexes exist within, or at the edges of, p(2 × 2) sulfur islands that cover the unreconstructed Au regions, and are observed throughout the range of S coverage examined in this study, 0.009 to 0.12 monolayers. A qualitative model is developedmore » which incorporates competitive formation of complexes, Au rafts, and p(2 × 2) sulfur islands, as Au atoms are released by the surface structure transformation.« less

  7. Sideward flow in Au+Au collisions between 2A and 8A GeV

    SciTech Connect

    Liu, H.; Ajitanand, N.N.; Alexander, J.; Anderson, M.; Best, D.; Brady, F.P.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.; Cole, B.; Crowe, K.; Das, A.; Draper, J.; Gilkes, M.; Gushue, S.; Heffner, M.; Hirsch, A.; Hjort, E.; Huo, L.; Justice, M.; Kaplan, M.; Keane, D.; Kintner, J.; Klay, J.; Krofcheck, D.; Lacey, R.; Lisa, M.A.; Liu, Y.M.; McGrath, R.; Milosevich, Z.; Odyniec, G.; Olson, D.; Panitkin, S.Y.; Porile, N.; Rai, G.; Ritter, H.G.; Romero, J.; Scharenberg, R.; Schroeder, L.S.; Srivastava, B.; Stone, N.T.B.; Symons, T.J.M.; Wang, S.; Whitfield, J.; Wienold, T.; Witt, R.; Wood, L.; Yang, X.; Zhang, W.N.; Zhang, Y.; E895 Collaboration

    2000-04-05

    Using the large acceptance Time Projection Chamber of experiment E895 at Brookhaven, measurements of collective sideward flow in Au + Au collisions at beam energies of 2A, 4A, 6A, and 8A GeV are presented in the form of in-plane transverse momentum

  8. Elliptic flow: transition from out-of-plane to in-plane emissionin Au + Au collisions

    SciTech Connect

    Pinkenburg, C.; Ajitanand, N.N.; Alexander, J.M.; Anderson, M.; Best, D.; Brady, F.P.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.L.; Chung, P.; Cole, B.; Crowe, K.; Das, A.C.; Draper, J.E.; Elmaani, A.; Gilkes, M.L.; Gushue, S.; Heffner, M.; Hirsch, A.S.; Hjort, E.L.; Huo,L.; Justice, M.; Kaplan, M.; Keane, D.; Kintner, J.C.; Klay, J.; Krofcheck, D.; Lacey, R.A.; Lauret, J.; Law, C.; Lisa, M.A.; Liu, H.; Liu, Y.M.; McGrath, R.; Milosevich, Z.; Odyniec, G.; Olson, D.L.; Panitkin, S.Y.; Porile, N.T.; Rai, G.; Ritter, H.G.; Romero, J.L.; Scharenberg, R.P.; Schroeder, L.; Srivastava, B.; Stone, N.T.B.; Symons,T.J.M.; Whitfield, J.; Wienold, T.; Witt, R.; Wood, L.; Zhang, W.N.; E895Collaboration; Danielewicz, P.; Gossiaux, P.B.

    1999-07-31

    We have measured the proton elliptic flow excitation function for the Au+Au system spanning the beam energy range (2-8)A GeV. The excitation function shows a transition from negative to positive elliptic flow at a beam energy, Etr {approx} 4A GeV. Detailed comparisons with calculations from a relativistic Boltzmann equation are presented. The comparisons suggest a softening of the nuclear equation of state from a stiff form (K {approx} 380 MeV) at low beam energies (Ebeam < 2A GeV) to a softer form (K {approx} 210 MeV) at higher energies ( Ebeam < 4A GeV) where the calculated baryon density rho {approx} 4 rho 0.

  9. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    SciTech Connect

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.

  10. {phi} meson production in Au + Au and p + p collisions at {radical}s{sub NN}=200 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Hughes, E.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaplan, M.; Keane, D.; Khodyrev; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Kravstov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.Kh.; et al.

    2004-06-01

    We report the STAR measurement of {psi} meson production in Au + Au and p + p collisions at {radical}s{sub NN} = 200 GeV. Using the event mixing technique, the {psi} spectra and yields are obtained at midrapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the {psi} transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that {psi} production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions (). The systematics of versus centrality and the constant {psi}/K{sup -} ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for {psi} production.

  11. West Valley Melter Draft Waste Evaluation Released for Public Comment |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Melter Draft Waste Evaluation Released for Public Comment West Valley Melter Draft Waste Evaluation Released for Public Comment March 11, 2011 - 12:00pm Addthis Media Contact Bill Taylor (513) 246-0539 william.taylor@emcbc.doe.gov West Valley, New York - The U.S. Department of Energy today released a Draft Waste Incidental to Reprocessing (WIR) Evaluation of a vitrification melter at the West Valley Demonstration Project (WVDP) for review and comment by the public,

  12. CO Oxidation mechanism on CeO2-supported Au nanoclusters

    SciTech Connect

    Kim H. Y.; Henkelman, G.

    2013-09-08

    To reveal the richer chemistry of CO oxidation by CeO2 supported Au Nanoclusters(NCs)/Nanoparticles, we design Au13 and Au12 supported on a flat and a stepped-CeO2 model (Au/CeO2) and study various kinds of CO oxidation mechanisms at the Au-CeO2 interface and the Au NC as well.

  13. Observation of D0 meson nuclear modifications in Au+Au collisions at sNN=200 GeV

    DOE PAGES [OSTI]

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2014-09-30

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au+Au collisions at √sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p+p to central Au+Au collisions. The D0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions andmore »coalescence hadronization describe our measurements.« less

  14. Observation of D0 meson nuclear modifications in Au+Au collisions at sNN=200 GeV

    DOE PAGES [OSTI]

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2014-09-30

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au+Au collisions at √sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p+p to central Au+Au collisions. The D0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions andmore » coalescence hadronization describe our measurements.« less

  15. DOE - Office of Legacy Management -- South Valley Superfund Site...

    Office of Legacy Management (LM)

    Energy is one of the PRPS because of the Atomic Energy Commissions ownership of an industrial facility in the South Valley from 1951-1967. Also see Documents Related to South...

  16. Silicon Valley Power- Solar Electric Buy Down Program

    Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program...

  17. Maple Valley, Washington: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Maple Valley is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  18. Isotopic Analysis At Valley Of Ten Thousand Smokes Region Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten...

  19. Central Valley Elec Coop, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coop, Inc Jump to: navigation, search Name: Central Valley Elec Coop, Inc Place: New Mexico Phone Number: (575) 746-3571 Website: cvecoop.org Outage Hotline: (575) 746-3571...

  20. Compound and Elemental Analysis At Dixie Valley Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    to be related to characteristics of the fluid at Dixie Valley such as a relatively high pH and low concentrations of sulfate and chloride. References Scott A. Wood (2002) Behavior...

  1. Lower Valley Energy Inc (Wyoming) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Inc Place: Wyoming Phone Number: 800 882 5875 Website: www.lvenergy.com Facebook: https:www.facebook.comLowerValleyEnergy Outage Hotline: 800 882 5875 References:...

  2. Chippewa Valley Ethanol Company CVEC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CVEC Jump to: navigation, search Name: Chippewa Valley Ethanol Company (CVEC) Place: NW Benson, Minnesota Zip: 56215 Product: Owns 57.0m litres a year dry mill ethanol plant....

  3. Caney Valley El Coop Assn, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Assn, Inc Jump to: navigation, search Name: Caney Valley El Coop Assn, Inc Place: Kansas Phone Number: (620) 758-2262 Website: www.caneyvalley.com Outage Hotline: 1-800-310-8911...

  4. Niobrara Valley El Member Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Member Corp Jump to: navigation, search Name: Niobrara Valley El Member Corp Place: Nebraska Phone Number: 402.336.2803 Website: nvemc.org Outage Hotline: (402) 336-2803 or (800)...

  5. Improving Reactor Performance Rose Montgomery The Tennessee Valley...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improving Reactor Performance Rose Montgomery The Tennessee Valley Authority Mark Uhran Oak Ridge National Laboratory April 9, 2013 CASL-U-2013-0034-001 CASL-U-2013-0034-001 ...

  6. Mill Valley, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Mill Valley is a city in Marin County, California. It falls under California's 6th...

  7. West Valley Demonstration Project Transportation Emergency Management Program

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance September 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS .........................................................................................

  8. Silicon Valley Solar Inc SV Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Inc SV Solar Jump to: navigation, search Name: Silicon Valley Solar Inc (SV Solar) Place: Santa Clara, California Zip: 95051 Sector: Solar Product: A US-based manufacturer of...

  9. Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...

    OpenEI (Open Energy Information) [EERE & EIA]

    Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Geothermal resources of the Upper San Luis and Arkansas valleys...

    OpenEI (Open Energy Information) [EERE & EIA]

    resources of the Upper San Luis and Arkansas valleys, Colorado Authors R.H. Pearl and J.K. Barrett Editors Epis, R.C. & Weimer and R.I. Published Colorado School of Mines:...

  11. A Four-Dimensional Viscoelastic Deformation Model For Long Valley...

    OpenEI (Open Energy Information) [EERE & EIA]

    spherical VE shell model of Newman et al. (Newman, A.V., Dixon, T.H., Ofoegbu, G., Dixon, J.E., 2001. Geodetic and seismic constraints on recent activity at Long Valley caldera,...

  12. File:LongValley Strat.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 from Suemnicht et al (2006).1 Gene A. Suemnicht,Michael L. Sorey,Joseph N. Moore,Robert Sullivan. 2007. The Shallow Hydrothermal System of Long Valley Caldera,...

  13. Nishnabotna Valley R E C | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Nishnabotna Valley R E C Address: 1317 Chatburn Ave Place: Harlan, IA Zip: 51537 Phone Number: 712-755-2166 Website: nvrec.comdefaultv2.aspx?n136 Outage...

  14. Maquoketa Valley Rrl Elec Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Iowa Phone Number: 319-462-3542 or 800-927-6068 Website: mvec.com Twitter: @mvecia Facebook: https:www.facebook.comMaquoketaValleyElectricCooperative Outage Hotline:...

  15. Canadian Valley Elec Coop, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    anadianValleyElectric Outage Hotline: (855)875-7166 Outage Map: ebill.canadianvalley.orgomso References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  16. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  17. Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program

    Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

  18. Castro Valley, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Castro Valley is a census-designated place in Alameda County, California.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Scotts Valley Band of Pomo Indians- 2010 Project

    Energy.gov [DOE]

    The Scotts Valley Band of Pomo Indians in Lakeport, California, will establish a Tribal Multi-County Weatherization Energy Program to provide training, outreach, and education on energy assistance and conservation to low-income families.

  20. West Puente Valley, California: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Puente Valley is a census-designated place in Los Angeles County, California.1...

  1. Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...

    OpenEI (Open Energy Information) [EERE & EIA]

    region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by boiling. As a result, the deep upflow zone...

  2. Silicon Valley Power- Commercial Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. In addition, Customer Directed Rebates are...

  3. Spring Valley, Nevada: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a census-designated place in Clark County, Nevada.1 References US...

  4. Spring Valley, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a city in Harris County, Texas. It falls under Texas's 7th congressional...

  5. Spring Valley, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a census-designated place in San Diego County, California.1 References ...

  6. Spring Valley, New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a village in Rockland County, New York. It falls under New York's 17th...

  7. Spring Valley, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a census-designated place in Yavapai County, Arizona.1 References US...

  8. Red River Valley REA- Heat Pump Loan Program

    Energy.gov [DOE]

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  9. Red River Valley Rrl Elec Assn | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Elec Assn Jump to: navigation, search Name: Red River Valley Rrl Elec Assn Place: Oklahoma Phone Number: 1-800-749-3364 or 580-564-1800 Website: www.rrvrea.com Twitter:...

  10. Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the West Valley Demonstration Project in New York meets the waste-incidental-to reprocessing criteria of Department of Energy Manual 435.1-1, Radioactive Waste Management Manual. ...

  11. Grand Valley Rrl Pwr Line, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Rrl Pwr Line, Inc Place: Colorado Website: www.gvp.org Twitter: @GVRuralPower Outage Hotline: 970-242-0040 Outage Map: www.gvp.orgcontentoutage-map References: EIA Form...

  12. Sulphur Springs Valley EC- SunWatts Loan Program

    Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of ...

  13. Geothermal Literature Review At Long Valley Caldera Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    DOE-funding Unknown Notes "Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the...

  14. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    OpenEI (Open Energy Information) [EERE & EIA]

    site near the Stillwater Fault to 0.1 t dayy1 from a 0.01-km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow...

  15. DOE - Office of Legacy Management -- Tyson Valley Powder Farm...

    Office of Legacy Management (LM)

    MO.11-1 - Letter; Dickenson to Duff; Subject: Granted continued use of storage magazine at Tyson Valley Powder Farm for TNT storage; May 21, 1947 MO.11-2 - Aerospace Report; FUSRAP ...

  16. Valley Rural Electric Coop Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Rural Electric Coop Inc Place: Pennsylvania Phone Number: 814643-2650 or toll-free 800432-0680 Website: www.valleyrec.com Facebook: https:www.facebook.compages...

  17. Spring Valley Pub Utils Comm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Spring Valley Pub Utils Comm Place: Minnesota Website: www.smmpa.orgmembersspring-v Outage Hotline: 507.346.7622 References: EIA Form EIA-861 Final Data File for 2010 -...

  18. Sioux Valley SW Elec Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SW Elec Coop Jump to: navigation, search Name: Sioux Valley SW Elec Coop Place: Colman, South Dakota References: EIA Form EIA-861 Final Data File for 2010 - File1a1 SGIC2 EIA...

  19. West Valley Demonstration Project Contractor Reaches 2 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Project Contractor Reaches 2 Million Safe Work Hours West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours May 31, 2016 - 12:20pm Addthis A ...

  20. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mono County, California Abstract Long Valley caldera, a 17- by 32-km elliptical depression on the east front of the Sierra Nevada, formed 0.7 m.y. ago during eruption of the...

  1. Dixie Valley Six Well Flow Test | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted...

  2. Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  3. DOE - Office of Legacy Management -- Monument Valley Mill Site...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Monument Valley, ...

  4. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    OpenEI (Open Energy Information) [EERE & EIA]

    at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at...

  5. Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program

    Energy.gov [DOE]

    Business $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

  6. Seismicity related to geothermal development in Dixie Valley, Nevada

    SciTech Connect

    Ryall, A.S.; Vetter, U.R.

    1982-07-08

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  7. Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration Project – October 2013

    Energy.gov [DOE]

    Evaluation to determine whether CH2M HILL B&W West Valley LLC, West Valley Demonstration Project is performing at a level deserving DOE-VPP Star recognition.

  8. Au plasmonics in a WS{sub 2}-Au-CuInS{sub 2} photocatalyst for significantly enhanced hydrogen generation

    SciTech Connect

    Cheng, Zhongzhou; Wang, Zhenxing E-mail: hej@nanoctr.cn; Shifa, Tofik Ahmed; Wang, Fengmei; Zhan, Xueying; Xu, Kai; He, Jun E-mail: hej@nanoctr.cn; Liu, Quanlin

    2015-11-30

    Promoting the activities of photocatalysts is still the critical challenge in H{sub 2} generation area. Here, a Au plasmon enhanced photocatalyst of WS{sub 2}-Au-CuInS{sub 2} is developed by inserting Au nanoparticles between WS{sub 2} nanotubes and CuInS{sub 2} (CIS) nanoparticles. Due to the localized surface plasmonic resonance properties from Au nanoparticles, WS{sub 2}-Au-CIS shows the best performance as compared to Au-CIS, CIS, WS{sub 2}-CIS, CIS-Au, WS{sub 2}-Au, and WS{sub 2}-CIS-Au. The surface plasmonic resonance effects dramatically intensify the absorption of visible light and help to inject hot electrons into the semiconductors. Our findings open up an efficient method to optimize the type-II structures for photocatalytic water splitting.

  9. Corrigendum to “Suppression of Υ production in d+Au and Au+Au collisions at √ SNN = 200 GeV" [Phys. Lett. B 735 (2014) 127-137

    SciTech Connect

    Adamczyk, L.

    2015-04-01

    We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in the rapidity range |y| < 1 in d + Au collisions of RdAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.

  10. Corrigendum to “Suppression of Υ production in d+Au and Au+Au collisions at √ SNN = 200 GeV" [Phys. Lett. B 735 (2014) 127-137

    DOE PAGES [OSTI]

    Adamczyk, L.

    2015-04-01

    We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore » rapidity range |y| < 1 in d + Au collisions of RdAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less

  11. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  12. Assembling Bare Au Nanoparticles at Positively Charged Templates

    DOE PAGES [OSTI]

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), displaymore » less in-plane regular packing compared to bare AuNPs.« less

  13. Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer

    Office of Scientific and Technical Information (OSTI)

    Biosensors (Conference) | SciTech Connect Conference: Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer Biosensors Citation Details In-Document Search Title: Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer Biosensors Authors: Guo, Shaojun [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2014-03-27 OSTI Identifier: 1126641 Report Number(s): LA-UR-13-28234 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource

  14. Corrigendum to “Suppression of Υ production in d+Au and Au+Au collisions at √ SNN = 200 GeV" [Phys. Lett. B 735 (2014) 127-137

    DOE PAGES [OSTI]

    Adamczyk, L.

    2015-04-01

    We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore »rapidity range |y| dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less

  15. RHIC PERFORMANCE DURING THE FY10 200 GeV Au+Au HEAVY ION RUN

    SciTech Connect

    Brown, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.; Bruno, D.; Carlson, C.; Connolly, R.; de Maria, R.; DOttavio, T.; Drees, A.; Fischer, W.; Fu, W.; Gardner, C.; Gassner, D.; Glenn, J.W.; Hao, Y.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Laster, J.; Lee, R.; Litvinenko, V.; Luo, Y.; MacKay, W.; Marr, G.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Oerter, B.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Sampson, P.; Sandberg, J.; Satogata, T.; Severino, F.; Schoefer, V.; Schultheiss, C.; Smith, K.; Steski, D.; Tepikian, S.; Theisen, C.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    Since the last successful RHIC Au+Au run in 2007 (Run-7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run-7 RHIC achieved an average store luminosity of = 12 x 10{sup 26} cm{sup -2} s{sup -1} by operating with 103 bunches (out of 111 possible), and by squeezing to {beta}* = 0.85 m. This year, Run-10, we achieved = 20 x 10{sup 26} cm{sup -2} s{sup -1}, which put us an order of magnitude above the RHIC design luminosity. To reach these luminosity levels we decreased {beta}* to 0.75 m, operated with 111 bunches per ring, and reduced longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF control system, and separated transition crossing times in the two rings. We present an overview of the changes and the results of Run-10 performance.

  16. Azimuthal anisotophy in U + U and Au + Au collisions at RHIC

    DOE PAGES [OSTI]

    Adamczyk, L.

    2015-11-24

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2} and v2{4}, for charged hadrons from U+U collisions at √SNN = 193 GeV and Au+Au collisions at √SNN = 200 GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. As a result, we alsomore » show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.« less

  17. Azimuthal anisotophy in U + U and Au + Au collisions at RHIC

    SciTech Connect

    Adamczyk, L.

    2015-11-24

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2} and v2{4}, for charged hadrons from U+U collisions at √SNN = 193 GeV and Au+Au collisions at √SNN = 200 GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. As a result, we also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  18. Azimuthally sensitive hanbury brown-twiss interferometry in Au + Au collisions sqrt S sub NN = 200 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Gronstal, S.; Grosnick, D.; Guertin, S.M.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, L.S.; Hughes, E.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, V.I.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.Kh.; Kuznetsov, A.A.; Lamont, M.A.C.; et al.

    2004-06-30

    We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii vs. emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.

  19. Measurement of J/? Azimuthal Anisotropy in Au+Au Collisions at ?sNN=200 GeV

    DOE PAGES [OSTI]

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2013-08-02

    The measurement of J/? azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at ?sNN>/sub>=200 GeV. The measured J/? elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/? particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.

  20. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    SciTech Connect

    Reddy, K. M. Punnoose, Alex; Hanna, Charles; Padture, Nitin P.

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  1. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE PAGES [OSTI]

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  2. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    SciTech Connect

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based coreshell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt coreshell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayershell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of coreshell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.

  3. Disappearance of back-to-back high p {sub T} hadron correlations in central Au+Au collisions at {radical}s{sub NN} = 200 GeV

    SciTech Connect

    Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B.D.; Anderson, M.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Caines, H.; Calderon de la Barca Sanchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Corral, M.M.; Cramer, J.G.; Crawford, H.J.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Draper, J.E.; Dunin, V.B.; Dunlop, J.C.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grachov, O.; Grigoriev, V.; Guedon, M.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Humanic, T.J.; Igo, G.J.; Ishihara, A.; Ivanshin, Yu.I.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Kollegger, T.; Konstantinov, A.S.; Kopytine, M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.Kh.; Kuznetsov, A.A.; Lakehal-Ayat, L.; Lamont, M.A.C.; Landgraf, J.M.; Lange, S.; Lansdell, C.P.; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, V.M.; LeVine, M.J.; Li , Q.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, L.; Liu, Z.; Liu, Q.J.; Ljubicic, T.; Llope, W.J.; LoCurto, G.; et al.

    2002-10-25

    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at = {radical}s{sub NN} = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.

  4. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  5. Ward Valley status report: Science versus politics. Which will win?

    SciTech Connect

    Pasternak, A.D.

    1996-10-01

    The State of California has issued a license to US Ecology, Inc. to construct and operate a disposal facility for low-level radioactive waste (LLRW) at the remote, arid Ward Valley site in the Mojave Desert. The license and certification of the associated environmental documentation have been upheld by the California courts. The Ward Valley license is the first and, so far, only license to be issued for a new LLRW disposal facility pursuant to the Low-Level Radioactive Waste Policy Act enacted in 1980 and amended in 1985. However, the dates of construction and operation of the disposal facility are uncertain because the federal government has refused to sell land in Ward Valley to the State of California for the site of the Southwestern Compact`s regional disposal facility. The Clinton Administration`s repeated excuses for delaying the land transfer, and the circumstances of these delays, indicate that prospects for success of the Ward Valley project, and perhaps the Policy Act itself, depend on the outcome of a battle between science and politics. In view of these delays by the administration, Congressional action to Transfer the Ward Valley lands to California will serve both state and federal goals for safe disposal of LLRW.

  6. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    DOE PAGES [OSTI]

    Wang, Jun; McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Baddorf, Arthur P.; Maksymovych, Petro; Yates, Jr, John T.

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less

  7. Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – A unique groundwater treatment system has significantly reduced the presence of a contaminant at EM's West Valley Demonstration Project (WVDP), according to a report issued this month.

  8. McMullen Valley Water C&D Dist | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    McMullen Valley Water C&D Dist Jump to: navigation, search Name: McMullen Valley Water C&D Dist Place: Arizona Phone Number: 99-928-859-3647 Website: www.harcuvarco.com Outage...

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect

    West Valley Nuclear Services Company and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  10. EM Employees at West Valley Help Beat Goal for Food Banks

    Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM employees and their contractor counterparts at the West Valley Demonstration Project (WVDP) have supported their local food banks for several years, and this year was no exception.

  11. Spin-polarized and valley helical edge modes in graphene nanoribbons...

    Office of Scientific and Technical Information (OSTI)

    Spin-polarized and valley helical edge modes in graphene nanoribbons Citation Details In-Document Search Title: Spin-polarized and valley helical edge modes in graphene nanoribbons ...

  12. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    OpenEI (Open Energy Information) [EERE & EIA]

    the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  13. FIA-14-0064- In the Matter of Tri-Valley CAREs

    Energy.gov [DOE]

    On October 7, 2014, The Office of Hearings and Appeals (OHA) denied an Appeal filed by Tri-Valley CAREs (Tri-Valley) under the FOIA of a final determination issued by the National Nuclear Security...

  14. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  15. Science.gov, Geothermal Energy Technology exhibits at Tennessee Valley

    Office of Scientific and Technical Information (OSTI)

    Corridor Summit | OSTI, US Dept of Energy Office of Scientific and Technical Information gov, Geothermal Energy Technology exhibits at Tennessee Valley Corridor Summit Back to the OSTI News Listing for 2006 OSTI highlighted Science.gov and the Geothermal Energy Technology subject portal at the 16thTennessee Valley Corridor Summit, held at the Chattanooga Convention Center May 31 to June 1. Science.gov, the nation's "go to" Web portal for government science information, is a

  16. DOE Awards Small Business Contract for West Valley NY Services

    Energy.gov [DOE]

    CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  17. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  18. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  19. West Valley Demonstration Project site environmental report, calendar year 1997

    SciTech Connect

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  20. Scotts Valley Band of Pomo Indians 2012 Program Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Review Renaissance Hotel - Denver, Colorado November 13-16, 2012 Ye-Ma-Bax (Scotts Valley Tribe) ✤ Eastern Pomo Tribe with 239 tribal members ✤ Offices located in Lake & Contra Costa Counties ✤ No land in trust, 35 acres fee land. Ye Ma Bax Energy ✤Key objectives ✤Human Capacity Building ✤Continuing Operations ✤Primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO) Tribal Energy Program ✤ Promote: energy, education, savings,

  1. Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade

    Alternative Fuels and Advanced Vehicles Data Center

    Breaks Guinness World Record Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record to someone by E-mail Share Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on Facebook Tweet about Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on Twitter Bookmark Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on

  2. EA-1840: California Valley Solar Ranch Project in San Luis Obispo County,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CA | Department of Energy 0: California Valley Solar Ranch Project in San Luis Obispo County, CA EA-1840: California Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern Counties, California August 3, 2011 EA-1840: Finding of No Significant Impact Loan Guarantee to High Plains II, LLC for the California Valley Solar Ranch Project in San Luis Obispo County and Kern

  3. December 2015 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016 LMS/MON/S01215 This page intentionally left blank U.S. Department of Energy DVP-December 2015, Monument Valley, Arizona March 2016 RIN 15117527 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5 Data

  4. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  5. West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM’s West Valley Demonstration Project (WVDP) contractor CH2M HILL BWXT West Valley (CHBWV) and its subcontractors achieved this month 2 million safe work hours without a lost-time accident over the past 30 months

  6. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    SciTech Connect

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  7. Atomic Structure of Au329(SR)84 Faradaurate Plasmonic Nanomolecules

    DOE PAGES [OSTI]

    Kumara, Chanaka; Zuo, Xiaobing; Ilavsky, Jan; Cullen, David; Dass, Amala

    2015-04-03

    To design novel nanomaterials, it is important to precisely control the composition, determine the atomic structure, and manipulate the structure to tune the materials property. Here we present a comprehensive characterization of the material whose composition is Au329(SR)84 precisely, therefore referred to as a nanomolecule. The size homogeneity was shown by electron microscopy, solution X-ray scattering, and mass spectrometry. We proposed its atomic structure to contain the Au260 core using experiments and modeling of a total-scattering-based atomic-pair distribution functional analysis. HAADF-STEM images shows fcc-like 2.0 ± 0.1 nm diameter nanomolecules.

  8. Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110)

    SciTech Connect

    Massimi, Lorenzo; Ourdjini, Oualid; Della Pia, Ada; Mariani, Carlo; Betti, Maria Grazia; Cavaliere, Emanuele; Gavioli, Luca

    2015-06-23

    A spectroscopic study of 10,10-dibromo-9,9 bianthracene (DBBA) molecules deposited on the Au(110) surface is presented, by means of ultraviolet and X-ray photoemission, and X-ray absorption spectroscopy. Through a thermally activated procedure, these molecular precursors polymerize and eventually form graphene nanoribbons (GNRs) with atomically controlled shape and width, very important building blocks for several technological applications. The GNRs observed by scanning tunneling microscopy (STM) appear as short segments on top of the gold surface reconstruction, pointing out the delicate balance among surface diffusion and surface corrugation in their synthesis on the Au(110) surface.

  9. Appendix C: The sources of Copan Valley obsidian

    SciTech Connect

    Harbottle, G.; Neff, H.; Bishop, R.L.

    1995-05-01

    One hundred thirty-nine obsidian samples from the Copan Valley were subjected to neutron activation analysis at Brookhaven National Laboratory (BNL). Obsidian sources from Mesoamerica have been characterized by a number of different laboratories using several techniques. Over 1,800 samples from Mesoamerica have been analyzed by neutron activation at BNL. These data are now housed both at BNL and in the Smithsonian Archaeometric Research Collections and Records (SARCAR) data base. Previous statistical analysis of the Mesoamerican obsidian artifacts and source samples has produced reference groups representing many of the sources, including Ixtepeque, San Martin Jilotepeque, and El Chayal, the three sources closest to the Copan Valley and therefore most likely to be represented in the analyzed sample. As anticipated, the overwhelming majority of obsidian recovered in the Copan Valley comes from the closest source, Ixtepeque. Of the seven El Chayal specimens, four pertain to CV-43 and three pertain to CV-20. These data provide no evidence of a difference between the two localities in external obsidian exchange relations. Thus, the authors find no grounds for questioning the assumption that the minor quantities of El Chayal obsidian that reached the Copan Valley were distributed through the same channels responsible for distribution of the more common Ixtepeque obsidian.

  10. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Energy.gov [DOE]

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  11. The T-REX valley wind intercomparison project

    SciTech Connect

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  12. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  13. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  14. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    SciTech Connect

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-06-23

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  15. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    DOE PAGES [OSTI]

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Meeee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  16. ΛΛ correlation function in Au + Au collisions at √sNN = 200 GeV

    DOE PAGES [OSTI]

    Adamczyk, L.

    2015-01-12

    In this study, we present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at √sNN = 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for di-hyperon searches are discussed.

  17. Improvements in Modeling Au Sphere Non-LTE X-ray Emission (Conference...

    Office of Scientific and Technical Information (OSTI)

    Improvements in Modeling Au Sphere Non-LTE X-ray Emission Citation Details In-Document Search Title: Improvements in Modeling Au Sphere Non-LTE X-ray Emission We've previously ...

  18. Gold-rich R3Au7Sn3: Establishing the interdependence between...

    Office of Scientific and Technical Information (OSTI)

    Gold-rich R3Au7Sn3: Establishing the interdependence between electronic features and physical properties Citation Details In-Document Search Title: Gold-rich R3Au7Sn3: Establishing ...

  19. AuRu/AC as an effective catalyst for hydrogenation reactions

    DOE PAGES [OSTI]

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; Bianchi, Claudia L.; Wang, Di; Kotula, Paul G.; Kübel, Christian; Prati, Laura

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Aucore–Rushell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity, the selectivitymore » and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less

  20. Observation of dynamic water microadsorption on Au surface

    SciTech Connect

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12??m{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.