National Library of Energy BETA

Sample records for utah map created

  1. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Map Milford, Utah FORGE Map Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo University of Utah Phase 1 Report Milford, Utah FORGE Map Newberry FORGE Map

  2. Milford, Utah FORGE Logo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logo Milford, Utah FORGE Logo Milford, Utah FORGE Logo More Documents & Publications Milford, Utah FORGE Logo Milford, Utah FORGE Map Milford, Utah FORGE Logo West Flank FORGE Logo Milford, Utah FORGE Logo Newberry FORGE Logo

  3. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    Utah Utah ut_map Green River Site Mexican Hat Site Monticello Site Salt Lake City Sites (2)

  4. Draper, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Draper is a city in Salt Lake County and Utah County, Utah. It falls under Utah's 2nd congressional...

  5. American Fork, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. American Fork is a city in Utah County, Utah. It falls under Utah's 2nd congressional...

  6. Spanish Fork, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spanish Fork is a city in Utah County, Utah. It falls under Utah's 3rd congressional...

  7. Daniel, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Daniel, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4707885, -111.4146275 Show Map Loading map... "minzoom":false,"mappingservice"...

  8. Sandy, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Sandy is a city in Salt Lake County, Utah. It falls under Utah's 2nd congressional district.12 Registered...

  9. Milford, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Milford is a city in Beaver County, Utah. It falls under Utah's 3rd congressional...

  10. Salt Lake City, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  11. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eagle Mountain, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3141169, -112.006882 Show Map Loading map... "minzoom":false,"mappings...

  12. Salt Lake County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  13. Davis County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Fruit Heights, Utah Kaysville, Utah Layton, Utah North Salt Lake, Utah South Weber, Utah Sunset, Utah Syracuse, Utah West Bountiful, Utah West Point, Utah Woods Cross,...

  14. Saratoga Springs, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3491173, -111.9046567 Show Map Loading map... "minzoom":false,"mappingservice...

  15. Weber County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Weber County, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2602635, -111.9522491 Show Map Loading map... "minzoom":false,"mappingse...

  16. Summit Park, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Park, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7457808, -111.6115928 Show Map Loading map... "minzoom":false,"mappingservice":"...

  17. West Mountain, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Mountain is a census-designated place in Utah County, Utah.1 References US Census...

  18. Spring Lake, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  19. Park City, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park City is a city in Summit County and Wasatch County, Utah. It falls under Utah's 1st...

  20. Annotated geothermal bibliography of Utah

    SciTech Connect

    Budding, K.E.; Bugden, M.H.

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  1. Emery County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clawson, Utah Cleveland, Utah Elmo, Utah Emery, Utah Ferron, Utah Green River, Utah Huntington, Utah Orangeville, Utah Retrieved from "http:en.openei.orgwindex.php?titleEmery...

  2. Wasatch County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Green Joules Pan Am Biofuels Inc Places in Wasatch County, Utah Charleston, Utah Daniel, Utah Heber, Utah Midway, Utah Park City, Utah Timber Lakes, Utah Wallsburg, Utah...

  3. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall

  4. Salt Lake City, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  5. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2003-01-01

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling

  6. CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect

    Thomas C. Chidsey Jr; Craig D. Morgan; Kevin McClure; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  7. Cache County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 6 Climate Zone Subtype B. Places in Cache County, Utah Amalga, Utah Avon, Utah Benson, Utah Cache, Utah Clarkston, Utah Cornish, Utah Cove, Utah Hyde Park, Utah...

  8. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  9. Box Elder County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder County is a county in Utah. Its FIPS County Code is 003. It is classified as...

  10. Carbon County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carbon County is a county in Utah. Its FIPS County Code is 007. It is classified as ASHRAE...

  11. Shining Energy-saving LEDs on Utah Starry Nights

    Energy.gov [DOE]

    Utah is known for its magnificent night skies, where stargazers can catch a glimpse of constellations or a rogue shooting star. Now some rural towns have found a way to create even better views—and conserve energy.

  12. Juab County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    169-2006 Climate Zone Number 5 Climate Zone Subtype B. Places in Juab County, Utah Eureka, Utah Levan, Utah Mona, Utah Nephi, Utah Rocky Ridge, Utah Santaquin, Utah Retrieved...

  13. ,"Utah Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    ..."N3050UT3","N3010UT3","N3020UT3","N3035UT3","NA1570SUT3","N3045UT3" "Date","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Utah Natural Gas Pipeline and ...

  14. ,"Utah Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    Prices" "Sourcekey","N3050UT3","N3010UT3","N3020UT3","N3035UT3","N3045UT3" "Date","Natural Gas Citygate Price in Utah (Dollars per Thousand Cubic Feet)","Utah Price of Natural Gas ...

  15. Utah Department of Commerce | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Commerce Jump to: navigation, search Name: Utah Department of Commerce Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111 References: Utah Commerce Website1 This...

  16. BLM Utah State Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah State Office Jump to: navigation, search Logo: BLM Utah State Office Name: BLM Utah State Office Abbreviation: Utah Address: 440 West 200 South, Suite 500 Place: Salt Lake...

  17. Field Projects: Monticello, Utah

    Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  18. Utah_cm_smith

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cindy and Mack Smith Site - Utah Wind Anemometer Loan Program Latitude: N. 37 deg. 44.034' Longitude: W. 109 deg. 17.28' Elevation: 6762' Placed in service: November 21, 2002...

  19. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  20. Beaver County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Blundell 2 Geothermal Facility Places in Beaver County, Utah Beaver, Utah Milford, Utah Minersville, Utah Retrieved from "http:en.openei.orgwindex.php?titleBeaver...

  1. Utah DEQ Air Permitting Branch Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    link for Utah DEQ Air Permitting Branch Webpage Citation Utah Department of Environmental Quality. Utah DEQ Air Permitting Branch Webpage Internet. State of Utah. cited 201411...

  2. Utah Air Guidance Documents Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    link for Utah Air Guidance Documents Webpage Citation Utah Department of Environmental Quality. Utah Air Guidance Documents Webpage Internet. State of Utah. cited 201411...

  3. Washington County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Washington County, Utah Verdi Energy Group Places in Washington County, Utah Apple Valley, Utah Enterprise, Utah...

  4. Utah Natural Gas Processed in Utah (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Utah (Million Cubic Feet) Utah Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 489,947 526,290 440,712 411,399 379,487 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Utah-Utah

  5. Landslides and debris flows in Ephraim Canyon, central Utah

    SciTech Connect

    Baum, R.L.; Fleming, R.W.

    1989-01-01

    The geology of 36 km{sup 2} in Ephraim Canyon, on the west side of the Wasatch Plateau, central Utah, was mapped at a scale of 1:12,000 following the occurrence of numerous landslides in 1983. The geologic map shows the distribution of the landslides and debris flows of 1983-86, as well as older landslide deposits, other surficial deposits, and bedrock. Several of the recent landslides are described and illustrated by means of maps or photographs.

  6. Utah + workshop + GRR | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    2012 - 14:45 Utah Meeting 1 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed...

  7. Utah DEQ Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Website Author Utah Department of Environmental Quality Published Utah Department of...

  8. Utah Geological Survey | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  9. Utah's Public Notice Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah's Public Notice Website Citation Utah.gov. Utah's Public Notice Website...

  10. University of Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    University of Utah University of Utah FORGE logos 010416-06.jpg The Milford, Utah FORGE team, led by the University of Utah - Energy & Geoscience Institute (EGI), has identified a location where they propose to establish a geothermal laboratory. The proposed area has an established history of geothermal research and development, with a vast set of data from exploration wells and seismic stations that will help the Milford, Utah FORGE team characterize their potential site. The Milford, Utah

  11. Utah/Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RecruitmentSupport Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No City of St. George - Energy Star Appliance Rebate Program (Utah)...

  12. Utah Municipal Power Agency | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Municipal Power Agency Place: Utah Phone Number: (801) 798-7489 Website: www.umpa.cc Facebook: https:www.facebook.compagesUtah-Municipal-Power-Agency152219714819535 Outage...

  13. Utah/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  14. Orem, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah's 3rd congressional district.12 Registered Energy Companies in Orem, Utah Better Biodiesel Domestic Energy Partners Trulite Inc References US Census Bureau...

  15. Lehi, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah's 3rd congressional district.12 Registered Energy Companies in Lehi, Utah Tasco Engineering Inc References US Census Bureau Incorporated place and minor civil...

  16. Utah Code Annotated | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  17. Utah Solar Outlook March 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  18. Snake River Geothermal Consortium FORGE Map | Department of Energy

    Energy.gov [DOE] (indexed site)

    Map More Documents & Publications Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Logo Idaho National Laboratory Phase 1 Report Snake River Geothermal Consortium FORGE Map Milford, Utah FORGE Map

  19. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  20. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  1. Utah/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  2. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop

  3. Utah - UAC R907-1 - Utah Administrative Procedures | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    07-1 - Utah Administrative Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R907-1 - Utah...

  4. Utah School Children "Help Utah Out, Turn off the Spout!" | Department...

    Energy Saver

    winning poster from Utah's Water Energy in Action slogan competition. | Photo by Julie Howe, Energy Department The winning poster from Utah's Water Energy in Action slogan ...

  5. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  6. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT...

  7. Utah Antidegradation Review Form | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Antidegradation Review Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Antidegradation Review Form Form Type ApplicationNotice Form Topic...

  8. Utah Public Service Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lake City, Utah Zip: 84114 Phone Number: 801.530.6716 Website: www.psc.utah.govindex.html References: PSC homepage1 This article is a stub. You can help OpenEI by expanding...

  9. Utah Meeting #1 | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Meeting 1 Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 10 September, 2012 - 13:45 Utah + workshop + GRR On Thursday, September 6, we met...

  10. Utah Water Rights Flowchart | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Flowchart Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Flowchart Abstract Provides access to flowchart of Utah's water rights...

  11. OpenEI Community - Utah + workshop + GRR

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Meeting 1 http:en.openei.orgcommunityblogutah-meeting-1

    On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting...

  12. Utah Department of Transportation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lake City, Utah Zip: 84114 Phone Number: 801.965.4000 Website: www.udot.utah.govmainf?p100 References: UDOT homepage1 This article is a stub. You can help OpenEI by...

  13. Major Oil Plays in Utah and Vicinity

    SciTech Connect

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed

  14. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    Monticello, Utah, Disposal and Processing Sites This fact sheet provides information about the Monticello, Utah, Disposal and Processing Sites. These sites are managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Monticello, Utah, Disposal and Processing Sites Site Description and History The Monticello, Utah, Disposal and Processing Sites are located in and near the city of

  15. Utah Nevada California Arizona Idaho Oregon Wyoming

    Energy Information Administration (EIA) (indexed site)

    Map created May 2008; projection is UTM-12, NAD-27. Authors: Sam Limerick (1), Lucy Luo (1), Gary Long (2), David F. Morehouse (2), Jack Perrin (1), and Robert F. King (2) (1) Z, ...

  16. Prospects for Utah look good

    SciTech Connect

    Buchsbaum, L.

    2006-01-15

    Utah enjoys its first boom in over a generation. Recently Arch Coal, Andalex, CONSOl Energy and PacifiCorp ramped up their coal mining operations or re-opened closed facilities. Arch Coal's Skyline mine was able to mine over 200,0000 tons of coal throughout 2005 and its SUFCO mine produced 7.5 mt of coal during 2005. The article based largely on the recent 'Annual review and forecast of Utah coal', reports on developments in the state whose coal production could break records in 2006. 1 ref., 4 photos.

  17. Utah State Historic Preservation Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Office Jump to: navigation, search Name: Utah State Historic Preservation Offic Address: 300 S. Rio Grande Street Place: Salt Lake City, Utah Zip: 84101 Website: history.utah.gov...

  18. City of Murray, Utah (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City of Murray, Utah (Utility Company) Jump to: navigation, search Name: City of Murray Place: Utah Phone Number: (801) 264-2730 Website: www.murray.utah.govindex.aspx Outage...

  19. Utah Division of State History | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  20. Utah Oil and Gas Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Board Jump to: navigation, search Name: Utah Oil and Gas Board Address: 1594 West North Temple Place: Utah Zip: 84116 Website: oilgas.ogm.utah.gov Coordinates: 40.7721389,...

  1. Categorical Exclusion Determinations: Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utah Categorical Exclusion Determinations: Utah Location Categorical Exclusion Determinations issued for actions in Utah. DOCUMENTS AVAILABLE FOR DOWNLOAD September 8, 2016 CX-100734 Categorical Exclusion Determination Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS Award Number: DE-EE0007645 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 8/19/2016 Location(s): UT Office(s): Golden Field Office August 11, 2016 CX-100680 Categorical Exclusion

  2. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    state, county, city, or district. For more information, please visit the Middle School Coach page. Utah Region Middle School Regional Utah Nevada Regional Middle School Science...

  3. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. Utah Region High School Regional Utah Nevada Regional High School...

  4. Energy & Geoscience Institute at the University of Utah | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geoscience Institute at the University of Utah Jump to: navigation, search Name: Energy & Geoscience Institute at the University of Utah Address: 423 Wakara Way Suite 300 Place:...

  5. Utah Office of Energy Development | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Utah Office of Energy Development Address: PO Box 144845 Place: Salt Lake City, Utah Zip: 84114 Phone Number: 801-538-8732 Website:...

  6. Guide to Permitting Electric Transmission Lines in Utah | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    GuidanceGuideHandbook Abstract Guide to permitting requirements of federal, state, and local agencies. Author Utah Office of Energy Development Published Utah Office of Energy...

  7. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

  8. Enel North America Utah Geothermal Working Group Meeting | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    America Utah Geothermal Working Group Meeting Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Enel North America Utah Geothermal Working Group Meeting...

  9. Utah State Parks and Recreation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

  10. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  11. Utah Code Title 73, Chapter 3, Appropriation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (Manner of acquiring water rights) as established by the Utah Legislature in Salt Lake City, Utah. Published NA Year Signed or Took Effect 2012 Legal Citation Not...

  12. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  13. Utah Application to Appropriate Water | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Application to Appropriate Water Abstract Required application for obtaining a right to appropriate water in Utah. Form Type ApplicationNotice Form Topic Filing for Water...

  14. Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) ... 10312016 Referring Pages: Natural Gas Pipeline & Distribution Use Utah Natural Gas ...

  15. Utah Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update

    Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use ... Referring Pages: Price for Natural Gas Pipeline and Distribution Use Utah Natural Gas ...

  16. Utah R850-27 Geothermal Steam | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in Utah outlining the authority for the Utah School and Institutional Trust Lands Administration (UTLA) to administer trust land in the state, including the leasing of trust land...

  17. Utah School and Institutional Trust Lands Administration | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  18. Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Utah Roses Greenhouse Low Temperature Geothermal Facility Facility Utah Roses Sector...

  19. Utah Division of Public Utilities | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  20. Utah's 3rd congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  1. Utah Division of Water Rights Information Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  2. Steven K. Krueger, University of Utah

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF Steven K. Krueger, University of Utah from Arakawa and Jung (2003) Interactions of Cumulus...

  3. Utah Geothermal Presentation Bloomquist | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    on geothermal energy development in Utah. Authors Dr. R. Gordon Bloomquist and Ph.D Organization Washington State University Energy Program Published Bloomquist, 2004 DOI...

  4. ,"Utah Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  5. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  6. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Mexican Hat, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Mexican Hat, Utah, Disposal Cell Site Location and History The Mexican Hat disposal site is located on the Navajo Reservation in southeast Utah, 1.5 miles southwest of the town of Mexican Hat and 1 mile south of the San

  7. Utah Antidegradation Review Implementation Guidance | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Antidegradation Review Implementation GuidancePermittingRegulatory...

  8. Utah Geothermal Institutional Handbook | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Geothermal Institutional HandbookPermittingRegulatory GuidanceGuide...

  9. Utah Labor Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The Utah Labor Commission is the regulatory agency responsible for preserving the balance established by the legislature for protecting the health, safety, and economic...

  10. ,"Utah Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  11. Utah Antidegradation FAQ | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Utah Antidegradation FAQPermittingRegulatory GuidanceSupplemental Material Abstract...

  12. Elberta, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleElberta,Utah&oldid233710" Feedback Contact needs updating Image needs updating Reference needed Missing...

  13. Utah Antiquities Section | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    sites and artifacts, educate the public about them, and assist professionals who are researching these cultural resources. References "Utah State History: Archaeology Website"...

  14. Teacher and Students Bring Renewables to Utah

    Energy.gov [DOE]

    The light bulb went off for high school teacher Andy Swapp in 1999 when he realized he could do something good with Milford, Utah's powerful wind.

  15. ,"Utah Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  16. Recovery Act State Memos Utah

    Energy.gov [DOE] (indexed site)

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Gasoline and Diesel Fuel Update

    Feet) Utah (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 18,183 15,051 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Utah

  18. Major Oil Plays In Utah And Vicinity

    SciTech Connect

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the

  19. Utah Success Story—A Performance Contracting Program

    Energy.gov [DOE]

    Provides an overview case study of Utah's Performance Contracting Program. Author: Energy Services Coalition

  20. Alternative Fuels Data Center: Utah Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center

    Fuels and Vehicles Utah Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Utah Transportation

  1. Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to

    Alternative Fuels and Advanced Vehicles Data Center

    Boost Sustainability Utah Paperbox Adds Workplace Charging to Boost Sustainability to someone by E-mail Share Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Facebook Tweet about Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Twitter Bookmark Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Google Bookmark Alternative Fuels Data Center: Utah Paperbox

  2. Utah Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

  3. Utah

    Energy Information Administration (EIA) (indexed site)

  4. An Examination of Avoided Costs in Utah

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  5. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    8:00:06 AM" "Back to Contents","Data 1: Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSUTMMCF" "Date","Utah Natural Gas ...

  6. Utah Division of Wildlife Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Utah Division of Wildlife Resources Address: 1594 W North Temple, Suite 2110, Box 146301 Place: Salt Lake City, Utah Zip: 84114-6301 Phone Number: 801-538-4745 Website:...

  7. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Temperature Gradient Wells UAC Rule R655-1 Wells Used for the Discovery and Production of Geothermal Energy in the State of Utah UC 73-22 Utah Geothermal Resource Conservation Act...

  8. Utah Division of Forestry, Fire and State Lands | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Forestry, Fire and State Lands Address: 1594 W. North Temple, Ste 3520 Place: Salt Lake City, Utah Zip: 84114-5703 Phone Number: 801.538.5555 Website: forestry.utah.gov...

  9. Utah Division of Water Rights | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Utah Division of Water Rights Address: 1594 West North Temple, Suite 220 Place: Salt Lake City, Utah Zip: 84114-6300 Phone Number: 801.538.7240 Website:...

  10. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mt Wheeler Power, Inc (Utah) Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Utah Phone Number: 1 775-289-8981 Website: mwpower.net Facebook: https:...

  11. Iron County, Utah: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  12. File:UtahEnergyForumSiting.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    UtahEnergyForumSiting.pdf Jump to: navigation, search File File history File usage File:UtahEnergyForumSiting.pdf Size of this preview: 800 600 pixels. Go to page 1 2 3 4 5 6 7...

  13. Utah DEQ Energy Pre-Design Program | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pre-Design Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Energy Pre-Design Program Abstract Provides information about Utah's...

  14. Utah Sensitive Species List Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Species List Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Sensitive Species List Webpage Abstract Provides access to Utah Sensitive...

  15. City of Blanding, Utah (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City of Blanding, Utah (Utility Company) Jump to: navigation, search Name: City of Blanding Place: Utah Phone Number: 435-678-2791 Website: www.blanding-ut.gov Outage Hotline:...

  16. City of Santa Clara, Utah (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Santa Clara, Utah (Utility Company) Jump to: navigation, search Name: City of Santa Clara Place: Utah Phone Number: (435) 673-6712 Website: www.sccity.org Outage Hotline: (435)...

  17. Norton v Southern Utah Wilderness Alliance, 542 US 55 | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    v Southern Utah Wilderness Alliance, 542 US 55 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: Norton v Southern Utah Wilderness Alliance,...

  18. City of Logan, Utah (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logan, Utah (Utility Company) Jump to: navigation, search Name: City of Logan Place: Utah Phone Number: (435) 716-9090 Website: www.loganutah.orgLP Outage Hotline: (435) 716-9090...

  19. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Joined the Challenge: May 2014 Headquarters: Salt Lake City, UT Charging Location: Salt Lake City, UT Domestic Employees: 220 Salt Lake City has a unique air quality problem. In the wintertime, the city gets temperature inversions which can trap pollution. This can make the city's air quality very unhealthy in a matter of days. While there is no magic bullet, Utah PaperBox

  20. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  1. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  2. 1999 ESH&Q Liability Assessment Report of Envirocare of Utah, Inc. Clive, Utah

    SciTech Connect

    Trump, D. E.; Vilord, C. E.

    1999-07-01

    This report contains the results of an environment, safety, health, and quality (ESH&Q) assessment of the treatment technologies and treatment-related operations that was conducted of Envirocare of Utah, Inc. (EOU). EOU is a lowlevel radioactive and mixed Resource Conservation and Recovery Act (RCRA)- regulated haz.ardous low-level radioactive waste (mixed low-level waste) treatment/disposal facility located near Clive, Utah. An ESH&Q assessment of the EOU Clive, Utah facility treatment technologies and related treatment operations was conducted in mid-April 1999. The assessment was required as part of the technical evaluation of proposals received by Lockheed Martin Idaho Technologies Company (LMITCO) for modification of a mixed low-level radioactive waste disposal subcontract (No.K79-180572). The EOU Clive, Utah facility is proposed as a potential treatment/disposal facility for mixed low-level radioactive waste regulated under the RCRA and the Atomic Energy Act

  3. Utah Nevada California Arizona Idaho Oregon Wyoming

    Energy Information Administration (EIA) (indexed site)

    E. Great Basin Oil and Gas Fields 2004 BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are

  4. Utah Nevada California Arizona Idaho Oregon Wyoming

    Energy Information Administration (EIA) (indexed site)

    Proved Gas Reserves Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000 - 10,000 MMCF 10,000 - 100,000 MMCF > 100,000 MMCF 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface

  5. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect

    Doelling, H.H. comp.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  6. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  7. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to...

  8. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to ...

  9. Los Alamos researchers create 'map of science'

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    bioscience, sustainable energy sources, to plasma physics ... in PLoS ONE (the Public Library of Science). "This ... Fe Institute collected usage-log data gathered from a ...

  10. Regional economic activity and petroleum industry incentive policies: Utah`s Uintah Basin

    SciTech Connect

    Duffy-Deno, K.T.; Robinson, M.H.

    1995-12-31

    Proponents of petroleum industry subsidies often assert that such policies will have positive economic implications for rural communities. This paper examines the economic impacts of such a policy in Utah. Specifically, this paper quantifies the direct and indirect economic and fiscal impacts of a tax credit granted for oil and gas well workovers in Utah`s Uintah Basin. The analysis is made possible by an input-output model constructed specifically for Utah`s oil producing economy. The tax credit policy was found to generate a net fiscal loss for the state. However, it does generate employment in the Uintah Basin. The total per job cost to the state of generating an average of one job per year for 5 years through the tax credit policy is $24,056 (1991 dollars). However, if the public expenditure impacts are taken into account, then the cost per job could be as high as $48,423 (1991 dollars). Whether there are other ways to generate the same employment gains at a lower cost was lost in the political debate surrounding this petroleum industry tax credit. 8 refs., 2 figs., 9 tabs.

  11. DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Preferred Alternatives For Moab, Utah, Uranium Mill Tailings DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings April 6, 2005 - 11:33am Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the department's preferred alternatives for remediation of the Moab, Utah, Uranium Mill Tailings Remedial Action Project Site: active groundwater remediation, and offsite disposal of the tailings pile and other contaminated materials to the

  12. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    SciTech Connect

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  13. Camp William Utah National Guard Wind Farm II | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Camp William Utah National Guard Wind Farm II Facility Camp William Utah National Guard Sector Wind energy Facility Type Community Wind Facility...

  14. Microsoft Word - DOE-ID-13-027 Utah EC B3-6.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 SECTION A. Project Title: Risk Assessment of Structural Integrity of Transportation Casks - University of Utah SECTION B. Project Description The University of Utah proposes to...

  15. Utah's 1st congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Companies in Utah's 1st congressional district Blue Source LLC Ciralight Emery Energy Company Eneco Inc EnergySolutions Inc Genifuel Green Joules GreenFire Energy...

  16. Utah Underground Storage Tank Installation Permit | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  17. Utah Division of Environmental Response and Remediation Underground...

    OpenEI (Open Energy Information) [EERE & EIA]

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  18. Red Cliffs Campground, Cedar City District, Utah | Department...

    Energy Saver

    This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have ...

  19. Utah Nonpoint Source Pollution Management Plan | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nonpoint Source Pollution Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Nonpoint Source...

  20. Conjunctive Surface and Groundwater Management in Utah. Implications...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and ...

  1. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  2. Utah Water Quality Standards Workgroup Website | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Quality Standards Workgroup Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Quality Standards Workgroup Website Abstract This...

  3. Changes in Vegetation at the Monticello, Utah, Disposal Site...

    Energy Saver

    the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Cover Using Caisson...

  4. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  5. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalWater UseUtah < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  6. Utah Water Right Information Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Right Information Webpage Abstract Provides information about obtaining a water rights...

  7. ,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf...

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  8. Utah Division of Water Quality | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ground Water Quality Protection Permitting Contact 2 Contacts.png Woody Campbell http:www.waterquality.utah.gov Retrieved from "http:en.openei.orgw...

  9. RAPID/Geothermal/Environment/Utah | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    may make modifications to the final permit based on any comments submitted during review. Air Quality Assessment Process In Utah, developers may be required to obtain an Air...

  10. Utah Department of Environmental Quality Hazardous Waste Permits...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  11. Utah Underground Injection Control Program Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  12. Utah Natural Gas Deliveries to Electric Power Consumers (Million...

    Energy Information Administration (EIA) (indexed site)

    Date: 5312016 Referring Pages: Natural Gas Delivered to Electric Power Consumers Utah Natural Gas Consumption by End Use Electric Power Consumption of Natural Gas (Summary)

  13. Utah Quantity of Production Associated with Reported Wellhead...

    Energy Information Administration (EIA) (indexed site)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade ...

  14. Utah Department of Natural Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    References: DNR Homepage1 The Department of Natural Resources helps ensure Utah's quality of life by managing and protecting the state's natural resources. The Department...

  15. Glen Canyon National Recreation Area, Lake Powell, Utah | Department...

    Energy Saver

    Glen Canyon National Recreation Area, Lake Powell, Utah Photo of the Photovoltaic System ... Consequently, the installation of a photovoltaic (PV) system presented many advantages. ...

  16. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic ...

  17. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    Energy Information Administration (EIA) (indexed site)

    Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  18. Utah Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download

  19. Rainwater Harvesting Potential Maps

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pacific Northwest National Laboratory created two maps for the Federal Energy Management Program (FEMP) to help federal agencies strategically identify U.S. locations that are conducive to rainwater harvesting projects. The first map shows the relative potential for capturing rainwater for any use. The second map specifically identifies areas that have potential for supplying rainwater for irrigation. This document describes the data and methodology used to create these maps for FEMP.

  20. Utah State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Utah State Historic Preservation Programmatic Agreement Utah State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_ut.pdf (681.47 KB) More Documents & Publications Kansas State Historic Preservation Programmatic Agreement Washington State Historic Preservation Programmatic Agreement Virginia State Historic Preservation

  1. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  2. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  3. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

    Energy.gov [DOE]

    Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

  4. Six Utah plants help fuel rise in geothermal projects | Department of

    Energy.gov [DOE] (indexed site)

    Energy Geothermal power projects are developing quickly across the country, with Utah playing a role. A report released Thursday by the Geothermal Energy Association shows that the number of new geothermal projects under way in the United States grew 20 percent since January. "These new projects will result in the infusion of roughly $15 billion in capital investment in the Western states and create 7,000 permanent jobs and more than 25,000 person-years of construction and manufacturing

  5. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Utah (Million Cubic Feet) Colorado Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 286 3,677 4,194 3,499 2,675 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Colorado-Utah

  6. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  7. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center

    A state legislature can establish the central revolving loan fund by law to encourage ... Utah law defines the "clean fuels" that are eligible for loans under the CFV Program: ...

  8. Empire Electric Assn, Inc (Utah) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Empire Electric Assn, Inc Place: Utah Phone Number: 970-565-4444 or 800-709-3726 Website: www.eea.coop Outage Hotline: 970-565-4444 or 800-709-3726 References:...

  9. DOE - Office of Legacy Management -- University of Utah Medical...

    Office of Legacy Management (LM)

    Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. ...

  10. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  11. Utah Natural Gas Underground Storage Volume (Million Cubic Feet...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 ...

  12. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. Utah Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural ...

  15. Utah Rules of Appellate Procedure | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Appellate Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah Rules of Appellate ProcedureLegal Abstract...

  16. Utah Water Rights Fee Schedule | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Fee Schedule Abstract Water rights fee schedule based on amount appropriated....

  17. Utah Department of Environmental Quality | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    laws and works with individuals, community groups, and businesses to protect the quality of our air, land and water in the state of Utah. The following Divisions make up...

  18. Utah State Historic Preservation Office Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Office Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah State Historic Preservation Office Webpage Abstract Provides overview of the role...

  19. Utah Department of Environmental Quality Forms Webpage | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Forms Webpage Abstract Provides access to forms...

  20. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  1. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  3. Utah - UDOT - Accommodation of Utilities and the Control and...

    OpenEI (Open Energy Information) [EERE & EIA]

    UDOT - Accommodation of Utilities and the Control and Protection of State Highway Rights of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah -...

  4. Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    Annual Energy Outlook

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. City of Monroe, Utah (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (Utility Company) Jump to: navigation, search Name: City of Monroe Place: Utah Phone Number: 435.527.4621 Website: www.littlegreenvalley.com Outage Hotline: 435.527.4621...

  6. Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944 ...

  7. Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,638 18,808 21,037 ...

  8. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  9. BLM Offers Geothermal Leases in Utah, Idaho, and Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Land Management (BLM) announced in early November that it will hold a competitive lease sale for geothermal energy development on 61 parcels totaling nearly 200,000 acres in the states of Utah, Oregon, and Idaho.

  10. US hydropower resource assessment for Utah

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  11. Respiratory disease in Utah coal miners

    SciTech Connect

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  12. Respiratory disease in Utah coal miners

    SciTech Connect

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  13. Utah Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 490,233 535,365 448,687 419,773 386,823 - = No Data

  14. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  15. Conjunctive Surface and Groundwater Management in Utah. Implications for

    Office of Scientific and Technical Information (OSTI)

    Oil Shale and Oil Sands Development (Technical Report) | SciTech Connect Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully

  16. Investigation of winter mountain storms in Utah during the 1989 Utah/NOAA field program. Final report

    SciTech Connect

    Huggins, A.W.

    1990-09-01

    A field research effort was conducted in the vicinity of the Tushar Mountains of southern Utah as part of the Federal-State Program in Atmospheric Modification Research involving the National Oceanic and Atmospheric Administration and the State of Utah. The field study took place in February and March 1989 and emphasized the studies of supercooled liquid water evolution in winter storms and attempts to measure the effects of ground-based silver iodide cloud seeding. Results of the field effort are presented.

  17. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    SciTech Connect

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping.

  18. Utah - UC 54-14 - Utility Facility Review Board Act | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah - UC 54-14 - Utility Facility Review Board Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-14 - Utility...

  19. UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    9-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. - Utah...

  20. Utah Full Proof of Beneficial Use of Water | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Full Proof of Beneficial Use of Water Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Full Proof of Beneficial Use of Water Abstract Proof of...

  1. File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    3UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this...

  2. File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    3UTEGeothermalSteamLeaseUtahTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf Size of this preview:...

  3. UC 73-22 Utah Geothermal Resource Conservation Act | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UC 73-22 Utah Geothermal Resource...

  4. UC 73-22 - Utah Geothermal Resource Conservation Act | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 73-22 - Utah Geothermal Resource...

  5. Supplemental Modeling and Analysis Report, Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect

    Easterly, CE

    2001-11-05

    The purpose of this report is to provide additional numerical modeling and data evaluation for the Atlas tailings pile near Moab, Utah. A previous report (Tailings Pile Seepage Model: The Atlas Corporation Moab Mill, Moab, Utah, January 9, 1998) prepared for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory/Grand Junction (ORNL/GJ) presented the results of steady-state modeling of water flow and subsequent discharge to the underlying groundwater system. At the request of the Fish and Wildlife Service (FWS), this model was expanded to evaluate the impact of drainage from the tailings pile in addition to recharge from precipitation in a transient mode simulation. In addition, the FWS requested transient simulations of contaminant transport in the alluvial aquifer. Subsequently, NRC requested an evaluation of additional hydrologic issues related to the results presented in the Tailings Pile Seepage Model (ORNL/GJ 1998a) and the Limited Groundwater Investigation (ORNL/GJ 1998b). Funding for the report was provided by the U.S. Department of Energy. The following section lists the individual tasks with subsequent sections providing the results. A map for the Atlas Moab Mill site is presented in Fig. 1.1.

  6. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  7. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  8. Microsoft Word - DOE-ID-14-014 Utah B1-31.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 SECTION A. Project Title: Development of Capabilities to Study the Thermodynamics of Nuclear Energy Related Infrastructure at the Utah Nuclear Engineering Program - University of Utah SECTION B. Project Description The University of Utah proposes to acquire an isothermal titration calorimeter (ITC) for the measurement of thermodynamic properties of actinide complexes, and the enhancement of coursework and research efforts

  9. NREL: MapSearch

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to easily search our collection of maps created by the Geographic Information System (GIS) team. Please use the search box and the filters on the left of the screen to limit...

  10. Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,464 37 720 690 953 0 1,189 541 251 133 2010's 7 833 22 640 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Utah Dry Natural Gas

  11. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 17 978 729 946 6 1,147 484 258 92 2010's 530 758 12 478 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Utah Dry Natural Gas Proved Reserves Dry

  12. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  13. Utah Natural Gas Liquids Lease Condensate, Reserves Based Production

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 2010's 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Estimated Production Utah Lease

  14. Utah Natural Gas Liquids Proved Reserves (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 127 277 2000's 108 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Utah Natural Gas Liquids Proved Reserves

  15. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wyoming (Million Cubic Feet) Utah Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,554 9,075 7,975 8,374 7,336 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Utah-Wyoming

  16. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 247 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  17. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  18. Sandia National Laboratories: CREATE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    This dynamic work venue, coupled with the potential to work on intriguing, high-impact ST&E projects, promises to help retain employees and create a pipeline of new employees for ...

  19. Create a Sustainable Future

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Create a Sustainable Future Image of river edge with text overlay of 'How does LANL accomplish future stewardship of the natural and historical resources?' We sample to detect any...

  20. Creating Educational Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jerri McTaggart-Creating educational opportunities March 26, 2014 Creating Educational Opportunities As a single mother, Jerri McTaggart pushed through 72 hours per week at her job, studying at nights to obtain her Master's degree in environmental policies. Needless to say, she had plenty of courage. So when she was frustrated that employees at LANL's Carlsbad office couldn't participate in the Lab's volunteer programs, and the students in that southern part of the state were ineligible to

  1. Create a Sustainable Future

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Create a Sustainable Future Image of river edge with text overlay of 'How does LANL accomplish future stewardship of the natural and historical resources?' We sample to detect any release of materials to the environment. We manage environmental concerns by eco region. We evaluate our impact on the environment. We consult with experts and stakeholders. We fund projects that reduce environmental effects. Create a Sustainable Future Home Planning for Years to Come Living a Sustainable Future

  2. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Energy.gov [DOE]

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  3. Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific

  4. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  5. Network Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Maps Engineering Services The Network Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet...

  6. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  7. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  8. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Hyperspectral Remote Sensing | Department of Energy Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing January 17, 2012 Jungho Im, John R. Jensen, Ryan R. Jensen, John Gladden, Jody Waugh and Mike Serrato Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing (3.07 MB) More

  9. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  10. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Completion of the Five-Year Reviews for the Monticello, Utah...

    Energy.gov [DOE] (indexed site)

    ... Workshop on Uranium Legacy Sites Optimizing the Use of Federal Lands Through Disposition DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah

  12. Arsenic distribution in soils surrounding the Utah copper smelter

    SciTech Connect

    Ball, A.L.; Rom, W.N.; Glenne, B.

    1983-05-01

    We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

  13. Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 125 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  14. Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 8 9 7 -3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  15. Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 4 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  16. Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 130 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  17. Utah Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 26 2010's 3 10 26 42 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  18. Utah Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 13 -16 36 -17 -10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  19. Utah Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 25 2010's 13 65 59 46 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  20. Utah Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 24 9 2 28 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  1. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  2. Google Crisis Map for Hurricane Sandy

    Education - Teach & Learn

    The Google Crisis Map has power outage information, shelter and recovery centers, local emergency Twitter feeds, FEMA disaster declared areas and more. | This map is created and maintained by...

  3. Creating Sample Plans

    Energy Science and Technology Software Center

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to bemore » analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.« less

  4. April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016 LMS/MNT/S00416 This page intentionally left blank U.S. Department of Energy DVP-April 2016, Monticello, Utah June 2016 RIN 16047728 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary

  5. June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site August 2015 LMS/GRN/S00615 This page intentionally left blank U.S. Department of Energy DVP-June 2015, Green River, Utah August 2015 RIN 15067102 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary

  6. June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Office of Legacy Management (LM)

    6 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site October 2016 LMS/GRN/S00616 This page intentionally left blank U.S. Department of Energy DVP-June 2016, Green River, Utah October 2016 Task GRN01-16060001 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary

  7. Rapid mapping tool : an ArcMap extension /

    SciTech Connect

    Linger, S. P.; Rich, P. M.; Walther, D.; Witkowski, M. S.; Jones, M. A.; Khalsa, H. S.

    2002-01-01

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  8. Location Map

    DOE Data Explorer

    Lane, Michael

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  9. Location Map

    SciTech Connect

    Lane, Michael

    2013-06-27

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  10. ,"Utah Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 44 -35 1980's -22 44 307 4 -44 -65 -68 -45 -424 260 1990's 8 126 136 43 -82 -63 44 -40 97 -56 2000's 4 135 13 40 113 65 -11 17 -4 1 2010's -80 134 289 -582 -20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  12. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 93 62 97 1980's 156 413 60 93 41 27 51 12 3 9 1990's 55 21 37 11 43 19 126 164 133 618 2000's 266 269 368 230 299 596 1,408 744 801 164 2010's 106 643 447 117 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  14. Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 79 202 89 1980's 123 84 99 42 257 83 78 144 277 84 1990's 101 83 99 24 201 74 79 34 110 322 2000's 110 606 490 767 278 112 502 325 564 491 2010's 219 341 1,926 444 617 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 37 117 62 1980's 293 414 55 176 80 111 51 281 86 87 1990's 112 204 161 337 172 69 125 293 645 801 2000's 177 805 207 188 475 186 218 1,113 379 1,342 2010's 872 813 1,349 484 752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  16. Utah Renewable Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",191,164,254,279,277 "Hydro Conventional",747,539,668,835,696 "Solar","-","-","-","-","-" "Wind","-","-",24,160,448 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",15,31,24,48,56 "Other

  17. Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs,

    Energy Information Administration (EIA) (indexed site)

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 107 94 74 101 2000's 190 155 200 143 127 78 140 167 129 371 2010's 351 416 618 479 377 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 28 26 26 23 27 24 25 36 31 42 1990's 47 45 45 41 38 27 27 26 24 24 2000's 20 23 21 20 21 27 30 29 29 33 2010's 37 50 51 58 78 - = No Data Reported; -- = Not

  19. Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production

  20. Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old

    Energy Information Administration (EIA) (indexed site)

    Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed

  1. Utah Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decreases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 110 2010's 30 31 134 11 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Revision Decreases

  2. Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Increases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2010's 77 46 21 69 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Revision Increases

  3. Utah Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 23 2010's 25 27 31 36 43 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  4. Utah Crude Oil + Lease Condensate Reserves Revision Decreases (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Decreases (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 21 23 45 91 297 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Decreases, Wet After Lease

  5. Utah Crude Oil + Lease Condensate Reserves Revision Increases (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Increases (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 126 2010's 71 64 75 54 234 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Increases

  6. Utah Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Acquisitions (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 10 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Acquisitions

  7. Utah Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Adjustments (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 3 -3 2 -19 -3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Adjustments

  8. Utah Natural Gas Liquids Lease Condensate, Proved Reserves Decreases

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Decreases (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 2010's 3 3 31 11 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Revision Decreases

  9. Utah Natural Gas Liquids Lease Condensate, Proved Reserves Extensions

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Extensions (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 0 3 15 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Extensions

  10. Utah Natural Gas Liquids Lease Condensate, Proved Reserves Increases

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Increases (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 36 2010's 6 9 27 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Revision Increases

  11. Utah Natural Gas Liquids Lease Condensate, Proved Reserves Sales (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Sales (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 24 4 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Sales

  12. Utah Natural Gas Liquids Lease Condensate, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) in Nonproducing Reservoirs (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 1 2000's 1 1 2 2 5 13 32 28 34 11 2010's 40 44 57 33 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 37 58 65 49 59 59 46 36 30 41 1990's 42 49 77 137 160 151 166 169 204 208 2000's 218 276 275 266 268 286 323 340 393 423 2010's 405 413 441 414 374 - = No Data Reported; -- = Not

  14. Utah Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 39 1980's 4 2 2 7 2 0 0 2 3 0 1990's 0 2 0 8 1 2 17 0 0 5 2000's 0 4 0 0 5 0 40 4 64 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  15. Utah Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir

    Energy Information Administration (EIA) (indexed site)

    Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 0 2 1 0 0 0 3 0 1 1990's 0 0 0 0 1 4 0 0 0 0 2000's 16 5 2 7 11 5 0 0 0 4 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,528 20 730 667 947 0 1,199 543 252 69 2010's 1 856 0 459 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  17. Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -24 1980's -111 133 250 23 85 -38 -67 32 -46 18 1990's -28 17 150 1 -123 -46 17 17 31 -52 2000's 34 58 -9 23 90 33 -22 12 -11 67 2010's -50 157 304 -564 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 1980's 156 436 59 80 38 25 40 11 3 4 1990's 68 11 38 5 43 18 124 175 138 653 2000's 273 279 366 232 284 590 1,382 713 761 108 2010's 89 514 358 26 87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 15 1980's 81 79 82 35 266 72 72 167 401 44 1990's 114 48 75 18 203 75 62 22 31 264 2000's 105 554 483 721 243 80 472 326 491 499 2010's 163 304 1,929 245 265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 41 1980's 288 418 40 157 72 57 43 230 110 51 1990's 50 167 141 341 163 41 92 248 664 623 2000's 144 790 141 174 454 134 184 1,085 376 1,181 2010's 776 649 1,284 447 457 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  1. Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Sales (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 597 1 1,007 713 937 6 1,145 490 260 90 2010's 543 776 1 321 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  2. ,"Utah Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File Name:","ng_enr_dry_dcu_sut_a.xls"

  3. Utah Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  4. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update

    Production (Million Barrels) Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 11 8 20 26 31 31 28 25 23 1990's 16 17 15 14 14 9 8 8 8 14 2000's 7 11 11 10 10 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  6. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  7. Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 52 62 90 2010's 69 78 87 57 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Proved Reserves as of Dec. 31

  8. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  9. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Creating a Partnership Agreement Worksheet

    Energy.gov [DOE]

    Creating a Partnership Agreement Worksheet, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  11. FEM: Feature-enhanced map

    DOE PAGES [OSTI]

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with themore » starting 2mFobs-DFmodelσA-weighted map.« less

  12. FEM: Feature-enhanced map

    SciTech Connect

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2mFobs-DFmodelσA-weighted map.

  13. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    SciTech Connect

    Keiter, Robert; Ruple, John; Tanana, Heather; Holt, Rebecca

    2011-12-01

    diverted for aquifer recharge or other uses. To better understand the rapidly evolving field of conjunctive use, this Topical Report begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. We contrast Utah's approach with efforts undertaken in neighboring states and by the federal government. We then relate conjunctive use to the unconventional fuel industry and discuss how conjunctive use can help address pressing challenges. While conjunctive management cannot create water where none exists, it does hold promise to manage existing resources in a more efficient manner. Moreover, conjunctive management reflects an important trend in western water law that could provide benefit to those contemplating activities that require large-scale water development.

  14. Utah's "Solar For Schools" Program Is Bringing New Light to Education |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Utah's "Solar For Schools" Program Is Bringing New Light to Education Utah's "Solar For Schools" Program Is Bringing New Light to Education November 12, 2010 - 9:54am Addthis Gil Sperling, U.S. Department of Energy; Elise Brown, Utah State Energy Program; Janet Jameson, Hillside Teacher; Prathusha Boppana, Hillside Student; Martell Menlove, Deputy Supt of Schools; Chuck McGinnis, Johnson Controls at the Solar for Schools ribbon cutting. | Department

  15. Nanoscale, multidimensional artificial magnet created

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  16. Temperature Maps and Data

    Gasoline and Diesel Fuel Update

    Temperature Maps and Data Temperature Maps Temperature Data Table

  17. Utah - UC 54-2 - Public Utilities Definitions | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    2 - Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-2 - Public Utilities...

  18. Utah UC 54-2-1, Public Utilities Definitions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2-1, Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah UC 54-2-1, Public Utilities...

  19. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  20. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    OpenEI (Open Energy Information) [EERE & EIA]

    Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  1. Utah - T-223 Application for Right-of-Way Encroachment Permit...

    OpenEI (Open Energy Information) [EERE & EIA]

    T-223 Application for Right-of-Way Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah - T-223 Application for Right-of-Way...

  2. Utah - UAC R930-6 - Access Management | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    UAC R930-6 - Access Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R930-6 - Access ManagementLegal...

  3. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  4. Utah UC 54-4, Authority of Commission Over Public Utilities ...

    OpenEI (Open Energy Information) [EERE & EIA]

    4, Authority of Commission Over Public Utilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah UC 54-4, Authority of...

  5. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  6. Utah R652-20-3400 Geothermal Steam Leases | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ruleregulation in Utah outlining the lease process for geothermal resources on (non-trust) state land Published NA Year Signed or Took Effect 2014 Legal Citation R652-20-3400...

  7. Long-Term Flow Test No. 1, Roosevelt Hot Springs, Utah | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Flow Test No. 1, Roosevelt Hot Springs, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Long-Term Flow Test No. 1, Roosevelt Hot Springs,...

  8. Utah. Code. Ann. § 19-5-115: Spills or discharges of oil or...

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  9. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    SciTech Connect

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.

  10. National Uranium Resource Evaluation: Elko Quadrangle, Nevada and Utah

    SciTech Connect

    Percival, T.J.; Bright, J.H.

    1982-07-01

    The Elko Quadrangle (1/sup 0/ x 2/sup 0/), Nevada and Utah, was evaluated to identify and delineate geologic environments favorable for the occurrence of uranium deposits. Geologic reconnaissance, radiometric surveys, and geochemical sampling programs were carried out in all identified environments in the quadrangle. Known and newly identified uranium occurrences were evaluated. All geologic environments, both favorable and unfavorable for the occurrence of uranium, were evaluated and compared to analogous environments known to contain uranium deposits. This study concludes that tuffs and sediments of the Humboldt Formation are favorable for initial-magmatic and sandstone uranium occurrences. Contact metasomatic and allogenic environments developed within the Park City limestones adjacent to the Delcer Buttes quartz monzonite are also favorable for uranium concentration. With the exception of unevaluated basins adjacent to possible igneous source rocks, all other identified geologic environments are considered unfavorable for uranium deposits.

  11. Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,806 5,621 6,286 6,775 8,970 7,970 6,596 1990's 10,573 4,597 3,866 3,241 3,322 18,520 18,570 16,478 19,481 15,930 2000's 16,394 14,578 17,163 16,398 15,802 17,216 20,221 21,715 18,169 20,222 2010's 22,022 23,209 28,165 28,165 24,824 23,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  12. Utah Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 165,253 169,776 159,889 2000's 164,557 159,299 163,379 154,125 155,891 160,275 187,399 219,700 224,188 214,220 2010's 219,213 222,227 223,039 247,285 241,737 230,131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  13. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.05 1.01 1.01 1.04 1.17 1.26 1.17 2000's 1.11 1.15 1.21 1.08 1.24 1.20 1.37 1.28 1.35 1.36 2010's 1.38 1.49 1.44 1.44 1.23 1.27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  14. Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 365 441 669 1,278 2000's 1,567 1,578 1,202 983 1,263 1,457 2,118 2,439 2,799 2,110 2010's 3,476 3,646 3,573 3,100 2,837 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 258 347 595 1,177 2000's 1,377 1,423 1,002 840 1,136 1,379 1,978 2,272 2,670 1,739 2010's 3,125 3,230 2,955 2,621 2,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 66,143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 877 925 948 1980's 1,201 1,912 2,161 2,333 2,080 1,999 1,895 1,947 1,298 1,507 1990's 1,510 1,702 1,830 2,040 1,789 1,580 1,633 1,839 2,388 3,213 2000's 4,235 4,579 4,135 3,516 3,866 4,295 5,146 6,391 6,643 7,257 2010's 6,981 7,857 7,548 6,829 6,685 - = No Data Reported; -- = Not Applicable; NA =

  18. Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 650 1980's 870 1,722 1,928 2,112 1,984 1,897 1,795 1,870 1,509 1,498 1990's 1,432 1,532 1,709 1,909 1,631 1,424 1,446 1,695 2,293 3,050 2000's 4,125 4,450 3,915 3,318 3,661 4,051 4,894 6,095 6,393 6,810 2010's 6,515 7,199 6,774 6,162 6,098 - = No Data

  19. Temperature Maps and Data

    Gasoline and Diesel Fuel Update

    Temperature Maps and Data Temperature Maps and Data Temperature Maps Temperature Data Table

  20. Creating Los Alamos Women's Group

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Creating Jobs in Home Efficiency Creating Jobs in Home Efficiency October 31, 2016 - 2:28pm Addthis John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? Grantees of the Energy Department's Weatherization Assistance Program contract with a network of almost 800 community action agencies, nonprofits, and local governments to install cost-effective energy conservation measures in homes. A recent national evaluation of the Energy

  1. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    SciTech Connect

    Lowe, M.; Harty, K.M. )

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocene Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.

  2. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  3. NREL: Dynamic Maps, GIS Data, and Analysis Tools - MapSearch

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bookmark and Share MapSearch MapSearch Logo is a computer monitor with a magnifying glass suspended in the air before it. Use our MapSearch tool to easily search our collection of maps created by the Geospatial Data Science Team. Please use the search box and the filters on the left of the screen to limit results. The tool is designed to work with NREL's OpenEI so users will have one site to search and view NREL created maps. If you have any feedback or comments on this tool, contact the

  4. Site Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Access to the ALS Gate Access Guest House Lab Shuttles Maps and Directions Parking Safety Experiment Safety Safety for Staff In Case of Emergency Resources Acronyms Multimedia ...

  5. New Mariners and a Massive Map: Berkeley Computers Calculate What's in the Sky

    Office of Energy Efficiency and Renewable Energy (EERE)

    Berkeley computers helped crunch the data to create the largest 3-D color map of the universe ever made.

  6. Progress Update: Creating Mobile Emission Reduction Credits ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Update: Creating Mobile Emission Reduction Credits Progress Update: Creating Mobile Emission Reduction Credits 2004 Diesel Engine Emissions Reduction (DEER) Conference ...

  7. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  8. Utah Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Utah Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 919 931 941 945 953 956 948 987 1,010 1,023 1,046 1,053 2007 997 1,050 1,093 1,098 1,126 1,083 1,091 1,098 984 900 1,057 1,092 2008 1,092 1,130 1,148 1,185 1,196 1,198 1,200 1,277 1,276 1,241 1,275 1,259 2009 1,273 1,289 1,300 1,278 1,254 1,218 1,224 1,222 1,178 1,195 1,203 1,148 2010 1,146 1,169 1,188 1,223 1,234 1,216 1,198

  9. Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944 46,944 46,944 48,144 46,944 49,350 50,457 51,244 51,397 42,464 42,464 1991 42,454 42,454 44,628 44,342 45,120 49,179 51,258 49,908 48,558 47,678 47,118 47,118 1992 47,118 47,739 48,770 49,900 50,972 52,189 53,369 54,688 55,934 57,208 49,578 49,736 1993 49,736 49,742 49,749 50,238 51,803 51,028 52,377 53,704 54,973 54,847

  10. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  11. Annual Monitoring Report Interactive Map | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    inception, that are not currently under implementation, data is extracted from the GEF's Project Management Information System (PMIS). The main concept behind the map is to create...

  12. Cyclotron Institute » Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maps Our physical address is 120 Spence St, College Station, TX 77840 USA. Campus Map Google Maps Short URL

  13. Site Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Sudip Dosanjh: Select Publications Jeff Broughton Katie Antypas Richard Gerber Publications Center Administration James Craw Norma Early Jeff Grounds Ernest Jew Eric Lucas Betsy MacGowan Zaida McCunney Kerri Peyovich Lynn Rippe Seleste Rodriguez Center Communications Jon Bashor Kathy Kincade Linda Vu Margie Wylie Advanced Technologies Nicholas Wright Brian Austin Research Projects

  14. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  15. RAPID MAPPING TOOL: AN ARCMAP EXTENSION

    SciTech Connect

    STEVE P. LINGER; PAUL M. RICH; DOUG WALTHER; MARC S. WITKOWSKI; MARCIA A. JONES; HARI S. KHALSA

    2002-06-18

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  16. NREL: Dynamic Maps, GIS Data, and Analysis Tools Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Dynamic Maps, Geographic Information System (GIS) Data and Analysis Tools website provides maps, data and tools for renewable energy resources that determine which energy technologies are viable solutions in domestic and international regions. MapSearch - While this site contains detailed information and quality data, if you want to search for the latest and most up-to-date maps created by NREL, please visit our MapSearch: http://www.nrel.gov/gis/mapsearch/ Renewable Energy Technical

  17. Widget:CreatePage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CreatePage Jump to: navigation, search This is a widget containing HTML for creating new pages Parameters none - This is an HTML form for creating a page. Usage...

  18. Officials Establish Training Institute, Creating Enterprise Solution...

    Office of Environmental Management (EM)

    Officials Establish Training Institute, Creating Enterprise Solution for Worker Safety Officials Establish Training Institute, Creating Enterprise Solution for Worker Safety March ...

  19. Bioindustry Creates Green Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioindustry Creates Green Jobs Bioindustry Creates Green Jobs Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and ...

  20. LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL SITE Ttable of Contents

    Office of Legacy Management (LM)

    LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL SITE Ttable of Contents DOE/AL/62350-89 May 20, 1998 REV. 1 VER.4 08914TOC.DOC (GRN) i TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ................................................................................................. 1-1 1.1 Background .................................................................................................... 1- 2 1.2 Licensing process

  1. EECBG Success Story: Shining Energy-Saving LEDs on Utah Starry Nights

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thanks to an Energy Efficiency and Conservation Block Grant (EECBG), Utah is replacing streetlights with efficient LEDs across 14 rural communities. About 2,500 streetlights will be replaced and could save the town 20% to 50% on electricity bills. Learn more.

  2. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  3. Limited Groundwater Investigation of The Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). The purpose was to refine information regarding groundwater contamination emanating from the Atlas Corporation's former uranium mill in Moab, Utah.

  4. Salt Lake City, Utah A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salt Lake City, Utah A White House Climate Action Champions Case Study INDEX Executive Summary.............................. 2 Climate Action Champion.................... 2 Project Spotlight.................................... 3 Challenges and lessons learned.......... 4 Resources & Contacts........................... 5 2 Executive Summary Salt Lake City has a robust set of ambitious climate goals that target reducing emissions while simultaneously prioritizing ways to become more resilient

  5. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    Energy Information Administration (EIA) (indexed site)

    AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All ... UPUT (Uinta-Piceance Basin and Utah). Map created June 2005; projection is UTM-13, ...

  6. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay

  7. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  8. Map: Berkeley Lab Accessible Parking

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Map: Berkeley Lab Accessible Parking

  9. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  10. Site Map | DOE Patents

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  11. Site Map | Data Explorer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Contact Us Website Policies/Important Links

  12. Site Map | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search DOE PAGES FAQ About DOE PAGES Site Map Contact Us Website Policies/Important Links

  13. Site Map | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Contact Us Website Policies/Important Links

  14. Manhattan Project: Maps

    Office of Scientific and Technical Information (OSTI)

    Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...

  15. Berkeley Lab Site Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Berkeley Lab | Laboratory Site Map Laboratory Organization Chart DivisionalDepartmental Organization Charts Laboratory Map Interactive Laboratory Map History of the...

  16. Site Map | DOE Patents

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  17. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Contact Us Website Policies/Important Links

  18. Research Portfolio Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Portfolio Map Welcome to the Strategic Center for Coal Project Portfolio Web Map assembled by NETL. The web map includes projects across all Coal & Power Systems ...

  19. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Wind Maps NREL's Geospatial Data Science Team offers both a national wind resource assessment of the United States and high-resolution wind data. The national wind resource assessment was created for the U.S. Department of Energy in 1986 by the Pacific Northwest Laboratory and is documented in the Wind Energy Resource Atlas of the United

  20. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  1. POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  2. Site Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Map TUNL pdf's | FAS pdf's | HTML | General Tables | Energy Level Diagrams | Tables of Energy Levels | Thermal Neutron Capture | Ground-State Decays | Excitation Functions | ENSDF | NuDat at BNL | Useful Links | Citation Examples TUNL Homepage I. TUNL and FAS publications of "Energy Levels of Light Nuclei, A = 3 - 20": TUNL publications (PDF documents): A = 3 (2010PU04), Erratum A = 3 (1987TI07), Erratum A = 4 (1992TI02), Erratum A = 5 (2002TI10), Erratum A = 6 (2002TI10), Erratum

  3. Long-term surveillance plan for the Green River, Utah, disposal site

    SciTech Connect

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  4. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    SciTech Connect

    Not Available

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  5. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  6. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  7. PPPL Area Map | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PPPL Area Map View Larger Map

  8. Progress Report from University of Utah -- The Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT): Scientific Climate Data Visualization for BER and the Community

    SciTech Connect

    Silva, Claudio T

    2013-09-02

    Progress report from the work performed at the University of Utah for the UV-CDAT project before the team moved to NYU Poly.

  9. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    SciTech Connect

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  10. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  11. This fact sheet describes wetlands in and around Monticello, Utah, and what the

    Office of Legacy Management (LM)

    wetlands in and around Monticello, Utah, and what the U.S. Department of Energy (DOE) is doing to restore wetlands that are adversely affected by Monticello cleanup project activities. The purpose of the Monticello cleanup projects is to minimize risks to the public and the environment from exposure to uranium mill tailings and radon gas. The cleanup is being performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund.

  12. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    SciTech Connect

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  13. Savannah River Remediation, College Create Job Opportunities...

    Office of Environmental Management (EM)

    Remediation, College Create Job Opportunities for Graduates Savannah River Remediation, ... "With ongoing missions at the Savannah River Site and construction at Plant Vogtle and ...

  14. Ionic Liquids Create More Sustainable Processes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ionic Liquids Create More Sustainable Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  15. Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site

    Energy.gov [DOE]

    Five-year reviews for the two Monticello, Utah, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites were completed in June 2012 by U.S. Department of Energy (DOE) Office of Legacy Management (LM), U.S. Environmental Protection Agency, and Utah Department of Environmental Quality.

  16. Supercomputer Helps Model 3D Map of Adolescent Universe

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The map shows a web of hydrogen gas that varies from low to high density at a time when the universe was made of a fraction of the dark matter we see today. It was created in part ...

  17. Maps of Selected State Subdivisions

    Energy Information Administration (EIA) (indexed site)

    Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map ...

  18. Site Map | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Audio Search Fielded Search About FAQ Site Map Contact Us Website PoliciesImportant Links

  19. Site Map | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Audio Search Fielded Search About FAQ Site Map Contact Us Website Policies/Important Links

  20. UMTRA Project Site Observational Work Plan, Mexican Hat, Utah

    SciTech Connect

    Not Available

    1994-09-01

    Surface cleanup activities at the Mexican Hat UMTRA processing site are nearing completion. Ground Water contamination at the Mexican Hat site is a result of uranium milling operations. The extent of residual process water has been identified, and it is limited to the uppermost aquifer in the vicinity of the site. Deeper aquifers are not affected because of an upward hydraulic gradient and the presence of a confining unit (the deeper aquifers are protected by hydrogeologic isolation). The uppermost unit is returning to its pre-milling, mainly unsaturated state. The unit that contains the contaminated water is not a ground water resource because it qualifies as Class III (limited use) based on limited yield. Ground water in the uppermost unit is currently not used and is not anticipated to be used as a ground water resource. The nearby San Juan River and a converted oil exploration well provide all of the water needs for the area. There are no current threats to human health or livestock; and, because the zone of contamination does not represent a ground water resource, none are anticipated in the future. There are, however, seeps where contaminated water is exposed at land surface. The seeps create potential exposure pathways for plants and wildlife. It is not known at this time if there is a risk to the environment. Additional investigations are needed and are described in this document to confirm the presence or absence of potential environmental risks. Additional hydrogeologic investigations are not required. The proposed ground water compliance strategy for the site is no remediation, because the ground water in the uppermost aquifer (which is also the zone of contamination) qualifies for supplemental standards based on Class III, limited yield, and because there are no threats to human health. Domestic and agricultural water is pumped from a deeper aquifer that is isolated from the contaminated zone.

  1. Site Monitoring Area Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  2. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses

  3. Mapping the Nanoscale Landscape

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of...

  4. Supercomputer Helps Model 3D Map of Adolescent Universe

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Supercomputer Helps Model 3D Map of Adolescent Universe Supercomputer Helps Model 3D Map of Adolescent Universe Researchers Demonstrate Novel Technique for High-Resolution Universe Maps October 17, 2014 Contact: Kate Greene, kgreene@lbl.gov, 510-486-4404 Using extremely faint light from galaxies 10.8 billion light years away, scientists have created one of the most complete, three-dimensional maps of a slice of the adolescent universe-just 3 billion years after the Big Bang. The map shows a web

  5. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  6. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  7. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  10. ,"Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2006 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Utah Natural Gas Lease Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1840_sut_2a.xls"

  13. ,"Utah Natural Gas Plant Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1850_sut_2a.xls"

  14. ,"Utah Natural Gas Plant Liquids Production (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  15. ,"Utah Natural Gas Processed (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Processed (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1180_sut_2a.xls"

  16. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  17. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. ,"Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  20. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 6 1 10 1 1 0 0 4 1 0 1990's 0 3 1 0 0 0 0 0 0 0 2000's 0 0 0 0 0 4 6 0 0 0 2010's 0 0 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  1. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 0 0 0 0 2 0 0 0 0 1990's 0 0 4 0 1 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 19 18 15 43 27 0 5 4 1 66 2010's 6 4 23 202 33 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  3. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 83 -77 4 17 2 18 27 -13 32 4 1990's -17 20 -126 -1 23 -13 22 -10 -2 0 2000's -8 6 3 -3 3 5 1 0 5 4 2010's -15 38 -22 -12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 11 8 4 19 8 6 20 4 2 8 1990's 0 13 4 7 3 2 8 3 1 0 2000's 8 0 14 5 21 15 44 39 49 59 2010's 20 150 102 95 84 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 80 1980's 50 12 20 9 21 23 19 6 22 65 1990's 13 50 34 8 13 3 20 15 86 79 2000's 11 75 24 68 41 34 37 3 80 2 2010's 61 48 55 213 378 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 1980's 25 27 18 30 18 71 16 108 22 62 1990's 90 73 36 23 21 32 41 57 10 215 2000's 42 46 73 20 31 55 36 40 7 190 2010's 117 190 106 53 327 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 17 4 37 29 0 16 0 0 4 2010's 0 6 11 173 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  8. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  9. ,"Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2000" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File Name:","rngr15sut_1a.xls"

  20. ,"Utah Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  1. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  2. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  4. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    SciTech Connect

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  5. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  6. Creating PDFs with Microsoft Office Applications

    Energy.gov [DOE]

    Once you have configured your Adobe Acrobat settings to the Office of Energy Efficiency and Renewable Energy (EERE) standards, follow the guidelines below to create your PDFs using Microsoft Office applications.

  7. Project ATHENA creates surrogate human organ systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project ATHENA creates surrogate human organ systems Project ATHENA creates surrogate human organ systems The development of miniature surrogate human organs, coupled with highly sensitive mass spectrometry technologies, could one day revolutionize the way new drugs and toxic agents are studied. June 15, 2015 ATHENA prototype undergoes testing. ATHENA prototype undergoes testing. Contact Los Alamos National Laboratory Kevin Roark Communications Office (505) 665-9202 Email "By developing

  8. Project ATHENA creates surrogate human organ systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project ATHENA creates surrogate human organ systems Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Project ATHENA creates surrogate human organ systems The development of miniature surrogate human organs, coupled with highly sensitive mass spectrometry technologies, could one day revolutionize the way new drugs and toxic agents are studied. July 1, 2015 ATHENA prototype undergoes testing. ATHENA prototype undergoes

  9. Career Map: Instrumentation Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  10. Career Map: Environmental Scientist

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Wind Program's Career Map provides job description information for Environmental Scientist positions.

  11. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  12. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    SciTech Connect

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K) developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.

  13. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  14. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes

  15. Sequence stratigraphic re-interpretation of [open quotes]stray[close quotes] sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    SciTech Connect

    Hampson, G.J.; Howell, J.A.; Flint, S.S. )

    1996-01-01

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ([open quotes]Mancos B[close quotes]) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these [open quotes]stray[close quotes] sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface [open quotes]Mancos B[close quotes] gas reservoir sandstones.

  16. Sequence stratigraphic re-interpretation of {open_quotes}stray{close_quotes} sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    SciTech Connect

    Hampson, G.J.; Howell, J.A.; Flint, S.S.

    1996-12-31

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ({open_quotes}Mancos B{close_quotes}) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these {open_quotes}stray{close_quotes} sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface {open_quotes}Mancos B{close_quotes} gas reservoir sandstones.

  17. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  18. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah

    SciTech Connect

    Not Available

    1981-10-15

    Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  19. Emergency Exit Maps | Stanford Synchrotron Radiation Lightsource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Emergency Exit Maps SSRL Exit Maps Exit map 219 exit map trailer 274 exit map 450 trailers exit map trailer 271 exit map trailer 270 exit map trailer 294 exit maps 118 & 117 exit map 130 exit map 131 ground floor exit map 131 2nd floor exit map 131 extension exit map 131 main exit map 131 exit map 120 1st floor exit map 120 1st floor exit map 120 2nd floor exit map 120 3rd floor exit map 120 mezzanine exit map building 120 extension exit map 137 west 1st floor exit map 137 1st floor exit map

  20. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  1. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  2. Jerri McTaggart-Creating educational opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jerri McTaggart Jerri McTaggart-Creating opportunities She is a scientist at the Los Alamos office in Carlsbad and helps small-quantity transuranic waste generators identify and solve problems. March 26, 2014 Jerri McTaggart Jerri McTaggart "She advises, don't get sidetracked by life: make a college degree a priority. Creating Educational Opportunities As a single mother, Jerri McTaggart pushed through 72 hours per week at her job, studying at nights to obtain her Master's degree in

  3. Biomass 2012: Confronting Challenges, Creating Opportunities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2: Confronting Challenges, Creating Opportunities Biomass 2012: Confronting Challenges, Creating Opportunities Sustaining a Commitment to Bioenergy Biomass 2012 Logo. Image consists of a curved leaf and green and yellow circles surrounding a silhouette of the US Capitol building. The text 'U.S. Department of Energy Biomass 2012' is overlayed on the image. July 10-11, 2012 Washington, D.C. Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On July 10-11, 2012, the

  4. Density Equalizing Map Projections

    Energy Science and Technology Software Center

    1995-07-01

    A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemore » can be readily identified, and their statistical significance determined, on a density equalized map.« less

  5. The East Asia geographic map series

    SciTech Connect

    Terman, M.J.; Bell, E.P. )

    1990-06-01

    During the last 15 years, the Circum-Pacific Map Project Northwest Quadrant Panel (NWQP) has created a map inventory of geoscience data at a scale of 1:10,000,000. Now, for East Asia, a second set of thematic maps is being initiated cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the Committee for Coordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas (CCOP). These new maps will constitute the East Asia Map Project, and they will present geoscience parameters at a scale of 1:2,000,000 that can be used to evaluate the potential for undiscovered resources with the application of new deposit modeling methodologies. The following map series are being compiled or are under consideration: geography, geotectonics, geophysics, mineral resources, energy resources, and hazards. The U.S, Geological Survey (USGS) is compiling the East Asia Geographic Map Series. Shorelines, rivers, and international boundaries have been computer plotted by the National Mapping Division from the most detailed version of the World Data Bank II (WDB II). This publicly available bank was hand digitized from a 1:3,000,000-scale global map compiled from a variety of sources. The East Asia series is composed of eight overlapping sheets with Lambert Azimuthal Equal-Area Projection having a common point of origin at 120{degree}E and 15{degree}N; neatlines for each sheet are 39{degree} {times} 54.4{degree}. Titles reflect each map's coverage: Sheet 1, Japan/Korea/Northeast China; Sheet 2, Southeast China; Sheet 3, Southeast Asia; Sheet 4, Philippines; Sheet 5, Malaysia/ West Indonesia; Sheet 6, East Indonesia; Sheet 7, Papua New Guinea/ Solomon Islands; and Sheet 8, Western Pacific Islands. Contours have been scribed by the USGS's Office of International Geology.

  6. California: Microturbine Protects Environment, Creates Jobs

    Energy.gov [DOE]

    The U.S. market potential for distributed generation using microturbines is significant; however, it remains mostly untapped for commercial and small industrial buildings. Developing new, cost-effective designs for this market can greatly reduce energy consumption and create jobs.

  7. Green Energy Technologies Create Green Jobs

    SciTech Connect

    2009-10-01

    The U.S. Department of Energy (DOE) is developing advanced energy technologies that can help address climate change and reduce U.S. dependence on oil. As these new technologies are launched into commercial use, they create new jobs for American workers.

  8. X-rays reveal the photonic crystals in butterfly wings that create color |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne National Laboratory When you look very close up at a butterfly wing, you can see this patchwork map of lattices with slightly different orientations (colors added to illustrate the domains). Scientists think this structure, and the irregularities along the edges where they meet, helps create the brilliant "sparkle" of the wings. Image courtesy Ian McNulty/Science; click to view larger. When you look very close up at a butterfly wing, you can see this patchwork map of

  9. Health assessment for Midvale Slag Site, Midvale, Utah, Region 8. CERCLIS No. UTD081834277. Preliminary report

    SciTech Connect

    Not Available

    1988-07-21

    The Midvale Slag Site (MSS) is on the National Priorities List. The site is located west of Midvale (Salt Lake County), Utah. MSS is a former copper and lead smelting facility. Approximately 2 million tons of slag containing lead, arsenic, cadmium, and potential radioactive contamination are present onsite. Arsenic, cadmium, copper, chromium, lead, silver, zinc slag, and bag-house dust are present on-site. Potential environmental pathways include contaminated ground water, surface water, soils, and contaminants entrained in air. MSS represents a public health concern to on-site employees, remedial workers, and area residents who have access to the site through inhalation and ingestion of, or direct contact with, contaminated media (soil, sediment, surface water, and ground water). Complete restriction of the site is warranted. In addition, the possibility for exposure through contaminated agricultural products, garden vegetables, fish, water fowl, and livestock cannot be overlooked.

  10. Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 84 41 1980's 9 3 11 8 3 0 0 5 3 0 1990's 0 5 0 8 1 2 17 0 0 4 2000's 0 4 0 0 5 4 45 4 64 0 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  11. Bipole-dipole survey at Roosevelt Hot Springs, Thermal Area, Beaver County, Utah

    SciTech Connect

    Frangos, W.; Ward, S.H.

    1980-09-01

    A bipole-dipole electrical resistivity survey at Roosevelt Hot Springs thermal area, Beaver County, Utah was undertaken to evaluate the technique in a well-studied Basin and Range geothermal prospect. The major electrical characteristics of the area are clearly revealed but are not particularly descriptive of the geothermal system. More subtle variations of electrical resistivity accompanying the geothermal activity are detectable, although the influence of near-surface lateral resistivity variations imposes upon the survey design the necessity of a high station density. A useful practical step is to conduct a survey using transmitter locations and orientations which minimize the response of known features such as the resistivity boundary due to a range front fault. Survey results illustrate the effects of transmitter orientation and placement, and of subtle lateral resistivity variations. A known near-surface conductive zone is detected while no evidence is found for a deep conductive region.

  12. Utah Natural Gas Delivered to Commercial Consumers for the Account of

    Energy Information Administration (EIA) (indexed site)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Utah Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 4,438 4,892 5,360 5,222 5,427 5,204 2000's 5,052 4,813 5,469 4,837 4,850 4,533 4,510 4,516 5,103 5,338 2010's 5,307 5,392 5,681 7,539 8,283 8,217 - = No Data Reported; -- = Not

  13. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    Energy Information Administration (EIA) (indexed site)

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  14. WIPP Projects Interative Map

    Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  15. SERC Grants Interactive Map

    Office of Energy Efficiency and Renewable Energy (EERE)

    View SERC Grants in a larger map. To report corrections, please email SustainableEnergyWAP@ee.doe.gov.

  16. National Hydropower Map

    Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  17. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  18. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  19. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  20. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  1. Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles

  2. How to Utilize the National Geothermal Data System (NGDS) and Create Your

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Own Federated Data Network with "Node-In-A-Box" | Department of Energy How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" ngds-niab-webinar.pdf (1.98 MB) More Documents & Publications CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database

  3. Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges: Cross-Jurisdictional Management and Impacts on Unconventional Fuel Development in Utah's Uinta Basin

    SciTech Connect

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01

    Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued

  4. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  5. Creating Consensus for Tribal Clean Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Creating Consensus for Tribal Clean Energy Projects Rachel Sullivan, National Renewable Energy Laboratory BIA Providers Conference Dec. 3, 2015 2 About Me * Senior Project Leader in the National Renewable Energy Laboratory's (NREL's) Communications & Public Affairs Office * 15 years of communications experience * NREL communications lead for the DOE Office of Indian Energy since 2011 How New Ideas Reach a Tipping Point 3 Crisis or need Innovation Critical mass "Agents of Change" *

  6. Learning From Photosynthesis to Create Electricity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists Studying Photosynthesis to Generate Electricity Learning From Photosynthesis to Create Electricity Researchers use NERSC supercomputers to investigate photosynthetic materials May 15, 2012 NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 TACC Contact: Adam Dubrow, aarondubrow@tacc.utexas.edu A triad molecule (left) is rendered in bond representation. Carbon atoms are in cyan; nitrogen in blue; hydrogen in white. Image credit: Margaret Cheung. Solar power could transform the

  7. Whole-genome shotgun optical mapping of Rhodospirillum rubrum

    SciTech Connect

    Reslewic, S.; Zhou, S.; Place, M.; Zhang, Y.; Briska, A.; Goldstein, S.; Churas, C.; Runnheim, R.; Forrest, D.; Lim, A.; Lapidus, A.; Han, C. S.; Roberts, G. P.; Schwartz, D. C.

    2005-09-01

    Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.

  8. Whole-genome shotgun optical mapping of rhodospirillumrubrum

    SciTech Connect

    Reslewic, Susan; Zhou, Shiguo; Place, Mike; Zhang, Yaoping; Briska, Adam; Goldstein, Steve; Churas, Chris; Runnheim, Rod; Forrest,Dan; Lim, Alex; Lapidus, Alla; Han, Cliff S.; Roberts, Gary P.; Schwartz,David C.

    2004-07-01

    Rhodospirillum rubrum is a phototrophic purple non-sulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems, and as a source of hydrogen and biodegradable plastics production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction maps (Xba I, Nhe I, and Hind III) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction maps from randomly sheared genomic DNA molecules extracted directly from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the Hind III map acted as a scaffold for high resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and validation of genome sequence, our work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a ''molecular cytogenetics'' approach to solving problems in genomic analysis.

  9. Aeromagnetic map | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    map Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Aeromagnetic mapInfo GraphicMapChart Cartographer Zietz and Kirby Published U.S. Geological Survey,...

  10. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  11. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  12. Maps of Selected State Subdivisions

    Energy Information Administration (EIA) (indexed site)

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  13. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  14. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  15. Thomas Moore creates joint invention with MIT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thomas Moore creates joint invention with MIT 20 Nov 2009 For Arizona State University (ASU) Professor Thomas Moore, an invitation to guest lecture became a demonstration in a lab which led to a seafood lunch - which led to a joint invention with colleagues from the Massachusetts Institute of Technology (MIT) that contributed to a sustainable energy start-up company. Moore had been asked to speak at a summer course taught by well-known MIT Professor Daniel Nocera and, after the lecture, Moore

  16. SciTech Connect: Create a New Account

    Office of Scientific and Technical Information (OSTI)

    Create a New Account Create a New Account To create a SciTech Connect account, enter your email address and password below. You will be taken to your account management screen, ...

  17. Cyclotron Road: Creating a Home for Top Clean Energy Technology...

    Energy Saver

    Cyclotron Road: Creating a Home for Top Clean Energy Technology Entrepreneurs within our National Laboratories Cyclotron Road: Creating a Home for Top Clean Energy Technology ...

  18. Creating Large Scale Database Servers (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Creating Large Scale Database Servers Citation Details In-Document Search Title: Creating Large Scale Database Servers The BaBar experiment at the Stanford Linear Accelerator ...

  19. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  20. Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...

    Office of Environmental Management (EM)

    Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The ...