National Library of Energy BETA

Sample records for uranium legacy sites

  1. LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites October 16, 2012 - 1:51pm Addthis LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites What does this project do? Goal 1. Protect human health and the environment The U.S. Department of Energy

  2. U.S. Department of Energy Office of Legacy Management Legacy Uranium Mine Site Reclamation - Lessons Learned - 12384

    SciTech Connect (OSTI)

    Kilpatrick, Laura E.; Cotter, Ed

    2012-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features contained within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that collectively

  3. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    SciTech Connect (OSTI)

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N.; Khokhlova, E.A.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from

  4. Regulatory Oversight of the Legacy Gunner Uranium Mine and Mill Site in Northern Saskatchewan, Canada - 13434

    SciTech Connect (OSTI)

    Stenson, Ron; Howard, Don

    2013-07-01

    As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Although the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)

  5. Legacy Management Work Progresses on Defense-Related Uranium...

    Energy Savers

    legacy uranium mine sites located within 11 uranium mining districts in 6 western states. ... at a subsided mine portal in the Yellow Cat mining area of Grand County, Utah. ...

  6. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    SciTech Connect (OSTI)

    2012-03-01

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  7. DOE - Office of Legacy Management -- Abandoned Uranium Mines

    Office of Legacy Management (LM)

    Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management completed a report on defense-related uranium mines in consultation with...

  8. DOE - Office of Legacy Management -- Colonial Uranium Co - CO...

    Office of Legacy Management (LM)

    Colonial Uranium Co - CO 10 FUSRAP Considered Sites Site: Colonial Uranium Co. (CO.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ...

  9. DOE - Office of Legacy Management -- Monticello Mill Site - UT...

    Office of Legacy Management (LM)

    Properties Sites December 2005 Office of Legacy Management Monticello Mill Tailings Site ... Properties Sites December 2006 Office of Legacy Management Monticello Mill Tailings Site ...

  10. Office of Legacy Management | Department of Energy

    Office of Legacy Management (LM)

    Office of Legacy Management Abandoned Uranium Mines Abandoned Uranium Mines Read more Amchitka, Alaska, Site Amchitka, Alaska, Site Read more Mexican Hat, Utah, Disposal Site...

  11. DOE - Office of Legacy Management -- SiteA

    Office of Legacy Management (LM)

    (D&D) Program, the Office of Legacy Management manages the Site APlot M ... The site transferred to the Office of Legacy Management in 2003 and requires routine ...

  12. Uranium Mill Tailings Radiation Control Act Sites Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act Title I and II disposal and processing sites. The sites are managed by the U.S. Department of Energy Office of Legacy Management. Introduction The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604) is a federal law that provides for the safe and environmentally sound disposal, long-term stabilization, and control of uranium mill tailings in a manner that minimizes or

  13. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    The site long-term monitoring responsibility transferred to the Office of Legacy Management(LM) in 2010 and requires operation and maintenance of a pump and treatment system, ...

  14. DOE - Office of Legacy Management -- LM Sites Map

    Office of Legacy Management (LM)

    Tonawanda North Sites Tuba City Disposal Site Vallecitos Nuclear Center Site Wayne Site Weldon Spring Site Sites Pending Transfer to Legacy Management . Last Updated: 1142016

  15. Managing Legacy Records for Formerly Utilized Sites Remedial Action Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sites | Department of Energy Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (Waste Management Conference 2008) Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (317.04 KB) More Documents & Publications FUSRAP Overview Recent Developments in DOE FUSRAP Process

  16. DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  17. DOE - Office of Legacy Management -- Tatum Salt Dome Test Site...

    Office of Legacy Management (LM)

    Site: Tatum Salt Dome Test Site (MS.01) Long-term care managed by DOE Legacy Management ... Status: Long-term care managed by DOE Legacy Management under the Nevada Offsites ...

  18. Legacy Management Work Progresses on Defense-Related Uranium Mines Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Congress | Department of Energy Legacy Management Work Progresses on Defense-Related Uranium Mines Report to Congress Legacy Management Work Progresses on Defense-Related Uranium Mines Report to Congress October 23, 2013 - 1:35pm Addthis What does this project do? Goal 4. Optimize the use of land and assets The U.S. Department of Energy Office of Legacy Management (LM) continues to work on a report to Congress regarding defense-related legacy uranium mines. LM was directed by the U.S.

  19. Legacy Management Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to managing its responsibilities associated with the environmental legacy of World War II and the Cold War. This legacy includes radioactive and chemical waste, environmental...

  20. DOE - Office of Legacy Management -- Uravan Mill Site - CO 02

    Office of Legacy Management (LM)

    ...S00709; October 2009 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Naturita, Colorado, Disposal Site. ...

  1. DOE - Office of Legacy Management -- Pathfinder Lucky Mc Site...

    Office of Legacy Management (LM)

    The Pathfinder Lucky Mc site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the Gas Hills Uranium Mining District west of Casper, Wyoming. UMTRA Title ...

  2. 2013 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Legacy Management Country of Publication: United States Language: English Subject: 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS uranium mill tailings, ...

  3. DOE - Office of Legacy Management -- Climax Uranium Co Grand...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  4. DOE - Office of Legacy Management -- Oak Ridge TN Warehouse Site...

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Oak Ridge, Tennessee, Warehouses Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. ...

  5. DOE - Office of Legacy Management -- Chupadera Mesa NM Site ...

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Chupadera Mesa, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. ...

  6. DOE - Office of Legacy Management -- New York, NY, Site - NY...

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the New York, New York, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Aerial ...

  7. DOE - Office of Legacy Management -- Jersey City NJ Site - NJ...

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Jersey City, New Jersey, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Jersey ...

  8. DOE - Office of Legacy Management -- Indian Orchard MA Site ...

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Indian Orchard, Massachusetts, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. ...

  9. DOE - Office of Legacy Management -- Columbus East OH Site -...

    Office of Legacy Management (LM)

    Documents Related to Columbus East, OH Columbus East Site Aerial Photograph FACT SHEET Office of Legacy Management Columbus East, Ohio, Site OH.26-1 - DOE Memorandum, Wagoner to ...

  10. DOE - Office of Legacy Management -- Hamilton OH Site - OH 27

    Office of Legacy Management (LM)

    This fact sheet provides information about the Hamilton, Ohio, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Aerial photograph of the ...

  11. DOE - Office of Legacy Management -- Beverly MA Site - MA 04

    Office of Legacy Management (LM)

    This site is managed by the U.S. Department of Energy Office of Legacy Management. MA.04-1 - DOE Memorandum; Voigt to LaGrone; Subject: Designation of Sites for Remedial Action - ...

  12. DOE - Office of Legacy Management -- New Brunswick NJ Site -...

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the New Brunswick, New Jersey, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Aerial ...

  13. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Western Nuclear, Inc. (WNI) Split Rock site is a Uranium Mill ...

  14. DOE - Office of Legacy Management -- Maywood Site - NJ 10

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Aerial Photograph of the Maywood, New Jersey, Site NJ.10-1 - DOE Letter;...

  15. DOE - Office of Legacy Management -- Wayne Site - NJ 16

    Office of Legacy Management (LM)

    This site is currently managed by the U.S. Army Corps of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. NJ.16-1 - DOE ...

  16. DOE - Office of Legacy Management -- Chicago South IL Site -...

    Office of Legacy Management (LM)

    This site is managed by the U.S. Department of Energy Office of Legacy Management. IL.06-1 - DOE Memorandum; Coffman to LaGrone; Subject: Designation of the University of Chicago ...

  17. DOE - Office of Legacy Management -- St Louis Airport Site Vicinity...

    Office of Legacy Management (LM)

    from uranium processing operations, primarily from the former Mallinckrodt Chemical Company Plants in St. Louis, at a location currently referred to as the St. Louis Downtown Site. ...

  18. Legacy Management FUSRAP Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Falls Vicinity Properties, New York, Site Oak Ridge, Tennessee, Warehouses Site Oxford, Ohio, Site Painesville, Ohio, Site Seymour, Connecticut, Site Springdale, ...

  19. DOE - Office of Legacy Management -- Hecla Durita Site - 012

    Office of Legacy Management (LM)

    and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of milling conducted at this site was for private sale. ...

  20. DOE - Office of Legacy Management -- Exxon Ray Point Site - 032

    Office of Legacy Management (LM)

    owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. ...

  1. DOE - Office of Legacy Management -- Sohio Lbar Site - 022

    Office of Legacy Management (LM)

    owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. ...

  2. DOE - Office of Legacy Management -- WNI Sherwood Site - 039

    Office of Legacy Management (LM)

    owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority milling conducted at this site was for private sale. ...

  3. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature review and DOE-LM Site Surveys

    Office of Scientific and Technical Information (OSTI)

    LMS/S13437 ESL-RPT-2015-05 WlKsEIBantillO Sciences Laboratory Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys May 2016 U.S. DEPARTMENT OF ENERGY Legacy Management This page intentionally left blank Contents 1.0 Introduction............................................................................................................................1 2.0 Evaporite Literature

  4. 2013 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Scientific and Technical Information (OSTI)

    for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium ...

  5. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    the Uranium Mill Tailings Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. ...

  6. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    Summary The Gunnison, Colorado, Uranium Mill Tailings Radiation Control Act ... The indicator analyte for cell performance at the site is uranium. This analyte was ...

  7. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    Ohio Mound, Ohio, Site Site Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Annual Institutional Controls Report Community Involvement Plan Long-Term Surveillance and Maintenance Plan Operations and Maintenance Plan Internal Links Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Administrative Records External Links Mound Development Corporation (MDC) Ohio Environmental Protection Agency U.S. Environmental Protection

  8. DOE - Office of Legacy Management -- Seymour CT Site - CT 02

    Office of Legacy Management (LM)

    Seymour CT Site - CT 02 FUSRAP Considered Sites Seymour, CT Alternate Name(s): Bridgeport Brass Company Seymour Specialty Wire Reactive Metals, Inc. National Distillers and Chemical Co. Havens Plant CT.02-2 CT.02-3 CT.02-6 Location: 15 Franklin Street, Seymour, Connecticut CT.02-4 Historical Operations: Procured, processed and stored uranium oxides, salts, and metals for AEC and processed the products by cold-forming or extruding natural uranium metal. CT.02-3 CT.02-9 Eligibility Determination:

  9. DOE - Office of Legacy Management -- Fairfield OH Site - OH 23

    Office of Legacy Management (LM)

    Fairfield OH Site - OH 23 FUSRAP Considered Sites Fairfield, OH Alternate Name(s): Associate Aircraft Tool & Manufacturing, Inc. Associated Aircraft Tool and Manufacturing Company Force Control Industries Former Dixie Machinery OH.23-1 OH.23-2 Location: 3660 Dixie Highway, Fairfield, Ohio OH.23-2 Historical Operations: Produced natural uranium hollow slugs, resulting in uranium metal contamination. OH.23-4 OH.23-5 Eligibility Determination: Eligible OH.23-1 OH.23-2 Radiological Survey(s):

  10. Independent technical evaluation and recommendations for contaminated groundwater at the department of energy office of legacy management Riverton processing site

    SciTech Connect (OSTI)

    Looney, Brain B.; Denham, Miles E.; Eddy-Dilek, Carol A.

    2014-04-01

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated).

  11. Assessment of Defense-Related Uranium Mines in the United States and Other U.S. Department of Energy Office of Legacy Management (LM) Domestic and International Uranium Initiatives – 15335

    SciTech Connect (OSTI)

    Edge, Russel; Butherus, Michael; Ford, John

    2015-03-01

    Assessment of Defense-Related Uranium Mines in the United States and Other U.S. Department of Energy Office of Legacy Management (LM) Domestic and International Uranium Initiatives – 15335

  12. Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545

    SciTech Connect (OSTI)

    Frederick, Bill; Tandon, Vikas

    2013-07-01

    The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, the leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test

  13. DOE - Office of Legacy Management -- Berkeley CA Site - CA 03

    Office of Legacy Management (LM)

    Berkeley CA Site - CA 03 FUSRAP Considered Sites Berkeley, CA Alternate Name(s): University of California Gilman Hall, University of California CA.03-1 Location: Gilman Hall, University of California, Berkeley, California CA.03-1 Historical Operations: Performed research and development on the synthesis and production of plutonium, resulting in uranium, plutonium, cesium and americium contamination. CA.03-3 CA.03-5 Eligibility Determination: Eligible CA.03-1 CA.03-2 Radiological Survey(s):

  14. DOE - Office of Legacy Management -- Gunnison Mill Site - CO...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Gunnison, Colorado, ...

  15. DOE - Office of Legacy Management -- Ambrosia Lake Mill Site...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Ambrosia Lake Mill ...

  16. DOE - Office of Legacy Management -- Shiprock Mill Site - NM...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Shiprock Disposal, ...

  17. DOE - Office of Legacy Management -- Monument Valley Mill Site...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Monument Valley, ...

  18. DOE - Office of Legacy Management -- Naturita Mill Site - CO...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  19. DOE - Office of Legacy Management -- Tuba City Mill Site - AZ...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  20. DOE - Office of Legacy Management -- Lowman Mill Site - ID 01

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Lowman, Idaho, ...

  1. DOE - Office of Legacy Management -- Green River Mill Site -...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  2. DOE - Office of Legacy Management -- Slick Rock Mill Site - CO...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  3. DOE - Office of Legacy Management -- Maybell Mill Site - CO 0...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Maybell, Colorado, ...

  4. DOE - Office of Legacy Management -- Durango Mill Site - CO 0...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Durango, Colorado, ...

  5. DOE - Office of Legacy Management -- Riverton Mill Site - WY...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  6. DOE - Office of Legacy Management -- Mexican Hat Mill Site -...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Mexican Hat, Utah, ...

  7. DOE - Office of Legacy Management -- Edgemont Mill Site - SD...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Edgemont, South ...

  8. DOE - Office of Legacy Management -- Falls City Mill Site - TX...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  9. Reimbursements to Licensees of Active Uranium and Thorium Processing Sites,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiscal Year 2009 and 2010 Status Report | Department of Energy Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report (March 2010) Reimbursements to Licensees of Active Uranium and Thorium Processing

  10. DOE - Office of Legacy Management -- Oxford OH Site - OH 22

    Office of Legacy Management (LM)

    Oxford OH Site - OH 22 FUSRAP Considered Sites Oxford, OH Alternate Name(s): Alba Craft Shop Alba Craft Laboratory Albaugh dba Alba Craft Shop OH.22-3 OH.22-4 Location: 10-14 West Rose Avenue, Oxford, Ohio OH.22-7 Historical Operations: Performed metal fabrication under subcontract with AEC prime contract to National Lead Company of Ohio on uranium metal. Includes VPs. OH.22-5 OH.22-6 OH.22-8 Eligibility Determination: Eligible OH.22-1 OH.22-2 Radiological Survey(s): Assessment Survey,

  11. 2013 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Scientific and Technical Information (OSTI)

    Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring ...

  12. DOE - Office of Legacy Management -- Conoco Conquista Site -...

    Office of Legacy Management (LM)

    After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy's Office of Legacy Management will be responsible for providing ...

  13. DOE - Office of Legacy Management -- Chevron Panna Maria Site...

    Office of Legacy Management (LM)

    After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy's Office of Legacy Management will be responsible for providing ...

  14. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy's Office of Legacy Management will be responsible for providing ...

  15. DOE - Office of Legacy Management -- Cotter Canon City Site ...

    Office of Legacy Management (LM)

    After the owner completes U. S. Nuclear Regulatory Commission license termination, the Department of Energy's Office of Legacy Management will be responsible for providing ...

  16. DOE - Office of Legacy Management -- ANC Gas Hills Site - 040

    Office of Legacy Management (LM)

    After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy's Office of Legacy Management will be responsible for providing ...

  17. DOE - Office of Legacy Management -- EFB White Mesa Site - 033

    Office of Legacy Management (LM)

    After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy's Office of Legacy Management will be responsible for providing ...

  18. DOE - Office of Legacy Management -- Niagara Falls Storage Site...

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Assessment of Historical Knolls Atomic Power Laboratory Waste Storage...

  19. Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals...

    Office of Environmental Management (EM)

    Recovery and Reinvestment Act goals to accelerate the cleanup of legacy waste and fuels. Workers recently achieved three waste management goals ahead of a Sept. 30, 2011 target. ...

  20. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration | (NNSA) Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget March 13, 2015 WASHINGTON, D.C.--The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget. "UPF is essential to our Nation's uranium mission," said John Eschenberg, UPF Federal Project Director. "Site readiness work sets

  1. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration | (NNSA) Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget March 13, 2015 The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget. File 2015-03-13 NPO

  2. DOE - Office of Legacy Management -- Marion Mill Site - CO 09

    Office of Legacy Management (LM)

    earth ores in 1957 and 1958. Some of the thorium concentrate produced was shipped to ... Primary Radioactive Materials Handled: Thorium, Natural Uranium, Other Rare Earth Ores ...

  3. Global samples from nuclear contamination sites reveal unpredicted uranium

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and plutonium behavior Global samples reveal unpredicted uranium and plutonium behavior Global samples from nuclear contamination sites reveal unpredicted uranium and plutonium behavior Knowing how a chemical in soil reacts and transforms over time in response to neighboring elements, weather and heat is essential in determining whether that chemical is hazardous. June 15, 2015 Workers on a cleanup site at DOE's Hanford Site in southeastern Washington State, one of several sites sampled for

  4. DOE - Office of Legacy Management -- Nevada Test Site - 023

    Office of Legacy Management (LM)

    Nevada Test Site - 023 FUSRAP Considered Sites Site: Nevada Test Site (023) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  5. DOE - Office of Legacy Management -- West Milton Reactor Site...

    Office of Legacy Management (LM)

    Milton Reactor Site - NY 21 FUSRAP Considered Sites Site: West Milton Reactor Site (NY.21) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  6. DOE - Office of Legacy Management -- Project Gnome Site - NM...

    Office of Legacy Management (LM)

    Gnome Site - NM 12 FUSRAP Considered Sites Site: Project Gnome Site (NM.12) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  7. DOE - Office of Legacy Management -- Belfield Mill Site - ND...

    Office of Legacy Management (LM)

    Belfield Mill Site - ND 0-01 FUSRAP Considered Sites Site: Belfield Mill Site (ND.0-01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

  8. DOE - Office of Legacy Management -- Trinity Test Site - NM 17

    Office of Legacy Management (LM)

    Trinity Test Site - NM 17 FUSRAP Considered Sites Site: TRINITY TEST SITE (NM.17 ) Eliminated from consideration under FUSRAP - U.S. Army controls site Designated Name: Not ...

  9. DOE - Office of Legacy Management -- Grand Junction Sites

    Office of Legacy Management (LM)

    Grand Junction Sites Grand Junction Sites gj_map Grand Junction Disposal Site Grand Junction Processing Site Grand Junction Site Contact Us

  10. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect (OSTI)

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  11. Occurrence of Metastudtite (Uranium Peroxide Dihydrate) at a FUSRAP Site

    SciTech Connect (OSTI)

    Young, C.M.; Nelson, K.A.; Stevens, G.T.; Grassi, V.J.

    2006-07-01

    Uranium concentrations in groundwater in a localized area of a site exceed the USEPA Maximum Contaminant Level (MCL) by a factor of one thousand. Although the groundwater seepage velocity ranges up to 0.7 meters per day (m/day), data indicate that the uranium is not migrating in groundwater. We believe that the uranium is not mobile because of local geochemical conditions and the unstable nature of the uranium compound present at the site; uranium peroxide dihydrate (metastudtite). Metastudtite [UO{sub 4}.2(H{sub 2}O) or (U(O{sub 2})|O|(OH){sub 2}).3H{sub 2}O] has been identified at other sites as an alteration product in casks of spent nuclear fuel, but neither enriched nor depleted uranium were present at this site. Metastudtite was first identified as a natural mineral in 1983, although documented occurrences in the environment are uncommon. The U.S. Army Corps of Engineers (USACE) is conducting a remedial investigation at the DuPont Chambers Works in Deep water New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to evaluate radioactive contamination resulting from historical activities conducted in support of Manhattan Engineering District operations. From 1942 to 1947, Chambers Works converted uranium oxides to uranium tetrafluoride and uranium metal. More than half of the production at this facility resulted from the recovery process, where uranium-bearing dross and scrap were reacted with hydrogen peroxide to produce uranium peroxide dihydrate. The 280-hectare Chambers Works has produced some 600 products, including petrochemicals, aromatics, fluoro-chemicals, polymers, and elastomers. Contaminants resulting from these processes, including separate-phase petrochemicals, have also been detected within the boundaries of the FUSRAP investigation. USACE initiated remedial investigation field activities in 2002. The radionuclides of concern are natural uranium (U{sub nat}) and its short-lived progeny. Areas of impacted soil generally

  12. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect (OSTI)

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  13. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    Slick Rock, Colorado Page 17-1 17.0 Slick Rock, Colorado, Disposal Site 17.1 Compliance Summary The Slick Rock, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title ...

  14. DOE - Office of Legacy Management -- Bowman Mill Site - ND 0...

    Office of Legacy Management (LM)

    Bowman Mill Site - ND 0-02 FUSRAP Considered Sites Site: Bowman Mill Site (ND.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  15. DOE - Office of Legacy Management -- WNI Sherwood Site - 039

    Office of Legacy Management (LM)

    Sherwood Site (039) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  16. DOE - Office of Legacy Management -- Shoal Test Site - NV 03

    Office of Legacy Management (LM)

    Shoal Test Site - NV 03 FUSRAP Considered Sites Site: SHOAL TEST SITE (NV.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sand ...

  17. Maintenance at DOE Legacy Management Sites Weldon Spring Site LTS&M Plan U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Developing and Implementing Institutional Controls for Long-Term Surveillance and Maintenance at DOE Legacy Management Sites Weldon Spring Site LTS&M Plan U.S. Department of Energy Doc. No. S00790-1.0 December 2008 Page 2-22 Figure 2-4. MNA Groundwater Monitoring Locations January 2015 DOE/LM-1414 Guidance for Developing and Implementing Institutional Controls for Long-Term Surveillance and Maintenance at DOE Legacy Management Sites January 2015 The most recent and official controlled hard

  18. DOE - Office of Legacy Management -- Palmerton Ore Buying Site...

    Office of Legacy Management (LM)

    Storage Site, Palmerton, Pennsylvania; January 1994. PA.33-4 - Weston Letter; Levis to Murphie (DOE); Subject: Site Summary Reports for 30 Sites Under Consideration; February 16, ...

  19. DOE - Office of Legacy Management -- New Canaan Site - CT 08

    Office of Legacy Management (LM)

    FUSRAP Considered Sites Site: NEW CANAAN SITE (CT.08) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Canaan , ...

  20. DOE - Office of Legacy Management -- Chicago North IL Site - IL 05

    Office of Legacy Management (LM)

    North IL Site - IL 05 FUSRAP Considered Sites Chicago North, IL Alternate Name(s): National Guard Armory 124th Field Artillery Armory Illinois National Guard Armory Site IL.05-4 IL.05-5 Location: 5200 Cottage Grove Avenue, Chicago, Illinois IL.05-4 Historical Operations: Processed and stored uranium metal, resulting in uranium metal and dry uranium oxide contamination. Metallurgical operations were conducted by the University of Chicago, an MED contractor. IL.05-5 IL.05-7 IL.05-8 Eligibility

  1. Uranium waste disposal at the Savannah River Site

    SciTech Connect (OSTI)

    Cook, J.R.; McDonell, W.R.; Wilhite, E.L.

    1990-12-31

    The Savannah River Site generates waste containing depleted, natural, and enriched uranium residue. The past and current practice for disposal of this waste at the Savannah River Site have been assessed using radionuclide pathway analysis to estimate environmental impact of closure alternatives for existing disposal sites, and to assist in the development of improved disposal facilities in the near future. This paper outlines the status of uranium waste management technology as currently practiced to maintain the environmental impact within an acceptable limit at the Savannah River Site, and indicates those steps being taken to improve future operations.

  2. DOE - Office of Legacy Management -- Nevada Test Site - 023

    Office of Legacy Management (LM)

    Nevada Test Site - 023 FUSRAP Considered Sites Site: Nevada Test Site (023) More information at http:energy.govem and http:www.nv.energy.gov Designated Name: Not Designated ...

  3. Uranium in the Savannah River Site environment

    SciTech Connect (OSTI)

    Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

    1992-12-09

    The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a living document'' that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

  4. Uranium in the Savannah River Site environment

    SciTech Connect (OSTI)

    Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

    1992-12-09

    The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a ``living document`` that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

  5. DOE - Office of Legacy Management -- SiteA

    Office of Legacy Management (LM)

    Illinois Site A/Plot M Decommissioned Reactor Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2016 Inspection and Annual Site Status Report for the Site A/Plot M, Cook County, Illinois Decontamination and Decommissioning Program Site Annual Monitoring Report Environmental Monitoring Program at Site A and Plot M, Palos Forest Preserve, Cook County, Illinois Long-Term Surveillance and Maintenance Plan for Site A/Plot M, Illinois,Decommissioned

  6. DOE - Office of Legacy Management -- South Valley Superfund Site...

    Office of Legacy Management (LM)

    Not considered for FUSRAP - in another program Site Operations: AEC operations occurred in the 1950s. Other chemical distribution and military operations also occurred at the site. ...

  7. DOE - Office of Legacy Management -- Project Gas Buggy Site ...

    Office of Legacy Management (LM)

    1993. Sensitive Species Survey Results for the Gasbuggy and Gnome-Coach Sites, New Mexico, December 1993. Project Gasbuggy Site Restoration Final Report, July 1983. Surface ...

  8. The U.S. Uranium Mill Tailings Radiation Control Act -- An environmental legacy of the Cold War

    SciTech Connect (OSTI)

    Watson, C.D.; Nelson, R.A.; Mann, P.

    1993-12-31

    The US Department of Energy (DOE) has guided the Uranium Mill Tailings Remedial Action (UMTRA) Project through its first 10 years of successful remediation. The Uranium Mill Tailings Radiation Control Act (UMTRCA), passed in 1978, identified 24 uranium mill tailings sites in need of remediation to protect human health and the environment from the residual contamination resulting from the processing of uranium ore. The UMTRCA was promulgated in two titles: Title 1 and Title 2. This paper describes the regulatory structure, required documentation, and some of the technical approaches used to meet the Act`s requirements for managing and executing the $1.4 billion project under Title 1. Remedial actions undertaken by private industry under Title 2 of the Act are not addressed in this paper. Some of the lessons learned over the course of the project`s history are presented so that other countries conducting similar remedial action activities may benefit.

  9. DOE - Office of Legacy Management -- Middlesex North NJ Site...

    Office of Legacy Management (LM)

    North NJ Site - NJ 05 FUSRAP Considered Sites Middlesex North, NJ Alternate Name(s): Middlesex Landfill Middlesex Municipal Landfill NJ.05-2 NJ.05-4 Location: Mountain Avenue to ...

  10. DOE - Office of Legacy Management -- Central Nevada Test Site...

    Office of Legacy Management (LM)

    Also see Central Nevada Test Area (CNTA), Nevada, Site Documents Related to Central Nevada ... to replace the existing report under Key Documents and add to the All Site Documents list. ...

  11. DOE - Office of Legacy Management -- Exxon Ray Point Site - 032

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... sale. After the owner completes U S. Nuclear Regulatory Commission license termination ...

  12. DOE - Office of Legacy Management -- Conoco Conquista Site -...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  13. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  14. DOE - Office of Legacy Management -- Chevron Panna Maria Site...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  15. DOE - Office of Legacy Management -- Sohio Lbar Site - 022

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination, the ...

  16. DOE - Office of Legacy Management -- EFB White Mesa Site - 033

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  17. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at FUSRAP Sites

    SciTech Connect (OSTI)

    Frederick, W.T.; Keil, K.G.; Rhodes, M.C.; Peterson, J.M.; MacDonell, M.M.

    2007-07-01

    The U.S. Army Corps of Engineers Buffalo District is evaluating environmental radioactive contamination at several Formerly Utilized Sites Remedial Action Program (FUSRAP) sites throughout New York, Pennsylvania, Ohio, and Indiana. The investigations follow the process defined in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Groundwater data from the Niagara Falls Storage Site (NFSS) in Lewiston, New York were evaluated for isotopic uranium ratios, specifically uranium-234 versus uranium-238 (U- 234 and U-238, respectively), and the results were presented at Waste Management 2006. Since uranium naturally occurs in all groundwater, it can be difficult to distinguish where low-concentration impacts from past releases differ from the high end of a site-specific natural background range. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 (unity) due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow and may take hundreds to thousands of years before a measurable increase is seen in the natural isotopic ratio. If site releases are the source of uranium being measured in groundwater, the U-234 to U-238 ratio is commonly closer to 1, which normally reflects FUSRAP-related, uranium-contaminated wastes and soils. This lower ratio occurs because not enough residence time has elapsed since the 1940's and 1950's for the alpha particle recoil effect to have significantly altered the contamination-derived ratio. An evaluation of NFSS-specific and regional groundwater data indicate that an isotopic ratio of 1.2 has been identified as a signature value to help distinguish natural groundwater, which may have a broad background range, from zones impacted by past releases. (authors)

  18. DOE - Office of Legacy Management -- Maryland Disposal Site ...

    Office of Legacy Management (LM)

    under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations:...

  19. DOE - Office of Legacy Management -- Hecla Durita Site - 012

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  20. DOE - Office of Legacy Management -- ANC Gas Hills Site - 040

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  1. DOE - Office of Legacy Management -- Pathfinder Lucky Mc Site...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  2. DOE - Office of Legacy Management -- Kennecott Sweetwater Site...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  3. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  4. Overview of Science and Technology Improvements at Office of Legacy Management Sites

    SciTech Connect (OSTI)

    Morrison, S.; Bartlett, T.; Boylan, J.; Carpenter, C.; Miller, D.; Kothari, V.

    2007-07-01

    The U.S. Department of Energy Office of Legacy Management (LM) supports science and technology (S and T) initiatives to more effectively manage LM sites, help protect human health and the environment, and reduce long-term costs of site maintenance and remediation by ensuring that sound engineering and scientific principles are used. Through the use of telemetry, LM's SOARS (System Operation and Analysis of Remote Sites) project provides project scientists and engineers with timely information needed to evaluate, maintain, and optimize remediation systems, while limiting the amount of required travel. This paper presents three recent S and T activities focused on enhancing remediation of ground water at LM sites. (authors)

  5. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  6. DOE - Office of Legacy Management -- Kennecott Sweetwater Site...

    Office of Legacy Management (LM)

    Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. ...

  7. DOE - Office of Legacy Management -- Reactor Site - Fort Belvoir...

    Office of Legacy Management (LM)

    VA.0-02-1 - DOE Letter; Fiore to Schafer; Referral of DOD or Former DOD Sites for Consideration Under Appropriate DOD Programs; May 29, 1987. Enclosure 2; Department of the Defense ...

  8. DOE - Office of Legacy Management -- St Louis Airport Site Vicinity...

    Office of Legacy Management (LM)

    Louis. The properties are associated with the St. Louis Airport Site. The Manhattan Engineer District (MED), a predecessor agency of the U.S. Department of Energy (DOE), acquired ...

  9. DOE - Office of Legacy Management -- Latty Avenue Site - MO 04

    Office of Legacy Management (LM)

    Former Cotter Site, Latty Avenue Properties Contemporary Metals Corp. Continental Mining and Milling MO.04-1 MO.04-2 MO.04-5 MO.04-6 MO.06-8 MO.06-11 Location: 9200 Latty ...

  10. DOE - Office of Legacy Management -- St Louis Downtown Site ...

    Office of Legacy Management (LM)

    MO.02-1 - DOE Memorandum; Coffman to LaGrone; Authorization for Remedial Action at the Seaway Industrial Park and Ashland Oil Co. (I) Sites at Tonawanda, NY and Mallinckrodt ...

  11. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  12. Legacy Site Decontamination Experience as Applied to the Urban Radiological Dispersal Device

    SciTech Connect (OSTI)

    Drake, J.L.; MacKinney, J.A.

    2007-07-01

    Pursuant to the National Response Plan, Nuclear/Radiological Incident Annex [1], the Environmental Protection Agency (EPA) is assigned lead agency responsibility for decontamination and clean-up efforts following a domestic terrorist event involving a radiological dispersal device (RDD). An RDD incident in a modern city environment poses many of the same issues and problems traditionally faced at 'legacy' clean up projects being performed across our country. However there are also many aspects associated with an urban RDD clean-up that have never been faced in legacy site remediation. For example, the demolition and destructive technologies widely used in legacy remediation would be unacceptable in the case of historically or architecturally significant properties or those with prohibitively high replacement cost; contaminated properties will likely belong to numerous small private entities whose business interests are at stake; reducing the time required to decontaminate and return a city to normal use cannot be overemphasized due to its tremendous economic and political impact. The mission of the EPA's National Homeland Security Research Center (NHSRC) includes developing the best technology and tools needed for field personnel to achieve their goals should that event occur. To that end, NHSRC has been exploring how the vast experience within the legacy site remediation community could be tapped to help meet this need, and to identify gaps in decontamination technology. This paper articulates much of what has been learned over the past year as a result of efforts to identify these technology and procedural needs to address the urban RDD. This includes comparing and contrasting remediation techniques and methodologies currently used in nuclear facility and site cleanup with those that would be needed following an urban RDD event. Finally, this presentation includes an appeal to the radiological decontamination community to come forward with ideas and technologies

  13. DOE - Office of Legacy Management -- Niagara Falls Storage Site NY - NY 17

    Office of Legacy Management (LM)

    Considered Sites > Niagara Falls Storage Site NY - NY 17 FUSRAP Considered Sites Niagara Falls Storage Site, NY Alternate Name(s): Lake Ontario Ordnance Works (LOOW) Niagara Falls Storage Site (NFSS) DOE-Niagara Falls Storage Site NY.17-1 NY.17-3 Location: Lewiston, New York NY.17-5 Historical Operations: Stored, shipped, and buried radioactive equipment and waste for MED and AEC containing uranium, radium, and thorium. Contains Interim Waste Containment Structure. NY.17-1 NY.17-2 NY.17-14

  14. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    Summary The Grand Junction, Colorado, Uranium Mill Tailings Radiation Control Act ... sulfate, total dissolved solids, uranium, vanadium, and polychlorinated biphenyls. ...

  15. DOE - Office of Legacy Management -- Granite City IL Site - IL 28

    Office of Legacy Management (LM)

    Granite City IL Site - IL 28 FUSRAP Considered Sites Granite City, IL Alternate Name(s): Granite City Steel General Steel Industries General Steel Casings Corporation New Betatron Building IL.28-3 Location: 1417 State Street, Granite City, Illinois IL.28-3 Historical Operations: Under subcontract with Mallinckrodt and using a government-owned Betatron (magnetic induction electron accelerator), x-rayed natural uranium ingots and dingots to detect metallurgical flaws. Contamination from rubbing

  16. DOE - Office of Legacy Management -- Bayo Canyon NM Site - NM 01

    Office of Legacy Management (LM)

    Bayo Canyon NM Site - NM 01 FUSRAP Considered Sites Bayo Canyon, NM Alternate Name(s): Bayo Canyon Area Bayo Canyon (TA-10) Site NM.01-2 Location: Canyon in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.01-3 Historical Operations: Used in 1944-1961 by the MED and later AEC at Los Alamos National Laboratory as a firing site for conventional and high-explosives experiments involving natural and depleted uranium, strontium, and lanthanum as a radiation source for blast

  17. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  18. DOE - Office of Legacy Management -- Spook Site - WY 0-01

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  19. DOE - Office of Legacy Management -- Rifle Mill Site - CO 0-11

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  20. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    accepted under the U.S. Nuclear Regulatory Commission ... Gillespie of the DOE Legacy Management Support contractor. ... facility must sign in at the security building. ...

  1. Derivation of uranium residual radioactive material guidelines for the Shpack site

    SciTech Connect (OSTI)

    Cheng, J.J.; Yu, C.; Monette, F.; Jones, L.

    1991-08-01

    Residual radioactive material guidelines for uranium were derived for the Shpack site in Norton, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Shpack site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Three potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1000 years, provided that the soil concentration of combined uranium (uranium-234 and uranium-238) at the Shpack site does not exceed the following levels: 2500 pCi/g for Scenario A (recreationist: the expected scenario); 1100 pCi/g for Scenario B (industrial worker: a plausible scenario); and 53 pCi/g for Scenario C (resident farmer using a well water as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234 and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr. In setting the actual uranium guidelines for the Shpack site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors, such as whether a particular scenario is reasonable and appropriate. 8 refs., 2 figs., 8 tabs.

  2. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings

    Office of Scientific and Technical Information (OSTI)

    Radiation Control Act Title II Disposal Sites (Technical Report) | SciTech Connect Technical Report: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites This report, in fulfillment of a license requirement, presents the results of long-term surveillance and

  3. Sherwood, Washington, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Sherwood, Washington, Disposal Site This fact sheet provides information about the Sherwood, Washington, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Sherwood, Washington, Disposal Site Site Description and History The Sherwood disposal site is a former uranium-ore processing site operated by Western Nuclear, Inc. The site is in Stevens County near the

  4. Canonsburg, Pennsylvania, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Canonsburg, Pennsylvania, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Canonsburg, Pennsylvania. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Canonsburg, Pennsylvania, Disposal Site Site Description and History The Canonsburg disposal site is a former uranium-ore processing site located in the Borough of Canonsburg, Washington County, in

  5. DOE - Office of Legacy Management -- Visitors Center

    Office of Legacy Management (LM)

    farming, uranium production, and environmental cleanup eras, as well as the recent ecological restoration and legacy management mission, is presented through a series of exhibits. ...

  6. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  7. Managing Legacy Records for Formerly Utilized Sites. Remedial Action Program Sites

    SciTech Connect (OSTI)

    Clayton, C.; Gueretta, J.; Tack, J.; Widdop, M.

    2008-07-01

    The Manhattan Engineer District (MED) and U.S. Atomic Energy Commission (AEC) contracted for support work through private and academic parties through the early 1960's. The work often involved radioactive materials. Residual radioactive contamination was left at some of more than 600 potentially contaminated (candidate) sites, and worker health and safety concerns remain from the site operations and subsequent remediation activities. The U.S. Department of Energy (DOE) initiated a program to identify and protect records of MED/AEC activities and of remediation work conducted under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to aid in resolving questions about site conditions, liability, and worker health and safety and to ensure ongoing protectiveness of human health and the environment. This paper discusses DOE activities undertaken to locate records collections, confirm retention schedules and access requirements, and document information about the collections for use by future stewards. In conclusion: DOE-LM recognizes that records and information management is a critical component of effective LTS and M. Records are needed to answer questions about site conditions and demonstrate to the public in the future that the sites are safe. DOE-LM is working to satisfy present needs and anticipate future uses for FUSRAP records, and compile a collection of site and program information from which future stewards can readily locate and retrieve needed information. (authors)

  8. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    SciTech Connect (OSTI)

    2012-10-24

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  9. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    DOE PAGES-Beta [OSTI]

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  10. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    SciTech Connect (OSTI)

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observations after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  11. Falls City, Texas, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Falls City, Texas, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Falls City, Texas. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Falls City, Texas, Disposal Site Site Description and History The Falls City disposal site is the location of a former uranium-ore processing facility in Karnes County, Texas, approximately 40 miles southeast of San

  12. Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1993-02-01

    Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

  13. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol

  14. DOE - Office of Legacy Management -- GJO

    Office of Legacy Management (LM)

    (D&D) Program, the Office of Legacy Management manages the Grand Junction ... The site transferred to the Office of Legacy Management in 2003 and requires routine ...

  15. DOE - Office of Legacy Management -- Piqua

    Office of Legacy Management (LM)

    (D&D) Program, the Office of Legacy Management manages the Piqua ... The site transferred to the Office of Legacy Management in 2003 and requires routine ...

  16. DOE - Office of Legacy Management -- Ship

    Office of Legacy Management (LM)

    ... Legacy Management Site LMSSHPS05037 March 2009 Natural and Enhanced Attenuation of Soil and Groundwater at Monument Valley, Arizona, and Shiprock, New Mexico, DOE Legacy ...

  17. DOE - Office of Legacy Management -- Hallam

    Office of Legacy Management (LM)

    (D&D) Program, the Office of Legacy Management manages the Hallam ... The site transferred to the Office of Legacy Management in 2003 and requires routine ...

  18. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  19. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Edgemont, South Dakota, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Edgemont, South Dakota, Disposal Site Site Description and History The former Edgemont uranium mill is located in Edgemont, South Dakota, in Fall River County near the southwest corner of South Dakota.

  20. Monument Valley, Arizona, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    Monument Valley, Arizona, Processing Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Monument Valley, Arizona. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, approximately 15 miles south of Mexican Hat, Utah, on the west side of Cane Valley. A uranium-ore

  1. Geochemical Evaluation of Uranium Fate and Transport Guterl Specialty Steel Site, New York - 12077

    SciTech Connect (OSTI)

    Frederick, Bill; Tandon, Vikas

    2012-07-01

    Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Site soils are composed of anthropogenic fill and re-worked, glacially-derived native soil. This overburden is underlain by the weathered and fractured Lockport Dolostone bedrock. Shallow groundwater levels fluctuate seasonally and allow groundwater to contact U contaminated soil, which promotes transport. This condition is exemplified through coincident increases in specific conductivity and groundwater levels, which flush soluble constituents in the fill/soil to groundwater during recharge events. In addition, water-level fluctuations affect reduction-oxidation (redox) conditions at the site. The U in soils is subject to wetting and drying cycles that promote oxidation more than stable redox conditions (e.g., dry soil or fully saturated conditions). This oxidizing mechanism increases uranium solubility and mobility. Site groundwater also receives uranium via leaching from near-surface contaminated fill. The strong correlation between nitrate and uranium in groundwater indicates that uranium is mobile where oxidizing conditions occur. Analytical models of contaminant leaching determined that multiple pathways and transport mechanisms govern site risk. Uranium transport to groundwater involves three mechanisms: 1) direct contact of contaminated soil with groundwater, 2) the oxidation-state or chemical valence of uranium, and 3) the leaching of near-surface contamination to groundwater. These mechanisms require an integrated remedial solution that is sustainable and cost effective. (authors)

  2. Lakeview, Oregon, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Lakeview, Oregon, Processing/Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site near Lakeview, Oregon. This site is managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Lakeview, Oregon, Sites Site Description and History The Lakeview processing site is a former uranium-ore processing facility located approximately 1.5 miles north- northwest of the town of

  3. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  4. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  5. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  6. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  7. DOE - Office of Legacy Management -- Buffalo_FUSRAP

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2003. Final Conditions-No ... Office of Legacy Management activities consist of managing site records and responding to ...

  8. DOE - Office of Legacy Management -- MonValley

    Office of Legacy Management (LM)

    ... at the Monument Valley, Arizona, DOE Legacy Waste Site-2008 Pilot Study Status Report ... Arizona, and Shiprock, New Mexico, DOE Legacy Waste Sites-2007 Pilot Study Status ...

  9. DOE - Office of Legacy Management -- Tonawanda_FUSRAP

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2008. Final Conditions-The ... Office of Legacy Management activities consist of managing site records and responding to ...

  10. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  11. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Sites Annual Report November 2015 Edgemont, South Dakota Page 2-1 2.0 Edgemont, South Dakota, Disposal Site 2.1 Compliance Summary The Edgemont, South Dakota, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on July 7, 2015. The disposal cell and all associated surface-water diversion and drainage structures were in excellent condition and functioning as designed. Inspectors identified no maintenance needs or cause for a follow-up inspection. 2.2

  12. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Lakeview, Oregon Page 9-1 9.0 Lakeview, Oregon, Disposal Site 9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other

  13. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Maybell, Colorado Page 11-1 11.0 Maybell, Colorado, Disposal Site 11.1 Compliance Summary The Maybell, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on August 19, 2015. The disposal cell and all associated diversion and drainage structures were in good condition and functioning as designed. Noxious weeds found on the site and deep-rooted vegetation found on the disposal cell were sprayed with herbicide. Inspectors identified no other immediate

  14. Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments

    SciTech Connect (OSTI)

    Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

    2012-11-26

    In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 µg/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 µg/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from

  15. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  16. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect (OSTI)

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L.; Benson, C.H.; Albright, W.H.; Mushovic, P.S.

    2008-07-01

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  17. Maybell, Colorado, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Maybell, Colorado, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Maybell, Colorado. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Maybell, Colorado, Disposal Site Site Description and History The Maybell disposal site is located in Moffat County in northwest Colorado. The small town of Maybell is about 5 miles southwest of the site. The site is also the

  18. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Lowman, Idaho Page 10-1 10.0 Lowman, Idaho, Disposal Site 10.1 Compliance Summary The Lowman, Idaho, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on May 18, 2015. The disposal cell was in excellent condition. Minor maintenance to address erosion in the interceptor benches on State of Idaho property was identified. No additional maintenance needs or cause for a follow-up or contingency inspection was identified. 10.2 Compliance Requirements Requirements

  19. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Sherwood, Washington Page 5-1 5.0 Sherwood, Washington, Disposal Site 5.1 Compliance Summary The Sherwood, Washington, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on May 20, 2015. The tailings impoundment, dam, and diversion channel were in good condition. The dam inspection and associated piezometer water level measurements verified that the tailings dam is functioning as designed. A damaged perimeter sign was replaced in July 2015. Inspectors

  20. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Tuba City, Arizona Page 19-1 19.0 Tuba City, Arizona, Disposal Site 19.1 Compliance Summary The Tuba City, Arizona, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on April 8, 2015. The disposal cell and all associated surface water diversion and drainage structures were in excellent condition and functioning as designed. Inspectors identified no maintenance needs or cause for a follow-up inspection. 19.2 Compliance Requirements Requirements for the

  1. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Bluewater, New Mexico Page 1-1 1.0 Bluewater, New Mexico, Disposal Site 1.1 Compliance Summary The Bluewater, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 19 and 20, 2015. A significant pond was present on the top slope of the main tailings disposal cell cover in an area where shallow depressions are present; disposal cell performance is being evaluated to determine if additional monitoring or cover enhancement is necessary.

  2. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Maybell West, Colorado Page 4-1 4.0 Maybell West, Colorado, Disposal Site 4.1 Compliance Summary The Maybell West, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 19, 2015. The disposal cell, ancillary cell, and all associated surface-water diversion and drainage structures were in good condition and functioning as designed. The small shallow depression on top of the disposal cell remains approximately the same size (25 feet long, 15

  3. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Annual Report November 2015 Shirley Basin South, Wyoming Page 6-1 6.0 Shirley Basin South, Wyoming, Disposal Site 6.1 Compliance Summary The Shirley Basin South, Wyoming, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on July 9, 2015. The disposal cell and all associated surface water diversion and drainage structures were in excellent condition and functioning as designed. Inspectors identified no maintenance needs or cause for a follow-up inspection.

  4. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect (OSTI)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  5. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    DOE PAGES-Beta [OSTI]

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Morais, Paula V

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminalmore » electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.« less

  6. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    SciTech Connect (OSTI)

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Morais, Paula V

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.

  7. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Report March 2016 Burrell, Pennsylvania Page 2-1 2.0 Burrell, Pennsylvania, Disposal Site 2.1 Compliance Summary The Burrell, Pennsylvania, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on October 28, 2015. With the exception of a few minor maintenance items (i.e., a missing site entrance sign and a tree limb lying on the perimeter fence) the Burrell site is in excellent condition. No evidence of erosion or slope instability was observed on the disposal

  8. EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington

    Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

  9. Uranium

    SciTech Connect (OSTI)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-10-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U/sub 3/O/sub 8/; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables. (DP)

  10. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  11. Comments and responses on the Remedial Action Plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    1994-01-01

    This report contains information concerning public comments and responses on the remedial action plan and site design for stabilization of the inactive uranium mill tailings site in Grand Junction, Colorado.

  12. Derivation of uranium residual radioactive material guidelines for the former Alba Craft Laboratory site, Oxford, Ohio

    SciTech Connect (OSTI)

    Nimmagadda, M.; Faillace, E.; Yu, C.

    1994-01-01

    Residual radioactive material guidelines for uranium were derived for the former Alba Craft Laboratory site in Oxford, Ohio. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). Single nuclide and total uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the former Alba Craft Laboratory site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios (Yu et al. 1993). The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation.

  13. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  15. Economic evaluation of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado

    SciTech Connect (OSTI)

    Teel, J H

    1982-12-01

    Mountain States Research and Development was contracted on March 1, 1981 to make an economic evaluation study at each of 12 abandoned uranium mill tailings sites in the western states. The objective of this work was to obtain the data necessary at each site to determine the possible revenue that could be derived from reprocessing the tailings. To accomplish this objective a drilling and sampling program was established for each site to determine the total amount of tailings and subbase material available for treatment and the amount of recoverable uranium, vanadium and molybdenum. These three metals were selected due to their common occurrence in uranium ores and common extractability in the leaching process. Laboratory leaching was then conducted on the samples obtained to determine the extractability of each of these metals and the optimum plant process to be applied. As the metal contents were generally low and represented mineral that had not been leached during previous processing, the economic evaluation is limited to consideration of the direct capital and operating costs required in connection with processing of each respective site material. Excavating, transportation and disposal of the material from each site in an environmentally acceptable location and manner was not within the scope of this project. It will be necessary to complete a separate study of these areas in order to determine the total costs involved. This report contains the results of the investigations of the Old Rifle Site.

  16. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    SciTech Connect (OSTI)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  17. DOE - Office of Legacy Management -- Weldon Spring Chemical Co...

    Office of Legacy Management (LM)

    ... August 9, 2002. FACT SHEET Office of Legacy Management Weldon Spring Site Air and ... June 2004 FACT SHEET Office of Legacy Management This fact sheet provides ...

  18. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Falls City, Texas Page 5-1 5.0 Falls City, Texas, Disposal Site 5.1 Compliance Summary The Falls City, Texas, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on January 20, 2015. The site was in excellent condition. Some perimeter signs are discolored and becoming illegible; these will be replaced. Inspectors identified no other maintenance needs or cause for a follow-up inspection. 5.2 Compliance Requirements Requirements for the long-term surveillance

  19. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Ambrosia Lake, New Mexico Page 1-1 1.0 Ambrosia Lake, New Mexico, Disposal Site 1.1 Compliance Summary The Ambrosia Lake, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on August 19, 2015. The disposal cell was in excellent condition. Inspectors identified no maintenance needs or cause for a follow-up or contingency inspection. 1.2 Compliance Requirements Requirements for the long-term surveillance and maintenance of the site are specified in

  20. Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National...

    National Nuclear Security Administration (NNSA)

    K-25 area of the site, in the electromagnetic plant in the Y-12 area, and in the liquid thermal diffusion plant. A pilot pile (reactor) and plutonium separation facility are...

  1. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... A water intake and pumping plant structure are located at the Animas River on the site of the former raffinate ponds. A pipeline associated with the project is adjacent to County ...

  2. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... Colorado March 2016 Page 13-6 13.4.2.3 Outlying Area The area within 0.25 mile of the site boundary has been highly disturbed by mining, quarrying, reclamation, and road building. ...

  3. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    site (Figure 18-1) is owned by the United States of America and was accepted under the ... The access road has frequent truck traffic to service and maintain the oil wells in the ...

  4. Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  5. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    SciTech Connect (OSTI)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

  6. Cleanup of inactive Uranium Mill Tailings Sites in the Navajo Nation

    SciTech Connect (OSTI)

    Martin, B.

    1994-12-31

    The U.S. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 to address potential and significant radiation health hazards to the public from active and inactive mill operations. Title I to the UMTRCA identified sites to be designated for remedial action. These include four uranium mill tailings remedial action (UMTRA) sites in the Navajo Nation. These sites are located in Shiprock, New Mexico; Tuba City, Arizona; Cane Valley, Arizona; and Halchita, Utah. The U.S. Department of Energy (DOE) was directed to select and execute a plan of remedial action that provides long-term stabilization and control of radioactive materials and satisfies the U.S. Environmental Protection Agency standards and other applicable laws and regulations.

  7. Site evaluations for the uranium-atomic vapor laser isotope separation (U-AVLIS) production plant

    SciTech Connect (OSTI)

    Wolsko, T.; Absil, M.; Cirillo, R.; Folga, S.; Gillette, J.; Habegger, L.; Whitfield, R.

    1991-07-01

    This report describes a uranium-atomic vapor laser isotope separation (U-AVLIS) production plant siting study conducted during 1990 to identify alternative plant sites for examination in later environmental impact studies. A siting study methodology was developed in early 1990 and was implemented between June and December. This methodology had two parts. The first part -- a series of screening analyses that included exclusionary and other criteria -- was conducted to identify a reasonable number of candidates sites. This slate of candidate sites was then subjected to more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. To fully appreciate the siting study methodology, it is important to understand the U-AVLIS program and site requirements. 16 refs., 29 figs., 54 tabs.

  8. Title II Disposal Sites Annual Report

    Energy.gov [DOE]

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2015 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

  9. Uranium characterization at the St. Louis Airport Site

    SciTech Connect (OSTI)

    Schilk, A.J.; Hubbard, C.W.; Bowyer, T.W.; Reiman, R.T.

    1995-05-01

    In support of the Department of Energy/Office of Technology Development`s Expedited Site Characterization (ESC) project (coordinated by Ames Laboratory), the Pacific Northwest Laboratory demonstrated two complementary technologies at the St. Louis Airport (SLAP) site that have been designed and optimized for the rapid, in situ quantification of radionuclide contamination in surface soils. The sensors are optimized for the detection of high-energy beta particles or gamma rays emitted from the decay of specific radionuclides of interest. These technologies were demonstrated by measuring the beta and gamma fluxes at several locations within the SLAP site. Measurements were converted to average contamination levels, using detector calibrations performed with spiked samples (beta) or sealed sources (gamma). Additionally, subsurface activity levels were derived from discrete soil samples (provided by the ESC field crew) via gamma-ray spectrometry in a controlled laboratory setting. Since the beta and gamma sensor technologies are intrinsically sensitive to different types of radiation and activity distributions (i.e., surface and shallow subsurface, respectively), the data obtained from the two detectors provide complementary information about the distribution of the contamination. The results reported here suggest that a number of locations within the SLAP site have elevated levels of {sup 211}U, and the differences between the beta and gamma activities indicate that the contamination is largely located near the surface of the soil.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1995-09-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  12. Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach

    SciTech Connect (OSTI)

    Becker, N.M.

    1992-01-01

    Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

  13. Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach

    SciTech Connect (OSTI)

    Becker, N.M.

    1992-02-01

    Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

  14. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  15. Summary of the engineering assessment of inactive uranium mill tailings, Shiprock Site, Shiprock, New Mexico

    SciTech Connect (OSTI)

    1981-07-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of the stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and(c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive.

  16. Riverton, Wyoming, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Riverton, Wyoming. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Riverton, Wyoming, Processing Site Site Description and History The former Riverton, Wyoming, Processing Site is in Fremont County, 2 miles southwest of the town of Riverton and within the boundaries of the Wind River

  17. Burrell, Pennsylvania, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Burrell, Pennsylvania, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Burrell, Pennsylvania. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Burrell, Pennsylvania, Disposal Site Site Description and History The Burrell disposal site is a former railroad landfll located about 1 mile east of the Borough of Blairsville, Indiana County, in southwestern

  18. UMTRCA Sites Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UMTRCA Sites Fact Sheet UMTRCA Sites Fact Sheet This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I and II disposal and processing sites.The sites are managed by the U.S. Department of Energy Office of Legacy Management. UMTRCA Sites Fact Sheet (968.69 KB) More Documents & Publications Site Management Guide Program Update: 1st Quarter 2012 Maybell Archived Soil & Groundwater Master Reports

  19. Engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado: summary

    SciTech Connect (OSTI)

    none,

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Gunnison site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the ivnvestigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the combined 540,000 dry tons of tailings and the 435,400 tons of contaminated waste at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The 10 alternative actions presented in this engineering assessment range from stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to disposal sites along with decontamination of the Gunnison site (Options II through X). Cost estimates for the 10 options range from about $8,900,000 for stabilization in-place, to about $14,000,000 for disposal in the North Alkali Creek area at a distance of about 18 mi. Truck haulage would be used to transport the tailings and contaminated materials from the Gunnison site to the selected disposal site. Three principal alternatives for the reprocessing of the Gunnison tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocesssing. The cost of the uranium recovered would be about $250 and $230/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981.

  20. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Green River, Utah Page 7-1 7.0 Green River, Utah, Disposal Site 7.1 Compliance Summary The Green River, Utah, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on March 18, 2015. The disposal cell was in excellent condition. One missing perimeter sign was replaced during the inspection. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. 7.2 Compliance Requirements Requirements for the long-term surveillance

  1. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Mexican Hat, Utah Page 12-1 12.0 Mexican Hat, Utah, Disposal Site 12.1 Compliance Summary The Mexican Hat, Utah, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on April 7, 2015. The disposal cell was in excellent condition. Signs and posts were missing from P17 and P18 with the posts cut at ground surface using a pipe cutter. Access to Seep 0248 was overgrown and material from the upper cliff had collapsed onto the seep covering the majority of the seep

  2. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Shiprock, New Mexico Page 16-1 16.0 Shiprock, New Mexico, Disposal Site 16.1 Compliance Summary The Shiprock, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on May 27, 2015. The disposal cell and all associated surface water diversion and drainage structures were in good condition. The perimeter fence and gates remain functional, a gap below the north entrance gate will be eliminated by lowering the gate, and minor fence damage from wear will

  3. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    L-Bar, New Mexico Page 3-1 3.0 L-Bar, New Mexico, Disposal Site 3.1 Compliance Summary The L-Bar, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 18, 2015. The tailings impoundment was in excellent condition. Erosion and vegetation measurements to monitor the condition of the impoundment cover indicated that no erosion is occurring, and perennial vegetation foliar cover at the measurement plots increased substantially compared to

  4. Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado

    SciTech Connect (OSTI)

    Not Available

    1995-12-31

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. {section}4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. Uranium Mobility During In Situ Redox Manipulation of the 100 Areas of the Hanford Site

    SciTech Connect (OSTI)

    Szecsody, James E.; Krupka, Kenneth M.; Williams, Mark D.; Cantrell, Kirk J.; Resch, Charles T.; Fruchter, Jonathan S.

    1998-12-03

    A series of laboratory experiments and computer simulations was conducted to assess the extent of uranium remobilization that is likely to occur at the end of the life cycle of an in situ sediment reduction process. The process is being tested for subsurface remediation of chromate and chlorinated solvent-contaminated sediments at the Hanford Site in southeastern Washington. Uranium species that occur naturally in the +6 valence state [U(VI)] at 10 ppb in groundwater at Hanford will accumulate as U(IV) through the reduction and subsequent precipitation conditions of the permeable barrier created by in situ redox manipulation. The precipitated uranium will be remobilized when the reductive capacity of the barrier is exhausted and the sediment is oxidized by the groundwater containing dissolved oxygen and other oxidants such as chromate. Although U(IV) accumulates from years or decades of reduction/precipitation within the reduced zone, U(VI) concentrations in solution are only somewhat elevated during aquifer oxidation because oxidation and dissolution reactions that release U(IV) precipitate to solution are slow. The release rate of uranium into solution was found to be controlled mainly by the oxidation/dissolution rate of the U(IV) precipitate (half-life 200 hours) and partially by the fast oxidation of adsorbed Fe(II) (halflife 5 hours) and the slow oxidation of Fe(II)CO3 (half-life 120 hours) in the reduced sediment. Simulations of uranium transport that incorporated these and other reactions under site-relevant conditions indicated that 35 ppb U(VI) is the maximum concentration likely to result from mobilization of the precipitated U(IV) species. Experiments also indicated that increasing the contact time between the U(IV) precipitates and the reduced sediment, which is likely to occur in the field, results in a slower U(IV) oxidation rate, which, in turn, would lower the maximum concentration of mobilized U(VI)...

  6. EIS-0111: Remedial Actions at the Former Vanadium Corporation of America Uranium Mill Site, Durango, La Plata County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several scenarios for management and control of the residual radioactive wastes at the inactive Durango, Colorado, uranium processing site, including a no action alternative, an alternative to manage wastes on site, and three alternatives involving off-site management and decontamination of the Durango site.

  7. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

  8. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado. Summary

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

  9. Uranium Mobility During In Situ Redox Manipulation of the 100 Areas of the Hanford Site

    SciTech Connect (OSTI)

    CT Resch; JE Szecsody; JS Fruchter; KJ Cantrell; KM Krupka; MD Williams

    1998-12-03

    A series of laboratory experiments and computer simulations was conducted to assess the extent of uranium remobilization that is likely to occur at the end of the life cycle of an in situ sediment reduction process. The process is being tested for subsurface remediation of chromate- and chlorinated solvent-contaminated sediments at the Hanford Site in southeastern Washington. Uranium species that occur naturally in the +6 valence state {approximately}(VI) at 10 ppb in groundwater at Hanford will accumulate as U(N) through the reduction and subsequent precipitation conditions of the permeable barrier created by in situ redox manipulation. The precipitated uranium will W remobilized when the reductive capacity of the barrier is exhausted and the sediment is oxidized by the groundwater containing dissolved oxygen and other oxidants such as chromate. Although U(N) accumulates from years or decades of reduction/precipitation within the reduced zone, U(W) concentrations in solution are only somewhat elevated during aquifer oxidation because oxidation and dissolution reactions that release U(N) precipitate to solution are slow. The release rate of uranium into solution was found to be controlled mainly by the oxidation/dissolution rate of the U(IV) precipitate (half-life 200 hours) and partially by the fast oxidation of adsorbed Fe(II) (half- life 5 hours) and the slow oxidation of Fe(II)CO{sub 3} (half-life 120 hours) in the reduced sediment. Simulations of uranium transport that incorporated these and other reactions under site-relevant conditions indicated that 35 ppb U(VI) is the maximum concentration likely to result from mobilization of the precipitated U(IV) species. Experiments also indicated that increasing the contact time between the U(IV) precipitates and the reduced sediment, which is likely to occur in the field, results in a slower U(IV) oxidation rate, which, in turn, would lower the maximum concentration of mobilized U(W). A six-month-long column

  10. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C.

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  11. DOE - Office of Legacy Management -- Tuba

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  12. DOE - Office of Legacy Management -- Lowman

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  13. DOE - Office of Legacy Management -- Falls

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  14. DOE - Office of Legacy Management -- Maybell

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  15. DOE - Office of Legacy Management -- Riverton

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  16. DOE - Office of Legacy Management -- AMB

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  17. DOE - Office of Legacy Management -- Ship

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  18. DOE - Office of Legacy Management -- Spook

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  19. DOE - Office of Legacy Management -- Canon

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  20. DOE - Office of Legacy Management -- Burrell

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  1. EIS-0132: Remedial Actions at the Former Union Carbide Corp. Uranium Mill Sites, Rifle, Garfield County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate and compare the environmental impacts of remediating the residual radioactive materials left at the inactive uranium tailing sites in Rifle, Colorado.

  2. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  3. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  4. DOE - Office of Legacy Management -- Ashtabula

    Office of Legacy Management (LM)

    for maintaining records for the Ashtabula site was transferred to DOE's Office of Legacy Management in 2010. The site requires records management and stakeholder support. For...

  5. DOE - Office of Legacy Management -- CEER

    Office of Legacy Management (LM)

    for maintaining records for the CEER site transferred to DOE's Office of Legacy Management in 2006. The site requires records management and stakeholder support. For...

  6. Office of Legacy Management | Department of Energy

    Office of Environmental Management (EM)

    Office of Legacy Management Fernald Preserve, Ohio Fernald Preserve, Ohio Read more Grand Junction, Colorado, Site Grand Junction, Colorado, Site Read more National Environmental ...

  7. DOE - Office of Legacy Management -- Shoal

    Office of Legacy Management (LM)

    Nevada Shoal, Nevada, Site A Nevada Offsite shoalmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Shoal Site in ...

  8. DOE - Office of Legacy Management -- Chariot

    Office of Legacy Management (LM)

    Alaska Chariot, Alaska, Site A Nevada Offsite chariotmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Chariot Site ...

  9. DOE - Office of Legacy Management -- Geothermal

    Office of Legacy Management (LM)

    After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For more information about the ...

  10. DOE - Office of Legacy Management -- Shirley

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. The site requires routine inspection and ...

  11. DOE - Office of Legacy Management -- MURR

    Office of Legacy Management (LM)

    After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For more information about the ...

  12. DOE - Office of Legacy Management -- Columbus

    Office of Legacy Management (LM)

    Responsibility for maintaining records for the Columbus sites transferred to DOE's Office of Legacy Management in 2008. The sites require records management and stakeholder ...

  13. DOE - Office of Legacy Management -- Rulison

    Office of Legacy Management (LM)

    Rulison, Colorado, Site A Nevada Offsite rulisonmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Rulison site in ...

  14. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  15. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    SciTech Connect (OSTI)

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  16. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    SciTech Connect (OSTI)

    Green, Stefan; Prakash, Om; Jasrotia, Puja; Overholt, Will; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka, Joel

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  17. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    SciTech Connect (OSTI)

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-10

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  18. Uranium in soils integrated demonstration site characterization at Fernald, Ohio. Report of uranium concentrations in soil determined by in situ LA-ICP-AES

    SciTech Connect (OSTI)

    Baldwin, D.; Zamzow, D.; Bajic, S.J.

    1993-02-02

    Laser ablation-inductively coupled plasma-atomic emission spectrometry was used for in situ determination of uranium and thorium concentrations in soil at 80 sampling sites in the Sewage Treatment Plant area. This work was performed by the Environmental Technology Development Program of the Ames Laboratory using a completely self-contained mobile laboratory. This laboratory, the mobile demonstration laboratory for environmental screening technologies and the robotic sampling accessory, were designed and constructed by the Ames Laboratory during FY 1992. The instrumentation is capable of analyzing each sample for twenty operator-defined elements simultaneously. Using the MDLEST/RSA, the uranium concentrations in the soil at the 80 sampling sites were found to range from <20 parts-per-million (ppM)(<13.5 pCi/g) to 303 ppM (205 pCi/g). The 95% confidence interval for these field determined values range from 80 to 110 ppM. Bore hole samples from two sites were analyzed. No measurable uranium concentration was detected below the one foot depth. Seven samples taken from sites within an area currently under remediation were analyzed and found to contain uranium concentrations ranging from 101 ppM (68.3 pCi/g) to 788 ppM (532 pCi/g). Soil samples were taken from twelve of the 80 sampling sites in the field, using conventional sampling techniques. These samples were prepared by microwave digestion, using the wet chemistry capability in the MDLEST, and field analyzed using solution nebulization ICP-AES. The laboratory procedure followed for microwave digestion required the samples to be diluted by a factor of 100. This dilution resulted in uranium intensities too low to be accurately quantitated in the field. Optimization of the instrumentation and sample preparation will make this field capability useful in determining near real-time the soil matrix, and enable the performance of this quality assurance process in the field with greater sensitivity and accuracy.

  19. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  20. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    SciTech Connect (OSTI)

    Reimus, Paul William

    2015-05-22

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  1. DOE - Office of Legacy Management -- Transcontinental Machine...

    Office of Legacy Management (LM)

    Year: 1990 US.06-1 Site Operations: Metal Fabrication operations - Machined Uranium slugs in support of Savannah River program for evaluation of Uranium fabrication methods. ...

  2. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect (OSTI)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  3. Remedial action plan for stabilization of the inactive uranium mill tailings site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1986-02-01

    This Remedial Action Plan (RAP) has been developed to serve a two-fold purpose. It presents the series of activities which are proposed by the U.S. Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Monument Valley, Arizona It also serves to document the concurrence of both the Navajo Nation and the U.S. Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  4. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

  5. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  6. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  8. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    SciTech Connect (OSTI)

    Millsap, William J.; Brush, Daniel J.

    2013-11-13

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

  9. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  10. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    SciTech Connect (OSTI)

    Dunning, D.E.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

  11. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE`s Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels.

  12. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  13. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    SciTech Connect (OSTI)

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannot account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.

  14. Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs.

  15. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    SciTech Connect (OSTI)

    Dunning, D.

    1996-05-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL) Industries from 1958 to 1984; these activities included brass foundry operations, electroplating of metal products, machining of various components using depleted uranium, and limited work with small amounts of enriched uranium and thorium. The Colonie site comprises the former NL Industries property, now designated the Colonie Interim Storage Site (CISS), and 56 vicinity properties contaminated by fallout from airborne emissions; 53 of the vicinity properties were previously remediated between 1984 and 1988. In 1984, DOE accepted ownership of the CISS property from NL Industries. Residual radioactive material guidelines for individual radionuclides and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines.

  16. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    Jurisdiction of the site was transferred to the Office of Legacy Management in 2008. For more information about the Rocky Flats site, view the fact sheet. Site History Site ...

  17. DOE - Office of Legacy Management -- MonValley

    Office of Legacy Management (LM)

    Act (UMTRCA) Title I site, is managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  18. DOE - Office of Legacy Management

    Office of Legacy Management (LM)

    How informed do you feel about the site's activities and progress? How can the DOE Office of Legacy Management keep the community better informed? Do you have any comments, ...

  19. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  20. DOE - Office of Legacy Management -- Bonus

    Office of Legacy Management (LM)

    of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Boiling Nuclear Superheater (BONUS) Decommissioned Reactor Site...

  1. DOE - Office of Legacy Management -- Park

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more ...

  2. DOE - Office of Legacy Management -- Blue

    Office of Legacy Management (LM)

    Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. ...

  3. DOE - Office of Legacy Management -- Amchitka

    Office of Legacy Management (LM)

    Alaska Amchitka, Alaska, Site A Nevada Offsite amchitkamap2.jpg The DOE Office of Legacy Management assumed responsibility for all activities associated with subsurface completion ...

  4. DOE - Office of Legacy Management -- Lbar

    Office of Legacy Management (LM)

    Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. ...

  5. DOE - Office of Legacy Management -- Edge

    Office of Legacy Management (LM)

    Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. ...

  6. DOE - Office of Legacy Management -- Central

    Office of Legacy Management (LM)

    Central Nevada Test Area (CNTA), Nevada, Site A Nevada Offsite centralmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at ...

  7. DOE - Office of Legacy Management -- Fernald

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2006 and requires operation and maintenance of remedial action systems, environmental monitoring, routine inspection and ...

  8. DOE - Office of Legacy Management -- GJD

    Office of Legacy Management (LM)

    Responsibility for custody and long-term management of the site transferred to DOE's Office of Legacy Management in 2003. Management responsibilities include routine inspection and ...

  9. DOE - Office of Legacy Management -- Salmon2

    Office of Legacy Management (LM)

    Mississippi Salmon, Mississippi, Site A Nevada Offsite salmonmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the ...

  10. DOE - Office of Legacy Management -- LEHR

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2006 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more ...

  11. DOE - Office of Legacy Management -- Sherwood

    Office of Legacy Management (LM)

    Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. ...

  12. DOE - Office of Legacy Management -- Rio

    Office of Legacy Management (LM)

    Colorado Rio Blanco, Colorado, Site A Nevada Offsite rioblancomap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Rio ...

  13. DOE - Office of Legacy Management -- Gasbuggy

    Office of Legacy Management (LM)

    New Mexico Gasbuggy, New Mexico, Site A Nevada Offsite gasbuggymap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the ...

  14. DOE - Office of Legacy Management -- Maxey

    Office of Legacy Management (LM)

    and Liability Act (CERCLA) regulations. The site transferred to the Office of Legacy Management in 2004 and requires records-related activities and stakeholder support. ...

  15. DOE - Office of Legacy Management -- ITL

    Office of Legacy Management (LM)

    The legislation releases DOE from all environmental liability at the Albuquerque site, including contamination from past, present, or future activities. The DOE Office of Legacy ...

  16. DOE - Office of Legacy Management -- Pinellas

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2004 and requires operation and maintenance of remedial action systems, routine inspection and maintenance, ...

  17. DOE - Office of Legacy Management -- Monticello

    Office of Legacy Management (LM)

    The sites transferred to the Office of Legacy Management in 2003 and require operation and maintenance of remedial action systems, routine inspection and maintenance, ...

  18. DOE - Office of Legacy Management -- GJP

    Office of Legacy Management (LM)

    Responsibility for management and long-term custody of the site's contaminated groundwater transferred to DOE's Office of Legacy Management in 2003. Management requirements include ...

  19. DOE - Office of Legacy Management -- MURR

    Office of Legacy Management (LM)

    Research Reactor (MURR), Columbia, Missouri, and Transfer of Records to Office of Legacy Management (LM) August 24, 2004 Federal Facility Compliance Act 1999 Annual Site ...

  20. Formerly Utilized Sites Remedial Action Program Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet Uranium Mill Tailings Radiation Control Act Sites This fact sheet provides information about the Formerly Utilized Sites Remedial Action Program sites. When remedial action for a site is complete, the site will be managed under the U.S. Department of Energy Office of Legacy Management. Background In 1942, the U.S. Army established the Manhattan Engineer District (MED) of the U.S. Army Corps of Engineers (USACE) to develop technology and production facilities for the frst atomic

  1. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site near Gunnison, Colorado. Final

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to their water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land.

  2. RETENTION AND CHEMICAL SPECIATION OF URANIUM IN A WETLAND ON THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Li, D.; CHANG, H.: SEAMAN, J.; Jaffe, P.; Groos, P.; Jiang, D.; Chen, N.; Lin, J.; Arthur, Z.; Scheckel, K.; Kaplan, D.

    2013-06-17

    Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

  3. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  4. DOE - Office of Legacy Management -- ChicSouth_FUSRAP

    Office of Legacy Management (LM)

    owned site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of managing site records and responding to stakeholder ...

  5. DOE - Office of Legacy Management -- NewYork_FUSRAP

    Office of Legacy Management (LM)

    owned site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of managing site records and responding to stakeholder ...

  6. DOE - Office of Legacy Management -- JerseyCity_FUSRAP

    Office of Legacy Management (LM)

    owned site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of managing site records and responding to stakeholder ...

  7. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Shiprock, New Mexico

    SciTech Connect (OSTI)

    Hill, T.V.; Morley, J.A. . Uranium Mill Tailings Remedial Action Project Office); Began, E.T. )

    1985-06-01

    This Remedial Action Plan (RAP) has been developed to serve a twofold purpose. It presents the series of activities which are proposed by the Department of Energy (DOE) to effect long-term control of radioactive materials at the inactive uranium processing site located on the Navajo Reservation at Shiprock, New Mexico. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Shiprock site. Detailed supporting information can be found in appendices and referenced documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 traces the history of operations at the Shiprock site with a description of the present site characteristics. Section 4.0 provides a definition of site-specific problems, a listing of remedial action alternatives which have been considered, and the action which is being proposed. Section 5.0 presents a summary of the conceptual design for the proposed action which includes objectives, design features, schedule, cost, and implementation methods. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the onsite workers. Section 7.0 presents a detailed listing of the responsibilities of the project participants. Section 8.0 describes the quality assurance process that will be used by the RAC during construction. Section 9.0 describes the features of the long-term maintenance and surveillance plan. Section 10.0 documents the on-going activities to keep the public informed and participating in the project. Attached as part of the RAP are five appendices which describe in more detail various aspects of the remedial action.

  8. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  9. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  10. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  13. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect (OSTI)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  14. Surface horizontal logging for uranium and its decay products at a Superfund site

    SciTech Connect (OSTI)

    Gadeken, L.L.; Madigan, W.P.

    1995-12-31

    The United States Department of Energy (DOE) is now responsible for the environmental restoration and management of a number of sites where nuclear activities occurred during the Cold War. The DOE sponsored an Expedited Site Characterization performed by Ames Laboratory at the St. Louis (Missouri) Airport Site (SLAPS) during August--September, 1994. Uranium processing occurred at SLAPS during the Cold War and there is now significant residual radioactive contamination. Surveys associated the highest radioactivity levels at SLAPS with the ``barium cake`` (AJ-4) waste areas. This paper reports on continuous gamma ray spectroscopy measurements to identify the emitting, isotopes and to quantify the amount of radioactivity present for each. An oilfield wireline gamma ray spectrometry sonde (the Compensated Spectral Natural Gamma instrument) was adapted to perform horizontal measurements with the detector section 3 ft above the soil surface. The CSNG detector is a 2-in.-diameter by 12-in.-long sodium iodide crystal. The spectrometry data are processed by a weighted-least-squares algorithm that incorporates whole spectrum responses for the radioisotopes of interest. The radioactivities are reported in pCi/g units for each isotope, and a depth-of-emission estimate is found by Compton-downscattering spectral shape analysis.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  17. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

  18. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  19. Lessons Learned and Present Day Challenges of Addressing 20th Century Radiation Legacies of Russia and the United States

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-10-26

    The decommissioning of nuclear submarines, disposal of highly-enriched uranium and weapons-grade plutonium, and processing of high-level radioactive wastes represent the most challenging issues facing the cleanup of 20th century radiation legacy wastes and facilities. The US and Russia are the two primary countries dealing with these challenges, because most of the world's fissile inventory is being processed and stored at multiple industrial sites and nuclear weapons production facilities in these countries.

  20. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

  1. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    SciTech Connect (OSTI)

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  2. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

  3. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect (OSTI)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  4. Radium-226 in vegetation and substrates at inactive uranium mill sites

    SciTech Connect (OSTI)

    Marple, M.L.

    1980-01-01

    Results of a study of the content of radium-226 in plants growing on inactive uranium mill tailings sites in the Four Corners Region of the southwestern United States and in plants grown under greenhouse conditions with minimal surficial contamination are reported. Field plant samples and associated substrates were analyzed from two carbonate tailings sites in the Grants Mineral Belt of New Mexico. Radium activities in air-cleaned samples ranged from 5 to 368 pCi/g (dry weight) depending on species and location: activities in plants growing on local soils averaged 1.0 pCi/g. The talings and local soils contain 140 to 1400 pCi/g and 2.1 pCi/g, respectively. An evaluation of cleaning methods on selected samples showed that from 17 to 79% of the radium activity measured in air-cleaned samples was due to surficial contamination, which varied with species and location. A survey of 18 inactive uranium mill sites in the Four Corners Region was performed. Radium activity in plant tissues from nine species ranged from 2 to 210 pCi/g on bare tailings and from 0.3 to 30 pCi/g on covered tailings The radium content in most of the soil overburdens on the covered tailings piles was 10 to 17 pCi/g. An experiment was performed to measure radium-226 uptake by two species grown on tailings covered with a shallow (5 cm) soil layer. A grass, Sporobolus airoides (alkali sacaton) and a shrub, Atriplex canescens (four-wing saltbush), were studied. The tailings were a mixture of sands and slimes from a carbonate pile. The tailings treatments were plants grown in a soil cover over tailings; the controls were plants grown only in soil. Three soil types, dune sand, clay loam, and loam, were used. The radium activity of the plant tissue from the tailings treatment compared to that of the appropriate control was 1 to 19 times greater for the grass and 4 to 27 times greater for the shrub.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  6. Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ``Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,`` the meeting was hosted by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base.

  7. Performance Evaluation of the Engineered Cover at the Lakeview, Oregon, Uranium Mill Tailings Site

    SciTech Connect (OSTI)

    Waugh, J.; Smith, G.; Danforth, B.; Gee, G.; Kothari, V.; Pauling, T.

    2007-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is evaluating the performance of disposal cell covers at LM sites and exploring ways to enhance their sustainability. The cover of the Lakeview, Oregon, disposal cell relies on a compacted soil layer (CSL) to limit radon escape and water percolation into underlying tailings. The design created habitat favorable for growth of woody plants that sent roots through the CSL. The mean saturated hydraulic conductivity (K{sub sat}) of the CSL, measured at 17 locations, was 3.0 x 10{sup -5} cm s{sup -1}, 300 times greater than the design target. The highest K{sub sat} values were measured near the top of the CSL at locations both with and without roots; the lowest K{sub sat} values were measured deeper in the CSL. Water flux meters (WFMs) installed in 2005 to directly measure percolation flux show significant percolation through the cover. Three WMFs began recording percolation in mid-November, 7 days after the start of a prolonged precipitation event, and continued until early June 2006. Percolation flux during this period ranged between 3.1 x 10{sup -5} and 8.5 x 10{sup -5} cm s{sup -1}. The cumulative percolation was greater than total precipitation during the period, probably because of a water-harvesting effect. The WFMs were strategically placed in down-gradient positions on the cover top slope where water likely accumulated in a sand drainage layer. Routine monitoring at Lakeview shows that the ground water remains protected. LM plans to evaluate potential effects of high percolation rates in covers to ensure that disposal cells remain protective for the long term. (authors)

  8. Long-term desorption behavior of uranium and neptunium in heterogeneous volcanic tuff materials /

    SciTech Connect (OSTI)

    Dean, Cynthia A.

    2010-05-01

    Uranium and neptunium desorption were studied in long-term laboratory experiments using four well-characterized volcanic tuff cores collected from southeast of Yucca Mountain, Nevada. The objectives of the experiments were to 1. Demonstrate a methodology aimed at characterizing distributions of sorption parameters (attributes of multiple sorption sites) that can be applied to moderately-sorbing species in heterogeneous systems to provide more realistic reactive transport parameters and a more realistic approach to modeling transport in heterogeneous systems. 2. Focus on uranium and neptunium because of their high solubility, relatively weak sorption, and high contributions to predicted dose in Yucca Mountain performance assessments. Also, uranium is a contaminant of concern at many DOE legacy sites and uranium mining sites.

  9. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  10. DOE - Office of Legacy Management -- Nat_P

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  11. DOE - Office of Legacy Management -- SLC_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  12. DOE - Office of Legacy Management -- Rifle_Old

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  13. DOE - Office of Legacy Management -- Gun_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  14. DOE - Office of Legacy Management -- Gun_P

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  15. DOE - Office of Legacy Management -- Nat_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  16. DOE - Office of Legacy Management -- MexHat

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  17. DOE - Office of Legacy Management -- Dur_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  18. DOE - Office of Legacy Management -- SLC_P

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  19. DOE - Office of Legacy Management -- Rifle_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  20. DOE - Office of Legacy Management -- GrnRiv

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  1. DOE - Office of Legacy Management -- Maybell_West(2)

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2010 and requires routine inspection and ...

  2. DOE - Office of Legacy Management -- Lake_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  3. DOE - Office of Legacy Management -- Lake_P

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  4. DOE - Office of Legacy Management -- Slick_D

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  5. DOE - Office of Legacy Management -- Slick_P

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  6. DOE - Office of Legacy Management -- Dur_P

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  7. DOE - Office of Legacy Management -- Rifle_New

    Office of Legacy Management (LM)

    to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and ...

  8. DOE - Office of Legacy Management -- Mound Laboratory - OH 19

    Office of Legacy Management (LM)

    U.S. Department of Energy (DOE) Office of Legacy Management (LM) is conducting the fourth ... and current Office of Legacy Management activities at the Mound Site in Miamisburg, Ohio. ...

  9. DOE - Office of Legacy Management -- Amchitka Island Test Center...

    Office of Legacy Management (LM)

    Site: Amchitka Island Test Center (AK.01) Long-term care managed by DOE Legacy Management ... Status: Long-term care managed by DOE Legacy Management under the Nevada Offsites ...

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  11. DOE - Office of Legacy Management -- ColumbusEast_FUSRAP

    Office of Legacy Management (LM)

    Office of Legacy Management activities consist of managing site records and responding to stakeholder inquiries. For more information about the Columbus East Site, view the fact ...

  12. DOE - Office of Legacy Management -- Toledo_FUSRAP

    Office of Legacy Management (LM)

    Office of Legacy Management activities consist of managing site records and responding to stakeholder inquiries. For more information about the Toledo Site, view the fact sheet. ...

  13. DOE - Office of Legacy Management -- Hamilton_FUSRAP

    Office of Legacy Management (LM)

    Office of Legacy Management activities consist of managing site records and responding to stakeholder inquiries. For more information about the Hamilton Site, view the fact sheet. ...

  14. DOE - Office of Legacy Management -- Granite2_FUSRAP

    Office of Legacy Management (LM)

    Office of Legacy Management activities consist of managing site records and responding to stakeholder inquiries. For more information about the Granite City Site, view the fact ...

  15. DOE - Office of Legacy Management -- Berkeley_FUSRAP

    Office of Legacy Management (LM)

    DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of managing site records and responding to stakeholder inquiries. For more ...

  16. DOE - Office of Legacy Management -- Gen_Atomics

    Office of Legacy Management (LM)

    After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For more information about the ...

  17. DOE - Office of Legacy Management -- Madison_FUSRAP

    Office of Legacy Management (LM)

    The site transferred to the Office of Legacy Management in 2003 and long-term surveillance and maintenance requirements consist of preserving site records and responding to ...

  18. DOE - Office of Legacy Management -- Acid_FUSRAP

    Office of Legacy Management (LM)

    in conjunction with cleanup activities for the entire Los Alamos site. Office of Legacy Management activities consist of managing site records and responding to stakeholder ...

  19. DOE - Office of Legacy Management -- Oxford_FUSRAP

    Office of Legacy Management (LM)

    Office of Legacy Management activities consist of managing site records and responding to stakeholder inquiries. For more information about the Oxford Site, view the fact sheet. ...

  20. DOE - Office of Legacy Management -- Niagara VP_FUSRAP

    Office of Legacy Management (LM)

    No other supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management ...

  1. DOE - Office of Legacy Management -- Bayo_FUSRAP

    Office of Legacy Management (LM)

    in conjunction with cleanup activities for the entire Los Alamos site. Office of Legacy Management activities consist of managing site records and responding to stakeholder ...

  2. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  3. TREATMENT OF PLUTONIUM- AND URANIUM-CONTAMINATED OIL FROM ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Klasson, KT

    2002-12-05

    A removal method for plutonium and uranium has been tested at the Rocky Flats Environmental Technology Site (RFETS). This alternative treatment technology is applicable to U.S. Department of Energy (DOE) organics (mainly used pump oil) contaminated with actinides. In our studies, greater than 70% removal of the actinides was achieved. The technology is based on contacting the oil with a sorbent powder consisting of a surface modified mesoporous material. The SAMMS (Self-Assembled Monolayers on Mesoporous Support) technology was developed by the Pacific Northwest National Laboratory for removal and stabilization of RCRA (i.e., lead, mercury, cadmium, silver, etc.) and actinides in water and for removal of mercury from organic solvents [1, 2]. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide support provides a high surface area, thereby enhancing the metal-loading capacity. The testing described in this report was conducted on a small scale but larger-scale testing of the technology has been performed on mercury-contaminated oil without difficulty [3].

  4. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    SciTech Connect (OSTI)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  5. DOE - Office of Legacy Management -- Weldon

    Office of Legacy Management (LM)

    The Weldon Spring Site was transferred to the Office of Legacy Management (LM) in 2003. LM conducts long-term surveillance and maintenance at the site which includes routine ...

  6. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    SciTech Connect (OSTI)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  7. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  8. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  9. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  11. Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260

    SciTech Connect (OSTI)

    Bush, Richard P.; Morrison, Stan J.

    2012-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 μg/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

  12. COMPREHENSIVE LEGACY MANAGEMENT

    Office of Legacy Management (LM)

    Fernald Preserve, Fernald, Ohio Comprehensive Legacy Management and Institutional Controls ... blank LMSFERS03496-8.0 Comprehensive Legacy Management and Institutional Controls ...

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  14. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  15. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

  16. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  17. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Remedial action selection report, Appendix B

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd{sup 3}) [470,000 cubic meters (m{sup 3})]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater.

  18. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

  19. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    SciTech Connect (OSTI)

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

  20. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  1. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-03-01

    This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

  2. Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment

    Energy.gov [DOE]

    DOE has issued the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)(DOE/EIS-0472D) for public review and comment. The public comment period ends May 16, 2013. Under the Uranium Leasing Program, the DOE Office of Legacy Management administers 31 tracts of land in Mesa, Montrose, and San Miguel counties that are leased to private entities to mine uranium and vanadium. The program covers an area of approximately 25,000 acres. No mining operations are active on the ULP lands at this time. DOE is preparing the ULP PEIS to analyze the reasonably foreseeable potential environmental impacts, including the site-specific and cumulative impacts, of the range of selected alternatives for managing the program.

  3. Uranium Leasing Program Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Documents Uranium Leasing Program Documents U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). The Court has issued the injunctive relief described on pages 51-52 of the Order. U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). Uranium Lease Tracts Location Map

  4. Lessons Learned: Tribal Community Engagement, Remediation and Restoration of a Uranium Mine Tailings Site, Navajo Nation - 12484

    SciTech Connect (OSTI)

    Wadsworth, Donald K.; Hicks, Allison H.

    2012-07-01

    In May, 2011 New World Environmental Inc. was awarded a contract by the Navajo Nation Environmental Protection Agency to remediate an illegal radioactive waste disposal site located in the Navajo Nation. The initial scope included the excavation and shipment of an estimated 3,000 cubic yards of Uranium mine tailings and associated industrial waste. In this instance Stakeholders were supportive of the project, remediation and restoration, yet the movement of residual radioactive materials through tribal communities was a controversial issue. Other Stakeholder issues included site security, water sources for remediation activities, local residents' temporary re-location and care of livestock, right of way permissions and local workforce development. This presentation recaps the technical and non-technical issues encountered in the remediation and restoration the seven acre site and the outreach to surrounding communities. Cultural and equity issues resulting from historical problems associated with this and other sites in the immediate area and education and training. (authors)

  5. US Department of Energy response to standards for remedial actions at inactive uranium processing sites: Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-01-29

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all Title I sites. On September 24, 1987, the EPA published proposed standards (52FR36000-36008) in response to the remand. This report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project, as well as a discussion of the DOE's position on the proposed standards. The report also contains and appendix which provides supporting information and cost analyses. In order to assess the impacts of the proposed EPA standards, this report summarizes the proposed EPA standards in Section 2.0. The next three sections assess the impacts of the three parts of the EPA standards: Subpart A considers disposal sites; Subpart B is concerned with restoration at processing sites; and Subpart C addresses supplemental standards. Section 6.0 integrates previous sections into a recommendations section. Section 7.0 contains the DOE response to questions posed by the EPA in the preamble to the proposed standards. 6 refs., 5 figs., 3 tabs.

  6. Legacy Waste | Department of Energy

    Office of Environmental Management (EM)

    Services Legacy Waste Legacy Waste Legacy Waste The Environmental Management Los Alamos Field Office's (EM-LA) Solid Waste Stabilization and Disposition Project Team is ...

  7. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Mexican Hat, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Mexican Hat, Utah, Disposal Cell Site Location and History The Mexican Hat disposal site is located on the Navajo Reservation in southeast Utah, 1.5 miles southwest of the town of Mexican Hat and 1 mile south of the San

  8. Transition of the U.S. Department of Energy Fernald Closure Project (FCP) from Cleanup to Legacy Management

    SciTech Connect (OSTI)

    Powell, J.; Craig, J.R.; Jacobson, C.

    2006-07-01

    The Fernald Closure Project encompasses a 1,050-acre tract of land northwest of Cincinnati, Ohio. Dedicated to the production of uranium feed materials from 1952 until 1989, the site was subsequently included on the U.S. Environmental Protection Agency's National Priorities List and slated for cleanup. Except for contaminated ground water, cleanup of the site will be completed in 2006; remediation of the aquifer will continue for 20 years. Transition of the project from the U.S. Department of Energy Office of Environmental Management to the Office of Legacy Management will be effected when site cleanup is completed, surface restoration is complete, and aquifer remediation is on-going. Office of Legacy Management activities will focus on the monitoring and maintenance of the on-site disposal facility, enforcement of restrictions on site access and use, and the protection of natural and cultural resources. The Site Transition Plan, developed in accordance with Site Transition Framework guidance, identifies organizational and financial responsibilities for attaining closeout. A Transition Matrix details more than 1,000 activities necessary for site transition and allows each task to be tracked. Responsibility Transition Plans address major areas of scope to be transferred, such as records and information management, infrastructure, and environmental monitoring. Much effort has been placed on the retention of staff to perform the identified Office of Legacy Management scope. (authors)

  9. L-Bar, New Mexico, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    L-Bar, New Mexico, Disposal Site This fact sheet provides information about the L-Bar, New Mexico, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the L-Bar, New Mexico, Disposal Site Site Description and History The L-Bar disposal site is in Cibola County approximately 47 miles west of Albuquerque, New Mexico, and 10 miles north of Laguna Pueblo. The site is

  10. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs.

  11. DOE - Office of Legacy Management -- Gnome

    Office of Legacy Management (LM)

    New Mexico Gnome-Coach, New Mexico, Site A Nevada Offsite gnomemap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the ...

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

  13. DOE - Office of Legacy Management -- Canonsburg Industrial Park...

    Office of Legacy Management (LM)

    2008 Groundwater and Surface Water Sampling FACT SHEET Office of Legacy Management Canonsburg, Pennsylvania, Disposal Site Project Plan: Ground Water Compliance Action Plan (GCAP). ...

  14. DOE - Office of Legacy Management -- Seymour_FUSRAP

    Office of Legacy Management (LM)

    DOE will determine if waste management is required for the supplemental limits material. Office of Legacy Management activities currently consist of managing site records and ...

  15. DOE - Office of Legacy Management -- Brunswick2_FUSRAP

    Office of Legacy Management (LM)

    year and submits a certification of protectiveness to the State regulator. Office of Legacy Management activities are managing site records and responding to stakeholder ...

  16. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    SciTech Connect (OSTI)

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Boyanov, Maxim I.

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.

  17. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    DOE PAGES-Beta [OSTI]

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Boyanov, Maxim I.

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two activemore » bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.« less

  18. Site Management Guide (Blue Book)

    SciTech Connect (OSTI)

    2014-03-01

    The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Department’s postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOE’s postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site

  19. Recommendation 215: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation

    Energy.gov [DOE]

    The Oak Ridge Site Specific Advisory Board approved the enclosed recommendation on remaining legacy materials on the Oak Ridge Reservation.

  20. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6

  1. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel; Primm, Trent; Renfro, David G; Sease, John D

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  2. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wu, Weimin; Carley, Jack M; Watson, David B; Gu, Baohua; Brooks, Scott C; Kelly, Shelly D; Kemner, Kenneth M; Van Nostrand, Joy; Wu, Liyou; Zhou, Jizhong; Luo, Jian; Cardenas, Erick; Fields, Matthew Wayne; Marsh, Terence; Tiedje, James; Green, Stefan; Kostka, Joel; Kitanidis, Peter K.; Jardine, Philip; Criddle, Craig

    2011-01-01

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uranium was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.

  3. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  5. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  6. DOE - Office of Legacy Management -- Albany_FUSRAP

    Office of Legacy Management (LM)

    No institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of managing site ...

  7. DOE - Office of Legacy Management -- Painesville - OH 48

    Office of Legacy Management (LM)

    about the Painesville, Ohio, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Formerly Utilized Sites Remedial Action Program. ...

  8. A thick homogeneous vegetated cover design proves cost - and schedule-effective for the reclamation of uranium mills sites near Spokane, Washington

    SciTech Connect (OSTI)

    Blacklaw, J.; Robertson, G.; Stoffel, D.; Ahmad, J.; Fordham, E.

    1997-08-01

    The Washington State Department of Health (WDOH) has licensed two medium sized uranium mills with tailings impoundments covering 28 and 40 hectares (70 and 100 acres), respectively, The uranium mill licensees have submitted closure and reclamation plans to the state, and site-specific conditions have determined the closure design features, Conventional uranium mill cover designs usually incorporate an overall cap of one to three meters, which includes a low-permeability clay barrier layer. A technical evaluation of several uranium mill facilities that used this design was published in the fall of 1994 and reported that unexpected vegetation root damage had occurred in the low-permeability clay (or bentonite amended) barrier layers. The technical report suggested that the low-permeability design feature at some sites could be compromised within a very short time and the regulatory goal of 1,000 years performance might not be achieved. In October 1994, WDOH sponsored a technical forum meeting to consider design alternatives to address these reliability concerns. Representatives from the federal government, nuclear industry, licensees, engineering firms, and state regulatory agencies attended the workshop. Risk factors considered in the evaluation of the uranium mill reclamation plans include: (1) radon gas emanation through the cover (the air pathway), and (2) migration of hazardous and/or radioactive constituents (the groundwater pathway). Additional design considerations include site structural stability, longevity of 1,000 years, and no active (ongoing) maintenance. 9 refs.

  9. LEGACY MANAGEMENT REQUIRES INFORMATION

    SciTech Connect (OSTI)

    CONNELL, C.W.; HILDEBRAND, R.D.

    2006-12-14

    ''Legacy Management Requires Information'' describes the goal(s) of the US Department of Energy's Office of Legacy Management (LM) relative to maintaining critical records and the way those goals are being addressed at Hanford. The paper discusses the current practices for document control, as well as the use of modern databases for both storing and accessing the data to support cleanup decisions. In addition to the information goals of LM, the Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA) is one of the main drivers in documentation and data management. The TPA, which specifies discrete milestones for cleaning up the Hanford Site, is a legally binding agreement among the US Department of Energy (DOE), the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The TPA requires that DOE provide the lead regulatory agency with the results of analytical laboratory and non-laboratory tests/readings to help guide them in making decisions. The Agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in its or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The tools used at Hanford to meet TPA requirements are also the tools that can satisfy the needs of LM.

  10. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    SciTech Connect (OSTI)

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, T.; Shah, Manesh B; Pffifner, Susan; Hettich, Robert {Bob} L; Loeffler, Frank E

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  11. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect (OSTI)

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  12. DOE - Office of Legacy Management -- Falls

    Office of Legacy Management (LM)

    Texas Falls City, Texas, Disposal Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site Ground Water Compliance Action Plan Long-Term Surveillance Plan for the U.S. Department of Energy Falls City Uranium Mill Tailings

  13. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  14. Revegetation/rock cover for stabilization of inactive uranium mill tailings disposal sites

    SciTech Connect (OSTI)

    Beedlow, P.A.; McShane, M.C.; Cadwell, L.L.

    1982-07-01

    Pacific Northwest Laboratory is developing design and performance guidelines for surface stabilization of inactive uranium mill tailings. In this work, vegetation and rock covers are being evaluated for maintaining long-term integrity of impoundment systems. Methods are being developed to estimate erosion rates associated with rock and/or vegetation covers, and to determine the effects of surface treatments on soil moisture. Interactions between surface treatments and barriers (radon and biological) are being studied as well. The product will be a set of guidelines to aid in designing surface covers. This report presents the status of this program and a discussion of considerations pertinent to the application of surface covers to tailings. Test plots located in Grand Junction, Colorado and Waterflow, New Mexico are being used to study: (1) the interactions between vegetation and radon and biological barriers, (2) the effects of surface covers on soil moisture, and (3) the effects of rock covers on vegetation.

  15. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U was mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.

  16. Legend and legacy: Fifty years of defense production at the Hanford...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Legend and legacy: Fifty years of defense production at the Hanford Site Citation Details In-Document Search Title: Legend and legacy: Fifty years of defense production at the ...

  17. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  18. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future.

  19. DOE - Office of Legacy Management -- International Register ...

    Office of Legacy Management (LM)

    Year: 1987 IL.15-3 Site Operations: Limited testing of centerless grinding techniques for uranium metal for the AEC. IL.15-2 Site Disposition: Eliminated - Potential for...

  20. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  1. DOE - Office of Legacy Management -- El_Verde

    Office of Legacy Management (LM)

    Rico El Verde, Puerto Rico, Site Other Regulatory Framework elverde The DOE Office of Legacy Management assumed responsibility for a tree in Study Area 4 of El Verde site in 2005....

  2. DOE - Office of Legacy Management -- ChicNorth_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy ...

  3. DOE - Office of Legacy Management -- Fairfield_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No institutional controls are in effect at the privately owned site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management ...

  4. DOE - Office of Legacy Management -- Springdale PA - PA 11

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Springdale, Pennsylvania, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. PA.11-1 ...

  5. DOE - Office of Legacy Management -- Chupadera_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy ...

  6. DOE - Office of Legacy Management -- Oakridge_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy ...

  7. DOE - Office of Legacy Management -- Toledo OH - OH 16

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Toledo, Ohio, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. OH.16-1 - DOE ...

  8. DOE - Office of Legacy Management -- Adrian_FUSRAP

    Office of Legacy Management (LM)

    No institutional controls are in effect at the privately owned site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of ...

  9. DOE - Office of Legacy Management -- Springdale_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy ...

  10. DOE - Office of Legacy Management -- Aliquippa2_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy Management activities consist of ...

  11. DOE - Office of Legacy Management -- Indianorchard_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy ...

  12. DOE - Office of Legacy Management -- Beverly_FUSRAP

    Office of Legacy Management (LM)

    Final Conditions-No supplemental limits or institutional controls are in effect at the site, and DOE does not require on-site monitoring or surveillance. Office of Legacy ...

  13. Office of Legacy Management

    Office of Legacy Management (LM)

    Energy Office of Legacy Management JUL 1 0 2008 Alonso Ramirez, Scientific Director EI Verde Research Station Institute for Tropical Ecosystem Studies University of Puerto Rico...

  14. A Legacy of Benefit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Over more than three decades, FE research and development has established a legacy of significant achievement and return of value and benefits for the public funds invested.

  15. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Lowman, Idaho

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The DOE proposes to achieve compliance with the proposed EPA groundwater protection standards (Subparts A and B of 40 CFR 192) by meeting the EPA maximum concentration limits (MCLs) or background concentrations for designated hazardous constituents in groundwater in the uppermost aquifer (alluvium/weathered granodiorite) at the point of compliance (POC) at the Lowman disposal site near Lowman, Idaho. The proposed remedial action in conjunction with existing hydrogeological conditions at the Lowman site will ensure sufficient protection of human health and the environment. The DOE has concluded that the EPA groundwater protection standards will be met at the POC because, with the exception of antimony, none of the hazardous constituents that exceed laboratory method detection limits within the radioactive sand pore fluids were above the proposed concentration limits. The DOE has demonstrated that antimony will meet the proposed concentration limits at the POC through attenuation in subsoils beneath the disposal cell and by dilution in groundwater underflow. The Lowman processing site is in compliance with Subpart B of 40 CFR 192 because statistical analyses of groundwater samples indicate no groundwater contamination.

  16. Long-Term Stewardship: Institutional Controls on Department of Energy Sites. Development and Management of Institutional Controls at U.S. Department of Energy Office of Legacy Management Sites

    SciTech Connect (OSTI)

    Schiesswohl, S.; Bahrke, C.; Deyo, Y.; Uhlmeyer, T.

    2007-07-01

    The U.S. Department of Energy (DOE) has managed the Long Term Stewardship and Maintenance activities at DOE sites since 1988. DOE's Office of Legacy Management (LM) was established in December 2003, and its specific mission is to manage the DOE's post-closure responsibilities and ensure the future protection of human health and the environment. LM has control and custody for legacy land, structures, and facilities and is responsible for maintaining them at levels suitable for their long-term use. LM uses DOE Policy 454.1: Use of Institutional Controls (ICs) and Associated Guidance. Many major Federal laws, Executive Orders, regulations, and various other drivers influence the establishment and use of ICs at LM sites. LM uses a wide range of ICs as part of efforts to appropriately limit access to, or uses of, land, facilities and other real and personal property assets; protect the environment; maintain the physical safety and security of DOE facilities; and prevent or limit inadvertent human and environmental exposure to residual contaminants and other hazards. ICs generally fall into one of four categories identified by EPA guidance, and DOE is successfully using a 'defense in depth' strategy which uses multiple mechanisms to provide 'layering' for additional durability and protectiveness: - Proprietary controls - such as easements and covenants. - Governmental controls - implemented and enforced by state or local governments. - Enforcement and permit tools with IC components - such as CERCLA agreements or RCRA permits. - Informational devices - such as state registries or public advisories. An additional practice that supports ICs at LM sites entails the use of engineered controls, such as fences, gates, access controls, etc. to ensure public access to applicable areas is limited. An engineered control that is not an IC is the disposal cell itself with its design criteria that protects the contaminated interior, controls the penetration of precipitation, and the

  17. DOE - Office of Legacy Management -- Kerr McGee - 028

    Office of Legacy Management (LM)

    Site: Kerr McGee (028) Regulated by the U.S. Nuclear Regulatory Commission. More ... uranium and mixed oxide fuels for nuclear reactors Site Disposition: Remediation in ...

  18. DOE - Office of Legacy Management -- Simmons Machine and Tool...

    Office of Legacy Management (LM)

    Site Operations: Tested equipment and machined uranium to test the equipment (one time event). NY.35-1 NY.35-2 Site Disposition: Eliminated - Potential for contamination...

  19. Legacy sample disposition project. Volume 2: Final report

    SciTech Connect (OSTI)

    Gurley, R.N.; Shifty, K.L.

    1998-02-01

    This report describes the legacy sample disposition project at the Idaho Engineering and Environmental Laboratory (INEEL), which assessed Site-wide facilities/areas to locate legacy samples and owner organizations and then characterized and dispositioned these samples. This project resulted from an Idaho Department of Environmental Quality inspection of selected areas of the INEEL in January 1996, which identified some samples at the Test Reactor Area and Idaho Chemical Processing Plant that had not been characterized and dispositioned according to Resource Conservation and Recovery Act (RCRA) requirements. The objective of the project was to manage legacy samples in accordance with all applicable environmental and safety requirements. A systems engineering approach was used throughout the project, which included collecting the legacy sample information and developing a system for amending and retrieving the information. All legacy samples were dispositioned by the end of 1997. Closure of the legacy sample issue was achieved through these actions.

  20. The strategy on rehabilitation of the former uranium facilities at the 'Pridneprovsky chemical plant' in Ukraine

    SciTech Connect (OSTI)

    Voitsekhovich, O.; Lavrova, T. [Ukrainian Hydrometeorological Institute, Kiev (Ukraine); Skalskiy, A.S. [Institute of Geological Sciences of Ac.of Sc., Kiev (Ukraine); Ryazantsev, V.F. [State Nuclear Regulatory Committee of Ukraine, 9/11 Arsenalna str., Kyiv-11, 01011 (Ukraine)

    2007-07-01

    This paper describes current status of the former Uranium Facilities at the Pridneprovsky Chemical Plant in Ukraine, which are currently under development of action plan for its territory rehabilitation. The monitoring data carried out during recent several years show its impact to the Environment and gives a basis for justification of the number of measures aiming to reduce radiological and ecological risks of the Uranium tailings situated at the territory of PChP. The monitoring data and strategy for its remediation are considered in the presentation. Uranium mining has been intensively conducted in Ukraine since the end of the 40-s. Most of the uranium deposits have been explored in the Dnieper river basin, while some smaller deposits can be found within the basins of the Southern Bug and Severskiy Donets rivers. There also several large Uranium Milling facilities were in operation since the end of the 40-s till 1991, when due to disintegration of the former Soviet Union system the own uranium production has been significantly declined. The Milling Plant and Uranium extraction Facilities in ZhevtiVody is still in operation with UkrAtomprom Industrial Consortium. Therefore rehabilitation programme for all Uranium facilities in this site are in duty of the East Mining Combine and the Consortium. The most difficult case is to provide rehabilitation Action Plan for Uranium tailings and number of other facilities situated in Dnieprodzerzhinsk town and which were in operation by the former State Industrial Enterprise Pridneprovskiy Chemical Plant (PChP). In past PChP was one of the largest Uranium Milling facilities of the Former Soviet Union and has been in operation since 1948 till 1991. During Soviet time the Uranium extraction at this legacy site has been carried out using the ore raw products delivered also from Central Asia, Germany and Checz Republic. After extraction the uranium residue has been putting to the nearest landscape depressions at the vicinity of

  1. DOE - Office of Legacy Management -- U S Bureau of Mines - PA...

    Office of Legacy Management (LM)

    Site Operations: Conducted studied on explosiveness of Uranium, Thorium and Beryllium. ... Materials Handled: Uranium and Thorium PA.36-2 Radiological Survey(s): Yes - ...

  2. Microsoft Word - N01221_NE Site IRAP final.doc

    Office of Legacy Management (LM)

    Northeast Site August 2008 Office of Legacy Management LMSPINN01221 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. ...

  3. 2003 Annual Inspection of the Weldon Spring Site

    Office of Legacy Management (LM)

    Office of Legacy Management 2003 Annual Inspection - Weldon Spring, Missouri February 2004 ... Spring, Missouri, Site DOEOffice of Legacy Management 2003 Annual Inspection - Salt ...

  4. DOE - Office of Legacy Management -- General Motors Co - Flint...

    Office of Legacy Management (LM)

    1987 MI.07-3 Site Operations: Processed thorium oxide, uranium oxide, and beryllium oxide ... Primary Radioactive Materials Handled: Thorium, Uranium MI.07-3 MI.07-6 Radiological ...

  5. DOE - Office of Legacy Management -- Markite Co - NY 49

    Office of Legacy Management (LM)

    Site Operations: Conducted experiments with very small amounts of uranium and thorium. ... Radioactive Materials Handled: Uranium, Thorium NY.49-2 NY.49-3 Radiological Survey(s): ...

  6. DOE - Office of Legacy Management -- Vitro Corp of America -...

    Office of Legacy Management (LM)

    Year: 1985 NJ.02-3 Site Operations: Performed work that involved conversion of low enrichment uranium dioxide to uranium carbon spheres and for the separation of fission products. ...

  7. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  8. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  9. EA-1123: Transfer of Normal and Low-Enriched Uranium Billets to the United Kingdom, Hanford Site, Richland, Washington

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium to the United Kingdom; thus,...

  10. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... NNSA Announces Arrival of Plutonium and Uranium from Japan's Fast Critical Assembly at

  11. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement

    SciTech Connect (OSTI)

    1986-12-01

    This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

  12. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    DOE PAGES-Beta [OSTI]

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  13. DOE - Office of Legacy Management -- Colonie - NY 06

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. NY.06-1 - DOE Report (DOEOR20722-53); Colonie Interim Storage Site...

  14. DOE - Office of Legacy Management -- Colonie - NY 06

    Office of Legacy Management (LM)

    transfer to the U.S. Department of Energy Office of Legacy Management. NY.06-1 - DOE Report (DOEOR20722-53); Colonie Interim Storage Site Environmental Monitoring Report, ...

  15. DOE - Office of Legacy Management -- Website Still Under Construction

    Office of Legacy Management (LM)

    To reach the main site visit http:stage.lm.doe.govhome.aspx This corresponds to Goal 2 of LM's Goals -- Preserve, protect, and make accessible legacy records and information. ...

  16. DOE - Office of Legacy Management -- Aliquippa - PA 07

    Office of Legacy Management (LM)

    This site is managed by the U.S. Department of Energy Office of Legacy Management. PA.07-1 - DOE Memorandum; Coffman to LaGrone; Designation of Universal Cyclops, Inc., Titusville ...

  17. DOE - Office of Legacy Management -- Niagara Falls Vicinity Properties...

    Office of Legacy Management (LM)

    This site is currently managed by the U.S. Army Corps of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Assessment of ...

  18. DOE - Office of Legacy Management -- Palos Park Forest Preserve...

    Office of Legacy Management (LM)

    and Plot M Report for 2009. ANL-1001. April 2010 U.S. Department of Energy Office of Legacy Management Environmental Monitoring Program at Site A and Plot M, Palos Forest ...

  19. ORAU-managed ORISE again recognized as DOE "Legacy of Stars"...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ORAU-managed ORISE again recognized as DOE "Legacy of Stars" site for outstanding safety and health performance ORAU safety and health director honored for excellent program ...

  20. DOE - Office of Legacy Management -- AMB

    Office of Legacy Management (LM)

    Ambrosia Lake, New Mexico, Disposal Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Ambrosia Lake, New Mexico, Disposal Site December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site Ground Water Compliance Action Plan Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site

  1. DOE - Office of Legacy Management -- Blue

    Office of Legacy Management (LM)

    New Mexico Bluewater, New Mexico, Disposal Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Site-Bluewater, New Mexico, Disposal Site Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site, Near Grants, New Mexico Please be green.

  2. Abandoned Uranium Mines Report to Congress: LM Wants Your Input |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input April 11, 2013 - 1:33pm Addthis C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts What does this project do? Goal 4. Optimize the use of land and assets Abandoned Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder

  3. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the ...

  4. Process for Transition of Uranium Mill Tailings Radiation Control...

    Office of Environmental Management (EM)

    Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department ... Maintenance Process for Transition of Uranium Mill Tailings Radiation Control Act Title ...

  5. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Energy.gov (indexed) [DOE]

    of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and ...

  6. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Energy.gov (indexed) [DOE]

    Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume ...

  7. [SITE NAME] Fact Sheet

    Office of Legacy Management (LM)

    Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 (Public Law 95-604) and DOE remediated 22 inactive uranium-ore processing sites under the Uranium ...

  8. U.S. Department of Energy Office of Legacy Management's Tribal Interactions - 12513

    SciTech Connect (OSTI)

    Gil, April; Shafer, David; Elmer, John

    2012-07-01

    Effective government-to-government interactions with tribal nations and maintaining stakeholder relations with members of tribes are increasingly important to the U.S. Department of Energy (DOE) Office of Legacy Management (LM). As of October 2011, LM was responsible for long-term surveillance and maintenance of 87 sites and facilities in the continental U.S. and Puerto Rico, including some sites on tribal lands. The sites on tribal lands can affect natural resources that are managed or used by tribes, or the sites can potentially affect areas of cultural significance to tribal nations in Alaska, Arizona, Colorado, New Mexico, Utah, Washington, and Wyoming. Tribes are separate sovereign governments recognized in the U.S. Constitution and are significant stakeholders for LM sites. The tribes are individual nations with diverse histories, cultures, customs, religions, and laws. LM has regular communication with the affected tribes to inform members of issues, to allow the tribe to participate in decision making, to provide technical reviews, and to ensure tribal concerns are addressed. Four LM sites are in the Navajo Nation. Three of those sites contain uranium mill tailings disposal cells regulated under long-term surveillance and maintenance programs that require monitoring and annual inspections. The fourth site was remediated but still has a groundwater plume that LM is responsible for. DOE and LM have worked with the Navajo Nation for almost 30 years on technical issues and to ensure tribal concerns are addressed. (authors)

  9. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........32 Comprehensive Legacy Management and Institutional Controls ...

  10. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........49 Comprehensive Legacy Management and Institutional Controls ...

  11. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........33 Comprehensive Legacy Management and Institutional Controls ...

  12. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........34 Comprehensive Legacy Management and Institutional Controls ...

  13. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........52 Comprehensive Legacy Management and Institutional Controls ...

  14. Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL

    SciTech Connect (OSTI)

    Bodey, Isaac T [ORNL] [ORNL; Arimilli, Rao V [ORNL] [ORNL; Freels, James D [ORNL] [ORNL

    2010-01-01

    Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched uranium (HEU) fuel to a low enriched uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC), which adds much conservatism to the safety analysis. The multi-dimensional multi-physics capabilities of the COMSOL environment allow the analyst to relax the number and magnitude of conservatisms, imposed by the SSHTC, to present a more physical model of the TH aspect of the HFIR.

  15. Legacy: Order (2015-CE-14025)

    Energy.gov [DOE]

    DOE ordered The Legacy Companies to pay a $8,000 civil penalty after finding Legacy had failed to certify that refrigerator Maxx-Ice brand basic model MCR3U complies with the applicable energy conservation standards.

  16. DOE - Office of Legacy Management -- Mobil Oil Corp - VA 01

    Office of Legacy Management (LM)

    VA.01-3 Site Operations: ResearchDevelopment to recover Uranium as a byproduct of phosphate production; preparatory process for pilot plant scale operation at Nichols, Florida. ...

  17. DOE - Office of Legacy Management -- Woburn Landfill - MA 07

    Office of Legacy Management (LM)

    1987 MA.07-6 Site Operations: The National Lead Company, Inc. disposed of approximately ... development and experimental studies of uranium and thorium extraction; Contract No. ...

  18. DOE - Office of Legacy Management -- Englehard Industries - MA...

    Office of Legacy Management (LM)

    operations - uranium metal - under AEC license. MA.0-03-1 Site Disposition: Eliminated - NRC licensed MA.0-03-1 Radioactive Materials Handled: Yes Primary Radioactive Materials...

  19. DOE - Office of Legacy Management -- Titanium Metals Corp Div...

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: None Location: Henderson , Nevada NV.07-1 Evaluation Year: 1994 NV.07-1 Site Operations: Experimental work on electrolyzing uranium ...

  20. DOE - Office of Legacy Management -- Knoxville Iron Co - TN 07

    Office of Legacy Management (LM)

    TN.07-1 Site Disposition: Eliminated - AEC license TN.07-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Limited Quantities of Uranium Contained in Slag ...

  1. DOE - Office of Legacy Management -- Landis Machine Tool Co ...

    Office of Legacy Management (LM)

    for machining uranium metal slugs. PA.34-1 Site Disposition: Eliminated - Limited scope of activities performed quantities of radioactive materials involved suggest little or ...

  2. DOE - Office of Legacy Management -- Motch and Merryweather ...

    Office of Legacy Management (LM)

    ...Development and Testing of Uranium. OH.46-1 Site Disposition: Eliminated - Limited scope of activities performed - Potential for residual radioactive contamination considered ...

  3. DOE - Office of Legacy Management -- Tuba City AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  4. DOE - Office of Legacy Management -- Globe Cutter AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  5. DOE - Office of Legacy Management -- Marysvale AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  6. DOE - Office of Legacy Management -- Blue Water AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  7. DOE - Office of Legacy Management -- Monticello AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  8. DOE - Office of Legacy Management -- Shiprock AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  9. DOE - Office of Legacy Management -- Shirley Basin AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  10. DOE - Office of Legacy Management -- Mexican Hat AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  11. DOE - Office of Legacy Management -- Moab AEC Ore Buying Station...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  12. DOE - Office of Legacy Management -- Grants AEC Ore Buying Station...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  13. DOE - Office of Legacy Management -- Riverton AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  14. DOE - Office of Legacy Management -- Crooks Gap AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  15. DOE - Office of Legacy Management -- White Canyon AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  16. DOE - Office of Legacy Management -- Kerr McGee - 028

    Office of Legacy Management (LM)

    Handled: Radiological Survey(s): Site Status: The Kerr McGee plant in Guthrie Oklahoma processed unirradiated uranium scrap for the Atomic Energy Commission, recovering ...

  17. DOE - Office of Legacy Management -- Norfolk Naval Station -...

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: None Location: Norfolk , Virginia VA.05-1 Evaluation Year: 1993 VA.05-1 Site Operations: Demonstration of extinguishing a uranium ...

  18. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L.; Mitzelfelt, R.

    1991-11-01

    This Remedial Action Plan (RAP) has been developed to serve a dual purpose. It presents the series of activities that is proposed by the US Department of Energy (DOE) to stabilize and control radioactive materials at the inactive Phillips/United Nuclear uranium processing site designated as the Ambrosia Lake site in McKinley County, New Mexico. It also serves to document the concurrence of both State of New Mexico and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  19. DOE - Office of Legacy Management -- Marysville AEC Ore Buying...

    Office of Legacy Management (LM)

    Marysville AEC Ore Buying Station - UT 05 Site ID (CSD Index Number): UT.05 Site Name: Marysville AEC Ore Buying Station Site Summary: The history of domestic uranium procurement ...

  20. DOE - Office of Legacy Management -- Edge

    Office of Legacy Management (LM)

    South Dakota Edgemont, South Dakota, Disposal Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites-Edgemont, South Dakota, Disposal Site Long-Term Surveillance Plan for the DOE Tennessee Valley Authority (UMTRCA Title II) Disposal Site, Edgemont, South Dakota Please be green. Do not print these documents unless absolutely