Pennsylvania State University Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield...
University of Michigan Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Michigan Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Michigan Address 1085 South University Avenue Place Ann Arbor,...
University of Minnesota Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place...
Colorado State University Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus...
University of Maine Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website...
Oregon State University Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...
University of New Hampshire Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Hydrodynamic Testing Facilities Name University of New Hampshire Address Chase Ocean Engineering Laboratory, 24 Colovos Road Place Durham, NH Zip 03824 Sector Hydro Phone number...
MHK Projects/Marine Hydrodynamics Laboratory at the University...
OpenEI (Open Energy Information) [EERE & EIA]
Marine Hydrodynamics Laboratory at the University of Michigan < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"map...
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish
Hydrodynamic Testing Facilities Database | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...
Skew resisting hydrodynamic seal
Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.
2001-01-01
A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2000-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Load responsive hydrodynamic bearing
Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.
2002-01-01
A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.
Hydrodynamic Testing Facilities Database | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be...
Hydrodynamics from Landau initial conditions
Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read jr, Kenneth F.; Wong, Cheuk-Yin
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Laser driven hydrodynamic instability experiments
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1992-12-07
We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I.
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Novel techniques for slurry bubble column hydrodynamics
Dudukovic, M.P.
1999-05-14
The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.
Foundation of Hydrodynamics of Strongly Interacting Systems
Wong, Cheuk-Yin
2014-01-01
Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.
A Two-Dimensional Radiation Hydrodynamics Code
Energy Science and Technology Software Center
2003-03-10
Calculation of compressible and high energetic hydrodynamic fields including photon transport and heat conduction in twodimensional curvilinear geometry.
COER Hydrodynamic Modeling Competition: Modeling the Dynamic...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
... Simulations were performed using first-order waves and the lower-order panel method. Figure 4 presents the hydrodynamic coefficients calculated with WAMIT and compares them to ...
COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...
Office of Scientific and Technical Information (OSTI)
Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid ...
Effects on the Physical Environment (Hydrodynamics, Sediment...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, ... Development 2014 Water Power Program Peer Review Compiled Presentations: Marine and ...
Sandia National Laboratories Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Hydro | Hydrodynamic Testing Facilities Name Sandia National Laboratories Address P.O. Box 5800 Place Albuquerque, NM Zip 87185 Sector Hydro Website http:www.sandia.gov...
Hydromechanical transmission with hydrodynamic drive
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.
Hydrodynamic enhanced dielectrophoretic particle trapping
Miles, Robin R.
2003-12-09
Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.
Follow-up on the Los Alamos National Laboratory Hydrodynamic...
Energy.gov [DOE] (indexed site)
Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program DOEIG-0930 ... Alamos National Laboratory Hydrodynamic Test Program" BACKGROUND A primary mission of ...
Damaged Surface Hydrodynamics (DSH) Flash Report (Technical Report...
Office of Scientific and Technical Information (OSTI)
Technical Report: Damaged Surface Hydrodynamics (DSH) Flash Report Citation Details In-Document Search Title: Damaged Surface Hydrodynamics (DSH) Flash Report You are accessing ...
Effects on the Physical Environment (Hydrodynamics, and Water...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality ...
Livermore Unstructured Lagrange Explicit Shock Hydrodynamics
Energy Science and Technology Software Center
2010-09-21
LULESH v1.0 is a 3D unstructured Lagrange hydrodynamics simulation written specifically to solve a standard analytical test problem, known as the Sedov problem. In this problem, a quantum of energy is deposited into a gas and propagates through the gas over time.
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Hydrodynamic experiment provides key data for Stockpile Stewardship
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hydrodynamic experiment provides Stockpile Stewardship key data Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. December 22, 2014 Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship "Leda," experimental vessel in the "Zero Room" at the underground U1a facility, at the Nevada National
The Radiation Transport Conundrum in Radiation Hydrodynamics
Castor, J I
2005-03-18
The summary of this paper is: (1) The conundrum in the title is whether to treat radiation in the lab frame or the comoving frame in a radiation-hydrodynamic problem; (2) Several of the difficulties are associated with combining a somewhat relativistic treatment of radiation with a non-relativistic treatment of hydrodynamics; (3) The principal problem is a tradeoff between easily obtaining the correct diffusion limit and describing free-streaming radiation with the correct wave speed; (4) The computational problems of the comoving-frame formulation in more than one dimension, and the difficulty of obtaining both exact conservation and full u/c accuracy argue against this method; (5) As the interest in multi-D increases, as well as the power of computers, the lab-frame method is becoming more attractive; and (6) The Monte Carlo method combines the advantages of both lab-frame and comoving-frame approaches, its only disadvantage being cost.
Laser-driven hydrodynamic instability experiments
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K. )
1993-07-01
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single-mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils give a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.
Laser driven hydrodynamic instability experiments. Revision 1
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1993-02-17
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.
Newtonian Hydrodynamics with Arbitrary Volumetric Sources
Lowrie, Robert Byron
2015-11-12
In this note, we derive how to handle mass, momentum, and energy sources for Newtonian hydrodynamics. Much of this is classic, although we’re unaware of a reference that treats mass sources, necessary for certain physics and the method of manufactured solutions. In addition, we felt it important to emphasize that the integral form of the governing equations results in a straightforward treatment of the sources. With the integral form, we’ll demonstrate that there’s no ambiguity between the Lagrangian and Eulerian form of the equations, which is less clear with the differential forms.
DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility
U.S. Department of Energy (DOE) - all webpages (Extended Search)
DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,
Effects on the Physical Environment (Hydrodynamics, and Water Quality Food
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Web) | Department of Energy and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) 57_mhk_modeling.ppt (7.28 MB) More Documents & Publications Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the
Consistent description of kinetics and hydrodynamics of dusty plasma
Markiv, B.; Tokarchuk, M.
2014-02-15
A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.
Los Alamos conducts important hydrodynamic experiment in Nevada
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Los Alamos conducts hydrodynamic experiment in Nevada Los Alamos conducts important hydrodynamic experiment in Nevada Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. September 8, 2014 Technicians at the Nevada National Security Site make final adjustments to the "Leda" experimental vessel in the "Zero Room" at the underground U1a facility. Technicians at the Nevada National Security Site
Simulation of Explosion Ground Motions Using a Hydrodynamic-to...
Office of Scientific and Technical Information (OSTI)
Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Citation Details In-Document Search Title: Simulation of Explosion ...
Collisional-Radiative Modeling for Radiation Hydrodynamics (Book...
Office of Scientific and Technical Information (OSTI)
Publisher: Modern Methods in Collisional-Radiative Modelling of Plasmas, Collisional-Radiative Modeling for Radiation Hydrodynamics, Springer International Publishing, unknown, ...
Los Alamos conducts important hydrodynamic experiment in Nevada
U.S. Department of Energy (DOE) - all webpages (Extended Search)
nuclear testing," said Webster. These experiments with surrogate materials provide a principle linkage with scaledfull-scale hydrodynamic tests, the suite of prior underground...
Hydrodynamic and Membrane Binding Properties of Purified Rous...
Office of Scientific and Technical Information (OSTI)
Purified Rous Sarcoma Virus Gag Protein Citation Details In-Document Search Title: Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein ...
Hydrodynamic interactions in metal rod-like particle suspensions...
Office of Scientific and Technical Information (OSTI)
We present a theoretical and experimental study of the role of hydrodynamic interactions ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 42 ...
Hydrodynamic experiment provides key data for Stockpile Stewardship
U.S. Department of Energy (DOE) - all webpages (Extended Search)
weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...
Violation of the Wiedemann-Franz Law in Hydrodynamic Electron...
Office of Scientific and Technical Information (OSTI)
Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids This content will become publicly available on July 30, 2016 Prev Next Title: Violation of the ...
Violation of the Wiedemann-Franz Law in Hydrodynamic Electron...
Office of Scientific and Technical Information (OSTI)
Journal Article: Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids Citation Details In-Document Search This content will become publicly available on July 30, ...
Hydrodynamic effects on coalescence. (Technical Report) | SciTech...
Office of Scientific and Technical Information (OSTI)
The goal of this project was to design, build and test novel diagnostics to probe the ... Subject: 42 ENGINEERING; DROPLETS; COALESCENCE; HYDRODYNAMICS; TEST FACILITIES; DESIGN; ...
Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent
Office of Scientific and Technical Information (OSTI)
multidomains: Thermal equilibrium (Journal Article) | SciTech Connect Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium Citation Details In-Document Search Title: Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium Authors: Bian, Xin ; Li, Zhen ; Deng, Mingge ; Karniadakis, George Em Publication Date: 2015-11-10 OSTI Identifier: 1225680 Type: Publisher's Accepted Manuscript Journal
Explicit 2-D Hydrodynamic FEM Program
Energy Science and Technology Software Center
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Off-shell hydrodynamics from holography
Crossley, Michael; Glorioso, Paolo; Liu, Hong; Wang, Yifan
2016-02-18
In this article, we outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces tomore » that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.« less
Explicit 2-D Hydrodynamic FEM Program
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Hydrodynamic Focusing Micropump Module with PDMS/Nickel Particle
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hydrodynamic Focusing Micropump Module with PDMS/Nickel Particle Composite Diaphragms for Microfluidic Systems J. Kim 1,2, * , P. Ajmera 1 , J. Goettert 2 , Y. Jin 2,3 and K.-N. Kang 1,2 1 LSU - Department of Electrical and Computer Engineering 2 LSU-Center for Advanced Microstructures and Devices 3 NextGenC3 Composites CREST Center, Southern University and A&M College, USA * Master Thesis J. Kim, LSU-ECE Department Summary As part of the Post-Katrina project, a multi-fluidic
Triangular flow in hydrodynamics and transport theory
Alver, Burak Han [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Gombeaud, Clement; Luzum, Matthew; Ollitrault, Jean-Yves [CNRS, URA2306, IPhT, Institut de physique theorique de Saclay, F-91191 Gif-sur-Yvette (France)
2010-09-15
In ultrarelativistic heavy-ion collisions, the Fourier decomposition of the relative azimuthal angle, {Delta}{phi}, distribution of particle pairs yields a large cos(3{Delta}{phi}) component, extending to large rapidity separations {Delta}{eta}>1. This component captures a significant portion of the ridge and shoulder structures in the {Delta}{phi} distribution, which have been observed after contributions from elliptic flow are subtracted. An average finite triangularity owing to event-by-event fluctuations in the initial matter distribution, followed by collective flow, naturally produces a cos(3{Delta}{phi}) correlation. Using ideal and viscous hydrodynamics and transport theory, we study the physics of triangular (v{sub 3}) flow in comparison to elliptic (v{sub 2}), quadrangular (v{sub 4}), and pentagonal (v{sub 5}) flow. We make quantitative predictions for v{sub 3} at RHIC and LHC as a function of centrality and transverse momentum. Our results for the centrality dependence of v{sub 3} show a quantitative agreement with data extracted from previous correlation measurements by the STAR collaboration. This study supports previous results on the importance of triangular flow in the understanding of ridge and shoulder structures. Triangular flow is found to be a sensitive probe of initial geometry fluctuations and viscosity.
EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility
This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Joseph, Ilon
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Hydrodynamic interactions in metal rod-like particle suspensions...
Office of Scientific and Technical Information (OSTI)
and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rod-like particles in the presence of an externally applied electric field. ...
Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Water Quality) | Department of Energy Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) 56_tools_methods_to_measure_predict_envrionmental_impacts_snl_roberts.pptx (2.23 MB) More Documents & Publications FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled
Hydrodynamic Instability of Ionization Fronts in HII Regions
Mizuta, A; Kane, J; Ryutov, D; Remington, B; Takabe, H; Pound, M
2003-08-21
The authors investigate hydrodynamic instability of accelerating ionization fronts with two dimensional hydrodynamic simulations. When recombination in the ionized region is turned off, Rayleigh-Taylor instability is effective. Perturbation grows up with classical Rayleigh-Taylor growth rate. In the case with recombination, the local difference of absorption profile works to smooth the surface. The perturbation does not grow and the amplitude follows a damped oscillations with time.
Multi-resolution flow simulations by smoothed particle hydrodynamics via
Office of Scientific and Technical Information (OSTI)
domain decomposition (Journal Article) | SciTech Connect Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition Citation Details In-Document Search Title: Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition Authors: Bian, Xin Search SciTech Connect for author "Bian, Xin" Search SciTech Connect for ORCID "0000000276414715" Search orcid.org for ORCID "0000000276414715" ; Li, Zhen
Application of CHAD hydrodynamics to shock-wave problems
Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.
1997-12-31
CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, it is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.
Application of a panel method to hydrodynamics of underwater vehicles
Sahin, I.; Crane, J.W.; Watson, K.P.
1994-12-31
A low-order singularity panel method based on Green`s formulation is used to predict the hydrodynamics characteristics of underwater vehicles. The low-order modeling employs constant strength sources and doublets, and the body surface is modeled by quadrilaterals. The method is first applied to predicting the force and moment coefficients of underwater vehicles for the body-alone and finned configurations. Hydrodynamic coefficients of added mass and added moment of inertia are also calculated by modifying the code. Results for several two and three-dimensional bodies show the usefulness of the method for predicting the added mass and added moment of inertia.
3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK
Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D
2006-08-24
3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.
Hydrodynamic evolution and jet energy loss in Cu + Cu collisions
Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2011-04-15
We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.
Dual Axis Radiographic Hydrodynamic Test | National Nuclear Security
National Nuclear Security Administration (NNSA)
Administration Dual Axis Radiographic Hydrodynamic Test NNSA releases Stockpile Stewardship Program quarterly experiments summary WASHIGTON, DC. - The National Nuclear Security Administration today released its current quarterly summary of experiments conducted as part of its science-based Stockpile Stewardship Program. The experiments carried out within the program are used in combination with complex computational models
(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions...
Office of Scientific and Technical Information (OSTI)
(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions Citation Details In-Document Search Title: (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions ...
Event-by-event hydrodynamics: A better tool to study the Quark-Gluon plasma
Grassi, Frederique
2013-03-25
Hydrodynamics has been established as a good tool to describe many data from relativistic heavyion collisions performed at RHIC and LHC. More recently, it has become clear that it is necessary to use event-by-event hydrodynamics (i.e. describe each collision individually using hydrodynamics), an approach first developed in Brazil. In this paper, I review which data require the use of event-by-event hydrodynamics and what more we may learn on the Quark-Gluon Plasma with this.
Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts
Sapir, Nir; Halbertal, Dorri
2014-12-01
We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.
Validating hydrodynamic growth in National Ignition Facility implosions
Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.
2015-05-15
We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.
Development and Implementation of Radiation-Hydrodynamics Verification Test Problems
Marcath, Matthew J.; Wang, Matthew Y.; Ramsey, Scott D.
2012-08-22
Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.
Low torque hydrodynamic lip geometry for rotary seals
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Matching pre-equilibrium dynamics and viscous hydrodynamics
Martinez, Mauricio; Strickland, Michael
2010-02-15
We demonstrate how to match pre-equilibrium dynamics of a 0+1-dimensional quark-gluon plasma to second-order viscous hydrodynamical evolution. The matching allows us to specify the initial values of the energy density and shear tensor at the initial time of hydrodynamical evolution as a function of the lifetime of the pre-equilibrium period. We compare two models for pre-equilibrium quark-gluon plasma, longitudinal free streaming and collisionally broadened longitudinal expansion, and present analytic formulas that can be used to fix the necessary components of the energy-momentum tensor. The resulting dynamical models can be used to assess the effect of pre-equilibrium dynamics on quark-gluon plasma observables. Additionally, we investigate the dependence of entropy production on pre-equilibrium dynamics and discuss the limitations of the standard definitions of nonequilibrium entropy.
THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS
Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Clayton, Vic. 3800 (Australia); Do?an, Suzan [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 ?zmir (Turkey); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)
2014-09-10
We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.
Analytical Solutions of Landau (1+1)-Dimensional Hydrodynamics
Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Jr, Kenneth F
2014-01-01
To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.
Skew and twist resistant hydrodynamic rotary shaft seal
Dietle, Lannie; Kalsi, Manmohan Singh
1999-01-01
A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.
Skew and twist resistant hydrodynamic rotary shaft seal
Dietle, L.; Kalsi, M.S.
1999-02-23
A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Chu, R.; Amakai, M.; Lung, H.C.; Ishigai, T.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Kennedy, T.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
Correlating hydrodynamic radii with that of two-dimensional nanoparticles
Yue, Yuan; Kan, Yuwei; Clearfield, Abraham; Choi, Hyunho; Liang, Hong
2015-12-21
Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.
Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry
Dietle, Lannie; Gobeli, Jeffrey D.
1993-07-27
A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.
RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code
Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study
2005-06-06
The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.
DYNA3D. Explicit 3-D Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E.
1993-11-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E.
1993-11-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-D Hydrodynamic FEM Program
Whirley, R.G.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D; Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E. )
1993-11-30
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-D Hydrodynamic FEM Program
Whirley, R.G.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
On freeze-out problem in relativistic hydrodynamics
Ivanov, Yu. B., E-mail: Y.Ivanov@gsi.de; Russkikh, V. N. [Gesellschaft fuer Schwerionenforschung mbH (Germany)
2009-07-15
A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motivation of the Cooper-Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper-Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.
On the hydrodynamics of salt-gradient solar ponds
Zangrando, F. )
1991-01-01
The objective of this paper is to discuss those hydrodynamical issues that affect the performance of the solar pond as an energy collector and storage system, e.g., mass and energy balance; formation, stability, and maintenance of the gradient layer; energy extraction from the bottom mixed layer; stability of stratified fluids to shearing flows; interface dynamics; and wall effects. Many of these topics are not fully understood and the discussion focuses on the present state of knowledge, some of the engineering correlations available at this time, and the research that is still required to resolve the relevant issues.
Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal
Dietle, Lannie; Kalsi, Manmohan Singh
2000-03-14
A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.
Lower bound on the electroweak wall velocity from hydrodynamic instability
Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.
2015-03-27
The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.
Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear
National Nuclear Security Administration (NNSA)
Security Administration | (NNSA) Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national hydrotest program, the DARHT is the world's most powerful x-ray machine. DARHT consists of two electron accelerators oriented at right angles to one another. Each accelerator creates a powerful electron beam that is focused onto a metal target which converts the kinetic energy of the electron beam into high energy x or gamma-rays. The x-ray dose from one DARHT accelerator is
New Way of Analysis of the Magneto Hydrodynamic Flow Using Computation...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
New Way of Analysis of the Magneto Hydrodynamic Flow Using Computational Fluid Dynamics Procedures Analysis of many fusion applications such as liquid metal blankets requires ...
Adding kinetics and hydrodynamics to the CHEETAH thermochemical code
Fried, L.E., Howard, W.M., Souers, P.C.
1997-01-15
In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. We have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.
Numerical simulation of the hydrodynamical combustion to strange quark matter
Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth
2010-12-15
We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below {approx_equal}2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.
Radiation Hydrodynamics Test Problems with Linear Velocity Profiles
Hendon, Raymond C.; Ramsey, Scott D.
2012-08-22
As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 , the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Galactic scale gas flows in colliding galaxies: 3-Dimensional, N-body/hydrodynamics experiments
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Galactic Scale Gas Flows in Colliding Galaxies: a-Dimensional, N-bodyjHydrodynamics Experiments Susan A. Lamb* NORDITA and Neils Bohr Institute, Blegdamsvej 17, DK-2100, Kpbenhaven 0, Danmark. Richard A. Gerber University of Illinois at Urbana-Champaign, Departments of Physics and Astronomy, 1110 W. Green Street, Urbana, IL 61801, U.S.A. and Dinshaw S. Balsara t Johns Hopkins University, Department of Physics and Astronomy, Homewood Campu.s, Baltimore, MD 21218, U.S.A. Abstract. We present some
Cross, J. E.; Gregori, G.; Reville, B.
2014-11-01
We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.
Symposium on hydrodynamic diffusion of suspended particles. Final report
1996-05-01
The symposium brought together researchers from academic, government, and private laboratories interested in the interactions of particles in fluids and in granular media. There were 68 participants, including 24 students, currently residing In 12 countries. The participants represented a wide variety of fields, including applied mathematics, chemical engineering, computer science, fluid dynamics, materials science, mechanical engineering, physics, and theoretical and applied mechanics. There were 33 talks and 16 posters presented. The focus of the symposium was on multiparticle hydrodynamic interactions which lead to fluctuating motion of the particles and resulting particle migration and dispersion or diffusion. Implications of these phenomena were described for sedimentation, fluidization, suspension flows, granular flows, and fiber suspensions. Computer simulation techniques as well as experimental techniques were described.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
Dudukovic, M.P.; Fan, L.S.; Chang, Min
1997-05-01
The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research and Engineering Company is to improve the basis for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. The first year of this three year program was spent on developing and tuning the experimental tools that can provide accurate measurement of pertinent hydrodynamic quantities, such as velocity field and holdup distribution, for validation of hydrodynamic models. Advances made in preparing the unique Computer Automated Radioactive Particle Tracing (CARPT) technique for use in high pressure systems are described in this report The work done on developing a reliable beat transfer coefficient measurement probe at operating conditions of interest is also described. Finally, the work done in preparing the Exxon pilot plant facilities for high pressure runs and pertinent hydrodynamic measurements is outlined together with preliminary studies of matching the fluid dynamics program predictions and data in a two dimensional column.
Cornell University Hydrodynamics | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Engineering, 2B20 Hollister Place Ithaca, New York Zip 14853 Sector Hydro Phone number (607) 255-5140 Website http:www.cee.cornell.eduabo Coordinates 42.4467049,...
Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine
Roald, L.; Jonkman, J.; Robertson, A.
2014-05-01
The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.
Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics
Johnson, J N
2009-07-02
The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.
Density-shear instability in electron magneto-hydrodynamics
Wood, T. S. Hollerbach, R.; Lyutikov, M.
2014-05-15
We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is at least as stable as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.
Hybrid magneto-hydrodynamic simulation of a driven FRC
Rahman, H. U. Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N.; Conti, F.; Plasma Diagnostics and Technologies Ltd., Via Giuntini 63, 56023 Navacchio ; Ney, P.
2014-03-15
We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].
IUTAM symposium on hydrodynamic diffusion of suspended particles
Davis, R.H.
1995-12-31
Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS
Saitoh, Takayuki R.; Makino, Junichiro
2013-05-01
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.
Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.
2011-10-01
This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.
Microsoft PowerPoint - A new efficient approach for 3D hydrodynamics simulation [Compatibility Mode]
U.S. Department of Energy (DOE) - all webpages (Extended Search)
3039 This document is approved for public release; further dissemination unlimited A new efficient approach for 3D hydrodynamics simulation A new efficient approach for 3D hydrodynamics simulation Current high-fidelity 3D simulation tools are limited by accuracy, performance, and setup time * Tedious problem definition * 2D algorithms often do not scale to 3D * Poor accuracy requires intractable levels of mesh resolution * Legacy tools not easily ported to advanced computer architectures
Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.
1995-09-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.
A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Dependent Viscosity | Argonne Leadership Computing Facility A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle hydrodynamics approach is utilized to model a non-Newtonian fluid with a spatially varying viscosity. In the limit of constant viscosity, this approach recovers an earlier model for Newtonian fluids of Espa Publication Date: September, 2010 Name of Publication Source:
Development of a Hydrodynamic Model of Puget Sound and Northwest Straits
Yang, Zhaoqing; Khangaonkar, Tarang P.
2007-12-10
The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.
The moving-least-squares-particle hydrodynamics method (MLSPH)
Dilts, G.
1997-12-31
An enhancement of the smooth-particle hydrodynamics (SPH) method has been developed using the moving-least-squares (MLS) interpolants of Lancaster and Salkauskas which simultaneously relieves the method of several well-known undesirable behaviors, including spurious boundary effects, inaccurate strain and rotation rates, pressure spikes at impact boundaries, and the infamous tension instability. The classical SPH method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of motion for continua using as basis functions the SPH kernel function multiplied by the particle volume. This derivation is then modified by simply substituting the MLS interpolants for the SPH Galerkin basis, taking care to redefine the particle volume and mass appropriately. The familiar SPH kernel approximation is now equivalent to a colocation-Galerkin method. Both classical conservative and recent non-conservative formulations of SPH can be derived and emulated. The non-conservative forms can be made conservative by adding terms that are zero within the approximation at the expense of boundary-value considerations. The familiar Monaghan viscosity is used. Test calculations of uniformly expanding fluids, the Swegle example, spinning solid disks, impacting bars, and spherically symmetric flow illustrate the superiority of the technique over SPH. In all cases it is seen that the marvelous ability of the MLS interpolants to add up correctly everywhere civilizes the noisy, unpredictable nature of SPH. Being a relatively minor perturbation of the SPH method, it is easily retrofitted into existing SPH codes. On the down side, computational expense at this point is significant, the Monaghan viscosity undoes the contribution of the MLS interpolants, and one-point quadrature (colocation) is not accurate enough. Solutions to these difficulties are being pursued vigorously.
Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint
Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.
2014-07-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.
Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters
Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.
2014-09-01
Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.
Jonkman, J. M.; Sclavounos, P. D.
2006-01-01
Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.
Hydrodynamics during the Deconfinement Phase Transition from a Hadronic Gas to a Colorless QGP
Ladrem, M.; Zaki-Al-Full, Z.; Herbadji, S.
2011-10-27
The collective flow of hot and dense matter (partonic plasma and hadronic gas) created in an ultra relativistic heavy ion collision can be usually described by hydrodynamics if only the thermalization is achieved and if it can be locally maintained during the subsequent expansion. It requires knowledge of the equation of state, which gives a relation between pressure P, energy density {epsilon}, entropy density s and sound velocityc{sub s}, but no detailed knowledge of the microscopic dynamics. After the study of these hydrodynamical collective observables in a previous work, we investigate in the present work some correlations between them outshining some relevant features of the equation of state and the hydrodynamical expansion of the system undergoing a deconfinement phase transition from hadronic gas to colorless quark gluon plasma. We also investigate the finite volume effect on the collective dynamical evolution of the system.
Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics
Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch
2015-07-28
Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.
Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint
Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.
2013-07-01
Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.
Recent Hydrodynamics Improvements to the RELAP5-3D Code
Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz
2009-07-01
The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.
Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998
Haagenstad, T.
1999-01-15
This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.
2014-10-28
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshes do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.
2014-10-28
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.
2015-03-01
Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.
Tung, Ryan C. Killgore, Jason P.; Hurley, Donna C.
2014-06-14
We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.
OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder: Preprint
Robertson, A. N.; Wendt, F. F.; Jonkman, J. M.; Popko, W.; Vorpahl, F.; Stansberg, C. T.; Bachynski, E. E.; Bayati, I.; Beyer, F.; de Vaal, J. B.; Harries, R.; Yamaguchi, A.; Shin, H.; Kim, B.; van der Zee, T.; Bozonnet, P.; Aguilo, B.; Bergua, R.; Qvist, J.; Qijun, W.; Chen, X.; Guerinel, M.; Tu, Y.; Yutong, H.; Li, R.; Bouy, L.
2015-04-23
This paper describes work performed during the first half of Phase I of the Offshore Code Comparison Collaboration Continuation, with Correlation project (OC5). OC5 is a project run under the IEA Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems. In this first phase, simulated responses from a variety of offshore wind modeling tools were modeling tools were validated against tank test data of a fixed, suspended cylinder (without a wind turbine) that was tested under regular and irregular wave conditions at MARINTEK. The results from this phase include an examination of different approaches one can use for defining and calibrating hydrodynamic coefficients for a model, and the importance of higher-order wave models in accurately modeling the hydrodynamic loads on offshore substructures.
Second-order discretization in space and time for radiation hydrodynamics
Edwards, J. D.; Morel, J. E.; Lowrie, R. B.
2013-07-01
We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L.; Schroeder, John E.
2009-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L.; Schroeder, John E.
2011-11-15
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Gidaspow, D.
1996-04-01
The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.
The source of elliptic flow and initial conditions for hydrodynamical calculations
Strottman, D.; Csernai, L.; Magas, V.
2000-08-01
A model for energy, pressure and flow velocity distributions at the beginning of relativistic heavy ion collisions is presented, which can be used as initial condition for hydrodynamical calculations. The results show that QGP forms a tilted disk, such that the direction of the largest pressure gradient stays in the reaction plane, but deviates from both the beam and the usual transverse flow directions. Such initial condition may lead to the creation of antiflow or third flow component.
Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.
1983-01-01
We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10/sup 5/ L. A shock wave caused a precursor in the light curve which lasted 10/sup -5/ sec.
KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray - Energy
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Innovation Portal Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray Los Alamos National Laboratory Contact LANL About This Technology Simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. Simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved at the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage RungeKutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.
Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.
2015-04-17
An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.
Yang, Zhaoqing; Liu, Hedong; Khangaonkar, Tarang P.
2006-08-03
The Skagit River is the largest river in the Puget Sound estuarine system. It discharges about 39% of total sediment and more than 20% of freshwater into Puget Sound. The Skagit River delta provides rich estuarine and freshwater habitats for salmon and many other wildlife species. Over the past 150 years, economic development in the Skagit River delta has resulted in significant losses of wildlife habitat, particularly due to construction of dikes. Diked portion of the delta is known as Fir Island where irrigation practices for agriculture land over the last century has resulted in land subsidence. This has also caused reduced efficiency of drainage network and impeded fish passages through the area. In this study, a three-dimensional tidal circulation model was developed for the Skagit River delta to assist estuarine restoration in the Fir Island area. The hydrodynamic model used in the study is the Finite Volume Coastal Ocean Model (FVCOM). The hydrodynamic model was calibrated using field data collected from the study area specifically for the model development. Wetting and drying processes in the estuarine delta are simulated in the hydrodynamic model. The calibrated model was applied to simulate different restoration alternatives and provide guidance for estuarine restoration and management. Specifically, the model was used to help select and design configurations that would improve the supply of sediment and freshwater to the mudflats and tidal marsh areas outside of diked regions and then improve the estuarine habitats for salmon migration.
Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; et al
2015-04-17
An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less
Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.
2015-04-17
An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 ?m/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.
Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.
2008-04-21
The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.
FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations
Ding, Jianmin; Lyczkowski, R.W.; Burge, S.W.
1993-02-01
A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL`s pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations
Ding, Jianmin; Lyczkowski, R.W. ); Burge, S.W. . Research Center)
1993-02-01
A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Zingale, M; Howell, L H
2010-03-17
The motivation for this work is to gain experience in the methodology of verification and validation (V&V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V&V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V&V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.
Luzum, Matthew; Gombeaud, Clement; Ollitrault, Jean-Yves
2010-05-15
We compute v{sub 4}/(v{sub 2}){sup 2} in ideal and viscous hydrodynamics. We investigate its sensitivity to details of the hydrodynamic model and compare the results to experimental data from the BNL Relativistic Heavy Ion Collider (RHIC). Whereas v{sub 2} has a significant sensitivity only to initial eccentricity and viscosity while being insensitive to freeze-out temperature, we find that v{sub 4}/(v{sub 2}){sup 2} is quite insensitive to initial eccentricity. On the other hand, it can still be sensitive to shear viscosity in addition to freeze-out temperature, although viscous effects do not universally increase v{sub 4}/(v{sub 2}){sup 2} as originally predicted. Consistent with data, we find no dependence on particle species. We also make a prediction for v{sub 4}/(v{sub 2}){sup 2} in heavy ion collisions at the CERN Large Hadron Collider (LHC).
Ackerman, David M.; Wang, Jing; Evans, James W.
2012-05-30
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)
Woodward, Paul R; Dimonte, Guy; Rockefeller, Gabriel M; Fryer, Christopher L; Dimonte, Guy; Dai, W; Kares, R. J.
2011-01-05
The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.
Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.
Kruizenga, Alan Michael; Crocker, Robert W.
2012-09-01
High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Energy Science and Technology Software Center
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.
Keicher, David M.; Cook, Adam W.
2014-09-01
The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.
Hydrodynamic modeling for corrosion control in the oil and gas industry
Palacios, C.A.; Morales, J.L.
1995-10-01
This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.
Performance evaluation of half-wetted hydrodynamic bearings with DLC coated surfaces.
Eryilmaz, O.; Erdemir, A.; Energy Systems
2008-01-01
In conventional liquid lubrication it is assumed that surfaces are fully wetted and no slip occurs between the fluid and the solid boundary. Under the 'no slip' condition the maximum shear gradient occurs at the fluid-surface interface. When one or both surfaces are non-wetted by the fluid, boundary slip can occur due to weak bonding between the fluid and the solid surface, which reduces shear stresses in the fluid adjacent to the non-wetted surface. A thrust bearing tribometer was used to compare the performance of 'no slip' hydrodynamic thrust bearings with bearings surfaces that were made to slip at the interface between the surface and fluid. Hydrophobic surfaces on both runner and bearing were achieved with the deposition of hydrogenated diamond like carbon (H-DLC) films, produced by plasma-enhanced CVD on titanium alloy surfaces. Hydrophilic surfaces were created through the surface modification of DLC. A mixtures of water and glycerol was used as the lubricant. The tests were conducted using different constant bearing gaps. The normal load and the torque or traction force between the rotating runner and hydrodynamic thrust bearing were measured with load cells. The experimental results confirmed that load support is still possible when surfaces are partially-wetted or nonwetted.
Peterson, J. L.; Clark, D. S.; Suter, L. J.; Masse, L. P.
2014-09-15
Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.
Observation of hydrodynamic processes of radiation-ablated plasma in a small hole
Li, Hang; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Song, Tianming; Yang, Jiamin Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye; Hu, Guangyue; Zhao, Bin; Zheng, Jian
2015-07-15
In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Donna Post Guillen
2009-07-01
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.
2014-07-01
We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.
The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.
2015-07-01
Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
Zakharov, Leonid E.; Li, Xujing
2015-06-15
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.
Shao, Yan-Lin Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
Casner, A. Masse, L.; Huser, G.; Galmiche, D.; Liberatore, S.; Riazuelo, G.; Delorme, B.; Martinez, D.; Remington, B.; Smalyuk, V. A.; Igumenshchev, I.; Michel, D. T.; Froula, D.; Seka, W.; Goncharov, V. N.; Olazabal-Loumé, M.; Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T.; Fujioka, S.; and others
2014-12-15
Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.
Hydrodynamic instability growth and mix experiments at the National Ignition Facility
Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L.; and others
2014-05-15
Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ∼2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.
Ryblewski, Radoslaw; Florkowski, Wojciech
2010-08-15
We address the problem of whether the early thermalization and Hanbury-Brown-Twiss (HBT) puzzles in relativistic heavy-ion collisions may be solved by the assumption that the early dynamics of the produced matter is locally anisotropic. The hybrid model describing the purely transverse hydrodynamic evolution followed by the perfect-fluid hydrodynamic stage is constructed. The transition from the transverse to perfect-fluid hydrodynamics is described by the Landau matching conditions applied at a fixed proper time {tau}{sub tr}. The global fit to the RHIC data reproduces the soft hadronic observables (the pion, kaon, and the proton spectra, the pion and kaon elliptic flow, and the pion HBT radii) with the accuracy of about 20%. These results indicate that the assumption of the very fast thermalization may be relaxed. In addition, the presented model suggests that a large part of the inconsistencies between the theoretical and experimental HBT results may be removed.
Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow
Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.
2013-08-01
Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel
Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media
Bandara, Dunusinghe Mudiyanselage Uditha C.; Tartakovsky, Alexandre M.; Oostrom, Martinus; Palmer, Bruce J.; Grate, Jay W.; Zhang, Changyong
2013-12-01
We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible fluids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel laboratory experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These observation also agree with the results of the micromodel laboratory experiments.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors
Sale, D.; Jonkman, J.; Musial, W.
2009-08-01
This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.
Charles Reece; John Mammosser; Jun Ortega
2008-02-12
Multi-cell niobium cavities often obtain the highest performance levels after having been subjected to an electropolishing (EP) process. The horizontal EP process first developed at KEK/Nomura Plating for TRISTAN[1] cavities is being applied to TESLA-style cavities and other structures for the XFEL and ILC R&D. Jefferson Lab is presently carrying this activity in the US. Because the local electropolishing current density is highly temperature dependent, we have created using CFDesign a full-scale hydrodynamic model which simulates the various thermal conditions present during 9-cell cavity electropolishing. The results of these simulations are compared with exterior surface temperature data gathered during ILC cavity EP at JLab. Having benchmarked the simulation, we explore the affect of altered boundary conditions in order to evaluate potentially beneficial modifications to the current standard process.
On the explanation and calculation of anomalous reflood hydrodynamics in large PWR cores
Rodriguez, S.E.
1985-01-01
Reflood hydrodynamics from large-scale (1:20) test facilities in Japan have yielded apparently anomalous behavior relative to FLECHT tests. Namely, even at reflooding rates below one inch per second, very large liquid volume fractions (10-15%) exist above the quench fronts shortly after flood begins; thus cladding temperature excursions are terminated early in the reflood phase. This paper discusses an explanation for this behavior: liquid films on the core's unheated rods. The experimental findings are shown to be correctly simulated with a new four-field (vapor, films, droplets) version of the best-estimate TRAC-PF1 computer code, TRAC-FF. These experimental and analytical findings have important implications for PWR large-break LOCA licensing.
Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang
2010-04-22
In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of
Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics
Burton, D.E.
1992-06-01
We consider a variation of the free-Lagrange (FL) method which is appropriate to staggered-grid differencing of the hydrodynamics equations (SGH) and will be termed the staggered free-Lagrange method or SFL. The SFL method discretizes space into general polygonal or polyhedral cells. The numerical differencing techniques and connectivity templates used for SFL differ markedly from those used by other unstructured grid methods, such as finite element (FE) and triangular/tetrahedral based free-Lagrange (TFL). The paper discusses the spatial discretization for both 2D and 3D geometry, differencing templates, object-oriented data management, and mesh optimization and refinement strategies. The suite of mesh optimization primitives is extended, giving rise to a powerful hybrid method called adaptive free-Lagrange (AFL) which is applied to a test problem.
Investigating the Magnetorotational Instability with Dedalus, and Open-Souce Hydrodynamics Code
Burns, Keaton J; /UC, Berkeley, aff SLAC
2012-08-31
The magnetorotational instability is a fluid instability that causes the onset of turbulence in discs with poloidal magnetic fields. It is believed to be an important mechanism in the physics of accretion discs, namely in its ability to transport angular momentum outward. A similar instability arising in systems with a helical magnetic field may be easier to produce in laboratory experiments using liquid sodium, but the applicability of this phenomenon to astrophysical discs is unclear. To explore and compare the properties of these standard and helical magnetorotational instabilities (MRI and HRMI, respectively), magnetohydrodynamic (MHD) capabilities were added to Dedalus, an open-source hydrodynamics simulator. Dedalus is a Python-based pseudospectral code that uses external libraries and parallelization with the goal of achieving speeds competitive with codes implemented in lower-level languages. This paper will outline the MHD equations as implemented in Dedalus, the steps taken to improve the performance of the code, and the status of MRI investigations using Dedalus.
Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Yu.V.
1995-02-01
This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulent mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations.
Radiom, Milad Ducker, William; Robbins, Brian; Paul, Mark
2015-02-15
The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm{sup −1}) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces.
Barz, H.W.; Csernai, L.P.; Greiner, W.
1982-08-01
The collision process is described by hydrodynamical equations. The escape of nucleons which do not take part in the thermal equilibrium are considered by including drain terms in these equations. The energy spectra of the escaped nucleons and of nucleons evaporated after the break up of the fluid are compared.
The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers
Miller, W.A.
2001-06-28
A thin falling film is well suited to simultaneous heat and mass transfer because of the small thermal resistance through the film and because of the large contact surface achievable at low flow rates. The film enters as a smooth laminar flow and quickly transitions into small-amplitude wavy flow. The waves grown in length and amplitude and are identified as roll waves. This flow regime is termed wavy-laminar flow, and modern heat and mass transfer equipment operate in this complicated transition regime. Research published in open literature has shown the mass flow rate in the rollwaves to be about 10 to 20 times greater than that in the laminar substrate. As the film fully develops, the waves grow in mass and the film substrate thins because fluid is swept from the substrate by the secondary flows of the roll wave. Many studies have been conducted to measure and correlate the film thickness of wavy-laminar flows. Literature data show that Nusselt's theory for smooth laminar flow can over predict the film thickness by as much as 20% for certain wavy-laminar flow conditions. The hydrodynamics of falling films were therefore studied to measure the film thickness of a free-surface falling film and to better understand the parameters that affect the variations of the film thickness. A flow loop was set up for measuring the thickness, wave amplitude,and frequency of a film during hydrodynamic flow. Decreasing the pipe diameter caused the amplitude of the wavy flow to diminish. Measurements monitored from stations along the falling film showed a thinning of film thickness. Fully developed flow required large starting lengths of about 0.5 m. The film thickness increases as the Reynolds number (Re) increases. Increasing the Kapitza number (Ka) causes a decrease in the film thickness. Regression analysis showed that the Re and Ka numbers described the data trends in wavy-laminar flow. Rather than correlating the Re number in discrete ranges of the Ka number as earlier
Oliva, Eduardo; Zeitoun, Philippe; Sebban, Stephan; Velarde, Pedro; Portillo, David; Fajardo, Marta; Cassou, Kevin; Ros, David; Le Pape, Sebastien
2010-11-15
Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 {mu}J seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.
Chipman, V D
2011-09-20
Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.
HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE AT THE TRANSITION TO EXPLOSION. I. SPHERICAL SYMMETRY
Fernandez, Rodrigo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)
2012-04-20
We study the transition to runaway expansion of an initially stalled core-collapse supernova shock. The neutrino luminosity, mass accretion rate, and neutrinospheric radius are all treated as free parameters. In spherical symmetry, this transition is mediated by a global non-adiabatic instability that develops on the advection time and reaches nonlinear amplitude. Here, we perform high-resolution, time-dependent hydrodynamic simulations of stalled supernova shocks with realistic microphysics to analyze this transition. We find that radial instability is a sufficient condition for runaway expansion if the neutrinospheric parameters do not vary with time and if heating by the accretion luminosity is neglected. For a given unstable mode, transition to runaway occurs when fluid in the gain region reaches positive specific energy. We find approximate instability criteria that accurately describe the behavior of the system over a wide region of parameter space. The threshold neutrino luminosities are in general different than the limiting value for a steady-state solution. We hypothesize that multidimensional explosions arise from the excitation of unstable large-scale modes of the turbulent background flow, at threshold luminosities that are lower than in the laminar case.
Smith, B.L.
1988-08-01
The implicit continuous Eulerian (ICE) finite difference method in hydrodynamic computations has proven very successful when applied to flow situations in which there are excessive fluid distortions. Code logic becomes exceedingly complex, however, if the boundaries of the fluid domain are material interfaces whose orientations with respect to the Eulerian grid evolve during the calculation. It is shown in this article that within the ICE methodology it is possible to express the discrete mass conservation condition in an identical form for all computational cells, even those containing, or close to, moving fluid boundaries. From this basis a generalised ICE algorithm is built up alleviating many of the difficulties associated with complicated configurations of free and structure boundaries. In particular, an effective treatment of slug impact with fluid-structure interaction is readily formulated. To illustrate the technique in practical situations, the method has been incorporated into a version of the coupled fluid-structure code SEURBNUK-EURDYN, used for LMFBR safety analysis, and a number of fluid--gas, fluid--structure situations are analysed. Results are compared with analytic solutions, experimental measurement, and/or other code predictions, as appropriate. Two oblique, slug impact situations are included. copyright 1988 Academic Press, Inc.
1995-08-01
On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.
Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.; Hayman, G.
2015-04-02
A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.
Hydrodynamic models for slurry bubble column reactors. Sixth technical progress report
Gidaspow, D.
1996-01-01
The objective of this investigation is to convert the gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. This report presents measurements of granular temperature of Air Products catalyst. The report is in the form of a preliminary paper, entitled ``Dynamics of Liquid-Solid Fluidized Beds with Small Catalyst Particles.`` The principal results are as follows: (1) For the liquid-solid system the granular temperature is much smaller than for a corresponding gas-solid system. This may be due to the larger viscosity of the liquid in comparison to air. (2) The collisional viscosity of the catalyst is correspondingly much smaller than that of catalyst particles in the air. (3) The dominant frequency of density oscillations is near two Hertz, as expected for a gas-solid fluidized bed. There exists a link between this low frequency and the high frequency of catalyst particle oscillations. The Air Products fluidized bed reactor is designed to produce methanol and synthetic fuels from synthesis gas.
Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007
Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.
2009-04-01
This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.
HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION
Kimm, Taysun; Cen, Renyue
2013-10-10
Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ? 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 10{sup 8}-3 10{sup 10} M{sub ?} with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f{sub esc}). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (A{sub V} ? 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (?10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.
Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study
Whiting, Jonathan M.; Khangaonkar, Tarang
2015-01-31
Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.
THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION
Dong, X. C.; Lin, W. P.; Wang, Yang Ocean; Kang, X.; Dutton, Aaron A.; Macci, Andrea V. E-mail: kangxi@pmo.ac.cn
2014-08-20
Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.
Efficient Calculation of Dewatered and Entrapped Areas Using Hydrodynamic Modeling and GIS
Richmond, Marshall C.; Perkins, William A.
2009-12-01
River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or entrapping fish, which often results in mortality. A methodology is described to estimate the areas dewatered or entrapped by a specific reduction in upstream discharge. A one-dimensional hydrodynamic model was used to simulate steady flows. Using flow simulation results from the model and a geographic information system (GIS), estimates of dewatered and entrapped areas were made for a wide discharge range. The methodology was applied to the Hanford Reach of the Columbia River in central Washington State. Results showed that a 280 m$^3$/s discharge reduction affected the most area at discharges less than 3400 m$^3$/s. At flows above 3400 m$^3$/s, the affected area by a 280 m$^3$/s discharge reduction (about 25 ha) was relatively constant. A 280 m$^3$/s discharge reduction at lower flows affected about twice as much area. The methodology and resulting area estimates were, at the time of writing, being used to identify discharge regimes, and associated water surface elevations, that might be expected to minimize adverse impacts on juvenile fall chinook salmon (\\emph{Oncorhynchus tshawytscha}) that rear in the shallow near-shore areas in the Hanford Reach.
Verification of coronal loop diagnostics using realistic three-dimensional hydrodynamic models
Winebarger, Amy R.; Lionello, Roberto; Linker, Jon A.; Miki?, Zoran; Mok, Yung E-mail: lionel@predsci.com E-mail: mikicz@predsci.com
2014-11-10
Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure distributions. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a three-dimensional hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the background. We then determine the density, temperature, and emission measure distribution as a function of time from the observations and compare these with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to a limitation of the analysis methods, but also to inadequate background subtraction.
Zhao, Xuan; Seyler, C. E.
2015-07-15
The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio of thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.
THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT
Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu
2014-12-20
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.
Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae
Nakamura, Ko; Kuroda, Takami; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Takiwaki, Tomoya [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2014-09-20
We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M {sub ?} progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (?0.3-3 rad s{sup 1} at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction of the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.
Ahn, Hyung-Joon; Bang, Young-Seok; Kim, In-Goo; Kim, Hho-Jung; Lee, Byeong-Eun; Kwon, Soon-Bum
2002-07-01
The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge and a better design of the IRWST, including sparger. (authors)
Korotkin, Ivan Karabasov, Sergey; Markesteijn, Anton; Nerukh, Dmitry; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen
2015-07-07
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Energy Science and Technology Software Center
1986-12-01
Version 00 The MEDUSA-IB code performs implosion and thermonuclear burn calculations of an ion beam driven ICF target, based on one-dimensional plasma hydrodynamics and transport theory. It can calculate the following values in spherical geometry through the progress of implosion and fuel burnup of a multi-layered target. (1) Hydrodynamic velocities, density, ion, electron and radiation temperature, radiation energy density, Rs and burn rate of target as a function of coordinates and time, (2) Fusion gainmore » as a function of time, (3) Ionization degree, (4) Temperature dependent ion beam energy deposition, (5) Radiation, -particle and neutron spectra as a function of time.« less
Srinivasan, Bhuvana; Tang, Xian-Zhu
2014-10-15
In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.
Chambers, D M; Glenzer, S H; Hawreliak, J; Wolfrum, E; Gouveia, A; Lee, R W; Marjoribanks, R S; Renner, O; Sondhauss, P; Topping, S; Young, P E; Pinto, P A; Wark, J S
2001-04-03
We present a detailed analysis of K-shell emission from laser-produced rapidly-expanding aluminum plasmas. This work forms part of a series of experiments performed at the Vulcan laser facility of the Rutherford Appleton Laboratory, UK. 1-D planar expansion was obtained by over-illuminating Al-microdot targets supported on CH plastic foils. The small size of the Al-plasma ensured high spatial and frequency resolution of the spectra, obtained with a single crystal spectrometer, two vertical dispersion variant double crystal spectrometers, and a vertical dispersion variant Johann Spectrometer. The hydrodynamic properties of the plasma were measured independently by spatially and temporally resolved Thomson scattering, utilizing a 4{omega} probe beam. This enabled sub- and super- critical densities to be probed relative to the 1{omega} heater beams. The deduced plasma hydrodynamic conditions are compared with those generated from the 1-D hydro-code Medusa, and the significant differences found in the electron temperature discussed. Synthetic spectra generated from the detailed term collisional radiative non-LTE atomic physics code Fly are compared with the experimental spectra for the measured hydrodynamic parameters, and for those taken from Medusa. Excellent agreement is only found for both the H- and He-like Al series when careful account is taken of the temporal evolution of the electron temperature.
Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mikovi?, Z. L.
2014-10-15
We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.
Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.
2014-06-20
Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.
Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
Simakov, Andrei Nikolaevich; Molvig, Kim
2016-03-17
A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to close themore » fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produces two systems of linear equations (for “vector” and “tensor” portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in the companion paper [A. N. Simakov and K. Molvig, Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas, submitted to Phys. Plasmas (2015)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.« less
Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows
Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F
2011-03-02
We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.
Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.
2011-04-26
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.
STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS
Christensen, Charlotte R.; Quinn, Thomas; Bellovary, Jillian [Department of Astronomy, University of Washington, Box 351580, Seattle WA 98195 (United States); Stinson, Gregory [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Wadsley, James, E-mail: christensen@astro.washington.ed [Department of Physics and Astronomy, ABB-241, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4M1 (Canada)
2010-07-01
We examine the effect of mass and force resolution on a specific star formation (SF) recipe using a set of N-body/smooth particle hydrodynamic simulations of isolated galaxies. Our simulations span halo masses from 10{sup 9} to 10{sup 13} M{sub sun}, more than 4 orders of magnitude in mass resolution, and 2 orders of magnitude in the gravitational softening length, {epsilon}, representing the force resolution. We examine the total global SF rate, the SF history, and the quantity of stellar feedback and compare the disk structure of the galaxies. Based on our analysis, we recommend using at least 10{sup 4} particles each for the dark matter (DM) and gas component and a force resolution of {epsilon} {approx} 10{sup -3} R{sub vir} when studying global SF and feedback. When the spatial distribution of stars is important, the number of gas and DM particles must be increased to at least 10{sup 5} of each. Low-mass resolution simulations with fixed softening lengths show particularly weak stellar disks due to two-body heating. While decreasing spatial resolution in low-mass resolution simulations limits two-body effects, density and potential gradients cannot be sustained. Regardless of the softening, low-mass resolution simulations contain fewer high density regions where SF may occur. Galaxies of approximately 10{sup 10} M{sub sun} display unique sensitivity to both mass and force resolution. This mass of galaxy has a shallow potential and is on the verge of forming a disk. The combination of these factors gives this galaxy the potential for strong gas outflows driven by supernova feedback and makes it particularly sensitive to any changes to the simulation parameters.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.
2014-12-14
We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report
Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.
1987-06-01
This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.
High-pressure three-phase fluidization: Hydrodynamics and heat transfer
Luo, X.; Jiang, P.; Fan, L.S.
1997-10-01
High-pressure operations are common in industrial applications of gas-liquid-solid fluidized-bed reactors for resid hydrotreating, Fischer-Tropsch synthesis, coal methanation, methanol synthesis, polymerization, and other reactions. The phase holdups and the heat-transfer behavior were studied experimentally in three-phase fluidized beds over a pressure range of 0.1--15.6 MPa. Bubble characteristics in the bed are examined by direct flow visualization. Pressure effects on the bubble coalescence and breakup are analyzed mechanistically. The study indicates that the pressure affects the hydrodynamics and heat-transfer properties of a three-phase fluidized bed significantly. The average bubble size decreases and the bubble-size distribution becomes narrower with an increase in pressure. The bubble-size reduction leads to an increase in the transition gas velocity from the dispersed bubble regime to the coalesced bubble regime, an increase in the gas holdup, and a decrease in the liquid and solids holdups. The pressure effect is insignificant above 6 MPa. The heat-transfer coefficient between an immersed surface and the bed increases to a maximum at pressure 6--8 MPa and then decreases with an increase in pressure at a given gas and liquid flow rate. This variation is attributed to the pressure effects on phase holdups and physical properties of the gas and liquid phases. A mechanistic analysis revealed that the major heat-transfer resistance in high-pressure three-phase fluidized beds resides in a liquid film surrounding the heat-0transfer surface. An empirical correlation is proposed to predict the heat-transfer coefficient under high-pressure conditions.
A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics
Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.
2012-02-08
Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.
Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics
Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.
2013-06-01
Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glens law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.
Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Y.V.
1994-12-31
The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can be divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.
A HYDRODYNAMICAL SOLUTION FOR THE ''TWIN-TAILED'' COLLIDING GALAXY CLUSTER ''EL GORDO''
Molnar, Sandor M.; Broadhurst, Tom
2015-02-10
The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster ''El Gordo'' (ACT-CT J01024915; z= 0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray ''bullet'' leads a ''twin-tailed'' wake, with the Sunyaev-Zel'dovich (SZ) centroid at the end of the northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, SZ, and Hubble lensing and dynamical data. The X-ray morphology and the location of the two dark matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ?300kpc, and a relative initial infall velocity of ?2250km s{sup 1} when separated by the sum of the two virial radii assuming an initial total mass of 2.15 10{sup 15} M {sub ?} and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the northern X-ray tail along the collision axis between the mass peaks, and that the southern tail lies off axis, comprising compressed and shock heated gas generated as the less massive component plunges through the main cluster. The challenge for ?CDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high-infall-velocity case of the Bullet cluster and other such cases being uncovered in new SZ based surveys.
Fischer, T.; Mezzacappa, Anthony; Thielemann, F.-K.; Liebendoerfer, M.; Whitehouse, S.
2010-01-01
Massive stars end their lives in explosions with kinetic energies on the order of 10{sup 51} erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 M{circle_dot} O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 k{sub B}/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi
Thompson, Robert; Nagamine, Kentaro; Jaacks, Jason; Choi, Jun-Hwan
2014-01-10
Some observations have shown that star formation (SF) correlates tightly with the presence of molecular hydrogen (H{sub 2}); therefore, it is important to investigate its implication on galaxy formation in a cosmological context. In the present work, we implement a sub-grid model (hereafter H{sub 2}-SF model) that tracks the H{sub 2} mass fraction within our cosmological smoothed particle hydrodynamics code GADGET-3 by using an equilibrium analytic model of Krumholz et al. This model allows us to regulate the SF in our simulation by the local abundance of H{sub 2} rather than the total cold gas density, which naturally introduces the dependence of SF on metallicity. We investigate the implications of the H{sub 2}-SF model on galaxy population properties, such as the stellar-to-halo mass ratio (SHMR), baryon fraction, cosmic star formation rate density (SFRD), galaxy specific SFR, galaxy stellar mass functions (GSMF), and Kennicutt-Schmidt (KS) relationship. The advantage of our work over the previous ones is having a large sample of simulated galaxies in a cosmological volume from high redshift to z = 0. We find that low-mass halos with M {sub DM} < 10{sup 10.5} M {sub ?} are less efficient in producing stars in the H{sub 2}-SF model at z ? 6, which brings the simulations into better agreement with the observational estimates of the SHMR and GSMF at the low-mass end. This is particularly evident by a reduction in the number of low-mass galaxies at M {sub *} ? 10{sup 8} M {sub ?} in the GSMF. The overall SFRD is also reduced at high z in the H{sub 2} run, which results in slightly higher SFRD at low redshift due to more abundant gas available for SF at later times. This new H{sub 2} model is able to reproduce the empirical KS relationship at z = 0 naturally, without the need for setting its normalization by hand, and overall it seems to have more advantages than the previous pressure-based SF model.
Comparison among five hydrodynamic codes with a diverging-converging nozzle experiment
L. E. Thode; M. C. Cline; B. G. DeVolder; M. S. Sahota; D. K. Zerkle
1999-09-01
A realistic open-cycle gas-core nuclear rocket simulation model must be capable of a self-consistent nozzle calculation in conjunction with coupled radiation and neutron transport in three spatial dimensions. As part of the development effort for such a model, five hydrodynamic codes were used to compare with a converging-diverging nozzle experiment. The codes used in the comparison are CHAD, FLUENT, KIVA2, RAMPANT, and VNAP2. Solution accuracy as a function of mesh size is important because, in the near term, a practical three-dimensional simulation model will require rather coarse zoning across the nozzle throat. In the study, four different grids were considered. (1) coarse, radially uniform grid, (2) coarse, radially nonuniform grid, (3) fine, radially uniform grid, and (4) fine, radially nonuniform grid. The study involves code verification, not prediction. In other words, the authors know the solution they want to match, so they can change methods and/or modify an algorithm to best match this class of problem. In this context, it was necessary to use the higher-order methods in both FLUENT and RAMPANT. In addition, KIVA2 required a modification that allows significantly more accurate solutions for a converging-diverging nozzle. From a predictive point of view, code accuracy with no tuning is an important result. The most accurate codes on a coarse grid, CHAD and VNAP2, did not require any tuning. Their main comparison among the codes was the radial dependence of the Mach number across the nozzle throat. All five codes yielded a very similar solution with fine, radially uniform and radially nonuniform grids. However, the codes yielded significantly different solutions with coarse, radially uniform and radially nonuniform grids. For all the codes, radially nonuniform zoning across the throat significantly increased solution accuracy with a coarse mesh. None of the codes agrees in detail with the weak shock located downstream of the nozzle throat, but all the
Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997
Haagenstad, H.T.
1998-01-15
This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment
Español, Pep; Donev, Aleksandar
2015-12-21
We derive a coarse-grained description of the dynamics of a nanoparticle immersed in an isothermal simple fluid by performing a systematic coarse graining of the underlying microscopic dynamics. As coarse-grained or relevant variables, we select the position of the nanoparticle and the total mass and momentum density field of the fluid, which are locally conserved slow variables because they are defined to include the contribution of the nanoparticle. The theory of coarse graining based on the Zwanzing projection operator leads us to a system of stochastic ordinary differential equations that are closed in the relevant variables. We demonstrate that our discrete coarse-grained equations are consistent with a Petrov-Galerkin finite-element discretization of a system of formal stochastic partial differential equations which resemble previously used phenomenological models based on fluctuating hydrodynamics. Key to this connection between our “bottom-up” and previous “top-down” approaches is the use of the same dual orthogonal set of linear basis functions familiar from finite element methods (FEMs), both as a way to coarse-grain the microscopic degrees of freedom and as a way to discretize the equations of fluctuating hydrodynamics. Another key ingredient is the use of a “linear for spiky” weak approximation which replaces microscopic “fields” with a linear FE interpolant inside expectation values. For the irreversible or dissipative dynamics, we approximate the constrained Green-Kubo expressions for the dissipation coefficients with their equilibrium averages. Under suitable approximations, we obtain closed approximations of the coarse-grained dynamics in a manner which gives them a clear physical interpretation and provides explicit microscopic expressions for all of the coefficients appearing in the closure. Our work leads to a model for dilute nanocolloidal suspensions that can be simulated effectively using feasibly short molecular dynamics
Yang, Zhaoqing; Wang, Taiping
2011-09-01
In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.
Ghenam, L.; Djoudi, A. Ait El
2012-06-27
We study the finite size and finite mass effects for the thermal deconfinement phase transition in Quantum Chromodynamics (QCD), using a simple model of coexistence of hadronic (H) gas and quark-gluon plasma (QGP) phases in a finite volume. We consider the equations of state of the two phases with the QGP containing two massless u and d quarks and massive s quarks, and a hadronic gas of massive pions, and we probe the system near the transition. For this, we examine the behavior of the most important hydrodynamical quantities describing the system, at a vanishing chemical potential ({mu}= 0), with temperature and energy density.
Rosenberg, M. J.; Rinderknecht, H. G.; Hoffman, N. M.; Amendt, P. A.; Atzeni, S.; Zylstra, A. B.; Li, C. K.; Seguin, F. H.; Sio, H.; Johnson, M. Gatu; et al
2014-05-05
Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of meritmore » of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.« less
Cassibry, J. T.; Stanic, M.; Hsu, S. C.
2013-03-15
This work presents scaling relations for the peak thermal pressure and stagnation time (over which peak pressure is sustained) for an imploding spherical plasma liner formed by an array of merging plasma jets. Results were derived from three-dimensional (3D) ideal hydrodynamic simulation results obtained using the smoothed particle hydrodynamics code SPHC. The 3D results were compared to equivalent one-dimensional (1D) simulation results. It is found that peak thermal pressure scales linearly with the number of jets and initial jet density and Mach number, quadratically with initial jet radius and velocity, and inversely with the initial jet length and the square of the chamber wall radius. The stagnation time scales approximately as the initial jet length divided by the initial jet velocity. Differences between the 3D and 1D results are attributed to the inclusion of thermal transport, ionization, and perfect symmetry in the 1D simulations. A subset of the results reported here formed the initial design basis for the Plasma Liner Experiment [S. C. Hsu et al., Phys. Plasmas 19, 123514 (2012)].
Stubbe, E.J.; VanHoenacker, L.; Otero, R.
1994-02-01
This report presents an assessment study for the use of the code RELAP 5/MOD3/5M5 in the calculation of transient hydrodynamic loads on safety and relief discharge pipes. Its predecessor, RELAP 5/MOD1, was found adequate for this kind of calculations by EPRI. The hydrodynamic loads are very important for the discharge piping design because of the fast opening of the valves and the presence of liquid in the upstream loop seals. The code results are compared to experimental load measurements performed at the Combustion Engineering Laboratory in Windsor (US). Those measurements were part of the PWR Valve Test Program undertaken by EPRI after the TMI-2 accident. This particular kind of transients challenges the applicability of the following code models: two-phase choked discharge; interphase drag in conditions with large density gradients; heat transfer to metallic structures in fast changing conditions; two-phase flow at abrupt expansions. The code applicability to this kind of transients is investigated. Some sensitivity analyses to different code and model options are performed. Finally, the suitability of the code and some modeling guidelines are discussed.
Margraf, J
2012-06-12
This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the
Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004
Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.
2005-06-15
Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all years
Kikkinides, E. S.; Monson, P. A.
2015-03-07
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.
2014-09-01
Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.
University of California, Berkeley | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Berkeley Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of California, Berkeley Address 1301 S 46th Street Place Richmond, California Zip 94804...
Clements, B.E.; Johnson, J.N.
1997-09-01
The nonhomogenized dynamic method of cells (NHDMOC) uses a truncated expansion for the particle displacement field; the expansion parameter is the local cell position vector. In the NHDMOC, specifying the cell structure is similar to specifying the spatial grid used in a finite-difference hydrodynamic calculation. The expansion coefficients for the particle displacement field are determined by the equation of motion, any relevant constitutive relations, plus continuity of traction and displacement at all cell boundaries. The authors derive and numerically solve the NHDMOC equations for the first, second, and third-order expansions, appropriate for modeling a plate-impact experiment. The performance of the NHDMOC is tested, at each order, for its ability to resolve a shock-wave front as it propagates through homogeneous and laminated targets. They find for both cases that the displacement field expansion converges rapidly: given the same cell widths, the first-order theory gives only a qualitative description of the propagating stress wave; the second-order theory performs much better; and the third-order theory gives small refinements over the second-order theory. The performance of the third-order NHDMOC is then compared to that of a standard finite-difference hydrodynamic calculation. The two methods differ in that the former uses a finite-difference solution to update the time dependence of the equations, whereas the hydrodynamic calculation uses finite-difference solutions for both the temporal and spatial variables. Both theories are used to model shock-wave propagation in stainless steel arising from high-velocity planar impact. To achieve the same high-quality resolution of the stress and particle velocity profiles, the NHDMOC consistently requires less fine spatial and temporal grids, and substantially less artificial viscosity to control unphysical high-frequency oscillations in the numerical solutions. Finally, the third-order NHDMOC theory is used to
Zhang, Ya; Jiang, Wei; Song, Yuan-Hong; Wang, You-Nian
2015-02-15
Isochoric heating of an aluminum target by proton beams has been studied with a two-dimensional self-consistent electromagnetic quantum-hydrodynamic model, including the nonlinear quantum effects. It is shown that most protons deposit their energy within several micrometers near the surface, and the aluminum metal target is heated up to several electron volts in tens of Mbar pressure regime within one picosecond. Comparison between electrostatic and electromagnetic cases shows that the strength of electromagnetic field is much smaller than that of the electrostatic field at initial stage but increases more rapidly and becomes larger at later time. The results show that the time evolution of electric field has a significant influence on the interaction of intense beams with a solid target, while the effect of the self-magnetic field is small for non-relativistic beams considered here.
Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.
2014-07-15
The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ?}?{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.
University of California, San Diego (Scripps) | Open Energy Informatio...
OpenEI (Open Energy Information) [EERE & EIA]
(Scripps) Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of California, San Diego (Scripps) Address Scripps Institution of Oceanography, 8825...
Pan, Wenxiao; Daily, Michael; Baker, Nathan A.
2015-05-07
Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with imperfect reaction rates. Results: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.
Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.
2015-12-01
We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.
Donna Post Guillen; Daniel S. Wendt; Steven P. Antal; Michael Z. Podowski
2007-11-01
The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.
Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; et al
2016-07-11
First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ = 140 μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ~7000×. Measurements were made at convergences of ~5 to ~10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both linesmore » of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ~2× between the waist and the pole, showing asymmetry in the measured growth factors. As a result, these new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.« less
Pan, Wenxiao; Daily, Michael; Baker, Nathan A.
2015-05-07
Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and thenmore » applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less
Donna Post Guillen; Daniel S. Wendt
2007-11-01
The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.
Harrison, Alan K; Shashkov, Mikhail J; Fung, Jimmy; Canfield, Thomas R; Kamm, James R
2010-10-14
We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.
Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene
2015-01-01
Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.
Baumgaertel, J. A.; Bradley, P. A.; Hsu, S. C.; Cobble, J. A.; Hakel, P.; Tregillis, I. L.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Obrey, K. D.; Batha, S.; Johns, H.; Joshi, T.; Mayes, D.; Mancini, R. C.; Nagayama, T.
2014-05-15
Temporally, spatially, and spectrally resolved x-ray image data from direct-drive implosions on OMEGA were interpreted with the aid of radiation-hydrodynamic simulations. Neither clean calculations nor those using a turbulent mix model can explain fully the observed migration of shell-dopant material (titanium) into the core. Shell-dopant migration was observed via time-dependent, spatially integrated spectra, and spatially and spectrally resolved x-ray images of capsule implosions and resultant dopant emissions. The titanium emission was centrally peaked in narrowband x-ray images. In post-processed clean simulations, the peak titanium emission forms in a ring in self-emission images as the capsule implodes. Post-processed simulations with mix reproduce trends in time-dependent, spatially integrated spectra, as well having centrally peaked Ti emission in synthetic multiple monochromatic imager. However, mix simulations still do not transport Ti to the core as is observed in the experiment. This suggests that phenomena in addition to the turbulent mix must be responsible for the transport of Ti. Simple diffusion estimates are unable to explain the early Ti mix into the core. Mechanisms suggested for further study are capsule surface roughness, illumination non-uniformity, and shock entrainment.
Takiwaki, Tomoya; Kotake, Kei [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)
2014-05-10
We present numerical results on two- (2D) and three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2 M {sub ?} star. By changing numerical resolutions and seed perturbations systematically, we study how the postbounce dynamics are different in 2D and 3D. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the isotropic diffusion source approximation scheme, which we have updated to achieve a very high computational efficiency. All of the computed models in this work, including nine 3D models and fifteen 2D models, exhibit the revival of the stalled bounce shock, leading to the possibility of explosion. All of them are driven by the neutrino-heating mechanism, which is fostered by neutrino-driven convection and the standing-accretion-shock instability. Reflecting the stochastic nature of multi-dimensional (multi-D) neutrino-driven explosions, the blast morphology changes from model to model. However, we find that the final fate of the multi-D models, whether an explosion is obtained or not, is little affected by the explosion stochasticity. In agreement with some previous studies, higher numerical resolutions lead to slower onset of the shock revival in both 2D and 3D. Based on the self-consistent supernova models leading to the possibility of explosions, our results systematically show that the revived shock expands more energetically in 2D than in 3D.
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in the mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less
Dall'Ora, M.; Botticella, M. T.; Della Valle, M.; Pumo, M. L.; Zampieri, L.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Pignata, G.; Bufano, F.; Bayless, A. J.; Pritchard, T. A.; Taubenberger, S.; Benitez, S.; Kotak, R.; Inserra, C.; Fraser, M.; Elias-Rosa, N.; Haislip, J. B.; Harutyunyan, A.; and others
2014-06-01
We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the {sup 56}Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M {sub env} ∼ 20 M {sub ☉}, progenitor radius R ∼ 3 × 10{sup 13} cm (∼430 R {sub ☉}), explosion energy E ∼ 1.5 foe, and initial {sup 56}Ni mass ∼0.06 M {sub ☉}. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M {sub ☉} of the Type IIP events.
Azuaje, V.; Gil, J.
1996-08-01
The Center Lake Field is one of the most important light oil reservoirs in the Maracaibo Basin. Field production of {open_quotes}C{close_quotes} sandstones, Misoa formation, Eocene, started in 1968. Actual cumulative production is 630 MMBls, which represents 23% of the original oil in place. Flank water injection programs have been executed since 1976; however, reservoirs within this field still have shown pressure and production declination. A multidisciplinary study has been conducted to produce an updated hydrodynamic model which matches the static and dynamic behavior of the reservoirs. An integrated interpretation team has merged geological, geophysical and engineering data and criteria to generate an updated and consistent interpretation of today`s performance of reservoirs. The integration of a 3D seismic survey with a sequence- stratigraphy analysis, petrophysical and production data allowed us to determine a new structural and stratigraphic framework. The first important conclusion is that active aquifer is not located at the flanks of the structure, as traditionally worked out. Instead, a water-bottom drive system was interpreted and validated with production data so a different strategy for water injection was recommended. The latter interpretation restricted the injection to those areas where rock volume calculation, permeability, porosity and depositional environment make it suitable and profitable. A pattern injection program is going to be developed in C-4-X.46 reservoir and 21.6 MMBls additional recovery is expected in respect to the old production scheme.
Strozzi, D. J.; Tabak, M.; Larson, D. J.; Divol, L.; Kemp, A. J.; Bellei, C.; Marinak, M. M.; Key, M. H.
2012-07-15
Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell (PIC) code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum and a divergent angle spectrum (average velocity-space polar angle of 52 Degree-Sign ). Transport simulations with the PIC-based divergence do not ignite for >1 MJ of fast-electron energy, for a modest (70 {mu}m) standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields {approx}50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields will likely be more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.
Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.
2007-11-01
Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.
Hydrodynamic Elastic Magneto Plastic
Energy Science and Technology Software Center
1985-02-01
The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.
Day, Robert A.; Conti, Armond E.
1980-01-01
An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.
Bevelhimer, Mark S; Coutant, Charles C
2006-07-01
Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used
Shestakov, A I; Offner, S R
2006-09-21
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates
Shestakov, A I; Offner, S R
2007-03-02
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates
Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.
2014-02-07
In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.
Perkins, William A.; Richmond, Marshall C.; McMichael, Geoffrey A.
2007-10-10
The Hanford Reach is the only remaining unimpounded reach of the Columbia River in the United States above Bonneville Dam. Discharge in the Hanford Reach is regulated by several dams and is often subject to rapid changes. Sharp flow reductions have led to the stranding or entrapment, and subsequent mortality, of juvenile chinook salmon (Oncorynchus tshawytscha) and other important fish species within the Hanford Reach. A multi-block two-dimensional depth-averaged hydrodynamic model was used to simulate time-varying river velocity and stage in a 37~km portion of the Hanford Reach. Simulation results were used to estimate time-varying juvenile chinook salmon habitat area, and the part of that habitat affected by discharge fluctuations. Affected habitat area estimates were made for the chinook salmon rearing period of four years. These estimates were used, along with other important factors, to establish a statistical relationship between discharge fluctuation and juvenile chinook salmon mortality.
Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel
2011-07-15
H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.
Akamatsu, Yukinao; Inutsuka, Shu-ichiro; Nonaka, Chiho; Department of Physics, Nagoya University, Nagoya 464-8602 ; Takamoto, Makoto; Max-Planck-Institut fr Kernphysik, Postfach 103980, 69029 Heidelberg
2014-01-01
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quarkgluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.
Andreev, Pavel A.
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Pan, Wenxiao; Li, Dongsheng; Tartakovsky, Alexandre M.; Ahzi, Said; Khraisheh, Marwan; Khaleel, Mohammad A.
2013-09-06
We present a new smoothed particle hydrodynamics (SPH) model for friction stir welding (FSW). FSW has found broad commercial application in the marine, aerospace, rail and automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few established numerical modeling techniques have been developed that can explain and predict important features of the process physics involved in FSW. This is particularly true in the areas of material ?ow, mixing mechanisms, and void formation. In this paper we present a novel modeling approach to simulate FSW that may have signi?cant advantages over current ?nite element or ?nite di?erence based methods. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, and the materials strain and temperature history without employing complex tracking schemes. Three-dimensional simulations of FSW on AZ31 Mg alloy are presented. Numerical results are in a close quantitative agreement with experimental observations.
Kisiel, Adam; Broniowski, Wojciech; Florkowski, Wojciech; Chojnacki, Mikolaj
2009-01-15
Azimuthally sensitive femtoscopy for heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) is explored within the approach consisting of the hydrodynamics of perfect fluid followed by statistical hadronization. It is found that for the RHIC initial conditions, employing the Gaussian shape of the initial energy density, the very same framework that reproduces the standard soft observables [including the transverse-momentum spectra, the elliptic flow, and the azimuthally averaged Hanbury-Brown-Twiss (HBT) radii] leads to a proper description of the azimuthally sensitive femtoscopic observables; we find that the azimuthal variation of the side and out HBT radii as well as out-side cross term are very well reproduced for all centralities. Concerning the dependence of the femtoscopic parameters on k{sub T} we find that it is very well reproduced. The model is then extrapolated to the LHC energy. We predict the overall moderate growth of the HBT radii and the decrease of their azimuthal oscillations. Such effects are naturally caused by longer evolution times. In addition, we discuss in detail the space-time patterns of particle emission. We show that they are quite complex and argue that the overall shape seen by the femtoscopic methods cannot be easily disentangled on the basis of simple-minded arguments.
DIMITRI GIDASPOW
1997-08-15
The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.
Hydrodynamic schooling of flapping swimmers
Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif
2015-10-06
Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing–wake interactions. Simulations show that swimming in amore » group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. Lastly, these results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.« less
Hydrodynamic schooling of flapping swimmers
Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif
2015-10-06
Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing–wake interactions. Simulations show that swimming in a group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. Lastly, these results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.
Petascale algorithms for reactor hydrodynamics.
Fischer, P.; Lottes, J.; Pointer, W. D.; Siegel, A.
2008-01-01
We describe recent algorithmic developments that have enabled large eddy simulations of reactor flows on up to P = 65, 000 processors on the IBM BG/P at the Argonne Leadership Computing Facility. Petascale computing is expected to play a pivotal role in the design and analysis of next-generation nuclear reactors. Argonne's SHARP project is focused on advanced reactor simulation, with a current emphasis on modeling coupled neutronics and thermal-hydraulics (TH). The TH modeling comprises a hierarchy of computational fluid dynamics approaches ranging from detailed turbulence computations, using DNS (direct numerical simulation) and LES (large eddy simulation), to full core analysis based on RANS (Reynolds-averaged Navier-Stokes) and subchannel models. Our initial study is focused on LES of sodium-cooled fast reactor cores. The aim is to leverage petascale platforms at DOE's Leadership Computing Facilities (LCFs) to provide detailed information about heat transfer within the core and to provide baseline data for less expensive RANS and subchannel models.
Guillochon, James; Ramirez-Ruiz, Enrico
2013-04-10
The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z {approx} 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as -4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to {approx_equal} - 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = -5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken into
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2012-04-20
We present numerical results on three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2 M{sub Sun} star. By comparing one-dimensional (1D) and two-dimensional (2D) results with those of 3D, we study how the increasing spacial multi-dimensionality affects the postbounce supernova dynamics. The calculations were performed with an energy-dependent treatment of the neutrino transport that is solved by the isotropic diffusion source approximation scheme. In agreement with previous study, our 1D model does not produce explosions for the 11.2 M{sub Sun} star, while the neutrino-driven revival of the stalled bounce shock is obtained in both the 2D and 3D models. The standing accretion-shock instability (SASI) is observed in the 3D models, in which the dominant mode of the SASI is bipolar (l = 2) with its saturation amplitudes being slightly smaller than 2D. By performing a tracer-particle analysis, we show that the maximum residency time of material in the gain region becomes longer in 3D than in 2D due to non-axisymmetric flow motions, which is one of advantageous aspects of 3D models to obtain neutrino-driven explosions. Our results show that convective matter motions below the gain radius become much more violent in 3D than in 2D, making the neutrino luminosity larger for 3D. Nevertheless, the emitted neutrino energies are made smaller due to the enhanced cooling. Our results indicate whether these advantages for driving 3D explosions could or could not overwhelm the disadvantages is sensitive to the employed numerical resolutions. An encouraging finding is that the shock expansion tends to become more energetic for models with finer resolutions. To draw a robust conclusion, 3D simulations with much higher numerical resolutions and with more advanced treatment of neutrino transport and of gravity are needed, which could be practicable by utilizing forthcoming Petaflops-class supercomputers.
Analysis and prediction of aperiodic hydrodynamic oscillatory...
Office of Scientific and Technical Information (OSTI)
Resource Relation: Journal Name: Chaos (Woodbury, N. Y.); Journal Volume: 25; Journal Issue: 1; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International ...
Computational Eulerian Hydrodynamics and Galilean Invariance...
Office of Scientific and Technical Information (OSTI)
MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: ...
Explicit 3-D Hydrodynamic FEM Program
Energy Science and Technology Software Center
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less
COER Hydrodynamic Modeling Competition: Modeling the Dynamic...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
... the relevant fluid-structure interactions from first ... in this paper were generated without a priori ... The motion of the clump mass is restrained to heave using ...
Dual Axis Radiographic Hydrodynamic Test Facility
U.S. Department of Energy (DOE) - all webpages (Extended Search)
DARHT DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim
Canonical equations of ideal magnetic hydrodynamics
Gorskii, V.B.
1987-07-01
Ideal magnetohydrodynamics is used to consider a general class of adiabatic flow in magnetic liquids. Two invariants of the canonical equations of motion--Hamiltonian and Lagrangian--are determined in terms of the canonical variables by using the approximate variational formulations. The resulting model describes adiabatic three-dimensional flow of a nonviscous compressible liquid with ideal electric conductivity and zero heat conductivity. A Clebsch transformation is used to arrive at a form of the Lagrange-Cauchy integral for a vortex flow.
The mechanism of cavitation in hydrodynamic lubrication
Heshmat, Hooshmang )
1991-04-01
The paper offers a conceptual visualization of the mechanism of cavitation in the light of available experimental evidence. The experiments span steady, starved, and dynamic or transient lubrication and the resulting cavitation is postulated in terms of several basic parameters. Chief among these are: temperature of the surfaces, availability of the gaseous and vapor components and the occurrence of negative liquid stresses under transient conditions. Mode, shape, and stability of the resulting liquid-gaseous phase are seen to be a function of the prevailing operational conditions. 36 refs.
Explicit 3-D Hydrodynamic FEM Program
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.
Massachusetts Institute of Technology Hydrodynamics | Open Energy...
OpenEI (Open Energy Information) [EERE & EIA]
Name Massachusetts Institute of Technology Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Sector Hydro Phone number (617) 254-4348 Website http:...
Hydrodynamic 'memory' of binary fluid mixtures
Kalashnik, M. V.; Ingel, L. Kh.
2006-07-15
A theoretical analysis is presented of hydrostatic adjustment in a two-component fluid system, such as seawater stratified with respect to temperature and salinity. Both linear approximation and nonlinear problem are investigated. It is shown that scenarios of relaxation to a hydrostatically balanced state in binary fluid mixtures may substantially differ from hydrostatic adjustment in fluids that can be stratified only with respect to temperature. In particular, inviscid two-component fluids have 'memory': a horizontally nonuniform disturbance in the initial temperature or salinity distribution does not vanish even at the final stage, transforming into a persistent thermohaline 'trace.' Despite stability of density stratification and convective stability of the fluid system by all known criteria, an initial temperature disturbance may not decay and may even increase in amplitude. Moreover, its sign may change (depending on the relative contributions of temperature and salinity to stable background density stratification). Hydrostatic adjustment may involve development of discontinuous distributions from smooth initial temperature or concentration distributions. These properties of two-component fluids explain, in particular, the occurrence of persistent horizontally or vertically nonuniform temperature and salinity distributions in the ocean, including discontinuous ones.
Dual Axis Radiographic Hydrodynamic Test Facility | National...
National Nuclear Security Administration (NNSA)
Each accelerator creates a powerful electron beam that is focused onto a metal target which ... DARHT is used to image a full-scale non-nuclear weapon mockup as it implodes. A ...
King, Michael J; Bredehoeft, John D., Dr.
2010-09-03
Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.
Hydrodynamics with chiral anomaly and charge separation in relativisti...
Office of Scientific and Technical Information (OSTI)
OSTI Identifier: 1240207 GrantContract Number: AC02-98CH10886 Type: Published Article Journal Name: Physics Letters. Section B Additional Journal Information: Journal Volume: 756; ...
Simulation of Explosion Ground Motions Using a Hydrodynamic-to...
Office of Scientific and Technical Information (OSTI)
Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Bulletin of the Seismological Society of America, vol. 103, no. 3, June 1, 2013, pp. 1629-1639...
Reduction of diffusional defocusing in hydrodynamically focused flows
Affleck, R.L.; Demas, J.N.; Goodwin, P.M.; Keller, R.; Wu, M.
1998-09-01
An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream. 6 figs.
Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD
Morrison, P.J.; Greene, J.M.
1980-04-01
A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables.
A hydrodynamical approach to CMB ?-distortion from primordial perturbations
Pajer, Enrico; Zaldarriaga, Matias E-mail: matiasz@ias.edu
2013-02-01
Spectral distortion of the cosmic microwave background provides a unique opportunity to probe primordial perturbations on very small scales by performing large-scale measurements. We discuss in a systematic and pedagogic way all the relevant physical phenomena involved in the production and evolution of the ?-type spectral distortion. Our main results agree with previous estimates (in particular we show that a recently found factor of 3/4 arises from relativistic corrections to the wave energy). We also discuss several subleading corrections such as adiabatic cooling and the effects of bulk viscosity, baryon loading and photon heat conduction. Finally we provide formulae for the spatial dependence of ?-distortions and its transfer function between the end of the ?-era and now.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Hydrodynamics of circulating fluidized beds: Kinetic theory approach...
Office of Scientific and Technical Information (OSTI)
Resource Type: Conference Resource Relation: Conference: 7th international conference on fluidization, Gold Coast (Australia), 3-8 May 1992 Research Org: Illinois Inst. of Tech., ...
RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-05-10
Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.
A class of self-similar hydrodynamics test problems
Ramsey, Scott D; Brown, Lowell S; Nelson, Eric M; Alme, Marv L
2010-12-08
We consider self-similar solutions to the gas dynamics equations. One such solution - a spherical geometry Gaussian density profile - has been analyzed in the existing literature, and a connection between it, a linear velocity profile, and a uniform specific internal energy profile has been identified. In this work, we assume the linear velocity profile to construct an entire class of self-similar sol utions in both cylindrical and spherical geometry, of which the Gaussian form is one possible member. After completing the derivation, we present some results in the context of a test problem for compressible flow codes.
Hydrodynamic aspects of a circulating fluidized bed with internals
Balasubramanian, N.; Srinivasakannan, C.
1998-06-01
An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.
Category:Hydrodynamic Testing Facility Type | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
out of 9 total. C Channel F Flow Table Flume O Offshore Berth R Reverberant Tank T Tow Tank T cont. Tow Vessel Tunnel W Wave Basin Retrieved from "http:en.openei.orgw...
Hydrodynamic evolution and jet energy loss in Cu + Cu collisions...
Office of Scientific and Technical Information (OSTI)
Publication Date: 2011-04-18 OSTI Identifier: 1100252 Type: Publisher's Accepted Manuscript Journal Name: Physical review C. Nuclear physics Additional Journal Information: Journal ...
Property:Hydrodynamic Testing Facility Type | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft...
DYNA3D96. Explicit 3-D Hydrodynamic FEM Program
Lin, J.
1993-11-01
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.
AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING...
Office of Scientific and Technical Information (OSTI)
... S O N O F EQUATION 11-17 WITH ZMOLA'S (42) 51 11-4. M a - t & n m Bubble Diameter and the ... u i d i s given by: AXs Consider a surface area A, and a A T d e p e e s the i n t e r n a ...
Analysis of single point moored tanker using maneuvering hydrodynamic model
Nishimoto, K.; Brinati, H.L.; Fucatu, C.H.
1995-12-31
The Single Point Mooring Systems (SPM) are widely used as a tanker terminal in Brazilian south coast by Petrobras, Brazilian oil company. Although different authors (Wichers, 1987, Obokata, 1987, and Jiang et al., 1988) had analyzed the dynamic stability of SPM system, the down time of these systems due to large oscillatory ship motion in the horizontal plane is significant until now. The main source of the instability of these systems is considered to be the use of inadequate hawser length and bad weather. This paper deals with the dynamic behavior of SPM moored vessels considering the influence of the environmental forces as well as shallow water effects. In a first step, a nonlinear mathematical model developed for the simulation of low speed ship maneuvers (Takashina, 1986) is extended to study the behavior of a tanker moored to a single buoy in comparison with the Obokata`s SPM model, 1987. A large number of tanker motion simulations were carried out both for deep and shallow water and different environmental conditions. The influence of the system parameters shown by the study is, in general, in a good agreement with those obtained by the traditional SPM system analysis.
Damaged Surface Hydrodynamics (DSH) Flash Report (Technical Report...
Office of Scientific and Technical Information (OSTI)
Authors: Rousculp, Christopher L. 1 ; Oro, David Michael 1 ; Morris, Christopher 1 ; Saunders, Alexander 1 ; Reass, William 1 ; Griego, Jeffrey Randall 1 ; Turchi, ...
Hydrodynamic effects on coalescence. (Technical Report) | SciTech...
Office of Scientific and Technical Information (OSTI)
Authors: Dimiduk, Thomas G. ; Bourdon, Christopher Jay ; Grillet, Anne Mary ; Baer, Thomas A. ; de Boer, Maarten Pieter ; Loewenberg, Michael 1 ; Gorby, Allen D. ; Brooks, ...
Basic hydrodynamic aspects of a solar energy based desalination process
Bemporad, G.A.
1995-02-01
The theoretical feasibility of a solar energy based desalination scheme is analyzed in this study. The proposed scheme exploits the vapor pressure difference between fluids of different salinities and temperatures to produce fresh water from seawater. The scheme`s basic components are a seawater column, an injection pipe heated on top through a heat exchanger loop, a withdrawal pipe, a vacuum chamber filled with vapour, and a fresh water column cooled on top where vapour condenses into fresh water. A mathematical model was developed to simulate unsteady mass, heat and solute transfer during the desalination process. The governing equations were integrated numerically in space and time through a finite difference technique. The numerical simulations considered both steady-state and time dependent heat sources. The numerical results proved the theoretical feasibility of the proposed desalination scheme. However, the presence of an unsteady heat source, typical to solar energy based schemes, may lead to an unstable density profile in the water column and reduce the scheme efficiency if not properly controlled. 16 refs., 8 figs.
Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy...
Office of Scientific and Technical Information (OSTI)
Authors: Froula, D. H. ; Igumenshchev, I. V. ; Michel, D. T. ; Edgell, D. H. ; Follett, R. ; Glebov, V. Yu. ; Goncharov, V. N. ; Kwiatkowski, J. ; Marshall, F. J. ; Radha, P. B. ; ...
Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...
OpenEI (Open Energy Information) [EERE & EIA]
oftenare out of chemical equilibrium. Simulation resultsreveal that a minimum permeability of 10-12 m2 forthe spring-feeding fracture is needed to preserve thegeochemical...
Reduction of diffusional defocusing in hydrodynamically focused flows
Affleck, Rhett L. (Lawrenceville, NJ); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Keller, Richard (Los Alamos, NM); Wu, Ming (Middle Island, NY)
1998-01-01
An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream.
Hydrodynamic evolution and jet energy loss in Cu + Cu collisions...
Office of Scientific and Technical Information (OSTI)
Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...
AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING...
Office of Scientific and Technical Information (OSTI)
... 3 ethanol 4 pen- 5 pentam 6 heptane 7 Propans 8 propane 9 water 10 bornens FIGURE 111-3. QRELQTION OF DATA FOR VARIOUS LIQUXW AT THE CFUTICAL HEAT FLUX DEIWTY IN POOL B O - . ...
DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility
U.S. Department of Energy (DOE) - all webpages (Extended Search)
of nuclear weapons. The DARHT Facility DARHT consists of two linear induction accelerators that are oriented at two right angles to one another. Each electron beam is ...
Hydrodynamic simulation of a lithium chloride salt system.
Eberle, C. S.; Herrmann, S. D.; Knighton, G. C.
1999-02-12
A fused lithium chloride salt system's constitutive properties were evaluated and compared to a number of fluid properties, and water was shown to be an excellent simulant of lithium chloride salt. With a simple flow model, the principal scaling term was shown to be a function of the kinematic viscosity. A water mock-up of the molten salt was also shown to be within a {+-}3% error in the scaling analysis. This made it possible to consider developing water scaled tests of the molten salt system. Accurate flow velocity and pressure measurements were acquired by developing a directional velocity probe. The device was constructed and calibrated with a repeatable accuracy of {+-}15%. This was verified by a detailed evaluation of the probe. Extensive flow measurements of the engineering scale mockup were conducted, and the results were carefully compared to radial flow patterns of a straight blade stirrer. The flow measurements demonstrated an anti-symmetric nature of the stirring, and many additional effects were also identified. The basket design was shown to prevent fluid penetration into the fuel baskets when external stirring was the flow mechanism.
Hydrodynamic and numerical modeling of a spherical homogeneous.pdf
U.S. Department of Energy (DOE) - all webpages (Extended Search)
A Quantum Hydrodynamic Model for a Photovoltaic Cell
Zaharie, Ioan; Negrea, Romeo; Hedrea, Ciprian
2009-05-22
We present a theoretical model for the behaviour of the propagation of electrons in a photovoltaic cell with some Bohm quantum potential corrections. The system describes the dynamic of the electron density and the current density functions. Also, a numerical solution for the 1-dimensional case based on the backward finite differences method is given.
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em
2015-09-15
Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)
Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.
2009-07-15
White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.
Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward
Remington, B. A.; Atherton, L. J.; Benedetti, L. R.; Berzak-Hopkins, L.; Bradley, D. K.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; et al
2016-03-01
The goals of the Mix Campaign are to determine how mix affects performance, locate the "mix cliff", locate the source of the mix, and develop mitigation methods that allow performance to be increased. We have used several different drive pulse shapes and capsule designs in the Mix Campaign, to understand sensitivity to drive peak power, level of coast, rise time to peak power, adiabat, and dopant level in the capsule. Ablator material mixing into the hot spot has been shown conclusively with x-ray spectroscopy. The observed neutron yield drops steeply when the hot spot mix mass becomes too large. Themore » mix appears to be driven by ablation- front Rayleigh-Taylor instabilities. A high foot, higher adiabat drive has a more stable ablation front and has allowed the mix mass in the hot spot to be reduced significantly. We found two recent high foot shots achieved neutron yields > 1015 and measured neutron yield over clean 1D simulation (YOC) > 50%, which was one of the central goals of the Mix Campaign.« less
A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Date: September, 2010 Name of Publication Source: Rheologica Acta Publisher: SpringerLink Volume: 49 Issue: 10 Page Numbers: 1059-1069 http:www.springerlink.comcontent...
Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target
Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; Cook, N.; Maharjan, C.; Najmudin, Z.; Shkolnikov, P.; Pogorelsky, I.
2015-08-28
We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲10^{14} W cm^{–2}) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>10^{16} W cm^{–2}) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He^{+} and H^{+} were routinely produced, whilst for shorter gradients (≲20 μm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.
Localness of energy cascade in a hydrodynamic turbulence, I. Smooth coarse-graining
Aluie, Hussein; Eyink, Gregory L
2009-01-01
We introduce a novel approach to scale-decomposition of the fluid kinetic energy (or other quadratic integrals) into band-pass contributions from a series of length-scales. Our decomposition is based on a multiscale generalization of the 'Germano identity' for smooth, graded filter kernels. We employ this method to derive a budget equation that describes the transfers of turbulent kinetic energy both in space and in scale. It is shown that the inter-scale energy transfer is dominated by local triadic interactions, assuming only the scaling properties expected in a turbulent inertial-range. We derive rigorous upper bounds on the contributions of non-local triads, extending the work of Eyink (2005) for low-pass filtering. We also propose a physical explanation of the differing exponents for our rigorous upper bounds and for the scaling predictions of Kraichnan (1966,1971). The faster decay predicted by Kraichnan is argued to be the consequence of additional cancellations in the signed contributions to transfer from non-local triads, after averaging over space. This picture is supported by data from a 512 pseudospectral simulation of Navier-Stokes turbulence with phase-shift dealiasing.
Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle
Barletti, Luigi
2014-08-15
The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
Hawke, Ian; Loeffler, Frank; Nerozzi, Andrea
2005-05-15
We present a simple method for applying excision boundary conditions for the relativistic Euler equations. This method depends on the use of reconstruction-evolution methods, a standard class of high-resolution shock-capturing methods. We test three different reconstruction schemes, namely, total variation diminishing, piecewise parabolic method (PPM) and essentially nonoscillatory. The method does not require that the coordinate system is adapted to the excision boundary. We demonstrate the effectiveness of our method using tests containing discontinuities, static test fluid solutions with black holes, and full dynamical collapse of a neutron star to a black hole. A modified PPM scheme is introduced because of problems arisen when matching excision with the original PPM reconstruction scheme.
Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA
Hassanein, Ahmed
2013-05-24
Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of the lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.
Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish; Trujillo, Steven Mathew
2006-08-01
An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.
Edwards, M J; Hansen, J; Miles, A R; Froula, D; Gregori, G; Glenzer, S; Edens, A; Dittmire, T
2005-02-08
The possibility of studying compressible turbulent flows using gas targets driven by high power lasers and diagnosed with optical techniques is investigated. The potential advantage over typical laser experiments that use solid targets and x-ray diagnostics is more detailed information over a larger range of spatial scales. An experimental system is described to study shock - jet interactions at high Mach number. This consists of a mini-chamber full of nitrogen at a pressure {approx} 1 atms. The mini-chamber is situated inside a much larger vacuum chamber. An intense laser pulse ({approx}100J in {approx} 5ns) is focused on to a thin {approx} 0.3{micro}m thick silicon nitride window at one end of the mini-chamber. The window acts both as a vacuum barrier, and laser entrance hole. The ''explosion'' caused by the deposition of the laser energy just inside the window drives a strong blast wave out into the nitrogen atmosphere. The spherical shock expands and interacts with a jet of xenon introduced though the top of the mini-chamber. The Mach number of the interaction is controlled by the separation of the jet from the explosion. The resulting flow is visualized using an optical schlieren system using a pulsed laser source at a wavelength of 0.53 {micro}m. The technical path leading up to the design of this experiment is presented, and future prospects briefly considered. Lack of laser time in the final year of the project severely limited experimental results obtained using the new apparatus.
Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines
Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.
2014-04-01
Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.
Francois, Marianne M; Shashkov, Misha J; Lowrie, Robert B; Dendy, Edward D
2010-10-13
We compare a staggered Lagrangian formulation with a cell-centered Lagrangian formulation for a two-material compressible flow. In both formulation, we assume a single velocity field and rely on pressure relaxation techniques to close the system of equations. We employ Tipton's mixture model for both formulation. However, for the cell-centered formulation, employing Tipton's model for the mixture cell results in loss of conservation of total energy. We propose a numerical algorithm to correct this energy discrepancy. We test both algorithms on the two-materials Sod shock tube test problem and compare the results with the analytical solution.
Eisenberg, L.I.; Langston, M.V.; Fitzmorris, R.E.
1994-12-31
Northwest to southeast regional scale flow in the Toro Sandstone parallels the Papuan Fold and Thrust Belt for a distance of 115 km, passing through Iagifu/Hedinia oil field along the way. This has had a profound effect on oil distribution in the Toro there, having swept the northwest side free of movable oil. A structurally controlled flow restriction causes a local, rapid drop in hydraulic potential, tilting local oil/water contacts up to six degrees and causing the three sandstone members of the Toro to locally behave as separate reservoirs, each with its own hydrocarbon/water contact. Reservoir simulations of Iagifu/Hedinia which include a flowing aquifer are able to match observed production history. Without a flowing aquifer, simulation predicts greater and earlier water production, and a greater pressure drop in the oil leg than has been observed. Reservoir modeling using a flowing aquifer has allowed downhole, structural targeting of later infill wells to be much closer to the OWC than would otherwise have been thought prudent, and has raised questions as to the potential effectiveness of a downdip water injection scheme. Production results from a small satellite field upstream of the main Iagifu/Hedinia field have shown a sudden increase in water production and reservoir pressure after a long period of pressure decline and no water production. This behavior appears to be due to an influx of higher hydraulic potential from a separate reservoir sand, the influx being brought about by pressure draw down during production and consequent breakdown of fault seal.
Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target
Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; Cook, N.; Maharjan, C.; Najmudin, Z.; Shkolnikov, P.; Pogorelsky, I.
2015-08-28
We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲1014 W cm–2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>1016 W cm–2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He+ and H+ were routinely produced, whilst for shorter gradients (≲20 μm),more » quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.« less
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.; Lee, Cheng S.; Tang, Keqi
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.
HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION
Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk E-mail: fherwig@uvic.ca
2015-01-01
We present the first three-dimensional, fully compressible gas-dynamics simulations in 4? geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 1.48 10{sup 13} M {sub ?} s{sup 1}.
Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators
Sitaraman, Hariswaran; Raja, Laxminarayan L.
2014-01-15
Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.
(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions
Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2010-07-15
We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as a function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.
Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System
Pease, Leonard F.; Bamberger, Judith A.; Minette, Michael J.
2015-08-01
This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell satisfies these criteria when vigorous breakthrough is achieved, not all available data follow the free jet profile for the central upwell, particularly at lower nozzle velocities. Alternative flow regimes are considered and new models for cloud height, “cavern height,” and the rate of jet penetration (jet celerity) are benchmarked against data to anchor scaling analyses. This analytical modeling effort to provide a technical basis for scaling PJM mixed vessels has significant implications for vessel mixing, because jet physics underlies “cavern” height, cloud height, and the volume of mixing considerations. A new four-parameter cloud height model compares favorably to experimental results. This model is predictive of breakthrough in 8 ft vessel tests with the two-part simulant. Analysis of the upwell in the presence of yield stresses finds evidence of expanding turbulent jets, confined turbulent jets, and confined laminar flows. For each, the critical elevation at which jet momentum depletes is predicted, which compare favorably to experimental cavern height data. Partially coupled momentum and energy balances suggest that these are limiting cases of a gradual transition from a turbulent expanding flow to a confined laminar flow. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing (i.e., breakthrough with slow peripheral mixing). Consideration of jet celerity shows that the rate of jet penetration is a governing consideration in breakthrough to the surface. Estimates of the volume of mixing are presented. This analysis shows that flow along the vessel wall is sluggish such that the central upwell governs the volume of mixing. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing and estimates of hydrogen release rates from first principles.
Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion
Weber, C. R. Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.
2015-03-15
The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400800?eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement.
Kaw, Predhiman; Sengupta, Sudip; Singh Verma, Prabal [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)
2012-10-15
The nonlinear development and collapse (breaking) of double layers in the long scale length limit is well described by equations for the cold ion fluid with quasineutrality. It is shown that electron dynamics is responsible for giving an 'equation of state' with negative ratio of specific heats to this fluid. Introducing a transformation for the density variable, the governing equation for the transformed quantity in terms of Lagrange variables turns out exactly to be a linear partial differential equation. This equation has been analyzed in various limits of interest. Nonlinear development of double layers with a sinusoidal initial disturbance and collapse of double layers with an initial perturbation in the form of a density void are analytically investigated.
SAFL Channel | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University of Minnesota Hydrodynamics Hydrodynamic Testing Facility Type Channel Length(m) 84.0 Beam(m) 2.8 Depth(m) 1.8 Cost(per day) Contact POC Towing Capabilities Towing...
R Paul Drake
2004-01-12
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.
SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS...
Office of Scientific and Technical Information (OSTI)
The collaborations tie together experts in hydrodynamics, nuclear physics, computer science, and neutrino physics. The University of Washington contributions to this effort include ...
Sediment Basin Flume | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...
Microsoft Word - Talks 20120822
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hydrodynamical and Transport Model for Ultra-relativistic Heavy Ion Reactions Dr. Yun Cheng Central China Normal University, China yuncheng@phy.ccnu.edu.cn Abstract: Combining the ...
Teaching Flume | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Teaching Flume Jump to: navigation, search Basic Specifications Facility Name Teaching Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Flume...
MHL Free Surface Channel | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Free Surface Channel Jump to: navigation, search Basic Specifications Facility Name MHL Free Surface Channel Overseeing Organization University of Michigan Hydrodynamics...
Tidal Energy Test Platform | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics...
Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.
2015-03-27
In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years,more » with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.« less
Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.
2015-03-27
In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years, with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.
Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD
2008-11-01
This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.
Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.
2013-07-20
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.
Simakov, Andrei Nikolaevich; Molvig, Kim
2016-03-17
Paper I [A. N. Simakov and K. Molvig, Phys. Plasmas23, 032115 (2016)] obtained a fluid description for an unmagnetized collisional plasma with multiple ion species. To evaluate collisional plasmatransport fluxes, required for such a description, two linear systems of equations need to be solved to obtain corresponding transport coefficients. In general, this should be done numerically. Herein, the general formalism is used to obtain analytical expressions for such fluxes for several specific cases of interest: a deuterium-tritium plasma; a plasma containing two ion species with strongly disparate masses, which agrees with previously obtained results; and a three ion species plasmamore » made of deuterium, tritium, and gold. We find that these results can be used for understanding the behavior of the aforementioned plasmas, or for verifying a code implementation of the general multi-ion formalism.« less
Najjar, F M; Solberg, J; White, D
2008-04-17
A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.
Pannala, S; D'Azevedo, E; Zacharia, T
2002-02-26
The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.
Mller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2014-06-10
Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ?}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ?-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ? 10 M {sub ?} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of ?E{sub ?-bar{sub e}}? with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ?10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.
FORMING REALISTIC LATE-TYPE SPIRALS IN A {Lambda}CDM UNIVERSE: THE ERIS SIMULATION
Guedes, Javiera; Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Callegari, Simone [Institute for Theoretical Physics, University of Zuerich, Winterthurerstrasse 190, CH-9057 Zuerich (Switzerland); Mayer, Lucio [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, 8093 Zuerich (Switzerland)
2011-12-01
Simulations of the formation of late-type spiral galaxies in a cold dark matter ({Lambda}CDM) universe have traditionally failed to yield realistic candidates. Here we report a new cosmological N-body/smooth particle hydrodynamic simulation of extreme dynamic range in which a close analog of a Milky Way disk galaxy arises naturally. Named 'Eris', the simulation follows the assembly of a galaxy halo of mass M{sub vir} = 7.9 Multiplication-Sign 10{sup 11} M{sub Sun} with a total of N = 18.6 million particles (gas + dark matter + stars) within the final virial radius, and a force resolution of 120 pc. It includes radiative cooling, heating from a cosmic UV field and supernova explosions (blastwave feedback), a star formation recipe based on a high gas density threshold (n{sub SF} = 5 atoms cm{sup -3} rather than the canonical n{sub SF} = 0.1 atoms cm{sup -3}), and neglects any feedback from an active galactic nucleus. Artificial images are generated to correctly compare simulations with observations. At the present epoch, the simulated galaxy has an extended rotationally supported disk with a radial scale length R{sub d} = 2.5 kpc, a gently falling rotation curve with circular velocity at 2.2 disk scale lengths of V{sub 2.2} = 214 km s{sup -1}, an i-band bulge-to-disk ratio B/D = 0.35, and a baryonic mass fraction within the virial radius that is 30% below the cosmic value. The disk is thin, has a typical H I-to-stellar mass ratio, is forming stars in the region of the {Sigma}{sub SFR}-{Sigma}{sub HI} plane occupied by spiral galaxies, and falls on the photometric Tully-Fisher and the stellar-mass-halo-virial-mass relations. Hot (T > 3 Multiplication-Sign 10{sup 5} K) X-ray luminous halo gas makes up only 26% of the universal baryon fraction and follows a 'flattened' density profile {proportional_to}r{sup -1.13} out to r = 100 kpc. Eris appears then to be the first cosmological hydrodynamic simulation in which the galaxy structural properties, the mass budget in the
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Purdue University Regional Clean Energy Innovation Forum West Lafayette, Indiana * June 8-10, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 2-2 1 ENERGY CENTER REGIONAL CLEAN ENERGY INNOVATION FORUM June 8-10, 2016 Purdue University, West Lafayette, IN In association with Argonne National Laboratory Report for Report Prepared by: Michael Ladisch Pankaj Sharma Tomás Díaz de la Rubia Notes by Graduate Students Iman Besheti Emma Brace Julia
Aschwanden, Markus J.; Shimizu, Toshifumi E-mail: shimizu.toshifumi@isas.jaxa.jp
2013-10-20
In this study we measure physical parameters of the same set of 155 M- and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure analysis to determine the flare peak emission measure EM{sub p} , peak temperature T{sub p} , electron density n{sub p} , and thermal energy E{sub th}, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M- and X-class flares are log (EM{sub p}) = 47.0-50.5, T{sub p} = 5.0-17.8 MK, n{sub p} = 4 × 10{sup 9}-9 × 10{sup 11} cm{sup –3}, and thermal energies of E{sub th} = 1.6 × 10{sup 28}-1.1 × 10{sup 32} erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law T{sub p}{sup 2}∝n{sub p} L and H∝T {sup 7/2} L {sup –2} during the peak time t{sub p} of the flare density n{sub p} , when energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts power-law distributions for all physical parameters, which we demonstrate with numerical Monte Carlo simulations as well as with analytical calculations. A consequence of the RTV law is also that we can retrieve the size distribution of heating rates, for which we find N(H)∝H {sup –1.8}, which is consistent with the magnetic flux distribution N(Φ)∝Φ{sup –1.85} observed by Parnell et al. and the heating flux scaling law F{sub H} ∝HL∝B/L of Schrijver et al.. The fractal-diffusive self-organized criticality model in conjunction with the RTV scaling law reproduces the observed power-law distributions and their slopes for all geometrical and physical parameters and can be used to predict the size distributions for other flare data sets, instruments, and detection algorithms.
Markutsya, Sergiy; Lamm, Monica H.
2014-11-07
We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.
Blount, G.; Gorensek, M.; Hamm, L.; O’Neil, K.; Kervévan, C.; Beddelem, M. -H.
2014-12-31
Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO₂) capture system (Pi-CO₂) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO₂ has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO₂ from local industrial sources.
Alaia, Alessandro; Puppo, Gabriella
2011-06-20
In this work we present a hybrid particle-grid Monte Carlo method for the Boltzmann equation, which is characterized by a significant reduction of the stochastic noise in the kinetic regime. The hybrid method is based on a first order splitting in time to separate the transport from the relaxation step. The transport step is solved by a deterministic scheme, while a hybrid DSMC-based method is used to solve the collision step. Such a hybrid scheme is based on splitting the solution in a collisional and a non-collisional part at the beginning of the collision step, and the DSMC method is used to solve the relaxation step for the collisional part of the solution only. This is accomplished by sampling only the fraction of particles candidate for collisions from the collisional part of the solution, performing collisions as in a standard DSMC method, and then projecting the particles back onto a velocity grid to compute a piecewise constant reconstruction for the collisional part of the solution. The latter is added to a piecewise constant reconstruction of the non-collisional part of the solution, which in fact remains unchanged during the relaxation step. Numerical results show that the stochastic noise is significantly reduced at large Knudsen numbers with respect to the standard DSMC method. Indeed in this algorithm, the particle scheme is applied only on the collisional part of the solution, so only this fraction of the solution is affected by stochastic fluctuations. But since the collisional part of the solution reduces as the Knudsen number increases, stochastic noise reduces as well at large Knudsen numbers.
Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.
2014-07-15
A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure RayleighTaylor and RichtmyerMeshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a low-foot drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.
Blount, G.; Gorensek, M.; Hamm, L.; ONeil, K.; Kervvan, C.; Beddelem, M. -H.
2014-12-31
Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO?) capture system (Pi-CO?) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO? has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO? from local industrial sources.
Gentili, Pier Luigi; Gotoda, Hiroshi; Dolnik, Milos; Epstein, Irving R.
2015-01-15
Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.
None
2016-07-12
Michel Pentz est nÃ©e en Afrique du Sud et venu au Cern en 1957 comme physicien et prÃ©sident de l'associaion du personnel. Il est Ã©galement fondateur du mouvement Antiapartheid de GenÃ¨ve et a participÃ© Ã la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pÃ©dagogiques, culturels et nationaux dans lesquels la mÃ©thode peut s'appliquer.
U.S. Department of Energy (DOE) - all webpages (Extended Search)
jlf user group JLF User Group 2015 NIF and JLF User Group Meeting Links: Send request to join the JLF User Group Join the NIF User Group Dr. Carolyn Kuranz - JLF User Group Dr. Carolyn Kuranz received her Ph.D. in Applied Physics from the University of Michigan in 2009. She is currently an Assistant Research Scientist at the Center for Laser Experimental Astrophysical Research and the Center for Radiative Shock Hydrodynamics at the University of Michigan. Her research involves hydrodynamic
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
University of Washington Northwest Regional Clean Energy Innovation Partnership Workshop Seattle, Washington * August 15, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 10-2 Northwest Region Workshop Planning Team: University of Washington, Pacific Northwest National Laboratory, Idaho National Laboratory, National Energy Technology Laboratory, Washington State University, Oregon State University, University of Oregon Northwest Regional Clean
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Unexpected Universe: Measurements of Cosmological Parameters Wendy L. Freedman John & Marion Sullivan University Professor of Astronomy & Astrophysics The University of Chicago November 4, 2015 4:00 p.m. Over the past few decades, cosmologists have for the first time identified the major constituents of the universe. Surprisingly, the universe hardly resembles what we thought only a few decades ago. The universe is filled with dark matter that is not visible and energy that permeates all
Office of Energy Efficiency and Renewable Energy (EERE)
Matt Tirrell, Pritzker Director and Professor, Institute for Molecular Engineering, University of Chicago Thomas Glasmacher, Facility for Rare Isotope Beams (FRIB) Project Manager, Michigan State University
Microsoft Word - Talks 20120822
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hydrodynamical and Transport Model for Ultra-relativistic Heavy Ion Reactions Dr. Yun Cheng Central China Normal University, China yuncheng@phy.ccnu.edu.cn Abstract: Combining the hydrodynamic model (PID) and the transport model (PACIAE), we apply a hybrid model to describe the ultra-relativistic heavy ion collisions at RHIC and LHC energies, investigate the charged particle production and the elliptic flow parameter, and reproduce the corresponding experimental data
Spotlighting Howard University
Students at Howard University are helping to solve one of the biggest challenges facing renewable energy.
NNSA, LANL Complete DARHT Improvements With Successful Multi...
National Nuclear Security Administration (NNSA)
NNSA, LANL Complete DARHT Improvements With Successful Multi-frame Hydrodynamic Test ... (LANL) Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has completed another ...
Los Alamos National Laboratory Hydrodynamic Test Program DOEIG-0699 September 2005 THE LOS ALAMOS HYDRODYNAMIC TEST PROGRAM Page 1 Details of Findings Testing Delays Los Alamos...
EIS-0228: Record of Decision | Department of Energy
Office of Environmental Management (EM)
Hydrodynamic Test Facility The Department of Energy (DOE) is issuing this Record of Decision (ROD) regarding the DOE's proposed Dual Axis Radiographic Hydrodynamic Test (DARHT) ...
University Forums | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Regional Energy Technology Innovation » University Forums University Forums University of New Mexico 1 of 12 University of New Mexico Southwest Regional Energy Innovation Forum, July 5, 2016 University of California, Los Angeles 2 of 12 University of California, Los Angeles Southern California Clean Energy Innovation Ecosystem Roundtable, May 10, 2016 Purdue University 3 of 12 Purdue University Regional Clean Energy Innovation Forum, June 8-10, 2016 University of Kentucky 4 of 12 University of
Universal Biology, the Genetic
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Universal Biology, the Genetic Code and the First Billion Years of Life on Earth Nigel Goldenfeld University of Illinois May 25, 2016 4:00 p.m. - Wilson Hall, One West This ...
University of Nebraska-Lincoln and University of Florida (Building...
OpenEI (Open Energy Information) [EERE & EIA]
Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name: University of Nebraska-Lincoln and University of Florida...
Napier University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name: Napier University Place: Edinburgh, Scotland, United Kingdom Zip: EH14 1DJ Product: A university located in Edinburgh, Scotland that...
Hamdard University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Hamdard University Jump to: navigation, search Name: Hamdard University Place: Karachi, Pakistan Zip: 74600 Sector: Solar Product: University setting up Pakistan's first solar lab....
Purdue University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Purdue University Jump to: navigation, search Logo: Purdue University Name: Purdue University Address: West Lafayette, IN Zip: 47907 Phone Number: (765) 494-4600 Website:...
Lancaster University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name: Lancaster University Address: Engineering Department Lancaster University Place: Lancaster Zip: LA1 4YR Region: United Kingdom Sector:...
Development of Green Fuels From Algae - The University of Tulsa
Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen
2012-12-03
The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.
Duke University and Duke University Medical Center
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Duke University and Duke University Medical Center Date Revised: 3/5/97; 4/25/01 PERSONNEL DOSIMETER REQUEST AND RADIATION EXPOSURE HISTORY 1. Name (Please print - Last name, First name, MI) 2. Duke Unique ID 3. Date of Birth 4. Age (in full years) 5. Gender (circle one) Male Female 6. WORK Telephone No. 7. Name of Department AND Authorized User X-rays Specify type of equipment: 8. Type of radiation to be monitored Radioactive Materials Specify radioisotopes: Other Specify: 9. Have you been
Local Schools and Universities
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Dual Career Services » Local Schools and Universities Local Schools and Universities Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. Contact Us dualcareers@lanl.gov The listing of schools, colleges and universities in New Mexico is organized by region. Northern New Mexico Area Espanola Public Schools District (K-12) Los Alamos Public Schools McCurdy Charter School New Mexico School for the Deaf
The Idaho National Laboratory published the U.S. Department of Energy's (DOE) Geothermal Technologies Office 2001 University Research Summaries.
Nuclear Energy University Programs
Energy.gov [DOE] (indexed site)
* Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of...
University of Massachusetts Lowell
Office of Energy Efficiency and Renewable Energy (EERE)
The University of Massachusetts Lowell team employed a Design Thinking(1)-inspired approach to develop a transportable wind turbine that charges portable electronic devices.
Fermilab Today | University Profiles
U.S. Department of Energy (DOE) - all webpages (Extended Search)
University Profiles Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO More than 2,000 scientists worldwide work with Fermilab. In the United States,...
National Nuclear Security Administration (NNSA)
Led by University of California, Berkeley Awarded 25M NNSA Grant for Nuclear Science and Security Research http:nnsa.energy.govmediaroompressreleases...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
University of Kentucky Regional Energy Innovation Forum Lexington, Kentucky * April 21, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 8-2 April 21, 2016 University of Kentucky Post-Forum Report 8-3 Contents Opening Remarks ......................................................................................................................................... 3 Secretary Moniz remarks
Bagley University Classroom Building
Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University. 05/22/2015 - 08:18
Healthcare Energy: State University of New York Upstate Medical University
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
East Wing | Department of Energy State University of New York Upstate Medical University East Wing Healthcare Energy: State University of New York Upstate Medical University East Wing The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. This page contains highlights from monitoring at the East Wing, a hospital building addition at the State University of New York Upstate Medical University. In the figure above, click on
Office of Energy Efficiency and Renewable Energy (EERE)
The Kansas State University team focused on two things as they designed and built a small wind turbine for the U.S. Department of Energy Collegiate Wind Competition.
U.S. universities and colleges must apply to the U.S. Department of Energy to administer NEUP scholarships and fellowships. That is done through a separate solicitation operated by the Department...
Blanford, Roger
2004-10-26
The Universe appears to be flat, accelerating and lightweight. In this talk, I will explain what these terms mean, how we developed this view and its implications. I will also discuss the connection between cosmology and particle physics experiments being conducted at accelerators and in underground laboratories. I will conclude with a description of some proposed telescopes that will help us understand much more about the geometry, expansion and contents of our Universe.
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
University of Pittsburgh Mission Innovation Workshop on Grid Modernization Pittsburgh, Pennsylvania * June 24, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 9-2 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 9-2 1 Mission Innovation Workshop on Grid Modernization - Workshop Report - Hosted by the University of Pittsburgh Center for Energy Friday, June 24, 2016 9-3 9-3 2 TABLE OF CONTENTS I.
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
West Virginia University Mid-Atlantic Region Energy Innovation Forum Report Morgantown, West Virginia * September 12, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 11-2 MID-ATLANTIC REGION ENERGY INNOVATION FORUM REPORT Hosted by the the WVU Energy Institute at West Virginia University September 12, 2016 11-3 Mid-Atlantic Region Energy Innovation Forum i CONTENTS EXECUTIVE SUMMARY
University) [Johns Hopkins University] 71 CLASSICAL AND QUANTUM...
Office of Scientific and Technical Information (OSTI)
Zlatko (Johns Hopkins University) Johns Hopkins University 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY;...
University contracts summary book
1980-08-01
The principal objectives of the Fossil Energy Program are to seek new ideas, new data, fundamental knowledge that will support the ongoing programs, and new processes to better utilize the nation's fossil energy resources with greater efficiency and environmental acceptability. Toward this end, the Department of Energy supports research projects conducted by universities and colleges to: Ensure a foundation for innovative technology through the use of the capabilities and talents in our academic institutions; provide an effective, two-way channel of communication between the Department of Energy and the academic community; and ensure that trained technical manpower is developed to carry out basic and applied research in support of DOE's mission. Fossil Energy's university activities emphasize the type of research that universities can do best - research to explore the potential of novel process concepts, develop innovative methods and materials for improving existing processes, and obtain fundamental information on the structure of coal and mechanisms of reactions of coal, shale oil, and other fossil energy sources. University programs are managed by different Fossil Energy technical groups; the individual projects are described in greater detail in this book. It is clear that a number of research areas related to the DOE Fossil Energy Program have been appropriate for university involvement, and that, with support from DOE, university scientific and technical expertise can be expected to continue to play a significant role in the advancement of fossil energy technology in the years to come.
Fermilab Today | Kansas State University
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Kansas State University Feb. 27, 2013 NAME: Kansas State University HOME TOWN: Manhattan, Kan. MASCOT: Willie the Wildcat COLORS: Royal purple COLLABORATING AT FERMILAB SINCE: 1993...
Fermilab Today | Purdue University Calumet
U.S. Department of Energy (DOE) - all webpages (Extended Search)
University Calumet Jan. 9, 2013 NAME: Purdue University Calumet HOME TOWN: Hammond, Ind. MASCOT: Peregrine COLORS: Black and gold COLLABORATING AT FERMILAB SINCE: 2005 WORLDWIDE...
Sichuan University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Sichuan University Place: Chengdu, Sichuan Province, China Zip: 610065 Product: A comprehensive university in south-west China. Coordinates: 30.67, 104.071022 Show Map Loading...
Uppsala University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name: Uppsala University Address: Box 534 Place: Uppsala Zip: 75121 Region: Sweden Sector: Marine and Hydrokinetic Phone Number:...
Murdoch University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
offers a university education of the highest quality and has been ranked the best teaching campus of all Australia's public universities in an independent national survey of...
Split University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Name: Split University Place: Zagreb, Croatia Sector: Hydro, Solar Product: Croatia-based electrical engineering faculty of Split University. Involved in developing small hydro and...
Universally oriented renewable liquid mirror
Ryutov, Dmitri D.; Toor, Arthur
2004-07-20
A universally oriented liquid mirror. A liquid and a penetrable unit are operatively connected to provide a mirror that can be universally oriented.
Universal Energy | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Energy Jump to: navigation, search Name: Universal Energy Place: Nanjing, Jiangsu Province, China Sector: Solar Product: Universal Energy is a PV module and solar hot water systems...
Fermilab Today | Brown University Profile
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Brown University April 29, 2010 NAME: Brown University HOME TOWN: Providence, Rhode Island MASCOT: Bruno the Bear SCHOOL COLORS: Seal brown and cardinal red PARTICLE PHYSICS...
Fermilab Today | Wayne State University
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Wayne State University May 29, 2013 NAME: Wayne State University HOME TOWN: Detroit, Mich. COLORS: Green and gold COLLABORATING AT FERMILAB SINCE: 1995 WORLDWIDE PARTICLE PHYSICS...
Research Areas | National Nuclear Security Administration | (NNSA)
National Nuclear Security Administration (NNSA)
Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated
California State University, Chico | Department of Energy
Energy.gov [DOE] (indexed site)
Mechatronic Engineering; Yuanyuan Ju, Mechanical Engineering California State University, Chico California State University, Chico California State University, Chico Team ...
2010-01-01
Scientists are quite familiar with what a supernova looks like when these stars are destroyed in the most massive explosions in the universe, they leave their mark as one of the brightest objects in space, at least for several weeks. While the supernova can be seen, it cant be heard, as sound waves cannot travel through space. But what if the light waves emitted by the exploding star and other cosmological phenomena could be translated into sound? Thats the idea behind a Rhythms of the Universe, a musical project to sonify the universe by Grateful Dead percussionist and Grammy award-winning artist Mickey Hart that caught the attention of Nobel Prize-winning astrophysicist George Smoot of Lawrence Berkeley National Laboratory. Sounds courtesy of Keith Jackson. Images courtesy of NASA
Oregon State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Logo: Oregon State University Name: Oregon State University Address: Oregon State University Corvallis, OR Zip: 97331-4501 Year Founded: 1868...
Pennsylvania State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Logo: Pennsylvania State University Name: Pennsylvania State University Address: 201 Shields Building University Park, PA 16802 Zip: 16802...
The Future of University Nuclear Engineering Programs and University
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Research and Training Reactors | Department of Energy The Future of University Nuclear Engineering Programs and University Research and Training Reactors The Future of University Nuclear Engineering Programs and University Research and Training Reactors Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950's and 1960's from interdisciplinary efforts in many of the top research universities, providing the manpower for this technical
The U.S. Department of Energy’s (DOE’s) Cleantech University Prize (Cleantech UP) aims to inspire the next generation of clean energy entrepreneurs and innovators by providing them with competitive funding for business development and commercialization training and other educational opportunities.
Universal nonlinear entanglement witnesses
Kotowski, Marcin; Kotowski, Michal [College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Warsaw University, PL-Warszawa (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/44, PL-02-668 Warszawa (Poland); Kus, Marek [Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/44, PL-02-668 Warszawa (Poland)
2010-06-15
We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.
University of Colorado Boulder
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
University of Colorado Boulder North Central/Inter-Mountain West Regional Clean Energy Innovation Summit Boulder Colorado * September 19, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 7-2 Page 1 of 61 7-3 Page 2 of 61 Table of Contents Introduction .................................................................................................................................................. 3 Rationale
Quantum Universe James Hartle University of California, Santa...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Einstein's Vision and the Quantum Universe James Hartle University of California, Santa Barbara October 21, 2015 4:00 p.m. - Wilson Hall, One West Einstein's theory of gravity -- ...
Steven Gottlieb Indiana University
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Gottlieb Indiana University (MILC Collaboration & USQCD) NERSC HEP Requirements Review Rockville, MD November 27-28, 2012 GPU & MIC for Lattice Field Theory S. Gottlieb, NERSC HEP Requirements, 11-27-12 Introduction ✦ GPU computing has been embraced by the lattice QCD community over the past four to five years ✦ Used more for analysis runs than for configuration generation ✦ JLab and Fermilab both have production GPU clusters for USQCD * some 20 projects allocated time ✦ We are
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Arizona State University Southwestern Regional Water-Energy Nexus Event Tempe, Arizona * September 8, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 1-2 Southwestern Regional Water-Energy Nexus Event Tempe, Arizona - September 8, 2016 Report Authors Amanda Arnold, Executive Director, Federal Research Relations, Knowledge Enterprise Development (KED) Faye Farmer, Director, Research Development, KED Karen Walker, Senior Management Research
University-Forums-Gallery | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
University-Forums-Gallery University-Forums-Gallery Addthis University of New Mexico 1 of 12 University of New Mexico Southwest Regional Energy Innovation Forum, July 5, 2016 University of California, Los Angeles 2 of 12 University of California, Los Angeles Southern California Clean Energy Innovation Ecosystem Roundtable, May 10, 2016 Purdue University 3 of 12 Purdue University Regional Clean Energy Innovation Forum, June 8-10, 2016 University of Kentucky 4 of 12 University of Kentucky Regional
Cebeci, T.
1986-01-01
The present symposium considers hydrodynamic stability and turbulent transition, transition calculations in three-dimensional flows, a quasi-simultaneous finite difference approach for strongly interacting flows, the significance of the thin layer Navier-Stokes approximation, unsteady airfoil boundary layers, predictions and experiments on airfoils at low Reynolds numbers, and a comparison of interactive boundary layer and thin layer Navier-Stokes procedures. Also discussed are a viscous-inviscid interaction method for computing unsteady transonic separation, massive separation and dynamic stall on a cusped trailing edge airfoil, the computation of turbulent separated flows over wings, an iterative scheme for three-dimensional transonic flows, and the computation of three-dimensional flows with shock wave/boundary layer interaction. Many of the papers in this symposium were abstracted previously (cf., A85-42951).
Fermilab Today | University of Arizona
U.S. Department of Energy (DOE) - all webpages (Extended Search)
A&M University Dec. 12, 2012 NAME: Texas A&M University HOME TOWN: College Station, Texas MASCOT: Reveille COLORS: Maroon and white COLLABORATING AT FERMILAB SINCE: Early 1980s....
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Members of the HIGS PAC are listed below: Jian-Ping Chen, Chair Thomas Jefferson National Accelerator Facility Carl Brune Ohio University Harald Griesshammer George Washington University Bradley M. Sherrill National Superconducting Cyclotron Laboratory
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hill KamLAND: Hugon Karwowski and Ryan Rohm, UNC at Chapel Hill; Christopher Gould and Albert Young, NC State University; Diane Markoff, NC Central University; and Werner Tornow,...
Drexel University Temperature Sensors
K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase
2014-09-01
This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Jean-Luc Vay With inputs from J. Amundson, J. Cary, W. Mori, C.-K. Ng, R. Ryne, J. Qiang Exascale Requirements Reviews: High Energy Physics June 10-12, 2015 Traditional HPC needs: particle accelerators 2 2 UNIVERSITY OF CALIFORNIA Office of Science Advanced s imula.ons p lay a n i ncreasingly i mportant r ole in the design, o pera.on and t uning o f a ccelerators. CERN ( HL---)LHC FNAL P IP(---II/III) "Conven.onal a ccelerators" accelerate b eams i n R F c avi.es "Advanced c
University of Delaware Wind | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...
Case Western University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name Case Western University Facility Case Western University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...
Polytechnic University of Madrid | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Polytechnic University of Madrid Jump to: navigation, search Name: Polytechnic University of Madrid Place: Madrid, Spain Sector: Solar Product: University piloting a 2.7MW solar...
Fermilab Today | Johns Hopkins University Profile
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hopkins University September 9, 2010 NAME: The Johns Hopkins University HOME TOWN: Baltimore, Maryland MASCOT: Blue jay SCHOOL COLORS: The university's official colors are gold...
University Park Data Dashboard | Department of Energy
Data Dashboard University Park Data Dashboard The data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. University Park Data ...
Robert Gordon University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Gordon University Jump to: navigation, search Name: Robert Gordon University Address: Centre for Research in Energy and the Environment The Robert Gordon University Schoolhill...
North Carolina State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name: North Carolina State University Place: Raleigh, North Carolina Zip: 27695 Sector: Biofuels, Biomass, Solar Product: Public university...
Michigan State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
State University Jump to: navigation, search Name: Michigan State University Place: East Lansing, MI Website: www.michiganstateuniversity.co References: Michigan State University...
Washington State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name: Washington State University Place: Spokane, WA Website: www.washingtonstateuniversity. References: Washington State University1...
Kansas State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name Kansas State University Facility Kansas State University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...
University of Cape Town | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
to: navigation, search Name: University of Cape Town Place: South Africa Product: Teaching and research university. References: University of Cape Town1 This article is a...
University of Neuchatel | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Neuchatel Jump to: navigation, search Name: University of Neuchatel Place: Switzerland Product: The University of Neuchatel, Switzerland References: University of Neuchatel1 This...
Inflating an inhomogeneous universe
Easther, Richard; Price, Layne C.; Rasero, Javier E-mail: lpri691@aucklanduni.ac.nz
2014-08-01
While cosmological inflation can erase primordial inhomogeneities, it is possible that inflation may not begin in a significantly inhomogeneous universe. This issue is particularly pressing in multifield scenarios, where even the homogeneous dynamics may depend sensitively on the initial configuration. This paper presents an initial survey of the onset of inflation in multifield models, via qualitative lattice-based simulations that do not include local gravitational backreaction. Using hybrid inflation as a test model, our results suggest that small subhorizon inhomogeneities do play a key role in determining whether inflation begins in multifield scenarios. Interestingly, some configurations which do not inflate in the homogeneous limit ''succeed'' after inhomogeneity is included, while other initial configurations which inflate in the homogeneous limit ''fail'' when inhomogeneity is added.
Morrell, Sean Robert; Rynes, Amanda Renee
2014-07-01
There are currently over 900 facilities in over 170 countries which fall under International Atomic Energy Agency (IAEA) safeguards. As additional nations look to purse civilian nuclear programs or to expand infrastructure already in place, the number of reactors and accompanying facilities as well as the quantity of material has greatly increased. Due to the breadth of the threat and the burden placed on the IAEA as nuclear applications expand, it has become increasingly important that safeguards professionals have a strong understanding of both the technical and political aspects of nonproliferation starting early in their career. To begin overcoming this challenge, Idaho National Laboratory, has partnered with local universities to deliver a graduate level nuclear engineering course that covers both aspects of the field with a focus on safeguards applications. To date over 60 students across multiple disciplines have participated in this course with many deciding to transition into a nonproliferation area of focus in both their academic and professional careers.
EM, University of Nevada, Reno Team on "Packaging University...
Office of Environmental Management (EM)
A burgeoning relationship between EM and the University of Nevada, Reno (UNR) is giving new depth and breadth to a program that trains students and nuclear industry professionals ...
Mexican University Program presentations for the University of...
Office of Scientific and Technical Information (OSTI)
3-5, 2011 in Guadalajara, Jalisco, MEXICO.; Related Information: Proposed for ... at the University of Guadalajara held October 3-5, 2011 in Guadalajara, Jalisco, MEXICO
National Aeronautic and Space Administration | National Nuclear Security
National Nuclear Security Administration (NNSA)
Administration Aeronautic and Space Administration NASA features LLNL star-formation simulations These high performance computing (HPC) simulations of star formation account for a broad range of physical processes, including: gravity, supersonic turbulence, hydrodynamics, outflows, magnetic fields, chemistry and ionizing and non-ionizing radiation. Image courtesy of Pak Shing Li/ University
Program Objectives | National Nuclear Security Administration | (NNSA)
National Nuclear Security Administration (NNSA)
Program Objectives Stewardship Science Academic Alliances (SSAA) Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities
simulations | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
simulations NASA features LLNL star-formation simulations These high performance computing (HPC) simulations of star formation account for a broad range of physical processes, including: gravity, supersonic turbulence, hydrodynamics, outflows, magnetic fields, chemistry and ionizing and non-ionizing radiation. Image courtesy of Pak Shing Li/ University
Program Objectives | National Nuclear Security Administration | (NNSA)
National Nuclear Security Administration (NNSA)
Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities for intellectual challenge and collaboration by promoting
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Physics| NC-State Physics| UNC-Chapel Hill Physics| Graduate Education at TUNL - Students from Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill perform collaborative research on a wide variety of topics. There are approximately 40 graduate students conducting research projects on a wide variety of topics that include nuclear astrophysics, fundamental symmetries, neutrino physics, weak interactions, few-nucleon, sub-nucleon, and many-body
Denver University - International Institute for Environment and...
OpenEI (Open Energy Information) [EERE & EIA]
- International Institute for Environment and Enterprise Name: Denver University - International Institute for Environment and Enterprise Address: 2199 S. University Blvd....
Funding Opportunity Webinar - Buildings University Innovators...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Buildings University Innovators and Leaders Development (BUILD) Funding Opportunity Webinar - Buildings University Innovators and Leaders Development (BUILD) View the Funding ...
Workplace Charging Challenge Partner: University of California...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa ...
Toronto University Innovation Foundation | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Toronto University Innovation Foundation Jump to: navigation, search Name: Toronto University Innovation Foundation Place: Canada Sector: Services Product: General Financial &...
Fermilab Today | Texas Tech University
U.S. Department of Energy (DOE) - all webpages (Extended Search)
and to increasing public awareness of physics research. FUNDING AGENCIES: DOE, NSF Texas Tech University High-Energy Physics Group: (Left) From left: Kittikul Kovitanggoon, Nural...
University Turbine Systems Research Program
Leitner, Robert; Wenglarz, Richard
2010-12-31
The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
2016 TUNLDuke REU Program Undergraduate Research in Nuclear and Particle Physics at TUNLDuke University The 2016 TUNL REU program dates are Tuesday, May 31, 2016 to August 6, ...
Cornell University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. It is both a private university and the land-grant institution of New York...
Bucknell University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Address Civil & Mechanical Engineering Departments, Hydraulic Flume, 701 Moore Avenue, Dana Engineering Building Place Lewisburg, PA Zip 17837 Sector Hydro Phone...
Auburn University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Alabama Zip: 36849 Product: Largest university in Alabama, enrolling approximately 23,000 students in 230 undergraduate, graduate, and professional programs. References:...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
from women, minorities, individuals with disabilities, and veterans. In addition, Texas A&M University strives to be responsive to the particular needs of dual career...
Shanghai University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Place: Shanghai Municipality, China Zip: 200072 Product: Key institution of higher learning in Shanghai. References: Shanghai University1 This article is a stub. You can help...
University of Delaware | CCEI Partners
U.S. Department of Energy (DOE) - all webpages (Extended Search)
and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national ...
McMaster University`s artificial computing system
Dawes, A.; Bentley, M.
1996-12-31
This will be McMaster University`s first entry into the AAAI Mobile Robotics competition. As such, this year will serve as a testing ground for future developments. It is the goal of the designers to experiment with new techniques and approaches based on their engineering background.
Morrell, Roger J.; Larson, David A.
1991-01-01
A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.
Universal: Order (2013-SE-26004)
DOE ordered Universal Lighting Technologies, Inc. to pay a $7,264 civil penalty after finding Universal had manufactured and distributed in commerce in the U.S. 454 units of model B140R277HP, a noncompliant fluorescent lamp ballast.
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Main Office June Tirpak, Grants and Contracts Administrator Room 414, TUNL Phone : (919) 660 - 2600 Fax : (919) 660 - 2634 Email : june.tirpak@tunl.duke.edu Courier Deliveries TUNL Building Duke University 116 Science Drive TUNL Building, Room 414 Durham, NC 27708 USA Courier Deliveries DFELL Building Duke University 101 Circuit Dr - Lasalle St Extension FEL Lab, Room 125 Durham, NC 27708-0319 USA TUNL USPS Mail Duke University Physics Department/TUNL P. O. Box 90308 Durham, NC 27708-0308 USA
MIT Tow Tank | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) 750 Towing...
EERE Days at Stanford University
The Department of Energy hosts the Office of Energy Efficiency and Renewable Energy (EERE) Days at Stanford University to engage students and faculty on key energy issues aligned with EERE’s...
Fermilab Today | Oklahoma State University
U.S. Department of Energy (DOE) - all webpages (Extended Search)
University group is involved in top quark studies, searches for a non-Standard Model Higgs boson, heavy flavor tagging and upgrade of the pixel detector in the ATLAS...
STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY
Office of Scientific and Technical Information (OSTI)
Engineering Stanford University, Stanford, California, January 22-24, 1985 SCP-TR-84 OB 5 COlJDITIOBS OF WATER BND ... and its confinement to the permeable deep fracturing zone. ...
University of Delaware | Contact CCEI
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Address Catalysis Center for Energy Innovation University of Delaware 221 Academy Street Newark, DE 19716 Phone Number (302) 831-1628 Email efrc-info@udel.edu Visitors A ...
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Consortium Universities Research Hadron Structure Nuclei: Structure to Stars Fundamental Symmetries Neutrinos and Dark Matter Applications of Nucl. Phys. Facilities HIGS LENA Tandem Laboratory Resources HIGS / Tandem Schedules TUNL Seminars Conferences/Schools/Events Rooms/Docs/Technical TUNL Management Employment Opportunities Duke NCSU UNC The Triangle Universities Nuclear Laboratory (TUNL) is a U.S. Department of Energy (DOE) Center of Excellence that focuses on low-energy nuclear physics
Triangle Universities Nuclear Laboratory : 2011
U.S. Department of Energy (DOE) - all webpages (Extended Search)
This symposium celebrates the contributions of Edward G. Bilpuch to nuclear physic and to the Triangle Universities Nuclear Laboratory (TUNL), which is a U.S. Department of Energy Center of Excellence in Nuclear Physics. Dr. Bilpuch was a Henry W. Newson Professor of Physics at Duke University, a member of the first generation of nuclear physicists who founded TUNL and the longest-term director of TUNL.
Clocking the Early Universe's Expansion
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Clocking the Early Universe Clocking the Early Universe's Expansion Calculations Performed at NERSC Help Scientists Close in on the Nature of Dark Energy April 17, 2014 Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 NERSC PI: David Schlegel Lead Institution: Lawrence Berkeley National Laboratory Project Title: Baryon Oscillation Spectroscopic Survey NERSC Resources Used: Hopper DOE Program Office: High Energy Physics Astronomers have made the most accurate calculation yet of the expansion rate of
University of Califorinia, Los Angeles
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
6 University of California, Los Angeles Southern California Clean Energy Innovation Ecosystem Roundtable Los Angeles, California * May 10, 2016 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation * Volume 2 6-2 Southern California Clean Energy Innovation Ecosystem Roundtable Report 2016 Roundtable Hosted by the University of California, LA - May 10, 2016 Report Authors/Editors Dr. Casandra Rauser, Director, Sustainable LA Grand Challenge, UCLA Dr. Huguette
Fermilab | Science | Questions for the Universe
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Questions for the Universe To discover what the universe is made of and how it works is the challenge of particle physics. The landmark Quantum Universe report defines the quest of ...
Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube...
Office of Scientific and Technical Information (OSTI)
The bumps were characterized using interference microscopy and AFM. Authors: Letts, S ; ... FABRICATION; HYDRODYNAMICS; INSTABILITY; MASS DEFECT; MICROSCOPY; PLASMA; POLYMERS
Microsecond Microfluidic Mixing for Investigation of Protein...
Office of Scientific and Technical Information (OSTI)
Language: English Subject: 59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; COMPATIBILITY; DIFFUSION; FOCUSING; HYDRODYNAMICS; KINETICS; MIXERS; PROTEINS; REACTION KINETICS; ...
Energy Science and Technology Software Center
002592WKSTN00 Livermore Unstructured Lagrange Explicit Shock Hydrodynamics https://computation.llnl.gov/casc/software.html
Nuclear stockpile stewardship and Bayesian image analysis (DARHT...
Office of Scientific and Technical Information (OSTI)
Subject: 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 42 ENGINEERING; HYDRODYNAMICS; IMAGE PROCESSING; NUCLEAR WEAPONS; RELIABILITY; STOCKPILES; TESTING; TEST FACILITIES ...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
... and in structural health monitoring. (2011) Edward Rodriguez - Contributions to structural dynamics, computational hydrodynamics, shock and vibration engineering, and explosive ...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
on fundamental sciences: controls, hydrodynamics, aerodynamics, experimentation, etc. Technology Assessment: Reference Model Project Goal: obtain baseline Cost Of Energy...
University of Maine | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
search Name: University of Maine Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: University of...
Oak Rigde Associated Universities (ORAU) Radiation Emergency...
Energy.gov [DOE] (indexed site)
Rigde Associated Universities (ORAU) Radiation Emergency Assistance CenterTraining Site (REACTS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency ...
The University of Wyoming | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Wyoming Jump to: navigation, search Name: The University of Wyoming Abbreviation: UW Address: 1000 East University Avenue Place: Laramie, Wyoming Zip: 82071 Phone Number:...
University of Michigan | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Michigan Jump to: navigation, search Name: University of Michigan Place: Ann Arbor, Michigan Zip: 48109 Product: Offers research across all disciplines. References: University of...
University of Washington | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Washington Jump to: navigation, search Name: University of Washington Place: Seattle, Washington Product: Public research university with campuses in Seattle, Tacoma, and Bothell....
University of Toledo | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Toledo Jump to: navigation, search Name: University of Toledo Place: Toledo, Ohio Zip: 43606-3390 Product: A student-centered public metropolitan research university. Coordinates:...
University of Colorado | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Colorado Jump to: navigation, search Name: University of Colorado Place: Boulder, Colorado Zip: 80309 Product: A public university in Colorado. Coordinates: 42.74962,...
University of Maryland | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Maryland Jump to: navigation, search Logo: University of Maryland Name: University of Maryland Address: College Park, MD Zip: 20742 Website: www.umd.edu Coordinates: 38.980666,...
The George Washington University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Washington University Jump to: navigation, search Name: The George Washington University Place: Washington, District of Columbia Zip: 20052 Website: www.gwu.edu Coordinates:...
Baylor University - Renewable Aviation Fuels Development Center...
OpenEI (Open Energy Information) [EERE & EIA]
University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...
University of South Florida | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
South Florida Jump to: navigation, search Name: University of South Florida Place: St. Petersburg, Florida Zip: FL 33701 Product: Educational and research university. References:...
Seoul National University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Zip: 151-742 Product: SNU was the first ever national university established in modern Korean history and is still perceived as the leading university in Korea. Coordinates:...
Kansas State University 2016 | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Kansas State University 2016 Kansas State University 2016 Team roster: Tanzila Ahmed, Electrical Engineering; Lawryn Edmonds, Electrical Engineering; Jacob Meyer, Electrical ...
Universal Display Corp | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Jump to: navigation, search Name: Universal Display Corp. Place: New Jersey Product: OLED (Organic Light Emitting Device) Developer References: Universal Display Corp.1 This...
California State University CSU | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University CSU Jump to: navigation, search Name: California State University (CSU) Place: Los Angeles, California Zip: 90802-4210 Sector: Solar Product: One of the largest higher...
Ferris State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Ferris State University Jump to: navigation, search Name: Ferris State University Place: Big Rapids, MI Website: www.ferrisstateuniversity.com References: Ferris State...
Arizona State University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...
University of Tennessee | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Testing Facilities Name University of Tennessee Address University of Tennessee Space Center, 411 B.H. Goethert Parkway Place Tullahoma, Tennessee Zip 37388 Sector Hydro...
Building a Universal Nuclear Energy Density Functional
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...
The University of Wisconsin | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
navigation, search Name: The University of Wisconsin Place: Madison, WI Website: www.wisc.edu References: The University of Wisconsin 1 Information About Partnership with NREL...
Next generation safeguards initiative university outreach: the...
Office of Scientific and Technical Information (OSTI)
Next generation safeguards initiative university outreach: the unique Los Alamos and the ... Title: Next generation safeguards initiative university outreach: the unique Los Alamos ...
Australian National University | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
navigation, search Name: Australian National University Place: Canberra, Australian Capital Territory, Australia Zip: 200 Product: One of the top five Australian Universities....
DOE - Office of Legacy Management -- Washington University -...
Office of Legacy Management (LM)
Documents Related to WASHINGTON UNIVERSITY MO.07-1 - Aerospace Corporation Letter; C.Young to A.Wallo; Subject: Elimination Recommendation for Various Colleges and Universities;...
Universal Membrane Classification Scheme: Maximizing the Return...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research Universal Membrane Classification Scheme: Maximizing the Return on High ...
Universal Entech LLC | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Entech LLC Jump to: navigation, search Name: Universal Entech, LLC Place: Phoenix, Arizona Zip: 85041 Product: Project developer focused on waste-to-energy References: Universal...
Carborundum Universal Ltd | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Carborundum Universal Ltd Jump to: navigation, search Name: Carborundum Universal Ltd Place: Chennai, Tamil Nadu, India Zip: 600001 Product: Chennai-based abrasives manufacturer....
Universal Lighting Technologies | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Lighting Technologies Jump to: navigation, search Name: Universal Lighting Technologies Place: Nashville, Tennessee Zip: 37214-3683 Product: Universal Lighting Technologies...
Universal Carbon Credits Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...