National Library of Energy BETA

Sample records for unconventional oil resources

  1. Unconventional Oil and Gas Resources

    SciTech Connect

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  2. Innovative Technology Improves Upgrading Process for Unconventional Oil Resources

    Energy.gov [DOE]

    An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy-funded project.

  3. Research Portfolio Report Unconventional Oil & Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air, Wellbore Integrity & Induced Seismicity Cover image: NETL's Mobile Air Monitoring Laboratory. Research Portfolio Report Unconventional Oil & Gas Resources: Air, Wellbore Integrity & Induced Seismicity DOE/NETL-2015/1693 Prepared by: Mari Nichols-Haining, Jennifer Funk, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report was

  4. Research Portfolio Report Unconventional Oil & Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Produced Water Treatment & Management Cover image: Western Research Institute treating and reusing coal-bed methane (CBM) pro- duced water. Research Portfolio Report Unconventional Oil & Gas Resources: ProducedProduced Water Treatment & Management DOE/NETL-2015/1692 Prepared by: Velda Frisco, Mari Nichols-Haining, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity

  5. Research Portfolio Report Unconventional Oil & Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Subsurface Geology and Engineering Cover image: "Fragments below exposure of fissile Marcellus black shale at Marcellus, N.Y." by Lvklock is licensed under CC by SA-3.0. Research Portfolio Report Unconventional Oil & Gas Resources: Subsurface Geology and Engineering DOE/NETL-2015/1691 Prepared by: Velda Frisco, Mari Nichols-Haining, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  6. Unconventional Resources Technology Advisory Committee | Department...

    Office of Environmental Management (EM)

    The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional ...

  7. Unconventional Resources Technology Advisory Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of

  8. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    SciTech Connect

    Smith, M.W.; Shadle, L.J.; Hill, D.

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  9. Unconventional Energy Resources: 2015 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  10. Projects Selected to Boost Unconventional Oil and Gas Resources

    Energy.gov [DOE]

    Ten projects focused on two technical areas aimed at increasing the nation’s supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide storage options have been selected for further development by the U.S. Department of Energy.

  11. Unconventional Energy Resources: 2013 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  12. Unconventional Energy Resources: 2011 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists

    2011-12-15

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

  13. DEPARTMENT OF ENERGY CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE Committee's Official Designation: Unconventional Resources Technology Advisory Committee (URTAC) 2. Committee's Objectives ...

  14. unconventional-resources | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unconventional Resources Alaska's Potential from unconventional sources: arrow_sm_lt_orange.gif The Alaska heavy oil resource is large, on the order of 45 billion barrels of original oil in place. arrow_sm_lt_orange.gif The West Sak PA is believed to contain between 15 and 20 billion barrels of oil (BBO) with variable oil gravity from 10 to 22°API. arrow_sm_lt_orange.gif West Sak development is restricted to a core area of about 2 BBO of which only 1.2 BBO is considered to be economical to

  15. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect

    2009-06-15

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  16. Microsoft Word - Unconventional Resources Tech Adv Committee...

    Office of Environmental Management (EM)

    UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY Advisory Committee Charter 1. Committee's Official Designation. Unconventional Resources Technical ...

  17. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Unconventional Resources Technology Advisory Committee Comments and Recommendations 2014 Annual Plan November 2013 Attachment 3 2 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................3 2.0 EXECUTIVE SUMMARY AND RECOMMENDATION HIGHLIGHTS .................5 3.0 TOPICAL REPORTS .......................................................................................................7 3.1 POLICY FINDINGS AND

  18. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Unconventional Resources Technology Advisory Committee Comments and Recommendations 2014 Annual Plan December 2013 2 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................3 2.0 EXECUTIVE SUMMARY AND RECOMMENDATION HIGHLIGHTS .................5 3.0 TOPICAL REPORTS .......................................................................................................7 3.1 POLICY FINDINGS AND

  19. Progress Report SEAB Recommendations on Unconventional Resource

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report SEAB Recommendations on Unconventional Resource Development Introduction Recent Secretary of Energy Advisory Board (SEAB) reports provide important frames of reference for stimulating actions that can ensure the development of U.S. oil and natural gas is safe and environmentally responsible. This overview outlines near term actions being taken by the U.S. Department of Energy (DOE) in response to the SEAB's March 2014 report on FracFocus 2.0, and also highlights progress

  20. Oil Shale and Other Unconventional Fuels Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on ...

  1. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  2. Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation’s abundant unconventional natural gas and oil resources.

  3. 2013 Unconventional Oil and Gas Project Selections

    Energy.gov [DOE]

    The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

  4. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Unconventional Oil and Gas Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Unconventional Oil and Gas Chapter 7: Technology Assessments Executive Summary The United States will, for the foreseeable future, continue to rely heavily upon oil and natural gas to support our economy, national security, and energy security. Given the increasing reliance on unconventional oil and gas (UOG) resources,

  5. Challenges and Opportunities of Unconventional Resources Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I

  6. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Energy.gov [DOE] (indexed site)

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the ...

  7. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... This often cannot be done by independent producers who are responsible for a large portion of the current oil and gas development in the United States. Subtitle J of the Energy ...

  8. Unconventional Resources Technology Advisory Committee

    Energy Saver

    ... Act of 2005 has provided steady funding for the long-term cooperative research required to make progress toward safe and efficient development of the gas shale resource base. ...

  9. Responsible recovery of unconventional oil and gas (UOG) requires...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Responsible recovery of unconventional oil and gas (UOG) requires technologies that ensure ... While hydraulic fracturing can affect water quality through surface spills or loss ...

  10. National Strategic Unconventional Resource Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In

  11. Expanded unconventional oil and gas (UOG) development has led...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Expanded unconventional oil and gas (UOG) development has led to increased seismicity in ... magnitude 3.0 to 6.0, is large-scale wastewater injection from oil and gas production. ...

  12. Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development

    Energy.gov [DOE]

    The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory partners with industry and academia through cost-sharing agreements to develop scientific knowledge and advance technologies that can improve the environmental performance of unconventional resource development. Once the resulting technologies are deployed for commercial use, our nation stands to reap huge benefits.

  13. DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources

    Energy.gov [DOE]

    Development of potentially vast and important unconventional energy resources in Alaska – including viscous oil and methane hydrates – could be accelerated under a Memorandum of Understanding signed today by the state’s Department of Natural Resources and the U.S. Department of Energy.

  14. Progress Report SEAB Recommendations on Unconventional Resource

    Office of Environmental Management (EM)

    (SEAB) reports provide important frames of reference for stimulating actions that can ensure the development of U.S. oil and natural gas is safe and environmentally responsible. ...

  15. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify ...

  16. Oil shale mining studies and analyses of some potential unconventional uses for oil shale

    SciTech Connect

    McCarthy, H.E.; Clayson, R.L.

    1989-07-01

    Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

  17. Unconventional Switching Behavior in La0.7Sr0.3MnO3/La0.7Sr0.3CoO3

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of

  18. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect

    Randall Seright

    2011-09-30

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and

  19. Obama Administration Announces Members of Steering Team to Lead Interagency Coordination of Unconventional Oil and Gas Research and Development

    Energy.gov [DOE]

    The Energy Department announces two members (policy and technical) to unconventional oil and gas research and development steering team.

  20. Unconventional Energy Resources and Geospatial Information: 2006 Review

    SciTech Connect

    2007-09-15

    This article contains a brief summary of some of the 2006 annual committee reports presented to the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. The purpose of the reports is to advise EMD leadership and members of the current status of research and developments of energy resources (other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks), energy economics, and geospatial information. This summary presented here by the EMD is a service to the general geologic community. Included in this summary are reviews of the current research and activities related to coal, coalbed methane, gas hydrates, gas shales, geospatial information technology related to energy resources, geothermal resources, oil sands, and uranium resources.

  1. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the

  2. Obama Administration Announces New Partnership on Unconventional Natural

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas and Oil Research | Department of Energy Administration Announces New Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 1:00pm Addthis Washington, DC - Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation's abundant unconventional natural gas and oil resources. The partnership

  3. Development of an Improved Methodology to Assess Potential Unconventional Gas Resources

    SciTech Connect

    Salazar, Jesus; McVay, Duane A. Lee, W. John

    2010-12-15

    Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic

  4. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  5. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  6. oil and gas portfolio reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)... focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ...

  7. Obama Administration Announces New Partnership on Unconventional...

    Energy Saver

    Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm ...

  8. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN...

    Office of Scientific and Technical Information (OSTI)

    AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Utah is rich in oil shale and oil sands resources. ...

  9. Strategic Significance of Americas Oil Shale Resource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... When the petroleum production peak occurs, the consequences will be severe if import-depen... unconventional fossil energy sources, namely liquids from oil shale, coal, and tar sand. ...

  10. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect

    Russell E. Fray

    2007-06-30

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

  11. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect

    Russell E. Fray

    2007-05-31

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

  12. RedLeaf Resources Ecoshale Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RedLeaf Resources Ecoshale Project Overview DEER 2008 Energy demand is exploding but "renewable energy" can't fill gap. Existing conventional oil production is "peaking" Lower extraction costs and demand have accelerated unconventional oil sands. * Unconventional Hydrocarbons - The hidden opportunity, oil industry consultancy Wood Mackenzie: "by 2025 unconventional oil is expected to supply more than 20% of global demand. Canada's UNCONVENTIONAL climb to the top of world

  13. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    SciTech Connect

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind; Facelli, Julio; Hradisky, Michal; Kelly, Kerry; Miller, Jan; McLennan, John; Ring, Terry; Ruple, John; Uchitel, Kirsten

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  14. Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges: Cross-Jurisdictional Management and Impacts on Unconventional Fuel Development in Utah's Uinta Basin

    SciTech Connect

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01

    Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued

  15. Unconventional Lasing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unconventional Lasing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo Newsletter Signup SlideShare Unconventional Lasing HomeEnergy ...

  16. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  17. Over the past decade, the domestic oil and natural gas industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    past decade, the domestic oil and natural gas industry has been transformed by the successful development of unconventional shale resources. The commercial success of shale is in ...

  18. Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)

    SciTech Connect

    none,; Rose, Kelly; Hakala, Alexandra; Guthrie, George

    2012-09-30

    This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999's Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETL's Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The objective of this

  19. Kerogen extraction from subterranean oil shale resources (Patent...

    Office of Scientific and Technical Information (OSTI)

    Kerogen extraction from subterranean oil shale resources Title: Kerogen extraction from subterranean oil shale resources The present invention is directed to methods for extracting ...

  20. Running Out Of and Into Oil. Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect

    Greene, David L.; Hopson, Janet L.; Li, Jia

    2003-10-01

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value.

  1. Secure Fuels from Domestic Resources- Oil Shale and Tar Sands

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

  2. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  3. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes

  4. Imported resources - gas/oil

    SciTech Connect

    Jakob, K.

    1995-12-01

    The goal of this presentation is to provide information on issues of crude oil and natural gas supply at a conference addressing the problems of energy in Eastern and Central Europe. Although this can inevitably be performed through the {open_quotes}binoculars{close_quotes} of the petroleum sector of my country, I will try to present the issues and challenges that are thought to be characteristic in general for the region.

  5. Geothermal and heavy-oil resources in Texas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Geothermal and heavy-oil resources in Texas Citation Details In-Document Search Title: Geothermal and heavy-oil resources in Texas You are accessing a document from the ...

  6. California Division of Oil, Gas, and Geothermal Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  7. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result

  8. Oil and gas resources remaining in the Permian Basin

    SciTech Connect

    Not Available

    1989-01-01

    In this book the authors present a reevaluation of the oil and gas resource base remaining in existing Permian Basin reservoirs. The Permian Basin is one of the nation's premier sources of oil production, accounting for almost one quarter of the total domestic oil resource. The distribution and magnitude of oil and gas resources discovered in the basin are documented at the play and reservoir levels. Data on reservoir geology and volumetric analysis come from the oil and gas atlases published by the Bureau of Economic Geology, the Bureau's oil-reservoir data base, and NRG Associates Significant Oil and Gas Fields of the United States.

  9. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect

    Greene, David L; Hopson, Dr Janet L; Li, Jia

    2005-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration ...

  11. Technically Recoverable Shale Oil and Shale Gas Resources

    Energy Information Administration (EIA) (indexed site)

    ... However, this more detailed delineation of the prospective area is beyond the scope of this initial resource assessment. Study Methodology EIAARI World Shale Gas and Shale Oil ...

  12. Unconventional Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 21 Exhibit 1-9 U.S. oil- and gas-producing ... for natural gas extraction (NETL, 2014) ... shale gas, tight gas sands, and coalbed methane resources. ...

  13. Balancing oil and environment... responsibly.

    SciTech Connect

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  14. Oil & Gas Research | Department of Energy

    Energy Saver

    DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates. Read more Unconventional Oil and Natural Gas Unconventional Oil and Natural Gas DOE ...

  15. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Program | Department of Energy Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing

  16. Unconventional gas: truly a game changer?

    SciTech Connect

    2009-08-15

    If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

  17. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  18. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...

    Energy.gov [DOE] (indexed site)

    The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a publicprivate ...

  19. Unconventional gas systems analysis

    SciTech Connect

    Zammerilli, A.M.; Duda, J.R.; Layne, A.W.

    1992-01-01

    Gas systems analysis at the Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry from resource to utilization. The board-based analysis identifies market needs that are required to maintain and expand the competitive position of natural gas in the overall energy supply by providing market pull'' options. METC systems analyses continually explore the impact of cost-lowering alternatives, which lead to the development of production and economic strategies to improve and promote the utilization of natural gas. Results of systems analyses identify socioeconomic, environmental, and regulatory barrier issues, providing a strategic base for guiding and improving future gas research, development, and demonstration initiative. Some recent analyses have focused on METC's directional well projects, targeting unconventional formations throughout the United States. Specifically, cost supply relationships and risk assessments are being developed for low-permeability gas formations underlying the Maverick, Greater Green River, Piceance, and Appalachian Basins.

  20. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  1. Oil Shale Research in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Oil Shale Research in the United States (7.2 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  2. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  3. Preliminary evaluation of shale-oil resources in Missouri

    SciTech Connect

    Nuelle, L.M.; Sumner, H.S.

    1981-02-01

    This report is a preliminary overview of oil-shale potential in Missouri. Two types of oil shales occur in Missouri: (1) the platform marine type, represented by the Devonian Chattanooga Shale, and (2) black shales in Pennsylvanian cyclothems, many of which overlie currently mined coal beds. The Chattanooga Shale contains black, fissile, carbonaceous shales and reaches a thickness of around 70 ft in southwestern Missouri. Oil-yield data from Missouri are not available, but based on yields from other states, the Chattanooga of southwest Missouri is estimated to contain between 2.6 and 15.8 billion barrels of oil. Preliminary estimates of the black, hard, fissile, carbonaceous Pennsylvanian shales indicate they contain between 100 and 200 billion barrels of shale oil. Many of these units directly overlie currently mined coal seams and could be recovered with the coal, but they are now discarded as overburden. These shales also contain significant amounts of phosphates and uranium. Other Paleozoic units with limited oil-shale potential are the Ordovician Decorah and Maquoketa Formations and the Upper Devonian Grassy Creek Shale. Ambitious research programs are needed to evaluate Missouri oil-shale resources. Further investigations should include economic and technological studies and the drilling, mapping, and sampling of potential oil-shale units. Shrinking supplies of crude oil make such studies desirable.

  4. Breaking Ground for GE Oil & Gas Tech Center|GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the performance and economics of unconventional oil and gas projects Alliance to ... the field to enhance the performance and economics of unconventional oil and gas projects. ...

  5. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2010-09-07

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  6. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2009-03-10

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  7. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  8. Oil and Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  9. Crude oil resource appraisal in the United States

    SciTech Connect

    Uri, N.D.

    1980-07-01

    Past experience supported an optimistic view of US oil resources prior to the Arab embargo of 1973, although some were aware that exploration and production were declining. An approach to estimating producible reserves, combining the engineering and econometric techniques, uses geologic estimates and a structural model to project when production will peak, the quantity that will be produced, and the time distribution of production. The results indicate that aggregate production will increase with the real price of oil. At $45 per barrel, 20 to 30 billion more barrels will be produced. 18 references. (DCK)

  10. Unconventional Resources Technology Advisory Committee

    Energy Saver

    of members who are employees or representatives of Independent Producers of natural gas and other petroleum, including small producers; Individuals with extensive research...

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Brazil Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Indonesia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Mongolia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Arab Emirates Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  16. Strategic Significance of Americas Oil Shale Resource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Early products de- rived from shale oil included kerosene and lamp oil, paraffin, fuel oil, lubricating oil and grease, naphtha, illuminating gas, and ammonium sulfate fertilizer. ...

  17. Intergas `95: International unconventional gas symposium. Proceedings

    SciTech Connect

    1995-07-01

    The International Unconventional Gas Symposium was held on May 14--20, 1995 in Tuscaloosa, Alabama where 52 reports were presented. These reports are grouped in this proceedings under: geology and resources; mine degasification and safety; international developments; reservoir characterization/coal science; and environmental/legal and regulatory. Each report has been processed separately for inclusion in the Energy Science and Technology Database.

  18. Unconventional Groundwater System Proves Effective in Reducing...

    Office of Environmental Management (EM)

    Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing ...

  19. World oil and gas resources-future production realities

    SciTech Connect

    Masters, C.D.; Root, D.H.; Attanasi, E.D. )

    1990-01-01

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

  20. Unconventional gas recovery: state of knowledge document

    SciTech Connect

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  1. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  2. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource...

    Energy Information Administration (EIA) (indexed site)

    Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore 14.2 112.6 126.7 48 ...

  3. How unconventional gas prospers without tax incentives

    SciTech Connect

    Kuuskraa, V.A.; Stevens, S.H.

    1995-12-11

    It was widely believed that the development of unconventional natural gas (coalbed methane, gas shales, and tight gas) would die once US Sec. 29 credits stopped. Quieter voices countered, and hoped, that technology advances would keep these large but difficult to produce gas resources alive and maybe even healthy. Sec. 29 tax credits for new unconventional gas development stopped at the end of 1992. Now, nearly three years later, who was right and what has happened? There is no doubt that Sec. 29 tax credits stimulated the development of coalbed methane, gas shales, and tight gas. What is less known is that the tax credits helped spawn and push into use an entire new set of exploration, completion, and production technologies founded on improved understanding of unconventional gas reservoirs. As set forth below, while the incentives inherent in Sec. 29 provided the spark, it has been the base of science and technology that has maintained the vitality of these gas sources. The paper discusses the current status; resource development; technology; unusual production, proven reserves, and well completions if coalbed methane, gas shales, and tight gas; and international aspects.

  4. Unconventional Radiometals in Preclinical Research | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unconventional Radiometals in Preclinical Research October 3, 2016 10:00AM to 11:00AM ... Abstract: Unconventional radiometals fill specialized roles in preclinical and ...

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    ... British Geological Survey, 93 p. 5 Smith, N., Turner, P., and Williams, G.. 2010. "UK Data ... Realm Energy, 2011. "Shale Oil - The Next Big Play for Tight Oil?" January 30, 27 p. 21 ...

  6. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study,

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update

    ... hydrocarbons (e.g., viscosity) prevent oil and gas extraction technology from producing 100% of ... Economically important Carboniferous coal deposits and tight sands of the ...

  8. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Other Petroleum Resources Research and Development Program | Department of Energy 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook

    ... The risked shale gas resource in-place in the dry gas prospective area is 256 Tcf, with 51 Tcf estimated as the risked, technically recoverable shale gas resource. Devonian ...

  10. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update

    ... Source: CDS Oil and Gas Group, PLC, 2006 Scarce geochemical data suggest 2.5% overall ... production capacity in Chile to Louisiana, USA. 27 VII. Other South America EIAARI World ...

  12. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...

    Energy.gov [DOE] (indexed site)

    Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program (9.24 ...

  13. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  14. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  15. Imported resources - oil crude oil processing in the Czech Republic and its prospectives

    SciTech Connect

    Soucek, I.; Ottis, I.

    1995-12-01

    This paper examines the availability of various crude oils, addressing specifically crude oil pipelines to the Czech Republic, both existing and under construction. Secondly, the economic status of two main Czech refineries is examined in comparison to international trends, technical configurations, and product supply and demand.

  16. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  17. Theory of disordered unconventional superconductors

    SciTech Connect

    Keles, A.; Andreev, A. V.; Spivak, B. Z.; Kivelson, S. A.

    2014-12-15

    In contrast to conventional s-wave superconductivity, unconventional (e.g., p- or d-wave) superconductivity is strongly suppressed even by relatively weak disorder. Upon approaching the superconductormetal transition, the order parameter amplitude becomes increasingly inhomogeneous, leading to effective granularity and a phase ordering transition described by the Mattis model of spin glasses. One consequence of this is that at sufficiently low temperatures, between the clean unconventional superconducting and the diffusive metallic phases, there is necessarily an intermediate superconducting phase that exhibits s-wave symmetry on macroscopic scales.

  18. Running into an out of oil: Scenarios of global oil use and resource depletion to 2050

    SciTech Connect

    Greene, David L.; Hopson, Janet L.; Li, Jia

    2002-07-23

    Is a transition from conventional oil imminent? Is it likely to lock the world into a high-carbon energy future? This report attempts to shed some light on these questions.

  19. Unconventional gas recovery symposium. Proceedings

    SciTech Connect

    Not Available

    1982-01-01

    This conference contains 51 papers and 4 abstracts of papers presented at the symposium on unconventional gas recovery. Some of the topics covered are: coalbed methane; methane recovery; gas hydrates; hydraulic fracturing treatments; geopressured systems; foam fracturing; evaluation of Devonian shales; tight gas sands; propping agents; and economics of natural gas production. All papers have been abstracted and indexed for the Energy Data Base.

  20. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    SciTech Connect

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  1. Annual Report: Unconventional Fossil Energy Resource Program...

    Office of Scientific and Technical Information (OSTI)

    Yee Soong, Technical Coordinator, George Guthrie, Focus Area Lead, UFER Annual Report, ... p 14. Authors: Soong, Yee ; Guthrie, George Publication Date: 2014-03-11 OSTI ...

  2. Oil Shale and Other Unconventional Fuels Activities

    Energy.gov [DOE]

    It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a long term decline. What should the United States do to prepare for this event?...

  3. Research Portfolio Accomplishment Report Unconventional Oil ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The laboratory component of this study will fill some of those gaps and add to the body of knowledge relating to the nature of produced water and downhole rock-water...

  4. Oil discoveries and basin resource prediction in Latin America: Past, present, and future

    SciTech Connect

    Kronman, G.E.; Aleman, A.M.; Rushworth, S.W. )

    1993-02-01

    Over 350 oil discoveries were made in Latin America during the 1980s. About 12% are estimated to contain reserves greater than 100 MMBO. Several of the larger finds (>500 MMBO), such as Cusiana (Colombia), Furrial/Musipan (Venezuela), Cano Lima (Colombia) and Marlim (Brazil) represent an important part of the giant field found worldwide since 1980. Most of the larger discoveries were made by national oil companies in Venezuela, Mexico and Brazil. Undiscovered oil resources of 40-80 BBO are estimated to remain in the highest potential Latin American basins, including those in Mexico, based on historical field size data and current geological knowledge. Over 150 BBO of produced oil and proven reserves has been found in the same group of basins. The probability of finding large undiscovered oil and gas fields (>100 MMBOE) in selected established and mature Latin American basins is high. The Campos (Brazil), Llanos (Colombia), Magadalena (Colombia), Maracaibo (Venezuela), Marahon-Oriente-Putomayo (Peru-Ecuador-Colombia), Maturin (Venezuela), Reforma-Campeche (Mexico) and Ucayali (Peru) basins have the best possibility for such accumulations. Another tier of frontier and emerging basins may also contain significant resources, but limited data makes it difficult to estimate their undiscovered resources. Some of the higher potential basins in this group include the Sierra de Chiapas (Mexico/Guatemala), Huallaga (Peru), Yucatan (Mexico), Sabinas, and Burgos (Mexico) basins.

  5. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  6. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However

  7. Research needs to maximize economic producibility of the domestic oil resource

    SciTech Connect

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. ); Dauben, D.L. )

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  8. Impacts of an oil well blowout near Trecate, Italy on ecological resources

    SciTech Connect

    Brandt, C.; Becker, J.; Dauble, D.

    1995-12-31

    An ecological risk assessment (ERA) was conducted after the February 1995 blowout of an oil well near Trecate, Italy to quantify injuries to terrestrial and aquatic biological resources from effects of oil and habitat changes. Avian surveys were conducted on a surrogate area near Varallino to estimate species and numbers potentially exposed to oil and displaced by habitat alteration in the affected area. Of the 43 avian species observed, 20 are considered protected by European Community laws. The most abundant species were passero domestico, fringuello, cornacchia grigia, rondine, piccione torraiolo, and cardellino. These species likely suffered the greatest losses due to inhalation of volatile aromatics, dermal loading of oil, and/or habitat loss in the affected area. Based on CHARM model outputs, inhalation exposures to volatile aromatics and oil aerosols occurred above LOELs for all receptors within 2 km of the blowout. The most significant exposure pathway to large birds was dermal loading, which likely exceeded LC50 levels within 900m of the well. Terrestrial insects seldom contained detectable levels of PAHs, consistent with their shorter life span and residence time in the contaminated area. The highest concentrations of PAHs were found in dike vegetation, frogs, and benthic invertebrates. Ingestion exposures of woodmice to PAHs exceeded toxic reference levels at one site and mice had EHQ = >1 at soil PAH concentrations >4.2 mg/kg. Based on known body burdens causing narcotic response, neither fish nor benthic invertebrates experienced toxic consequences from exposure to PAHs in irrigation canal sediments.

  9. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  10. An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States

    SciTech Connect

    Not Available

    1994-10-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

  11. Low-Temperature and Coproduced Resources Fact Sheet | Department...

    Energy Saver

    Low-temperature and coproduced resources represent a growing sector of development in the geothermal industry. These underutilized resources, considered unconventional below ...

  12. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the

  13. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  14. An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2

    SciTech Connect

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

  15. Smart Sensing Networks for Renewables, Oil & Gas | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    reliability and robustness of the data points being collected. sensor-500x333 As oil and gas production moves to unconventional environments, it will require more rugged sensors...

  16. enhanced_oil_current_proj | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Project Number Project ...

  17. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  18. Global Unconventional Gas Market | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Global Unconventional Gas Market Home There are currently no posts in this category. Syndicate content...

  19. Deputy Secretary Sherwood-Randall Co-Chairs the U.S.-Brazil Strategic...

    Energy Saver

    oil and gas development, including unconventional resources; grid modernization; ... The delegations discussed continued cooperation in unconventional gas and decided to ...

  20. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  1. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  2. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES [OSTI]

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  3. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  4. Future directions in advanced exploratory research related to oil, gas, shale and tar sand resources

    SciTech Connect

    Not Available

    1987-01-01

    The Office of Technical Coordination (OTC) is responsible for long-range, high-risk research that could provide major advances in technologies for the use of fossil fuels. In late 1986, OTC was given responsibility for an existing program of research in Advanced Process Technology (APT) for oil, gas, shale, and tar sands. To meet these challenges and opportunities, the OTC approached the National Research Council with a request to organize an advisory panel to examine future directions in fundamental research appropriate for sponsorship by the Advanced Process Technology program. An advisory group was formed with broad representation from the geosciences, physical sciences, and engineering disciplines to accomplish this task. The charge to the panel was to prepare a report for the director of the Office of Technical Coordination, identifying critical research areas. This report contains the findings and recommendations of the panel. It is written both to advise the research management of the Department of Energy on research opportunities and needs, and to stimulate interest and involvement in the research community in fundamental research related to fossil energy, and in particular, oil and gas resources. 1 tab.

  5. Oil

    Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  6. Preparation of environmental analyses for synfuel and unconventional gas technologies

    SciTech Connect

    Reed, R.M.

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  7. Unconventional ballooning structures for toroidal drift waves

    SciTech Connect

    Xie, Hua-sheng Xiao, Yong

    2015-09-15

    With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode.

  8. Kondo Physics and Unconventional Superconductivity in the U Intermetal...

    Office of Scientific and Technical Information (OSTI)

    Kondo Physics and Unconventional Superconductivity in the U Intermetallic U2PtC2 Revealed by NMR Citation Details In-Document Search Title: Kondo Physics and Unconventional ...

  9. fe0025387-Petrotechnical-Resources | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cooperation and collaboration between the ADNR and the DOEFE regarding energy development and unconventional resource research and demonstration on the Alaska North Slope (ANS). ...

  10. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  11. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses

  12. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  13. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect

    1993-11-01

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  14. Implications of 'peak oil' for atmospheric CO{sub 2} and climate - article no. GB3012

    SciTech Connect

    Kharecha, P.A.; Hansen, J.E.

    2008-08-15

    Unconstrained CO{sub 2} emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of 'proven' and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO{sub 2} and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration, and recent trends are toward lower estimates, we show that it is feasible to keep atmospheric CO{sub 2} from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before midcentury to achieve this CO{sub 2} limit. It is also important to 'stretch' conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era 'beyond fossil fuels'. We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO{sub 2} beneath the 450 ppm ceiling.

  15. President's FY 2017 Budget Includes $878 Million for Fossil Energy...

    Energy Saver

    prudent and sustainable development of our unconventional oil and gas domestic resources. ... the impact of development of domestic unconventional oil and gas in collaboration with the ...

  16. de-fe0010808-uta | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    states will come from unconventional resources-shales, low permeability sands, and heavy oil. Production of virtually all the oil and gas from unconventional reservoirs will rely ...

  17. project_sums | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Current Oil & Gas Research Projects Unconventional Resources Enhanced Oil Recovery Deepwater Technology Methane Hydrates Completed Projects Completed Natural Gas and Unconventional ...

  18. Revealing the Microscopic Mechanism of Unconventional Superconductivity |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Ames Laboratory Revealing the Microscopic Mechanism of Unconventional Superconductivity Studying electronic excitations by intentionally creating point-like defects in the crystal lattice has helped distinguish between competing electron pairing states and led to a better understanding of the origins of superconductivity in barium-potassium-iron-arsenide. By adjusting two independent "knobs", the ratio of barium and potassium and the scattering by defects introduced by 2.5 MeV

  19. Neutron scattering study of unconventional superconductors

    SciTech Connect

    Lee, Seunghun

    2014-06-30

    My group’s primary activity at the University of Virginia supported by DOE is to study novel electronic, magnetic, and structural phenomena that emerge out of strong interactions between electrons. Some of these phenomena are unconventional superconductivity, exotic states in frustrated magnets, quantum spin liquid states, and magneto-electricity. The outcome of our research funded by the grant advanced microscopic understanding of the emergence of the collective states in the systems.

  20. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  1. Before the Subcommittee on Energy and Environment- House Committee on Science, Space, and Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Unconventional Oil and Natural Gas Resources By: Anthony V. Cugini, Director National Energy Technology Laboratory

  2. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  3. Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuels | Department of Energy Unconventional Hydrocarbon Fuels Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon Fuels Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about unconventional hydrocarbon fuels. ft027_bays_2015_o.pdf (2.79 MB) More Documents & Publications Fuels for Advanced Combustion Engines Vehicle Technologies

  4. Resources

    Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  5. DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West.

  6. Unconventional Architectures for High-Throughput Sciences

    SciTech Connect

    Nieplocha, Jarek; Marquez, Andres; Petrini, Fabrizio; Chavarría-Miranda, Daniel

    2007-06-15

    Science laboratories and sophisticated simulations are producing data of increasing volumes and complexities, and that’s posing significant challenges to current data infrastructures as terabytes to petabytes of data must be processed and analyzed. Traditional computing platforms, originally designed to support model-driven applications, are unable to meet the demands of the data-intensive scientific applications. Pacific Northwest National Laboratory (PNNL) research goes beyond “traditional supercomputing” applications to address emerging problems that need scalable, real-time solutions. The outcome is new unconventional architectures for data-intensive applications specifically designed to process the deluge of scientific data, including FPGAs, multithreaded architectures and IBM's Cell.

  7. Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  8. X-ray Induced Quasiparticles: New Window on UnconventionalSuperconduc...

    Office of Science (SC)

    X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Basic Energy ... X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Creation of ...

  9. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil Markets Jamie.webster@ihs.com 1 GOING GLOBAL: TIGHT OIL PRODUCTION Key Message: Tight Oil Will Have Unconventional Effects Tight Oil Production will change in the coming decades. It will be:  More global, as it leaps out of North America  More inclusive, as companies come to the US for experience and US companies go

  10. Scientists gain insight on mechanism of unconventional superconductivity |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Ames Laboratory Scientists gain insight on mechanism of unconventional superconductivity Researchers at Ames Laboratory and partner institutions conducted a systematic investigation into the properties of the newest family of unconventional superconducting materials, iron-based compounds. The study may help the scientific community discover new superconducting materials with unique properties. Researchers combined innovative crystal growth, highly sensitive magnetic measurements, and the

  11. Annual Report: Unconventional Fossil Energy Resource Program (30 September 2013)

    SciTech Connect

    Soong, Yee; Guthrie, George

    2014-03-11

    Yee Soong, Technical Coordinator, George Guthrie, Focus Area Lead, UFER Annual Report, NETL-TRS-UFER-2013, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 2013, p 14.

  12. Unconventional oil and gas (UOG) development and operations release...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Partnership and the Environmental Council of States' Shale Gas Caucus on methane mitigation technologies, tools, and practices throughout the natural gas supply chain. ...

  13. Unconventional oil and gas (UOG) reservoirs present unique subsurface...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Figure 1. NETL schematic of hydraulically-fractured shale gas system. It is important to understand not only the characteristics and behavior of the target formation but also the ...

  14. Development of unconventional oil and gas (UOG) must be done...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    What Is Known * Shale gas development can have impacts on habitat and landscapes during all aspects of the operation, including exploration, development, and closure. * Surface ...

  15. Fruit production of Attalea colenda (Arecaceae) in coastal Ecuador - an alternative oil resource?

    SciTech Connect

    Feil, J.P.

    1996-07-01

    Attalea colenda is a monoecious palm found in pastures in coastal Ecuador. In dry regions, it is a valuable source of oil in self-sufficiency farming or in combination with cattle in pastures. The palm was studied over a gradient of dry to humid environments during two fruiting seasons. Palm growth, production of leaves, inflorescences, and infructescences, number of fruits per infructescence, and seed weight of five populations were evaluated. The individual of average size is 15 m tall, which corresponds to approximately 30-40 years of age. No difference in fruit production was recorded between wet and dry regions of coastal Ecuador. The average production of one hectare of pasture, with 50 palms, was 0.9 t of oil per year. One population that was part of an agroforestry system produced 50% more fruits than the average of all populations in pasture. 18 refs., 1 fig., 6 tabs.

  16. Unconventional Fermi surface in an insulating state

    SciTech Connect

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  17. The National Response Plan and the Problems in the Evaluation and Assessment of the Unconventional Modes of Terrorism

    SciTech Connect

    LeMone, David V.; Gibbs, Shawn G.; Winston, John W. Jr.

    2006-07-01

    terrorism would include such acts as: assassination, kidnapping, hostage taking, non-nuclear explosive devices, etc. The two NRP categories of catastrophic events and oil and hazardous materials contain sections considered to be in the area of conventional terrorism. Of potentially greater immediate concern are the four major modes of unconventional terrorism that are recognized: cyber-, biological (including agro-), chemical, and nuclear. The problem is to arrive at a mutually agreed upon order of importance of both conventional and unconventional terrorism categories. Consequent ranking of these modes enables the prioritization of those areas in which our limited national human and financial resources are to be expended and allocated (funding of research and development, commitment and selection of personnel, costs distribution, operational time-frame, information distribution level, etc.). Ranking of the terror modes will at best be difficult because of a lack of understanding of the potential impacts of each mode as well as the inherent vested bureaucratic and non-bureaucratic interests and biases. All cases of radiation-related incidents may be considered to be manmade with a potentially significant majority of those incidents assigned to a terrorism origin. Man-made accidental occurrences would be handled with a similar NRP response as would be expected in the case of a terrorist event. Radiation-related devices include the RDDs (Radioactive Dispersal Devices) and nuclear fission and fusion weapons of mass destruction (WMD). Pragmatically, the most likely scenario to develop would involve RDD utilization. This conclusion would seem to be reasonable in view of the current apparent capabilities and sophistication required to construct, transport, and deliver a nuclear WMD. (authors)

  18. Plan for protection of oil and natural gas resources Naval Oil Shale Reserve No. 1 and No. 3, Garfield County, Colorado. [Communitization to prevent losses to nearby drillers

    SciTech Connect

    Not Available

    1987-10-01

    This plan provides for the protection of the Government's interest in hydrocarbons found in Naval Oil Shale Reserve No.1 (NOSR-1) and Naval Oil Shale Reserve No. 3 (NOSR-3) located in GArfield County, Colorado, and complements a similar plan developed in 1983. Recent development of private property near NOSR-3 exceeds the activity contemplated in the 1983 plan, and has progressed to drilling units on land which, under Colorado spacing orders, would include at least 50 percent NOSR-3 land. Due to the proximity of these commerical gas wells to NOSR-3 land, it is estimated that gas produced from the wells would include gas which had migrated from NOSR-3. To protect the Government's interest in these and other such wells which may be drilled near NOSR-1 or NOSR-3, the Department's plan of primary protection is to enter into communitization agreements with the private developers when they initiate wells which would drain NOSR-1 or NOSR-3 hydrocarbons. In general, these agreements would permit the sharing of costs and hydrocarbon production based on surface acreage owned by each party in each of the drilling units. If attempts to obtain such agreements fail, or if it is determined that offset wells are needed in addition to the communitized units, the Department plans to drill and produce wells on NOSR-1 and NOSR-3 which would offset production from nearby wells on private lands. These measures will preclude the migration of NOSR-1 and NOSR-3 hydrocarbons to privately-owned wells, and protect the Government's resources. The results of the Department of Justice anti-trust review performed pursuant to Section 7430(g) of title 10, United States Code, are provided as a part of this plan at Exhibit N.

  19. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    SciTech Connect

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through

  20. NETL: Oil & Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally ... and challenging locations of many of our remaining oil and natural gas accumulations. ...

  1. Developing an oil generation model for resource assessment of Bakken formation, Williston Basin

    SciTech Connect

    Charpentier, R.R.; Krystinik, K.B.

    1984-04-01

    A model was developed for oil generation in the Devonian and Mississippian Bakken Formation, which has been proposed as the main hydrocarbon source rock within the Williston basin. The data consisted of formation temperatures and of density, neutron-porosity, resistivity, and gamma-ray logs from more than 250 wells in North Dakota and Montana. The upper and the lower shale members of the Bakken Formation were studied. Regression analysis, analysis of residuals, and cluster, discriminant, and factor analyses were used in an attempt to separate depositional effects--especially variations in organic content-from maturity. Regression and analysis of residuals indicate differences both areally and between the upper and lower members. In the upper member, and less strongly in the lower member, the center of the basin differs from the basin margins in that it has extreme residuals--either high or low. Clustering and residual analyses show roughly the same areal patterns. Inverse relationships, similar to those suggested by other workers, were found between formation temperature and organic content and between density logs and organic content. Also found, though, was that the addition of other factors, such as neutron porosity, helps to indicate organic content. Preliminary results show that it may be possible to model oil generation by using statistical techniques on well-log data. In particular, the model has the potential to refine estimates of the amount of hydrocarbons generated by the Bakken Formation in the Williston basin.

  2. Hypersensitive switching behavior in the Q-phase of unconventional...

    Office of Scientific and Technical Information (OSTI)

    Title: Hypersensitive switching behavior in the Q-phase of unconventional superconductor CeCoIn5 Authors: Kim, Duk Young 1 ; Lin, Shizeng 1 ; Weickert, Franziska 2 ; Bauer, ...

  3. Unconventional Quantum Hall Effect and Tunable Spin Hall Effect...

    Office of Scientific and Technical Information (OSTI)

    to an Isolated MoS2 Trilayer Title: Unconventional Quantum Hall Effect and Tunable Spin Hall Effect in Dirac Materials: Application to an Isolated MoS2 Trilayer Authors: Li, ...

  4. Unconventional Josephson Effect in Hybrid Superconductor-Topological

    Office of Scientific and Technical Information (OSTI)

    Insulator Devices (Journal Article) | SciTech Connect Unconventional Josephson Effect in Hybrid Superconductor-Topological Insulator Devices Citation Details In-Document Search Title: Unconventional Josephson Effect in Hybrid Superconductor-Topological Insulator Devices Authors: Williams, J. R. ; Bestwick, A. J. ; Gallagher, P. ; Hong, Seung Sae ; Cui, Y. ; Bleich, Andrew S. ; Analytis, J. G. ; Fisher, I. R. ; Goldhaber-Gordon, D. Publication Date: 2012-07-30 OSTI Identifier: 1103009 Type:

  5. Ames Laboratory scientists gain insight on mechanism of unconventional

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    superconductivity | The Ames Laboratory scientists gain insight on mechanism of unconventional superconductivity Contacts: For release: Oct. 18, 2016 Ruslan Prozorov, Division of Materials Science and Engineering, (515) 294-9901 Laura Millsaps, Ames Laboratory Public Affairs (515) 294-3474 Researchers at the U.S. Department of Energy's Ames Laboratory and partner institutions conducted a systematic investigation into the properties of the newest family of unconventional superconducting

  6. Mineral resources: Timely processing can increase rent revenue from certain oil/gas leases

    SciTech Connect

    Not Available

    1987-01-01

    Federal regulations require that onshore oil and gas leases that are subsequently determined to overlie a known geologic structure are to have their rental rates increased. The Bureau of Land Management does not have internal controls that ensure that such rental increases are processed consistently and in a timely manner. Although BLM'S state offices in Colorado and Wyoming generally increased rental rates for leases determined to overlie known geologic structures, these increases were not made in a timely manner during calendar years 1984 and 1985. These delays resulted in lost revenue of $552,614. There were also a few instances in the two states in which the rental rates had not been increased at all, causing an additional revenue loss of at least $15,123.

  7. URTAC Meeting - September 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Economy (697.41 KB) Unconventional Resources Technology Advisory Committee (547.32 KB) Oil & Gas Program Overview (11.58 MB) Unconventional Onshore & Small Producer FACA ...

  8. fwp406-408-409-LANL-1 | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FWP FE 406408409 Goal Hydraulic fracturing of unconventional oil and gas resources is ... required to provide an understanding of processes occurring in unconventional reservoirs. ...

  9. Publications | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ... two weeks. Environmental Impacts of Unconventional Natural Gas Development and ...

  10. www.energy.gov/fe

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for the prudent and sustainable development of our unconventional do- mestic resources. ... on advancing CCS, and the Office of Oil and Natural Gas, focused on unconventional gas. ...

  11. Unconventional petroleum: a current awareness bulletin

    SciTech Connect

    Grissom, M.C.

    1983-10-30

    The summaries in this bulletin cover both secondary and tertiary recovery of petroleum and the following topics under Oil Shales and Tar Sands: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; and regulations. These summaries and older citations to information on petroleum, oil shales, and tar sands back to the 1960's are available for on-line searching and retrieval on the Energy Data Base using the DOE/RECON system or commercial on-line retrieval systems. Retrospective searches can be made on any aspect of petroleum, oil shales, or tar sands, or customized profiles can be developed to provide current information for each user's needs.

  12. RedLeaf Resources Ecoshale Project | Department of Energy

    Energy.gov [DOE] (indexed site)

    Overview of oil shale reserves, unique oil extraction issues, novel approach for ... Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Oil Shale Research in ...

  13. Expert system technology for natural gas resource development

    SciTech Connect

    Munro, R.G.

    1997-12-31

    Materials data are used in all aspects of the development of natural gas resources. Unconventional gas resources require special attention in their development and may benefit from heuristic assessments of the materials data, geological site conditions, and the knowledge base accumulated from previous unconventional site developments. Opportunities for using expert systems in the development of unconventional natural gas resources are discussed. A brief introduction to expert systems is provided in a context that emphasizes the practical nature of their service. The discussion then focuses on the development of unconventional gas reserves. Whenever possible, the likelihood of success in constructing useful expert systems for gas resource development is indicated by comparisons to existing expert systems that perform comparable functions in other industries. Significant opportunities are found for applications to site assessment, the interpretation of well log data, and the monitoring and optimization of gas processing in small-scale recovery operations.

  14. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  15. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    Reports and Publications

    2009-01-01

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  16. Kondo Physics and Unconventional Superconductivity in the U Intermetallic

    Office of Scientific and Technical Information (OSTI)

    U2PtC2 Revealed by NMR (Technical Report) | SciTech Connect Kondo Physics and Unconventional Superconductivity in the U Intermetallic U2PtC2 Revealed by NMR Citation Details In-Document Search Title: Kondo Physics and Unconventional Superconductivity in the U Intermetallic U2PtC2 Revealed by NMR The set of slides begins by discussing the topic NMR of heavy fermion superconductors under the topics heavy fermion materials, superconductivity, and nuclear magnetic resonance. The history of these

  17. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  18. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  19. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  20. State-of-the-art modeling for unconventional gas recovery

    SciTech Connect

    King, G.R. ); Ertekin, T. )

    1991-03-01

    In this paper a series of mathematical and numerical developments that simulate the unsteady-state behavior of unconventional gas reservoirs is reviewed. Five major modules, considered to be unique to the simulation of gas reservoirs, are identified. The inclusion of these models into gas reservoir simulators is discussed in mathematical detail with accompanying assumptions.

  1. Proceedings of the SPE unconventional gas technology symposium

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a symposium on the recovery of natural gas from unconventional sources. Topics considered at the symposium included tight sandstones, Devonian shales, hydraulic fracturing, coalbed methane, gas hydrates, interference testing, naturally fractured reservoirs, gas condensate wells, formation damage, hydraulic fracture mechanics, and computerized simulation.

  2. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect

    Not Available

    1981-01-01

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  3. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner...

    Energy.gov [DOE] (indexed site)

    particularly the rapid increase in production from unconventional oil and gas resources. ... and Spill Prevention (2.4 MB) 7G Unconventional Oil and Gas (1.47 MB) Oil and Gas ...

  4. Charge-density patching method for unconventional semiconductor binary systems

    SciTech Connect

    Wang, Lin-Wang

    2002-09-17

    Unconventional semiconductor alloys exhibit many unusual features and are under intensive studies recently. However, as initio methods cannot be applied directly to these systems due to their large sizes. In this work, a motif based charge patching method is introduced to generate the ab initio quality charge densities for these large systems. The resulting eigen energies are almost the same as the original ab initio eigen energies (with 20-50 meV errors).

  5. Unconventional actin conformations localize on intermediate filaments in mitosis

    SciTech Connect

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-03-04

    Research highlights: {yields} Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. {yields} These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). {yields} Mitotic unconventional actin cables are independent of filamentous actin or microtubules. {yields} Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  6. Venezuelan oil

    SciTech Connect

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  7. California Department of Conservation, Division of Oil, Gas,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  8. Oil and Gas Research| GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas ...

  9. Natural resources law handbook

    SciTech Connect

    Not Available

    1991-01-01

    This book covers legal topics ranging from ownership-related issues (including disposition, use and management of privately and publicly-owned lands, resources, minerals and waters) to the protection and maintenance of our nation's natural resources. It contains chapters on oil and gas resources, coal resources, and minerals and mining.

  10. Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology

    SciTech Connect

    Canja, S.; Williams, C.R.

    1982-04-01

    This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

  11. Nanofabrication on unconventional substrates using transferred hard masks

    DOE PAGES [OSTI]

    Li, Luozhou; Bayn, Igal; Lu, Ming; Nam, Chang -Yong; Schroder, Tim; Stein, Aaron; Harris, Nicholas C.; Englund, Dirk

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less

  12. Nanofabrication on unconventional substrates using transferred hard masks

    SciTech Connect

    Li, Luozhou; Bayn, Igal; Lu, Ming; Nam, Chang -Yong; Schroder, Tim; Stein, Aaron; Harris, Nicholas C.; Englund, Dirk

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantation are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.

  13. Anomalous phonon characteristics of unconventional novel III-N superlattices

    SciTech Connect

    Talwar, Devki N.

    2014-03-31

    Comprehensive results of atomic vibrations are reported in the unconventional short-period zb BN/GaN superlatices (SLs) by exploiting a rigid-ion-model and taking into account both the short- and long-range Coulomb interactions. Besides anisotropic mode behavior of optical phonons, our study provided evidence of acoustic-mode anti-crossing, mini-gap formation, confinement as well as BN-like modes falling within the gap that separates optical phonon bands of the two materials. A bond-polarizability scheme is employed within the second-nearest-neighbor linear-chain model to simulate the Raman intensity profiles of BN/GaN SLs revealing major expected trends of the vibrational characteristics observed experimentally in many conventional superlattice systems while eliciting some interesting contrasts.

  14. heavy_oil | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Heavy Oil Heavy oil is a vast U.S. oil resource that is underexploited because its highly viscous nature renders it difficult to produce and to refine. As higher-gravity crudes ...

  15. Geothermal Energy Production from Low Temperature Resources,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  16. Basic taxation of natural resources

    SciTech Connect

    Not Available

    1986-01-01

    This book contains 19 selections. Some of the titles are: Introduction to taxation and natural resources; The economic interest concept; Oil and gas exploration and development expenditures; Percentage depletion for oil and gas; and Mine reclamation and closing expenses.

  17. California PRC Section 6903, Definitions for Geothermal Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Act, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "For the purposes of this chapter, 'geothermal resources'...

  18. Taking Oil & Gas Pumping to a New Level | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pumping Technology for Unconventional Oil and Gas Wells Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) New Pumping Technology for Unconventional Oil and Gas Wells Jeremy Van Dam 2014.04.16 About a year ago at this time, I introduced you to a few of the technologies we're developing at GE Global Research to support our

  19. DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies

    Energy.gov [DOE]

    Research projects to study ways for improving the environmental performance of unconventional gas development are being sought by the National Energy Technology Laboratory, a facility of the U.S. Department of Energy’s Office of Fossil Energy.

  20. Impacts of Unconventional Gas Technology in the Annual Energy Outlook 2000

    Reports and Publications

    2000-01-01

    This paper describes the methodology used in the National Energy Modeling System (NEMS) to represent unconventional gas technologies and their impacts on projections in the Annual Energy Outlook 2000 (AEO2000).

  1. Impact of Unconventional Gas Technology in the Annual Energy Outlook 2000

    Reports and Publications

    2000-01-01

    This paper describes the methodology used in the National Energy Modeling System (NEMS) to represent unconventional gas technologies and their impacts on projections in the Annual Energy Outlook 2000 (AEO2000).

  2. Unconventional Staging Package Selection Leads to Cost Savings

    SciTech Connect

    ,

    2012-06-07

    In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, and this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.

  3. Unconventional interaction between vortices in a polarized Fermi gas

    SciTech Connect

    Stojanovic, Vladimir M.; Vincent Liu, W. Kim, Yong Baek

    2008-04-15

    Recently, a homogeneous superfluid state with a single gapless Fermi surface was predicted to be the ground state of an ultracold Fermi gas with spin population imbalance in the regime of molecular Bose-Einstein condensation. We study vortices in this novel state using a symmetry-based effective field theory, which captures the low-energy physics of gapless fermions and superfluid phase fluctuations. This theory is applicable to all spin-imbalanced ultracold Fermi gases in the superfluid regime, regardless of whether the original fermion-pairing interaction is weak or strong. We find a remarkable, unconventional form of the interaction between vortices. The presence of gapless fermions gives rise to a spatially oscillating potential, akin to the RKKY indirect-exchange interaction in non-magnetic metals. We compare the parameters of the effective theory to the experimentally measurable quantities and further discuss the conditions for the verification of the predicted new feature. Our study opens up an interesting question as to the nature of the vortex lattice resulting from the competition between the usual repulsive logarithmic (2D Coulomb) and predominantly attractive fermion-induced interactions.

  4. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  5. Unconventional modelling of faulted reservoirs: a case study

    SciTech Connect

    Goldthorpe, W.H.; Chow, Y.S.

    1985-02-01

    An example is presented of detailed unconventional gridding of the North Rankin Field, which is a large, structurally complex gas-condensate field offshore Western Australia. A non-Cartesian areal grid was used with corner point geometry to approximate a generalized curvilinear coordinate system for the surface and interior of each reservoir unit. Coordinate lines in the vertical plane at any node in the grid were tilted where necessary to define sloping edges and sides of grid blocks. Thus, any sloping twisted surface could be modelled. To investigate possible communication across faults between different geological units, transmissibilities at faults were automatically calculated for any over-lapping cells and sensitivities made of the effect of varying these transmissibilities on well production, recovery factors, pressure decline and water encroachment. The model was solved with a fully implicit simulator using a Newton-Raphson iteration method for the non-linear equations and a variant of the Conjugate Gradient procedure with a preconditioning matrix for the linear equations.

  6. Georgia Department of Natural Resources (GDNR) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    References Retrieved from "http:en.openei.orgwindex.php?titleGeorgiaDepartmentofNaturalResources(GDNR)&oldid765343" Categories: Organizations Oil and Gas State Oil and...

  7. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications

    2010-01-01

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  8. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications

    2009-01-01

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  9. Vegetable oil fuel

    SciTech Connect

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  10. Arkansas Oil and Gas Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  11. First AEO2015 Oil and Gas Working Group Meeting Summary

    Energy Information Administration (EIA) (indexed site)

    TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group ... to High Resource case * World oil price outlooks based on ...

  12. Potential Oil Production from the Coastal Plain of the Arctic...

    Energy Information Administration (EIA) (indexed site)

    Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil ...

  13. Hypersensitive switching behavior in the Q-phase of unconventional...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: 2016 Annual Postdoc Research Day ; 2016-05-03 - 2016-05-03 ; LOS ALAMOS, New Mexico, United States Research Org: Los Alamos National Laboratory ...

  14. Using FRAMES to Manage Environmental and Water Resources

    SciTech Connect

    Whelan, Gene; Millard, W. David; Gelston, Gariann M.; Khangaonkar, Tarang P.; Pelton, Mitch A.; Strenge, Dennis L.; Yang, Zhaoqing; Lee, Cheegwan; Sivaraman, Chitra; Stephan, Alex J.; Hoopes, Bonnie L.; Castleton, Karl J.

    2007-05-16

    The Framework for Risk Analysis in Multimedia Environmental Systems FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercialoff-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include 1) an unconventional radioactive release into a large potable water body, 2) a conventional contaminant (oil) release into navigable waters, and 3) an instantaneous atmospheric radioactive release.

  15. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana

    SciTech Connect

    Schmoker, J.W.

    1996-01-01

    The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

  16. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in

  17. Completed Enhanced Oil Recovery and Other Oil Resoureces Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Completed Enhanced Oil Recovery and Other Oil Resoureces Projects Active | Completed Projects Completed Enhanced Oil Recovery and Other Oil Resources Projects Project Number Project Name Primary Performer 10122-39 Novel Engineered Osmosis Technology: A Comprehensive Approach to the Treatment and Reuse of Produced Water and Drilling Wastewater Colorado School of Mines 11123-03 Cost-Effective Treatment of Produced Water Using Co-Produced Energy Sources - Phase II: Field Scale Demo and

  18. Materials Chemistry of BaFe2As2: A Model Platform for Unconventional Superconductivity

    SciTech Connect

    Mandrus, David; Safa-Sefat, Athena; McGuire, Michael A; Sales, Brian C

    2010-01-01

    BaFe{sub 2}As{sub 2} is the parent compound of a family of unconventional superconductors with critical temperatures approaching 40 K. BaFe{sub 2}As{sub 2} is structurally simple, available as high-quality large crystals, can be both hole and electron doped, and is amenable to first-principles electronic structure calculations. BaFe{sub 2}As{sub 2} has a rich and flexible materials chemistry that makes it an ideal model platform for the study of unconventional superconductivity. The key properties of this family of materials are briefly reviewed.

  19. DOE Science Showcase - Oil Shale Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Oil Shale Research Oil shale has been recognized as a potentially valuable U.S. energy resource for a century. Obstacles to its use have included the expense of current shale-oil ...

  20. Land and Resource Management Issues Relevant to Deploying In...

    Office of Scientific and Technical Information (OSTI)

    Title: Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil ...

  1. South Dakota Department of Natural Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  2. Colorado Oil and Gas Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  3. Colorado Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  4. Heavy fermions, quantum criticality, and unconventional superconductivity in filled skutterudites and related materials

    SciTech Connect

    Andraka, Bohdan

    2015-05-14

    The main goal of this program was to explore the possibility of novel states and behaviors in Pr-based system exhibiting quantum critical behavior, PrOs₄Sb₁₂. Upon small changes of external parameter, such as magnetic field, physical properties of PrOs₄Sb₁₂ are drastically altered from those corresponding to a superconductor, to heavy fermion, to field-induced ordered phase with primary quadrupolar order parameter. All these states are highly unconventional and not understood in terms of current theories thus offer an opportunity to expand our knowledge and understanding of condensed matter. At the same time, these novel states and behaviors are subjects to intense international controversies. In particular, two superconducting phases with different transition temperatures were observed in some samples and not observed in others leading to speculations that sample defects might be partially responsible for these exotic behaviors. This work clearly established that crystal disorder is important consideration, but contrary to current consensus this disorder suppresses exotic behavior. Superconducting properties imply unconventional inhomogeneous state that emerges from unconventional homogeneous normal state. Comprehensive structural investigations demonstrated that upper superconducting transition is intrinsic, bulk, and unconventional. The high quality of in-house synthesized single crystals was indirectly confirmed by de Haas-van Alphen quantum oscillation measurements. These measurements, for the first time ever reported, spanned several different phases, offering unprecedented possibility of studying quantum oscillations across phase boundaries.

  5. Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979

    SciTech Connect

    Manilla, R.D.

    1980-04-01

    This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

  6. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SSRL Third Floor Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as ...

  7. Obama Administration Announces Members of Steering Team to Lead...

    Energy Saver

    of the steering team that will lead efforts to coordinate research addressing the challenges of safely and prudently developing unconventional shale gas and tight oil resources. ...

  8. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SSRL Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable ...

  9. _ONG Research Results Snapshots_FINAL.pdf

    Energy Saver

    Over the past decade, the domestic oil and natural gas industry has been transformed by the successful development of unconventional shale resources. The commercial success of ...

  10. Small Business Research | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Gas Unconventional Resources (Oil Shale, Methane Hydrates, etc.) Gasification (IGCC, Coal and Biomass) Algae to Fuels Solid Oxide Fuel Cells Turbines Sensors and Controls for ...

  11. President Requests $638.0 Million for Fossil Energy Programs...

    Energy.gov [DOE] (indexed site)

    ... gas development through hydraulic fracturing (fracking), consistent with the ... sound policy, to allow for informed unconventional oil and gas resource development ...

  12. Quebec: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canada) Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state) Heavy Oil Consumption Reduction Program (Quebec, Canada) Hydro-Quebec Distribution -...

  13. Pittsburgh, Pennsylvania: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Penn State Center - Pittsburgh United Oil Company University of Pittsburgh VIPO Energy Resources Inc Walnut Capital Acquisitions Registered Financial Organizations in...

  14. Council of Energy Resource Tribes - Project Overview

    Energy.gov [DOE] (indexed site)

    Percent New Generation Renewable Energy Projects 25 Percent New Generation Non-Renewable Resources Hydro Wind Solar Biomasss Geothermal Natura Coal Bed Methane Clean Coa Oil and ...

  15. State Oil and Gas Board State Oil and Gas Board Address Place...

    OpenEI (Open Energy Information) [EERE & EIA]

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  16. NATIONAL ENERGY TECHNOLOGY LABORATORY U S

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    UNCONVENTIONAL OIL AND NATURAL GAS RESOURCES RESEARCH PROGRAM The objective of the Unconventional Oil and Natural Gas Resources Program is to ensure a reliable, affordable, and secure domestic supply of oil and clean-burning natural gas that can be developed and produced in a manner that minimizes environmental impact. While the definition of the term "unconventional" has evolved over time, this program is focused on the production of hydrocarbons-primarily natural gas- from shale

  17. Impact and future of heavy oil produciton

    SciTech Connect

    Olsen, D.K, )

    1996-01-01

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  18. Impact and future of heavy oil produciton

    SciTech Connect

    Olsen, D.K,

    1996-12-31

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  19. The Bakken - An Unconventional Petroleum and Reservoir System

    SciTech Connect

    Sarg, J.

    2011-12-31

    effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend, and a less prominent NW-SE trend. Many horizontal 1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

  20. Application of unconventional techniques in constructing an integrated reservoir simulation model for troll field

    SciTech Connect

    Kydland, T.; Haugan, P.M.; Bousquet, G.; Havig, S.O.

    1988-08-01

    A number of unconventional techniques were used for constructing an integrated three-dimensional (3D), three-phase numerical reservoir model of the huge Troll field. The selected techniques included corner-point geometry (CPG), non-neighbor connections between grid cells, local grid refinement, improved vertical equilibrium (VE) description, and oilwell coning functions. By combining these techniques, an efficient model, capable of handling several complex reservoir problems simultaneously, was developed. This model became a flexible tool for reservoir management planning.

  1. Origin of fractured cretaceous conventional and unconventional reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-08-01

    Cretaceous conventional and unconventional fractured reservoirs in the southern Powder River basin, Wyoming, are associated with small throw (10 to 30 ft) normal faults. The faults are nearly vertical, trend northwest-southeast and northeast-southwest, and probably are basement derived. The faults are most easily identified in Cretaceous marine shales and are exposed at the surface in Tertiary units. Erosion and subsequent deposition of Cretaceous sandstones, limestones, and shales affected by the extensional normal faults form stratigraphic traps. The reservoirs are interbedded with, or composed of, mature source rocks have generated and expelled significant hydrocarbons. Overpressuring from the maturation and expulsion processes is still present and has preserved open fractures and porosity in reservoirs from the Lower Cretaceous Fall River through the Upper Cretaceous Niobrara formations. The faults have offset thin sandstone reservoirs forming permeability barriers. The faulting and associated fractures have provided pathways for organic acids that assisted formation of secondary perosity in Upper Cretaceous sandstones. The fracturing of mature source rocks provides areally extensive unconventional reservoirs. Fracturing associated with the extensional normal faults provides significant exploration and exploitation potential for the use of horizontal drilling techniques to evaluate multiple, fractured, overpressured conventional, and unconventional reservoirs that may contain large reserves.

  2. Unconventional anaerobic digester designs for improving methane yields from sea kelp

    SciTech Connect

    Fannin, K F; Srivastava, V J; Chynoweth, D P

    1982-01-01

    Studies were performed as part of an ongoing comprehensive research program to develop and optimize the anaerobic digestion process for producing methane from sea kelp (Macrocystis pyrifera). Laboratory-scale studies focused on digester design and operating techniques applicable toward the goal of increasing methane yields and production rates over those observed in previous studies using conventional stirred tank reactors (STR). Two unconventional anaerobic digesters, an upflow solids reactor and a baffle flow reactor, were used to study the anaerobic digestion performance of kelp; both digesters permit solids retention times that are longer than the hydraulic retention times. The performance of the unconventional digesters was compared with that of the STR on the basis of methane yield and process stability. These studies demonstrated that, although digester performance was markedly affected by kelp variability, the methane yield in both unconventional digesters exceeded 70% of the theoretical yield and was substantialy higher than that of the STR. Utilization of simple digester designs that promoted long solids retention times improved the anaerobic digester performance significantly over that observed in conventional anaerobic digestion processes.

  3. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    SciTech Connect

    Keiter, Robert; Ruple, John; Tanana, Heather; Holt, Rebecca

    2011-12-01

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream is

  4. Health and environmental effects of oil and gas technologies: research needs

    SciTech Connect

    Brown, R. D.

    1981-07-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, and biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparcity of accumulated knowledge related to their definition. Separate abstracts have been prepared for selected sections of this report for inclusion in the Energy Data Base. (DMC)

  5. Legislation affecting oil-merger proposals. Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Energy and Natural Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2362, April 10, 1984

    SciTech Connect

    Not Available

    1984-01-01

    Statements by 34 witnesses on S. 2362 examine the need for and possible impact of legislation calling for a study of mergers among oil companies. The focus of the study would be on the implications for US energy policy and energy independence, national security, and the economy. The witnesses represented investors, various sectors of the petroleum industry, economists, and various departments and agencies of the federal government. Their testimony follows the text of S. 2362, which amends the Mineral Lands Leasing Act of 1920 by limiting the authority to lease land when a merger is involved. Discussion on the relative merits of the legislation included antitrust and securities law issues and the exploration record following merger.

  6. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  7. Arctic Oil and Natural Gas Potential

    Reports and Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  8. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  9. World Shale Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deputy Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0...

  10. Hard truths: facing the hard truths about energy. A comprehensive view to 2030 of global oil and natural gas

    SciTech Connect

    2007-07-01

    In response to the questions posed by the US Secretary of Energy in October 2005, the National Petroleum Council conducted a comprehensive study considering the future of oil and natural gas to 2030 in the context of the global energy system. The Council proposed five core strategies to assist markets in meeting the energy challenges to 2030 and beyond. All five strategies are essential; there is no single, easy solution to the multiple challenges we face. However, we are confident that the prompt adoption of these strategies, along with a sustained commitment to implementation, will promote U.S. competitiveness by balancing economic, security, and environmental goals. The United States must: Moderate the growing demand for energy by increasing efficiency of transportation, residential, commercial, and industrial uses; Expand and diversify production from clean coal, nuclear, biomass, other renewables, and unconventional oil and gas; moderate the decline of conventional domestic oil and gas production; and increase access for development of new resources; Integrate energy policy into trade, economic, environmental, security, and foreign policies; strengthen global energy trade and investment; and broaden dialogue with both producing and consuming nations to improve global energy security; Enhance science and engineering capabilities and create long-term opportunities for research and development in all phases of the energy supply and demand system; and Develop the legal and regulatory framework to enable carbon capture and sequestration. In addition, as policymakers consider options to reduce carbon dioxide emissions, provide an effective global framework for carbon management, including establishment of a transparent, predictable, economy-wide cost for carbon dioxide emissions. The report, details findings and recommendations based on comprehensive analyses developed by the study teams. 5 apps.

  11. The New Era: NOCs Reach Out for Resources Bob Fryklund, IHS Energy

    Gasoline and Diesel Fuel Update

    supply and market impacts of US unconventional oil production growth Andrew Slaughter, Vice-President, Energy Insight, IHS Presentation to EIA 2013 Energy Conference June 18 th 2013 Washington, DC CONFIDENTIAL © 2013, All rights reserved, IHS CERA., 55 Cambridge Parkway, Cambridge, Massachusetts 02142 No portion of this presentation may be reproduced, reused or otherwise distributed in any form without prior written consent. Copyright © 2013HS Inc. All Rights Reserved. 1 Today's Themes * US

  12. Water issues associated with heavy oil production.

    SciTech Connect

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  13. World oil trends

    SciTech Connect

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  14. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    DOE PAGES [OSTI]

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    2016-05-11

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  15. Complex and real unconventional Bose-Einstein condensations in high orbital bands

    SciTech Connect

    Cai Zi; Wu Congjun

    2011-09-15

    We perform a theoretical study on the recently observed unconventional Bose-Einstein condensations (UBEC) in the high bands of optical lattices. These exotic states are characterized by complex-valued condensate wave functions with nodal points or real-valued wave functions with nodal lines; thus, they are beyond the ''no-node'' theorem of conventional BECs. A quantum phase transition is driven by the competition between the single-particle band and interaction energies. The complex UBECs spontaneously break time-reversal symmetry, exhibiting a vortex-antivortex lattice structure.

  16. Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

  17. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  18. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE PAGES [OSTI]

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  19. Unconventional Switching Behavior in La0.7Sr0.3MnO3/La0.7Sr0...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unconventional Switching Behavior in La0.7Sr0.3MnO3La0.7Sr0.3CoO3 Exchange-spring Bilayer ... B. Li, R. V. Chopdekar, E. Arenholz, A. Mehta and Y. Takamura, "Unconventional Switching ...

  20. A review of water and greenhouse gas impacts of unconventional natural gas development in the United States

    SciTech Connect

    Arent, Doug; Logan, Jeff; Macknick, Jordan; Boyd, William; Medlock , Kenneth; O'Sullivan, Francis; Edmonds, James A.; Clarke, Leon E.; Huntington, Hill; Heath, Garvin; Statwick, Patricia M.; Bazilian, Morgan

    2015-01-01

    This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections.

  1. Deep geothermal: The Moon Landing mission in the unconventional energy and minerals space

    SciTech Connect

    Regenauer-Lieb, Klaus; Bunger, Andrew; Chua, Hui Tong; Dyskin, Arcady; Fusseis, Florian; Gaede, Oliver; Jeffrey, Rob; Karrech, Ali; Kohl, Thomas; Liu, Jie; Lyakhovsky, Vladimir; Pasternak, Elena; Podgorney, Robert; Poulet, Thomas; Rahman, Sheik; Schrank, Christoph; Trefry, Mike; Veveakis, Manolis; Wu, Bisheng; Yuen, David A.; Wellmann, Florian; Zhang, Xi

    2015-01-30

    Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new paradigm for reservoir stimulation by reactivating pre-existing faults at reservoir scale in a reservoir scale aseismic, ductile manner. A side effect of the new soft stimulation method is that owing to the design specification of a macroscopic ductile response, the proposed method offers the potential of a safer control over the stimulation process compared to conventional stimulation protocols such as currently employed in shale gas reservoirs.

  2. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

    DOE PAGES [OSTI]

    Regenauer-Lieb, Klaus; Bunger, Andrew; Chua, Hui Tong; Dyskin, Arcady; Fusseis, Florian; Gaede, Oliver; Jeffrey, Rob; Karrech, Ali; Kohl, Thomas; Liu, Jie; et al

    2015-01-30

    Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stressmore » or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new paradigm for reservoir stimulation by reactivating pre-existing faults at reservoir scale in a reservoir scale aseismic, ductile manner. A side effect of the new “soft” stimulation method is that owing to the design specification of a macroscopic ductile response, the proposed method offers the potential of a safer control over the stimulation process compared to conventional stimulation protocols such as currently employed in shale gas reservoirs.« less

  3. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

    SciTech Connect

    Regenauer-Lieb, Klaus; Bunger, Andrew; Chua, Hui Tong; Dyskin, Arcady; Fusseis, Florian; Gaede, Oliver; Jeffrey, Rob; Karrech, Ali; Kohl, Thomas; Liu, Jie; Lyakhovsky, Vladimir; Pasternak, Elena; Podgorney, Robert; Poulet, Thomas; Rahman, Sheik; Schrank, Christoph; Trefry, Mike; Veveakis, Manolis; Wu, Bisheng; Yuen, David A.; Wellmann, Florian; Zhang, Xi

    2015-01-30

    Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new paradigm for reservoir stimulation by reactivating pre-existing faults at reservoir scale in a reservoir scale aseismic, ductile manner. A side effect of the new “soft” stimulation method is that owing to the design specification of a macroscopic ductile response, the proposed method offers the potential of a safer control over the stimulation process compared to conventional stimulation protocols such as currently employed in shale gas reservoirs.

  4. Crude oil and shale oil

    SciTech Connect

    Mehrotra, A.K.

    1995-06-15

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  5. Solar resources

    SciTech Connect

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  6. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  7. Anthony V. Cugini Director, National Energy Technology Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in the safe and responsible development of the Nation's unconventional oil and natural gas resources. As you know, since 2008, U.S. oil and natural gas production has increased...

  8. Statement by Guido DeHoratiis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    will only address a subset of unconventional resources: shale gas, tight gas, shale oil, and tight oil, and a robust Federal research and development (R&D) plan is...

  9. 343. Document entitled "Develop "Frontier" Resources to Ensure...

    Office of Environmental Management (EM)

    3. Document entitled "Develop "Frontier" Resources to Ensure Future Oil and Natural Gas Supply," dated March 8, 2001. B-5 Exemption - Information withheld (under Exemption 5) ...

  10. Electric Power Generation from Low-Temperature Geothermal Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  11. Washington Department of Natural Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Natural Resources is located in Olympia, Washington. About About 600 gas and oil wells have been drilled in Washington, but large-scale commercial production has never...

  12. Kansas Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    service and safety of public utilities, common carriers, motor carriers, and regulate oil and gas production by protecting correlative rights and environmental resources....

  13. Title

    Energy.gov [DOE] (indexed site)

    environmental impacts - Enhanced and Unconventional Oil Recovery (EUOR) - develop ... Enhanced and Unconventional Oil Recovery * New EOR Technologies - Improve accuracy and ...

  14. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  15. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  16. Unconventional minimal subtraction and Bogoliubov-Parasyuk-Hepp-Zimmermann method: Massive scalar theory and critical exponents

    SciTech Connect

    Carvalho, Paulo R. S.; Leite, Marcelo M.

    2013-09-15

    We introduce a simpler although unconventional minimal subtraction renormalization procedure in the case of a massive scalar λφ{sup 4} theory in Euclidean space using dimensional regularization. We show that this method is very similar to its counterpart in massless field theory. In particular, the choice of using the bare mass at higher perturbative order instead of employing its tree-level counterpart eliminates all tadpole insertions at that order. As an application, we compute diagrammatically the critical exponents η and ν at least up to two loops. We perform an explicit comparison with the Bogoliubov-Parasyuk-Hepp-Zimmermann (BPHZ) method at the same loop order, show that the proposed method requires fewer diagrams and establish a connection between the two approaches.

  17. Polar Kerr Effect as Probe for Time-Reversal Symmetry Breaking in Unconventional Superconductors

    SciTech Connect

    Kapitulnik, A.

    2010-05-26

    The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr{sub 2}RuO{sub 4} using magneto-optic probes, we embarked on a systematic study of several other of these candidate systems. The primary instrument for our studies is the Sagnac magneto-optic interferometer, which we recently developed. This instrument can measure magneto-optic Faraday or Kerr effects with an unprecedented sensitivity of 10 nanoradians at temperatures as low as 100 mK. In this paper we review our recent studies of TRSB in several systems, emphasizing the study of the pseudogap state of high temperature superconductors and the inverse proximity effect in superconductor/ferromagnet proximity structures.

  18. Transport in unconventional superconductors: Application to liquid {sup 3}He in aerogel

    SciTech Connect

    Einzel, Dietrich; Parpia, Jeevak M.

    2005-12-01

    We consider quite generally the transport of energy and momentum in unconventional superconductors and Fermi superfluids to which both impurity scattering (treated within the t-matrix approximation) and inelastic scattering contributes. A new interpolation scheme for the temperature dependence of the transport parameters is presented which preserves all analytical results available for T{yields}0 and T{yields}T{sub c} and allows for a particularly transparent physical representation of the results. The two scattering processes are combined using Matthiessen's rule coupling. This procedure is applied for the first time to {sup 3}He-B in aerogel. Here, at the lowest temperatures, a universal ratio of the thermal conductivity and the shear viscosity is found in the unitary limit, which is akin to the Wiedemann-Franz law.

  19. Unconventional gas hydrate seals may trap gas off southeast US. [North Carolina, South Carolina

    SciTech Connect

    Dillion, W.P.; Grow, J.A.; Paull, C.K.

    1980-01-07

    Seismic profiles have indicated to the US Geological Survey that an unconventional seal, created by gas hydrates that form in near-bottom sediments, may provide gas traps in continental slopes and rises offshore North and South Carolina. The most frequently cited evidence for the presence of gas hydrate in ocean sediments is the observation of a seismic reflection event that occurs about 1/2 s below and parallel with the seafloor. If gas-hydrate traps do exist, they will occur at very shallow sub-bottom depths of about 1600 ft (500m). Exploration of such traps will probably take place in the federally controlled Blake Ridge area off the coast of South Carolina where seismic data suggest a high incidence of gas hydrates. However, drilling through the gas-hydrate-cemented layer may require new engineering techniques for sealing the casing.

  20. Upgrading Orinoco belt heavy oil

    SciTech Connect

    Alcantara, J.; Castillo, O.

    1982-09-01

    The Orinoco Heavy Oil Belt of Venezuela is a subsurface geological formation of petroleum-bearing sands that is approximately 700 km long and between 60 and 80 km wide. The results of recent explorations have shown the area to contain over one trillion barrels of oil in-place, ranging from 8/sup 0/ API to 14/sup 0/ APE gravity. In an effort to develop these resources, Petroleos de Venezuela has undertaken a program to evaluate and develop this heavy oil belt. The objectives of this program are discussed along with the process technology selection, pilot plants, and environmental protection measures. (JMT)

  1. Upgrading Orinoco Belt heavy oil

    SciTech Connect

    Aliantara, J.; Castillo, O.

    1982-05-01

    Petroleos de Venezuela, S.A. (PDVSA), in an effort to develop new oil resources, has undertaken a program to evaluate and develop the Orinoco Heavy Oil Belt, in the eastern part of Venezuela. Lagoven, S.A., a subsidiary of PDVSA, has been assigned the responsibility for developing and upgrading part of the Orinoco belt. This paper describes the most relevant aspects of Lagoven's first upgrading module, a facility that will convert Orinoco oil into a premium crude with a very high yield of products of great market demand.

  2. Marketing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  3. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  4. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  5. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  6. Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  7. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  8. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrothermal Resources A geothermal resource requires fluid, heat, and permeability to generate electricity. Conventional hydrothermal resources contain all three components naturally. These geothermal systems can occur in widely diverse geologic settings, sometimes without clear surface manifestations of the underlying resource. In 2008, the U.S. Geological Survey (USGS) estimated that 30 GWe of undiscovered geothermal resources exist in the western United States 1- ten times the current

  9. Trends in heavy oil production and refining in California

    SciTech Connect

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  10. Trends in heavy oil production and refining in California

    SciTech Connect

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  11. NATURAL RESOURCES ASSESSMENT

    SciTech Connect

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology

  12. untitled

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Unconventional Resources Technology Advisory Committee (URTAC) Meeting January 29, 2008 Meeting Minutes July 2, 2008 A Federal Advisory Committee to the U.S. Secretary of Energy 2 A Federal Advisory Committee to the U.S. Secretary of Energy 3 Unconventional Resources Technology Advisory Committee January 29, 2008 Meeting Minutes Crowne Plaza Houston North Greenspoint, Houston, Texas Introduction and DOE Oil and Natural Gas Programs At 8:00 a.m., Mr. Guido DeHoratiis called the Unconventional

  13. untitled

    Energy Saver

    Unconventional Resources Technology Advisory Committee (URTAC) Meeting January 29, 2008 Meeting Minutes July 2, 2008 A Federal Advisory Committee to the U.S. Secretary of Energy 2 A Federal Advisory Committee to the U.S. Secretary of Energy 3 Unconventional Resources Technology Advisory Committee January 29, 2008 Meeting Minutes Crowne Plaza Houston North Greenspoint, Houston, Texas Introduction and DOE Oil and Natural Gas Programs At 8:00 a.m., Mr. Guido DeHoratiis called the Unconventional

  14. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  15. Contacts & Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  16. Resources - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  17. Computing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters ...

  18. SEQUENCE STRATIGRAPHIC ANALYSIS AND FACIES ARCHITECTURE OF THE CRETACEOUS MANCOS SHALE ON AND NEAR THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO-THEIR RELATION TO SITES OF OIL ACCUMULATION

    SciTech Connect

    Jennie Ridgley

    2000-03-31

    the oil (except for the Tocito Sandstone) from the lower Mancos. In the central and southern part of the Reservation, large areas, currently not productive or not tested, have the potential to contain oil in the El Vado simply based on the trend of the facies and structure. There has been little oil or gas production from the overlying regressive-transgressive wedge of rock and much of this interval is untested. Thus, large areas of the Reservation could contain hydrocarbon resources in these strata. Most of the Reservation lies within the oil generation window based on new Rock-Eval data from the Mancos Shale just south of the southern part of the Reservation. If these observations are valid then oil could have been generated locally and would only have needed to migrate short distances in to sandy reservoirs and fractures. This does not rule out long distance migration of oil from the deeper, more thermally mature part of the basin to the north. However, low porosity and permeability characterize sandier rocks in the Mancos, with the exception of Tocito-like sandstones. These factors could retard long distance oil migration through the sediment package, except through fracture or fault conduits. Thus, it is suggested that future oil and gas explorations in the Mancos treat the accumulations and reservoirs as unconventional and consider whether the source and reservoir are in closer proximity than has previously been assumed.

  19. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  20. Recent federal initiatives to promote unconventional gas: High octane delivery of just hot air?

    SciTech Connect

    Griff, M.T.

    1995-10-01

    This paper provides an overview of recent initiatives of the United States which promote greater use of natural gas and unconventional gas as one part of this nations`s larger response to the global warming threat. Measurable increases in greenhouse gas concentrations since the beginning of the industrial revolution have led to the belief in the existence of a global warming problem. The international community has responded to the global warming threat with the United Nations Framework Convention on Climate Change which is directed toward the stabilization of greenhouse gases in the atmosphere. The Climate Change Action Plan is the Clinton Administration`s detailed response to the global warming threat. It is designed to return United States emissions of greenhouse gases to their 1990 levels by the year 2000. The Action Plan targets all greenhouse gases and emphasizes energy efficiency. Significant regulatory reformation designed to increase the efficiency of the natural gas industry has already occurred and will be continued. Recovery of methane emissions from landfills will be encouraged through indentification of suitable sites and use of existing technology and development of new technology. Recovery of methane from coal mining operations will be promoted by targeting 50 of the gassiest mines in the United States. Even if the Action Plan is fully implemented. legitimate questions arise as to whether its goals will be achieved as a result of funding shortfalls.

  1. Petroleum resources of Venezuela and Trinidad and Tobago

    SciTech Connect

    Not Available

    1983-07-01

    The status of known and ultimately recoverable crude oil and natural gas resources of the Federal Republics of Venezuela, and Trinidad and Tobago (hereafter referred to as Trinidad) is set forth in this report. The rates that oil resources may be available to world markets are also covered in the report. A section on the petroleum geology of the region is included. The Republics of Venezuela and Trinidad share a common and ancient petroleum history. Over a century of exploration and development have resulted in the cumulative production of nearly 39 billion barrels of oil from Venezuela and over 2 billion barrels from Trinidad. Both republics have passed their peak status as oil producers. Venezuela reached its peak as the second largest producer in the world in the mid-fifties, and Trinidad attained its highest status as the eighth largest oil producer in the early forties. The report concludes that Venezuela and Trinidad have depleted slightly less than one-half of their ultimately recoverable crude oil resources. Based on feasible production rates and estimates of remaining recoverable resources, nearly two-thirds of Venezuela's oil resources and about three-fourths of Trinidad's oil resources may be depleted by the year 2000. The natural gas resources of both countries are underutilized and underdeveloped.

  2. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  3. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  4. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  5. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  6. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY U S

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    OVERALL OIL AND NATURAL GAS RESEARCH PROGRAM The National Energy Technology Laboratory's overall research and development effort focused on oil and natural gas incorporates four programs, each focused on specific R&D challenges. * Unconventional Oil and Natural Gas Resources- Developing technologies to extract oil and natural gas from "unconventional" reservoirs like organic-rich shales with minimal environmental impact * Offshore-Developing technologies that can dramatically

  8. Oil Shale Mining Claims Conversion Act. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session on S. 2089, H. R. 1039, April 22, 1988

    SciTech Connect

    Not Available

    1988-01-01

    The hearing was called to examine two bills which address the processing of oil shale mining claims and patents by the Department of the Interior under the General Mining Law of 1872. S.2089 would provide for certain requirements relating to the conversion of oil shale mining claims located under the Mining Law of 1872 to leases and H.R.1039 would amend section 37 of the Mineral Lands Leasing Act of 1920 relating to oil shale claims. Under the new bills the owners of oil shale mining claims must make an election within 180 days after enactment as to whether to convert their claims to leases or to maintain their claims by performing 1000 dollars of annual assessment work on the claim, filing annually an affidavit of assessment work performed, and producing oil shale in significant marketable amounts within 10 years from the date of enactment of the legislation.

  9. Jordan ships oil shale to China

    SciTech Connect

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  10. Oceans: our last resource

    SciTech Connect

    Marx, W.

    1981-01-01

    It is widely believed that oceans are vast storehouses of untapped food, energy, minerals, and even living space, but the author warns of a critical turning point in our stewardship of marine resources. The book opens with a history of thoughtless abuse and past mistakes which have eroded and polluted shorelines. Blind hopes for recovery of mineral wealth involve technology that may be prohibitively expensive or logistically impossible, and may have obscured real opportunities, notably the careful management and cultivation of valuable marine resources such as kelp, fish, and shellfish species. The author explores a broad spectrum of alternatives for safeguarding the oceans themselves by following wiser practices on land: methods of using biomass energy to lessen our dependence on offshore mineral development, and possibilities for recycling sewage rather than perceiving the ocean as the ultimate garbage dump. Two appendices present selected information on world fisheries and aquaculture and on the hazards of offshore oil. 319 references.

  11. Heavy oil production from Alaska

    SciTech Connect

    Mahmood, S.M.; Olsen, D.K.

    1995-12-31

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  12. Online Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    online resources Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the

  13. Subcontractor Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  14. Business resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Business » Small Business » Business resources Business resources Setting new standards and small business initiatives within NNSA that will contribute to developing and strengthening our strategic partners for national security challenges. Contact Small Business Office (505) 667-4419 Email Broaden your market-find more resources with other labs, organizations LANL encourages business owners to fully research the Laboratory and to also market their services and products to other businesses,

  15. Additional Resources

    Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  16. Subcontractor Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  17. Texture evolution in Fe-3% Si steel treated under unconventional annealing conditions

    SciTech Connect

    Stoyka, Vladimir; Kovac, Frantisek; Stupakov, Oleksandr; Petryshynets, Ivan

    2010-11-15

    The present work investigates texture evolution stages in grain-oriented steel heat-treated using unconventional conditions. The Fe-3%Si steel taken after final cold rolling reduction from an industrial line was subjected to a laboratory isothermal annealing at different temperatures. The annealing temperatures were varied in a range of 850-1150 deg. C. During the annealing each specimen was heated at 10 deg. C/s and kept at the stated temperature for 5 min. Development of microstructure and texture in the annealed specimens were followed by the DC measurements of magnetic properties. The grain oriented steel, taken from the same industrial line after final box annealing was also analyzed and compared with the laboratory annealed specimens. It was shown that there is an optimal temperature region that, with combination of a fast heating rate, led to the best conditions of a drastically reduced development time of the {l_brace}110{r_brace} < 001 > crystallographic texture in the cold rolled grain-oriented steel. Materials heat treated below the optimum temperature region account for a primary recrystallization, while applying heat above this region leads to a secondary recrystallization without abnormal grain growth. Moreover, in the optimum temperature range, there was a particular temperature leading to the most optimal microstructure and texture. The magnetic properties, measured after the optimal heat treatment, were close to that measured on specimens taken after the final box annealing. The electron back scattered diffraction measurement technique revealed that sharpness of the {l_brace}110{r_brace} < 001 > crystallographic texture, developed at the optimum temperature is comparable to the steel taken after the industrial final box annealing. This fact is evidence that there is a temperature where the abnormal grain growth proceeds optimally.

  18. Unconventional states and geometric effects in mesoscopic systems of ultra-cold atomic Fermi gases

    SciTech Connect

    Bolech, C. J.

    2014-10-15

    During the last decade, experiments all over the world started to test the superconducting state of matter using a newly developed mesoscopic tunable system: trapped ultra-cold atomic gases. Theorists and experimentalists hand-in-hand are now able to advance our understanding of the superconducting state by asking new questions that probe further into the physical mechanisms underlying the phenomenon and the door is open to the exploration of exotic unconventional superconducting states. In particular, a series of experiments on systems of trapped cold atomic gases were aimed at studying the effects of polarization on superconducting pairing. Two different experimental groups encountered surprising qualitative and quantitative discrepancies which seemed to be a function of the confining geometry and the cooling protocol. Our numerical studies demonstrate a tendency towards metastability and suggest an explanation for the observed discrepancy. From our calculations, the most likely solution which is consistent with the experiments supports a state strikingly similar to the so called FFLO state (after Ferrell, Fulde, Larkin and Ovchinnikov), which had been theorized long ago but eluded detection so far. Moreover, the three-dimensional scenario described above is reminiscent of predictions for one-dimensional systems of dilute polarized attractive gases and another set of ultra-cold-atom experiments incorporates optical lattices to study this reduced-dimensionality setting. The measurements are in quantitative agreement with theoretical calculations (using a wide array of numerical and analytic techniques) in which a partially polarized phase is found to be the one-dimensional analogue of the FFLO state. Moreover, exploring the dimensional-crossover regime, our latest findings indicate that the mesoscopic nature of these quasi-one-dimensional systems favors the appearance of a new type of Mott phase transition involving an emergent pair-superfluid of equal

  19. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  20. Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980

    SciTech Connect

    Manilla, R.D.

    1980-11-01

    Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

  1. Oil- and gas-supply modeling

    SciTech Connect

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  2. Oversight of the Federal Energy Regulatory Commission`s oil pipeline regulatory program. Hearing before the Environment, Energy, and Natural Resources Subcommittee of the Committee on Government Operations, House of Representatives, One Hundred Second Congress, First Session, August 1, 1991

    SciTech Connect

    1992-12-31

    The hearing addresses oversight of The Federal Energy Regulatory Commission`s (FERC) oil pipeline regulatory program which was viewed as deficient. The primary focus is competition and market share among petroleum pipeline segments. Statements of government and industry officials are included along with documents submitted for the record.

  3. Potential Oil Production from the Coastal Plain of the Arctic National

    Energy Information Administration (EIA) (indexed site)

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska, Open File Report 98-34, 1999) provided basic information used in this study. A prior assessment was completed in 1987 by the USGS.

  4. Effect of pressure on the neutron spin resonance in the unconventional superconductor FeTe0.6Se0.4

    SciTech Connect

    Marty, Karol J; Christianson, Andrew D; Moreira Dos Santos, Antonio F; Sipos, Balazs; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Fernandez-Baca, Jaime A; Tulk, Christopher A; Maier, Thomas A; Sales, Brian C; Lumsden, Mark D

    2012-01-01

    We have carried out a pressure study of the unconventional superconductor FeTe0.6Se0.4 up to 1.5 GPa by neutron scattering, resistivity, and magnetic susceptibility measurements. The neutron spin resonance energy and the superconducting transition temperature have been extracted as a function of applied pressure in samples obtained from the same crystal. Both increase with pressure up to amaximum at approximate to 1.3 GPa, directly demonstrating a correlation between these two fundamental parameters of unconventional superconductivity. A comparison between the quantitative evolution of T-c and the resonance energy as a function of applied pressure is also discussed. These measurements serve to demonstrate the feasibility of using pressure dependent inelastic neutron scattering to explore the relationship between the resonance energy and T-c in unconventional superconductors

  5. Guatemala: World Oil Report 1991

    SciTech Connect

    Not Available

    1991-08-01

    This paper reports that government officials have been working on changes to the hydrocarbon law to make it easier for operators to explore. In a reform effort, Minister of Energy and Mines Carlos Hutarte brought a new staff dedicated to spurring oil development into office with him. This includes the Directorate of Hydrocarbons, which held a three-day seminar in Dallas, Texas, to acquaint U.S. firms with new policies. Only one company, Basic Resources International, has been operating in Guatemala over the last year. The firm drilled three onshore wells in 1990 for 16,499 ft, including one oil producer. Two further onshore wells are slated this year. Oil production from 14 active wells out of 16 capable averaged 3,943 bpd, up 8.4% from 1989. Reserves are 191 MMbbl.

  6. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  7. Fact Sheets

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Turbine Thermal Management Turbine Thermal Management Unconventional Resources ... Fluid Chemistry Analysis Capacity Unconventional Resources Research on Local and ...

  8. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  9. Electric Power Generation from Co-Produced Fluids from Oil and...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  10. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

    Office of Energy Efficiency and Renewable Energy (EERE)

    Converting domestic biomass into affordable fuels, products, and power supports our national strategy to diversify energy resources and reduce dependence on imported oil.

  11. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  12. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  13. Archaeological Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  14. Build a Floating Oil Rig | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Build a Floating Oil Rig Build a Floating Oil Rig The U.S. Department of the Interior's Minerals Management Service developed this teacher's guide about the many energy resources found in, over, and under the ocean. Includes sections on petroleum, natural gas, and methane hydrates. Hands-on activities include drilling for oil in the ocean, and building a floating oil rig. Study Guide - Build a Floating Oil Rig (1.69 MB) More Documents & Publications QER - Comment of Energy Innovation 6 QER -

  15. URTAC Meeting - September 19, 2013 | Department of Energy

    Office of Environmental Management (EM)

    September 19, 2013 WebEx Meeting RPSEA Onshore Program (5.6 MB) EPAct Complementary Program Unconventional Resources (3.9 MB) NETL Oil Technology R&D Portfolio (297.09 KB) ...

  16. Before the Subcommittees on Energy and Environment- House Committee on Science, Space, and Technology

    Energy.gov [DOE]

    Subject: Interagency Working Group to Support Safe and Responsible Development of Unconventional Domestic Natural Gas Resources By: Guido DeHoratiis, Acting Deputy Assistant Secretary for Oil and Gas, Office of Fossil Energy

  17. DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by DOE's Office of Fossil Energy.

  18. Petroleum hydrocarbons in near-surface seawater of Prince William Sound, Alaska, following the Exxon Valdez oil spill II: Analysis of caged mussels. Air/water study number 3. Subtidal study number 3a. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Short, J.W.; Harris, P.M.

    1995-07-01

    Mussels (Mytilus trossulus) were deployed at 22 locations inside Prince William Sound and 16 locations outside the Sound at depths of 1, 5 and 25 m for 2 to 8 weeks to determine the biological availability and persistence of petroleum-derived hydrocarbons from the Exxon Valdez Oil (EVO) spill. Four successive deployments were made in 1989, and two each in 1990 and 1991. Mussels were analyzed for 27 alkane and 43 polynuclear aromatic hydrocarbon (PAH) analytes. PAH concentrations derived from EVO in mussels decreased with depth, time, and distance from heavily oiled beaches. Hydrocarbon accumulation derived from EVO by deployed mussels indicates petroleum hydrocarbons were available to subsurface marine fauna the summer following the spill, which may be a route of oil ingestion exposure by fauna at high trophic levels.

  19. Energy crisis: resources or decisions. [Pamphlet

    SciTech Connect

    Yasinsky, J.B.

    1981-01-01

    The no-growth philosophy has contributed to a decade of debate and indecision over which domestic energy programs the US should pursue. This attitude has eroded faith in the ability of technology to bring future energy security and has crippled our decision-making process. The US has abundant energy resources of coal and nuclear power, and is developing efficient new energy technologies that can help us shift away from foreign oil dependency. A decision to use these resources to substitute for imported oil, coupled with strong domestic economic growth and conservation, can move us closer to energy independence.

  20. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  1. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  2. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  3. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1995-10-24

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  4. Conjunctive Surface and Groundwater Management in Utah. Implications for

    Office of Scientific and Technical Information (OSTI)

    Oil Shale and Oil Sands Development (Technical Report) | SciTech Connect Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully

  5. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  6. 05663_AlaskaHeavyOil | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the ...

  7. Nebraska Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    was founded in 1959. Its mission is to foster, encourage and promote the development, production and utilization of natural resources of oil and gas in the state. The mission...

  8. Research and information needs for management of oil shale development

    SciTech Connect

    Not Available

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  9. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  10. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  11. Role of energy resources in New Mexico

    SciTech Connect

    Not Available

    1982-01-01

    The development of energy resources, particularly oil and gas, has contributed a major share of New Mexico's revenues and provided a predominant component of the economic base. The dependency of the development of what was considered abundant resources was the basis for economic growth and stability. This dependency may be disruptive to the future economic stability, and if a diversification of the economy does not take place, the state may be in danger of approaching the future without a strong economic base.

  12. Produce More Oil Gas via eBusiness Data Sharing

    SciTech Connect

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  13. Before the House Natural Resources Subcommittee on Energy and Mineral Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Unconventional Fuels, Part II: The Promise of Methane Hydrates By: Dr. Ray Boswell, Senior Management and Technology Advisor, National Energy Technology Laboratory

  14. Crude Oil | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, ... by the network model (see figure) spans from oil fields to fuel distribution terminals. ...

  15. Oil Security Metrics Model

    SciTech Connect

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  16. Crude Oil Domestic Production

    Energy Information Administration (EIA) (indexed site)

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  17. Oil shale as an energy source in Israel

    SciTech Connect

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  18. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  19. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  20. Factors that will influence oil and gas supply and demand in the 21st century

    SciTech Connect

    Holditch, S.A.; Chianelli, R.R.

    2008-04-15

    A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

  1. Unconventional critical magnetic behavior in the Griffiths ferromagnet La₀.₄Ca₀.₆MnO₂.₈□₀.₂ oxide

    SciTech Connect

    Triki, M.; Dhahri, E.; Hlil, E.K.

    2013-05-01

    The effects of oxygen vacancy on the critical magnetic behavior in La₀.₄Ca₀.₆MnO₂.₈□₀.₂ around the paramagnetic-ferromagnetic (PM-FM) phase transition were investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method and critical isotherm analysis via dc magnetization measurements recorded around the Curie temperature TC. The obtained critical exponents values are β~0.8, γ~0.7 and δ~1.882 with TC~164.5 K. Thus the scaling law γ+β=δβ is fulfilled. The critical exponents obey the single scaling-equation of state M(H,ε)|ε|{sup -β}=f{sub ±}(H|ε|{sup -(β+γ)}) where, f₊ for T>TC and f⁻ for T>TC. The found exponents are inconsistent with any known universality class. These results attributed to the existence of Griffiths Phase (Triki et al. (2012) [1]) seem to actually reflect the unconventional critical scaling of the magnetic susceptibility. - Graphical abstract: Modified Arrott plots: M{sup 1/β} vs. (μ₀H){sup 1/γ} with (a) mean-field model (β=0.5, γ=1), (b) 3D-Heisenberg model (β=0.365, γ=1.336), (c) 3D-Ising model (β=0.325, γ=1.24), (d) tricritical mean-field model (β=0.25, γ=1) and (e) (β=0.79, γ=0.71). Highlights: • Study of the critical behavior for La₀.₄Ca₀.₆MnO₂.₈□₀.₂ compound. • A typical second-order magnetic transition near TC. • Unconventional critical exponents were found.

  2. Teacher Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Teach and Learn Teach and Learn WELCOME! Whether you're a K-12 teacher, a university administrator, or a student interested in starting your path toward a clean energy career, we’ve got you covered. On this page, you'll find links to student competitions, internships, training and degree programs, career planning tools, and professional development opportunities. You can also explore videos, data tools, lessons, activities, and other online resources for educators at all levels. | Photo

  3. Exxon Valdez oil spill: State/federal natural resource damage assessment final report. Effects of pink salmon (oncorhynchus gorbuscha) escapement level on egg retention, preemergent fry, and adult returns to the kodiak and chignik management areas caused by the Exxon Valdez oil spill. Fish/shellfish study numbers 7b and 8b. Final report

    SciTech Connect

    1993-12-01

    As a result of the 1989 Exxon Valdez oil spill, commercial salmon fishing in and around the Kodiak and Chignik areas was severely restricted throughout the 1989 season. Consequently, pink salmon escapements for these areas greatly exceeded targeted escapement objectives. Investigations were conducted within the Kodiak and Chignik Management Areas during 1989 and 1990 to determine if negative impacts on future odd-year brood line pink salmon production occurred as a result of overescapement in 1989.

  4. Fluvial-deltaic heavy oil reservoir, San Joaquin basin

    SciTech Connect

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-03-01

    Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

  5. Oil Production

    Energy Science and Technology Software Center

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  6. Canadian oil and gas taxation

    SciTech Connect

    Watkins, C.; Scarfe, B.

    1985-01-01

    The taxation of Canadian oil and gas production has occasioned significant conflict between the federal government and the provinces, which own most of the petroleum resources. During the upheaval of the world oil market in the 1970s, such conflict became overt, with claims and counterclaims on perceived economic rents. In contrast, the 1950s and 1960s had been relatively quiet, with quite straightforward taxation regimes requiring only a little federal-provincial policy coordination. Federal policies were then preoccupied with encouraging market growth, with scant attention to pricing and revenue shares, the issues that have dominated federal and provincial energy policy in the 1970s and the 1980s. The authors begin by outlining the tax and royalty systems imposed by the federal government and by the government of Alberta, which accounts for some 85% of Canadian oil and gas output. They use the term system here in a broad sense to include all revenue-collecting devices and direct subsidies. Then they analyze the nature, problems, and efficiency of these regimes, especially as devices to collect economic rent. A final section speculates about the future evolution of Canadian oil and gas taxation. 13 references, 4 tables.

  7. Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Impact of Biofuel Production on Regional Water Resource Use and Availability May Wu Ph.D. Principal Environmental System Analyst Argonne National Laboratory Department of Energy Webinar Office of Biomass Program, EERE, DOE Aug 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic Biomass Resources for Biofuel Production  Biofuel feedstock types - Starch Corn, wheat, sorghum, cassava - Oil crops Soybean, rapeseed, palm oil, algae, Jatropha, waste oil - Sugar Sugar

  8. World Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  9. Eco Oil 4

    SciTech Connect

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  10. EIA - Analysis of Crude Oil Production in the Arctic National Wildlife

    Energy Information Administration (EIA) (indexed site)

    Refuge - Results Results Analysis of Crude Oil Production in the Arctic National Wildlife Refuge Figure 2. Domestic Crude Oil Production for the AEO2008 Reference Case and the Three ANWR Resource Cases, 2005-2030. (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. table 2. Liquid Fuels Supply Impact of Opening ANWR 1002 Area to Petroleum Development under three Oil Resource Cases. Need help, contact the National Energy Informtion Center at

  11. Understanding Resource Nationalism in the 21st Century

    SciTech Connect

    Hughes, Llewelyn; Kreyling, Sean J.

    2010-07-26

    Resource nationalism in oil-importing states appears on the rise. Oil price volatility underpinned by demand growth has led China, India and others to increase state support for national-flag firms in order to increase the state’s energy self-sufficiency. Both Chinese and Indian National Oil Companies (NOCs) have made energy investments worldwide, including in Sudan and Iran. Long-standing oil importers such as the United States and Japan have reenergized policies designed to increase domestic production of crude and crude substitutes, or have subsidized national-flag firms, in the name of energy independence.

  12. Computing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

  13. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  14. Economic approaches to nonrenewable resource taxation

    SciTech Connect

    Brewer, K.J.; Hamilton, S.E.; Westin, R.A.

    1996-12-31

    The purpose of this Article is to provide the reader with a survey of the current status of natural resource economics insofar as it related to tax policy. The topic is limited to oil, gas and minerals. The Article begins with a review of the kinds of oil and gas exploitation contracts that arose in the U.S. in a free-wheeling industry, the primary feature of which is that private owners of the oil and gas interests are able to enforce the property interests created by those contracts. The subject is important because (1) those contracts spread into the mining (and to a lesser extent the timber) industry, and (2) the contracts are closely analogous to later tax systems in which the state owns the resources. There is a tendency among thinkers in the area to overlook these market-based arrangements and to imagine that they are logically separate from tax systems. They are not separate. Moreover, by understanding the private forms, one is well-armed to evaluate the taxation of natural resources and to detect the limits, especially the inflexibility, of government-designed systems. One can then ask questions about the wisdom of any particular country`s choices in the field of natural resource taxation. The Article then moves to the economist`s stand on the subject, as expressed in the prevailing literature. Finally, the Article closes with some policy considerations with respect to structuring tax systems in which the state is the proprietor of the resources.

  15. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  16. Fact #780: May 20, 2013 Crude Oil Reserve to Production Ratio | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 0: May 20, 2013 Crude Oil Reserve to Production Ratio Fact #780: May 20, 2013 Crude Oil Reserve to Production Ratio The ratio of reserves to production gives a relative measure of the resources available in different oil producing countries. Assuming 2011 crude oil production rates and holding reserves constant, the reserves in Venezuela would last another 258 years, while Canada's reserves would last 165 years and the United States reserves would last 11 years. Saudi Arabia, which

  17. Investing in Russia`s oil and gas industry: The legal and bureaucratic obstacles

    SciTech Connect

    Skelton, J.W. Jr.

    1993-12-31

    This article discusses the unusual challenges the international oil companies have as they consider investing in the oil and gas industry of the Russian Federation. Topics include the following: Russian oil and gas reserves; the Russian legislative process; law on subsurface resources; regulations on licensing procedure; draft law on oil and gas; draft law on concessions; proposed modification draft legislation; obstacles to wide scale investment.

  18. Strategic Center for Natural Gas and Oil R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Albert Yost SMTA Strategic Center for Natural Gas & Oil The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program August 18, 2015 Tribal leader forum: U.S. Department of Energy oil and gas technical assistance capabilities Denver, Colorado 2 National Energy Technology Laboratory Outline * Review of Case History Technology Successes * Review of Current Oil and Natural Gas Program * Getting More of the Abundant Shale Gas Resource *

  19. Technical resource document for assured thermal processing of wastes

    SciTech Connect

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  20. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Resources The following tools and resources have been useful to Department of ... Incentives Toolkit Partnerships Toolkit Tools Solution Center Cost-Effectiveness Tool ...

  1. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  2. ORISE Resources: Consumer Health Resource Information Service...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  3. Apparatus for distilling shale oil from oil shale

    SciTech Connect

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  4. Shale Research & Development | Department of Energy

    Office of Environmental Management (EM)

    Shale Research & Development Shale Research & Development Shale Research & Development UNCONVENTIONAL OIL AND NATURAL GAS America's abundant unconventional oil and gas (UOG) ...

  5. National Energy Technology Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    conditions found in deepwater oil and unconventional natural gas reservoirs pose new ... NETL researchers are now using these facilities to conduct offshore and unconventional oil ...

  6. Marbled murrelet abundance and breeding activity at Naked Island, Prince William Sound, and Kachemak Bay, Alaska, before and after the Exxon Valdez oil spill. Bird study number 6. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Kuletz, K.J.

    1994-08-01

    The author compared pre- and post-spill abundance and breeding activity of murrelets near the Naked Island group in central Prince William Sound, and in Kachemak Bay in lower Cook Inlet. Murrelet numbers at Naked Island were lower in 1989 than in 1978-1980 but not in 1990-1992. At Kachemak Bay, where oiling was minimal, murrelet densities did not change between 1988 and 1989. The results suggest that the murrelet population at Kachemak Bay, further removed temporally and spatially from the spill epicenter, was not affected as the Naked Island populations in 1989. Murrelet numbers were negatively correlated to numbers of boats at both study sites, and cleanup activities likely contributed to disruption in 1989.

  7. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  8. Enhanced oil recovery projects data base

    SciTech Connect

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  9. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect

    Tiedemann, H.A. )

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  10. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  11. Pressure suppression of unconventional charge-density-wave state in PrRu4P12 studied by optical conductivity

    SciTech Connect

    Okamura H.; Carr G.; Ohta, N.; Takigawa, A.; Matsutori, I.; Shoji, K.; Miyata, K.; Matsunami, M.; Nanba, T.; Sugawara, H.; Sekine, C.; Shirotani, I.; Sato, H.; Moriwaki, T.; Ikemoto, Y.; Liu, Z.

    2012-05-09

    Optical conductivity [{delta}({omega})] of PrRu{sub 4}P{sub 12} has been studied under high pressure to 14 GPa, at low temperatures to 8 K, and at photon energies 12 meV-1.1 eV. The energy gap in {delta}({omega}) at ambient pressure, caused by a metal-insulator transition due to an unconventional charge-density-wave formation at 63 K, is gradually filled in with increasing pressure to 10 GPa. At 14 GPa and below 30 K, {delta}({omega}) exhibits a pronounced Drude-type component due to free carriers. This indicates that the initial insulating ground state at zero pressure has been turned into a metallic one at 14 GPa. This is consistent with a previous resistivity study under pressure, where the resistivity rapidly decreased with cooling below 30 K at 14 GPa. The evolution of electronic structure with pressure is discussed in terms of the hybridization between the 4f and conduction electrons.

  12. Office of Information Resources

    Energy Saver

    ... INC. (301) 565-0064 27 obviously, biomass liquids, enhanced oil recovery, oil 1 ... There's nothing exotic. 22 It's been around for at least 80 years. It's 23 gasification ...

  13. Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies

    SciTech Connect

    Keiter, Robert; Ruple, John; Tanana, Heather; Kline, Michelle

    2011-02-28

    Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and the challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.

  14. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  15. South American oil

    SciTech Connect

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  16. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  17. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  18. SRC residual fuel oils

    SciTech Connect

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  19. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  20. Oil-futures markets

    SciTech Connect

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  1. Largest US oil and gas fields, August 1993

    SciTech Connect

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  2. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  3. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  4. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  5. Geochemical constraints on microbial methanogenesis in an unconventional gas reservoir: Devonian Antrim shale, Michigan

    SciTech Connect

    Martini, A.M.; Budal, J.M.; Walter, L.M. )

    1996-01-01

    The Upper Devonian Antrim Shale is a self-sourced, highly fractured gas reservoir. It subcrops around the margin of the Michigan Basin below Pleistocene glacial drift, which has served as a source of meteoric recharge to the unit. The Antrim Shale is organic-rich (>10% total organic carbon), hydrogen-rich (Type I kerogen) and thermally immature (R[sub o] = 0.4 to 0.6). Reserve estimates range from 4-8 Tcf, based on assumptions of a thermogenic gas play. Chemical and isotopic properties measured in the formation waters show significant regional variations and probably delineate zones of increased fluid flow controlled by the fracture network. [sup 14]C determinations on dissolved inorganic carbon indicate that freshwater recharge occurred during the period between the last glacial advance and the present. The isotopic composition of Antrim methane ([delta][sup 13]C = -49 to -59[per thousand]) has been used to suggest that the gas is of early thermogenic origin. However, the highly positive carbon of co-produced CO[sub 2] gas ([delta][sup 13]C [approximately] +22[per thousand]) and DIC in associated Antrim brines ([delta][sup 13]C = +19 to +31[per thousand]) are consistent with bacterially mediated fractionation. The correlation of deuterium in methane ([delta]D = -200 to -260[per thousand]) with that of the co-produced waters (SD = -20 to -90176) suggests that the major source of this microbial gas is via the CO[sub 2] reduction pathway within the reservoir. Chemical and isotopic results also demonstrate a significant (up to 25%) component of thermogenic gas as the production interval depth increases. The connection between the timing of groundwater recharge, hydrogeochemistry and gas production within the Antrim Shale, Michigan Basin, is likely not unique and may find application to similar resources elsewhere.

  6. Geochemical constraints on microbial methanogenesis in an unconventional gas reservoir: Devonian Antrim shale, Michigan

    SciTech Connect

    Martini, A.M.; Budal, J.M.; Walter, L.M.

    1996-12-31

    The Upper Devonian Antrim Shale is a self-sourced, highly fractured gas reservoir. It subcrops around the margin of the Michigan Basin below Pleistocene glacial drift, which has served as a source of meteoric recharge to the unit. The Antrim Shale is organic-rich (>10% total organic carbon), hydrogen-rich (Type I kerogen) and thermally immature (R{sub o} = 0.4 to 0.6). Reserve estimates range from 4-8 Tcf, based on assumptions of a thermogenic gas play. Chemical and isotopic properties measured in the formation waters show significant regional variations and probably delineate zones of increased fluid flow controlled by the fracture network. {sup 14}C determinations on dissolved inorganic carbon indicate that freshwater recharge occurred during the period between the last glacial advance and the present. The isotopic composition of Antrim methane ({delta}{sup 13}C = -49 to -59{per_thousand}) has been used to suggest that the gas is of early thermogenic origin. However, the highly positive carbon of co-produced CO{sub 2} gas ({delta}{sup 13}C {approximately} +22{per_thousand}) and DIC in associated Antrim brines ({delta}{sup 13}C = +19 to +31{per_thousand}) are consistent with bacterially mediated fractionation. The correlation of deuterium in methane ({delta}D = -200 to -260{per_thousand}) with that of the co-produced waters (SD = -20 to -90176) suggests that the major source of this microbial gas is via the CO{sub 2} reduction pathway within the reservoir. Chemical and isotopic results also demonstrate a significant (up to 25%) component of thermogenic gas as the production interval depth increases. The connection between the timing of groundwater recharge, hydrogeochemistry and gas production within the Antrim Shale, Michigan Basin, is likely not unique and may find application to similar resources elsewhere.

  7. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  8. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  9. US Crude oil exports

    Gasoline and Diesel Fuel Update

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  10. Assessment of industry needs for oil shale research and development

    SciTech Connect

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  11. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  12. No. 2 heating oil/propane program

    SciTech Connect

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  13. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  14. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  15. Venezuelan projects advance to develop world`s largest heavy oil reserves

    SciTech Connect

    Croft, G.; Stauffer, K.

    1996-07-08

    A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

  16. Tough Blends of Polylactide and Castor Oil

    SciTech Connect

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A.

    2012-10-10

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  17. State Heating Oil and Propane Program

    Energy Information Administration (EIA) (indexed site)

    Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry analysts, and consumers - collects

  18. Economic evaluation on CO₂-EOR of onshore oil fields in China

    DOE PAGES [OSTI]

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less

  19. Economic evaluation on CO₂-EOR of onshore oil fields in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.

  20. Heavy crudes and bitumen categorized to help assess resources, techniques

    SciTech Connect

    Byramjee, R.J.

    1982-07-04

    As conventional crude oil reserves decrease and prices go up, heavy crude oil (HCO) is getting more attention from oil companies and governments. It was felt that some clarification was needed regarding these products and a review of known fields was conducted to sort out ranges of physical and composition characteristics for definition and classification purposes. A summary of this review with a proposal for classification was presented at the Second International Conference on Heavy Crude and Tar Sands held in Caracas in Feb. 1982. This Caracas conference, organized jointly by the United Nations Institute for Training and Research (UNITAR) and Petroleos de Venezuela debated the definition, characteristics, reserves/resources, production/enhanced oil recovery, and upgrading of heavy crude oils. This work is based, in part, on some of the Caracas conference's discussions.

  1. Rule of capture: government and the oil industry

    SciTech Connect

    Tomain, J.P.

    1984-01-01

    In his analysis of the oil industry-government relationship, the author examines the question of whether Big Oil is really bad and, if so, whether the government should leave it alone because it is unmanageable or regulate it for that reason. Responding to Robert Sherrill's The Oil Follies of 1970-1980 and its emphasis on conspiracy and betrayal, he focuses on the replacement of the Rule of Capture, which promoted the production of natural resources, with regulations restricting oil and gas production. He concludes that Big Government has not managed Big Oil well, but proposes an approach based on a series of workable projects instead of antitrust review. These initiatives could include efforts for horizontal and vertical divestiture, restrictions on tax divestiture, regulating cross-ownership, and a reworking of banking and tax laws.

  2. Heavy oil and tar sands recovery and upgrading. International technology

    SciTech Connect

    Schumacher, M.M.

    1982-01-01

    This work provides an in-depth assessment of international technology for the recovery and upgrading of heavy crude oil and tar sands. The technologies included are currently in use, under development, or planned; emphasis is placed on post-1978 activities. The heavy oil technologies and processes considered include methods relating to the exploitation of heavy oil reservoirs, such as production from underground workings, all types of improved or enhanced recovery, subsurface extraction, and well rate stimulation. The tar sands section includes sizing the resource base and reviewing and evaluating past, present, and planned research and field developments on processes for mining, producing, extracting, and upgrading very heavy oils recovered from tar sands, e.g., bitumen recovery from tar sands where primary production was impossible because of the oil's high viscosity. 616 references.

  3. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  4. Sandia Energy - Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  5. Survey of potential geopressured resource areas in California. Final report

    SciTech Connect

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  6. World Energy Resources program U. S. Geological Survey

    SciTech Connect

    Masters, C.D.

    1986-05-01

    In 1973, with the OPEC embargo, the US was jarred into the world of insecure energy supplies - a harsh reality considering that throughout much of our history we had sufficient domestic supplies of oil and gas to meet all of our requirements. The US Government's response in 1973 was to assess domestic oil and gas potential, which was found to be substantial but nonetheless short of long-term requirements. Born of the need to become more certain about foreign as well has domestic resources, and working in conjunction with the Foreign Energy Supply Assessment Program of the US Department of Energy, the US Geological Survey undertook a program to develop a technical understanding of the reserves and undiscovered recoverable resources of petroleum in every basin in the world with petroleum potential. The World Energy Resources Program prepared an assessment of ultimate resources of crude oil for the World Petroleum Congress (WPC) in 1983, and a revision and update (including nature gas, crude oil, extra heavy oil, and tar sands) are planned for WPC in 1987. This poster session attempts to engender awareness of our scenario of world ultimate petroleum occurrence and to show some elements of the geology that guided our thinking.

  7. Technology experience and economics of oil shale mining in Estonia

    SciTech Connect

    Fraiman, J.; Kuzmiv, I.

    1995-11-01

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  8. Solar Resource Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  9. Resources | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

  10. Shale oil dearsenation process

    SciTech Connect

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  11. NREL: Renewable Resource Data Center - Biomass Resource Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  12. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  13. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  14. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  15. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  16. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  17. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  18. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  19. Crude Oil Production

    Gasoline and Diesel Fuel Update

    Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  20. Crude Oil Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  1. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  2. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  3. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  4. Upgrading heavy gas oils

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  5. Sandia Energy - Solar Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  6. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  7. EM, Tribal, and State Officials Receive Training on Restoring Damaged Natural Resources

    Energy.gov [DOE]

    NEW ORLEANS – Senior EM, Tribal, and state officials gathered for a training on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process for restoring resources damaged from oil spills or hazardous substance releases into the environment.

  8. Fermilab Office of General Counsel - Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Links Documents

  9. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  10. Cal. PRC Section 6909 - Oil and Gas and Mineral Leases: Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    09 - Oil and Gas and Mineral Leases: Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6909 -...

  11. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  12. Potential Oil Production from the Coastal Plain of the Arctic National

    Energy Information Administration (EIA) (indexed site)

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment is a product of the Energy Information Administration’s (EIA) Reserves and Production Division. EIA, under various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral

  13. Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Oil & Gas Research Request for Information Request for Information Seeking input: The Department has issued a Request for Information (RFI) to support DOE's mission to lead research and technology development that promotes the prudent development of oil and gas resources and reduces the environmental footprint of oil and gas activities. The purpose of the RFI is solicit feedback from stakeholders that could potentially inform the issuance of a future Funding Opportunity Announcement

  14. Central Pacific Minerals and Southern Pacific Petroleum detail oil shale activities

    SciTech Connect

    Not Available

    1986-09-01

    These two affiliated companies have their major assets in Queensland. Brief summaries are given of the activities of the Rundle, Condor, and Yaamba oil shale projects and brief descriptions are given of the resources found in the Stuart, Nagoorin, Nagoorin South, Lowmead, and Duaringa oil shale deposits of Queensland. The companies also have, or are planning, oil shale projects in the US, Luxembourg, France, and the Federal Republic of Germany, and these are briefly described.

  15. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  16. Oil shale technology

    SciTech Connect

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  17. EIA - Analysis of Crude Oil Production in the Arctic National Wildlife

    Energy Information Administration (EIA) (indexed site)

    Refuge Refuge Analysis of Crude Oil Production in the Arctic National Wildlife Refuge This report responds to a request from Senator Ted Stevens that the Energy Information Administration provide an assessment of Federal oil and natural gas leasing in the coastal plain of the Arctic National Wildlife Refuge (ANWR) in Alaska. Excel Spreadsheets Reference Reference. Need help, contact the National Energy Information Center at 202-586-8800. Mean ANWR Resource Mean ANWR Resource. Need help,

  18. Energy Efficiency Resource Standards Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and may be coupled with a state's renewable portfolio standard. Find EERS resources below. ... Energy Solutions: Energy Efficiency Standards and Targets Examining the Peak Demand ...

  19. Women's Employee Resource Group

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Careers, Jobs » Inclusion & Diversity » Women's Employee Resource Group Women's Employee Resource Group The Women's Employee Resource Group encourages women's contributions, professional development opportunities, and shared support across the Laboratory. Contact Us Office of Diversity and Strategic Staffing (505) 667-2602 Email Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group Computational scientist Hai Ah Nam, a member of the Women's Employee Resource

  20. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.