Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; Murat, Pavel
2016-03-30
Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductormore » scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less
Shear wall ultimate drift limits
Duffey, T.A.; Goldman, A.; Farrar, C.R.
1994-04-01
Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.
The ultimate downscaling limit of FETs.
Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David
2014-10-01
We created a highly efficient, universal 3D quant um transport simulator. We demonstrated that the simulator scales linearly - both with the problem size (N) and number of CPUs, which presents an important break-through in the field of computational nanoelectronics. It allowed us, for the first time, to accurately simulate and optim ize a large number of realistic nanodevices in a much shorter time, when compared to other methods/codes such as RGF[~N 2.333 ]/KNIT, KWANT, and QTBM[~N 3 ]/NEMO5. In order to determine the best-in-class for different beyond-CMOS paradigms, we performed rigorous device optimization for high-performance logic devices at 6-, 5- and 4-nm gate lengths. We have discovered that there exists a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs). We have found that, at room temperatures, all FETs, irre spective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths.
Accelerator physics and technology limitations to ultimate energy...
Office of Scientific and Technical Information (OSTI)
Title: Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders Authors: Bauer, P. ; Limon, P. ; Peggs, Stephen G. ; Syphers, ...
Accelerator physics and technology limitations to ultimate energy...
Office of Scientific and Technical Information (OSTI)
Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders Citation Details In-Document Search Title: Accelerator physics and ...
Limits of optimal control yields achievable with quantum controllers...
Office of Scientific and Technical Information (OSTI)
Limits of optimal control yields achievable with quantum controllers Prev Next Title: Limits of optimal control yields achievable with quantum controllers Authors: Wu, ...
Limits of optimal control yields achievable with quantum controllers...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Limits of optimal control yields achievable with quantum controllers Citation Details In-Document Search Title: Limits of optimal ...
Dynamics in the quantum/classical limit based on selective use of the quantum potential
Garashchuk, Sophya Dell’Angelo, David; Rassolov, Vitaly A.
2014-12-21
A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.
Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement
Burgh, Mark de; Bartlett, Stephen D.
2005-10-15
We introduce methods for clock synchronization that make use of the adiabatic exchange of nondegenerate two-level quantum systems: ticking qubits. Schemes involving the exchange of N independent qubits with frequency {omega} give a synchronization accuracy that scales as ({omega}{radical}(N)){sup -1}--i.e., as the standard quantum limit. We introduce a protocol that makes use of N{sub c} coherent exchanges of a single qubit at frequency {omega}, leading to an accuracy that scales as ({omega}N{sub c}){sup -1} ln N{sub c}. This protocol beats the standard quantum limit without the use of entanglement, and we argue that this scaling is the fundamental limit for clock synchronization allowed by quantum mechanics. We analyze the performance of these protocols when used with a lossy channel.0.
An Experiment on the Limits of Quantum Electro-dynamics
Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.
1959-06-01
The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)
U.S. Department of Energy (DOE) - all webpages (Extended Search)
UltimateAdvisor offers you comprehensive legal insurance at an affordable cost. Protect your family, finances and future from everyday legal issues without the high cost of attorney fees. ∙ Employee: $5.55 semi-monthly ∙ Employee plus child(ren): $7.62 semi-monthly Questions about your insurance? Call us toll-free at 800-247-4184 or visit ARAGLegalCenter.com, Access Code 14822lal. Your Opportunity to Enroll is Limited - Take Control Today! Legal Insurance from ARAG ® Affordable Legal
Leaci, Paola; Ortolan, Antonello
2007-12-15
We discuss limitations in precision measurements of a weak classical force coupled to quantum mechanical systems, the so-called standard quantum limit (SQL). Among the several contexts exploiting the measurement of classical signals, gravitational wave (GW) detection is of paramount importance. In this framework, we analyze the quantum limited sensitivity of a free test mass, a quantum mechanical harmonic oscillator, two harmonic oscillators with equal masses and different resonance frequencies, and finally two mechanical oscillators with different masses and resonating at the same frequency. The sensitivity analysis of the latter two cases illustrates the potentialities of back-action reduction and classical impedance matching schemes, respectively. By examining coupled quantum oscillators as detectors of classical signals, we found a viable path to approach the SQL for planned or operating GW detectors, such as DUAL and AURIGA.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
Doering, D.; McDonald, G.; Debs, J. E.; Figl, C.; Altin, P. A.; Bachor, H.-A.; Robins, N. P.; Close, J. D. [Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University, Canberra, 0200 (Australia); Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra, 0200 (Australia)
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.
Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots
Guyot-Sionnest, Philippe Roberts, John Andris
2015-12-21
The photovoltaic response of thin films of HgTe colloidal quantum dots in the 3–5 μm range is observed. With no applied bias, internal quantum efficiency exceeding 40%, specific detectivity above 10{sup 10} Jones and microseconds response times are obtained at 140 K. The cooled devices detect the ambient thermal radiation. A detector with 5.25 μm cut-off achieves Background Limited Infrared Photodetection at 90 K.
Measuring nanomechanical motion with an imprecision below the standard quantum limit
Anetsberger, G.; Arcizet, O.; Gavartin, E.; Unterreithmeier, Q. P.; Weig, E. M.; Kotthaus, J. P.; Gorodetsky, M. L.; Kippenberg, T. J.
2010-12-15
We report a room-temperature measurement of nanomechanical motion with an imprecision below the standard quantum limit (SQL), using cavity-enhanced optical near fields. Fundamental thermodynamical cavity frequency fluctuation limits the total imprecision to 3 dB below the SQL at room temperature [corresponding to (530 am/{radical}(Hz)){sup 2} in absolute units] and is expected to reduce to negligible values at moderate cryogenic temperatures. Coupling strengths exceeding those required to reach the SQL by more than two orders of magnitude are achieved, allowing a shot-noise limited imprecision more than 10 dB below the SQL. The transducer, thus, in principle, allows access to the quantum backaction dominated regime, a prerequisite for exploring quantum backaction, measurement-induced squeezing, and obtaining sub-SQL sensitivity using backaction evading techniques.
Magnetic field sensing beyond the standard quantum limit under the effect of decoherence
Matsuzaki, Yuichiro; Benjamin, Simon C.; Fitzsimons, Joseph
2011-07-15
Entangled states can potentially be used to outperform the standard quantum limit by which every classical sensor is bounded. However, entangled states are very susceptible to decoherence, and so it is not clear whether one can really create a superior sensor to classical technology via a quantum strategy which is subject to the effect of realistic noise. This paper presents an investigation of how a quantum sensor composed of many spins is affected by independent dephasing. We adopt general noise models including non-Markovian effects, and in these noise models the performance of the sensor depends crucially on the exposure time of the sensor to the field. We have found that, by choosing an appropriate exposure time within the non-Markovian time region, an entangled sensor does actually beat the standard quantum limit. Since independent dephasing is one of the most typical sources of noise in many systems, our results suggest a practical and scalable approach to beating the standard quantum limit.
Jiang, Kebei; Lee, Hwang; Gerry, Christopher C.; Dowling, Jonathan P.
2013-11-21
There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.
Exploring Quantum Gravity with Very-High-Energy Gamma-Ray Instruments - Prospects and Limitations
Wagner, Robert
2009-04-08
Some models for quantum gravity (QG) violate Lorentz invariance and predict an energy dependence of the speed of light, leading to a dispersion of high-energy gamma-ray signals that travel over cosmological distances. Limits on the dispersion from short-duration substructures observed in gamma-rays emitted by gamma-ray bursts (GRBs) at cosmological distances have provided interesting bounds on Lorentz invariance violation (LIV). Recent observations of unprecedentedly fast flares in the very-high energy gamma-ray emission of the active galactic nuclei (AGNs) Mkn 501 in 2005 and PKS 2155-304 in 2006 resulted in the most constraining limits on LIV from light-travel observations, approaching the Planck mass scale, at which QG effects are assumed to become important. I review the current status of LIV searches using GRBs and AGN flare events, and discuss limitations of light-travel time analyses and prospects for future instruments in the gamma-ray domain.
Windpassinger, P. J.; Oblak, D.; Petrov, P. G.; Alzar, C. L. Garrido; Appel, J.; Mueller, J. H.; Kjaergaard, N.; Polzik, E. S.; Kubasik, M.; Saffman, M.
2008-03-14
We report on the nondestructive observation of Rabi oscillations on the Cs clock transition. The internal atomic state evolution of a dipole-trapped ensemble of cold atoms is inferred from the phase shift of a probe laser beam as measured using a Mach-Zehnder interferometer. We describe a single color as well as a two-color probing scheme. Using the latter, measurements of the collective pseudospin projection of atoms in a superposition of the clock states are performed and the observed spin fluctuations are shown to be close to the standard quantum limit.
Sanov and central limit theorems for output statistics of quantum Markov chains
Horssen, Merlijn van; Gu??, M?d?lin
2015-02-15
In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanovs theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Such higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.
Ultimate Best Buy LLC | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Ultimate Best Buy LLC Jump to: navigation, search Name: Ultimate Best Buy LLC Place: Lebanon, Ohio Country: United States Zip: 45036 Sector: Efficiency, Renewable Energy, Services,...
Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.
1984-10-19
A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.
Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.
1986-01-01
A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.
Tucker, Jon R.; Magyar, Rudolph J.
2012-02-01
High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.
Understanding the Ultimate Battery Chemistry: Rechargeable Lithium...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Kah Chun Lau (MSD, ANL), Aaron Knoll (MCS, ANL), Larry A Curtiss (MSDCNM, ANL). Understanding the Ultimate Battery Chemistry: Rechargeable LithiumAir PI Name: Jack Wells PI ...
Ultimate Biofuels LLC | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...
Oblak, Daniel; Tittel, Wolfgang; Vershovski, Anton K.; Mikkelsen, Jens K.; Soerensen, Jens L.; Petrov, Plamen G.; Garrido Alzar, Carlos L.; Polzik, Eugene S.
2005-04-01
We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser-cooled and trapped atoms. This study is a step toward generation of (pseudo)spin squeezing of cold atoms targeted at the improvement of the cesium clock performance beyond the limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a near-resonant optical probe pulse propagating through a cloud of cold {sup 133}Cs atoms. We analyze the figure of merit for a quantum nondemolition (QND) measurement of the collective pseudospin and show that it can be expressed simply as a product of the ensemble optical density and the pulse-integrated rate of the spontaneous emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved atomic clock performance via a QND measurement on the probe light. In the experimental part we demonstrate that the interferometric measurement of the atomic population can reach a sensitivity of the order of {radical}(N{sub at}) in a cloud of N{sub at} cold atoms, which is an important benchmark toward the experimental realization of the theoretically analyzed protocol.
Fate of classical solitons in one-dimensional quantum systems.
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Light Nuclei and HyperNuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry
Beane, S R; Cohen, S D; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J
2013-02-01
The binding energies of a range of nuclei and hypernuclei with atomic number A <= 4 and strangeness |s| <= 2, including the deuteron, di-neutron, H-dibaryon, {sup 3}He, {sub {Lambda}}{sup 3}He, {sub {Lambda}}{sup 4}He, and {sub {Lambda}{Lambda}}{sup 4}He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n{sub f}=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm.
The ultimate disposition of depleted uranium
Lemons, T.R.
1991-12-31
Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.
Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M.
2014-10-15
The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum computers have long been on the horizon as conventional computing technologies approach their physical limits. While general-purpose quantum computers remain on the horizon ...
An ultimate storage ring lattice with vertical emittance generated...
Office of Scientific and Technical Information (OSTI)
Journal Article: An ultimate storage ring lattice with vertical emittance generated by damping wigglers Citation Details In-Document Search Title: An ultimate storage ring lattice...
The Phenix ultimate natural convection test
Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.
2012-07-01
The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all
Quantum technology and its applications
Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil
2010-12-10
Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants
Teymurazyan, A.; Rowlands, J. A.; Thunder Bay Regional Research Institute , Thunder Bay P7A 7T1; Department of Radiation Oncology, University of Toronto, Toronto M5S 3E2 ; Pang, G.
2014-04-15
Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) ?erenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on ?erenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few ?erenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (?1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an
Spotlight on Michigan: Sweeping the State for Ultimate Success
Spotlight on Michigan: Sweeping the State for Ultimate Success, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.
Majumdar, Amlan
2015-05-28
We present first-principle analytical derivations and numerically modeled data to show that the gate capacitance per unit gate area C{sub G} of extremely thin undoped-channel single-gate and double-gate field-effect transistor geometries in the extreme quantum limit with single-subband occupancy can be written as 1/C{sub G} = 1/C{sub OX} + N{sub G}/C{sub DOS} + N{sub G}/ηC{sub WF}, where N{sub G} is the number of gates, C{sub OX} is the oxide capacitance per unit area, C{sub DOS} is the density-of-states capacitance per unit area, C{sub WF} is the wave function spreading capacitance per unit area, and η is a constant on the order of 1.
Office of Energy Efficiency and Renewable Energy (EERE)
Dose Limits ERAD (Question Posted to ERAD in May 2012) Who do you define as a member of the public for the onsite MEI? This question implies that there may be more than one maximally exposed individual (MEI), one on-site and one off-site, when demonstrating compliance with the Public Dose Limit of DOE Order 458.1. Although all potential MEIs should be considered and documented, as well as the calculated doses and pathways considered, the intent of DOE Order 458.1 is in fact to ultimately identify only one MEI, a theoretical individual who could be either on-site or off-site.
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working
Ultimate Heat Sink Cooling Pond and Spray Pond Analysis Models.
Energy Science and Technology Software Center
1999-05-02
Version 00 Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function ofmore » windspeed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted.« less
Quantum discord with weak measurements
Singh, Uttam Pati, Arun Kumar
2014-04-15
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the super quantum discord, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: Introduced the role of weak measurements in quantifying quantum correlation. We have introduced the notion of the super quantum discord (SQD). For pure entangled state, we show that the SQD exceeds the entanglement entropy. This shows that quantum correlation depends not only on observer but also on measurement strength.
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.
Lattice Design for PEP-X Ultimate Storage Ring Light Source
Bane, K.L.F.; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; Hettel, R.O.; /SLAC
2011-12-13
SLAC expertise in designing and operating high current storage rings and the availability of the 2.2-km PEP-II tunnel present an opportunity for building a next generation light source - PEP-X - that would replace the SPEAR3 storage ring in the future. The PEP-X 'baseline' design, with 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. As a next step, a so-called 'ultimate' PEP-X lattice, reducing the emittance to 11 pm-rad at zero current, has been designed. This emittance approaches the diffraction limited photon emittance for multi-keV photons, providing near maximum photon brightness and high coherence. It is achieved by using 7-bend achromat cells in the ring arcs and a 90-m damping wiggler in one of the 6 long straight sections. Details of the lattice design, dynamic aperture, and calculations of the intra-beam scattering effect and Touschek lifetime at a nominal 0.2 A current are presented. Accelerator-based light sources are in high demand for many experimental applications. The availability of the 2.2-km PEP-II tunnel at SLAC presents an opportunity for building a next generation light source - PEP-X - that would replace the existing SPEAR3 light source in the future. The PEP-X study started in 2008, and the 'baseline' design, yielding 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. This relatively conservative design can be built using existing technology. However, for a long term future, it is natural to investigate a more aggressive, so-called 'ultimate' ring design. The goal is to reduce the electron emittance in both x and y planes to near the diffraction limited photon emittance of 8 pm-rad at hard X-ray photon wavelength of 0.1 nm. This would provide a near maximum photon brightness and significant increase in photon coherence. This study was motivated by the advances in low emittance design at MAX-IV. The latter was used as a starting point for the PEP-X arc lattice
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
Castagnoli, G. )
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric...
Office of Scientific and Technical Information (OSTI)
document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. We have designed an 'ultimate' storage ring for...
Wierer, Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.
2016-05-23
III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. If constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
III-nitride quantum dots for ultra-efficient solid-state lighting
Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.
2016-05-01
III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less
Continuous-time quantum walks on star graphs
Salimi, S.
2009-06-15
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Quantum chaos in the Lorenz equations with symmetry breaking
Sarkar, S.; Satchell, J.S.
1987-01-01
The role of phase diffusion for quantum chaos in the quantum-mechanical model of the laser in the Haken limit is discussed. Fractal properties of the support of the asymptotic attracting probability distribution for the system are studied.
Duality Quantum Information and Duality Quantum Communication
Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.
2011-03-28
Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.
Background limited mid-infrared photodetection with photovoltaic...
Office of Scientific and Technical Information (OSTI)
with photovoltaic HgTe colloidal quantum dots Citation Details In-Document Search Title: Background limited mid-infrared photodetection with photovoltaic HgTe colloidal ...
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
Lincoln, Don
2014-10-24
The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isnt empty at all its a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs quantum foam. In this video, Fermilabs Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.
A semiclassical study of quantum maps
Guo, Y.
1992-01-01
The study of the behavior of quantum systems whose classical limit exhibits chaos defines the problem of quantum chaos. One would naturally ask how quantum mechanics approaches the classical limit [h bar] = 0, and how the chaotic motion in classical systems manifests itself in the corresponding quantum counterparts. Semiclassical mechanics is the bridge between quantum mechanics and classical mechanics. For studying the quantum mechanics corresponding to generic classical motion it is desirable to use the simplest possible model. The model system the authors use is the kicked rotator. Detailed computations of both classical and quantum mechanics are feasible for this system. The relationship between invariant classical phase space structures and quantum eigenfunctions has been the focus of recent semiclassical studies. The authors study the eigenstates of the quantum standard map associated with both integrable and non-integrable regions in classical phase space. The coherent-state representation is used to make the correspondence between the quantum eigenstates and the classical phase space structure. The importance of periodic orbits in the quantum eigenstates of classically chaotic Hamiltonians has become a popular topic in study of semiclassical limits of the systems. Periodic orbits arise without any assumption in the trace formula developed by Gutzwiller. The authors calculate the semiclassical coherent-state propagator. Since computing all the complex stationary orbits is not practical, the authors make a further assumption which the authors call the periodic point dominance (PPD). The authors present arguments and evidence to show that the PPD approximation works well in hard chaos regions where the full semiclassical approximation is not practical to use. The method fails in some boundary regions where both stable and unstable points are present, but the full semiclassical approximation is not a much better method than the PPD in many situations.
Wang, H.-L.; Liu, B.
2014-03-21
This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a consistent quantum theory (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his consistent quantum theory shows that the cited proof is valid within that restrictive framework. This necessary existence, within the consistent framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his consistent framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do
1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier
Nguyen, Ba-Son; Lin, Jen-Fin
2014-02-24
We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.
Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.
2013-07-01
With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.
Lattice Quantum Chromodynamics
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Lattice Quantum Chromodynamics Lattice Quantum Chromodynamics QCD-BU.jpg Key Challenges: Although the QCD theory has been extensively tested at at high energies, at low energies or...
Non-hermitian quantum thermodynamics
Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh
2016-03-22
Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less
Electrical resistivity as quantum chaos
Laughlin, R.B.
1987-08-01
The physics of quantum transport is re-examined as a problem in quantum chaos. It is proposed that the ''random potential'' in which electrons in dirty metals move is not random at all, but rather any potential inducing the electron motion to be chaotic. The Liapunov characteristic exponent of classical electron motion in this potential is identified with the collision rate l/tau appearing in Ohm's law. A field theory for chaotic systems, analogous to that used to describe dirty metals, is developed and used to investigate the quantum Sinai billiard problem. It is shown that a noninteracting degenerate electron gas moving in this potential exhibits Drude conductivity in the limit h-bar ..-->.. 0. 15 refs., 4 figs.
Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors
Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.
2014-02-14
A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped.
Your Opportunity to Enroll is Limited - Take Control Today!
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Opportunity to Enroll is Limited - Take Control Today! UltimateAdvisor ® Affordable Legal Counsel for Everyday Life Matters Get Freedom and Control to Embrace Life's Opportunities As you go through life, personal distractions and time-consuming situations - a dispute over a cell phone contract, refinancing your home - can come with legal implications or financial impact. Now there's somewhere to turn to for help with UltimateAdvisor. When you need legal help, don't waste time looking for the
Scalable quantum computer architecture with coupled donor-quantum...
Office of Scientific and Technical Information (OSTI)
Title: Scalable quantum computer architecture with coupled donor-quantum dot qubits A quantum bit computing architecture includes a plurality of single spin memory donor atoms ...
Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...
OpenEI (Open Energy Information) [EERE & EIA]
Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...
PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric...
Office of Scientific and Technical Information (OSTI)
BW at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In...
Thermodynamic universality of quantum Carnot engines
Gardas, Bartłomiej; Deffner, Sebastian
2015-10-12
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less
Thermodynamic universality of quantum Carnot engines
Gardas, Bart?omiej; Deffner, Sebastian
2015-10-12
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentally relevant examples.
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Reliable quantum communication over a quantum relay channel
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Jaya Shankar Tumuluru
2012-07-01
regular and microwaves and their effect on proximate and ultimate composition. Studies indicated that microwave torrefaction is a good way to torrefy the biomass in short periods of time. A maximum calorific value of 21 MJ/kg is achievable at 6 min residence time compared to 15 min using the dry torrefaction technique. Increasing the residence time increased the carbon content where a maximum carbon content of 52.20 % was achievable at lower residence time. The loss of volatiles is comparatively lower compared to dry torrefaction technique. Moisture content of microwave torrefied samples was in between 2-2.5 % (w.b).
Quantum optics. Gravity meets quantum physics
Adams, Bernhard W.
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Optimized multiparty quantum clock synchronization
Ben-Av, Radel; Exman, Iaakov
2011-07-15
A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.
Background limited mid-infrared photodetection with photovoltaic HgTe
Office of Scientific and Technical Information (OSTI)
colloidal quantum dots (Journal Article) | SciTech Connect Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots Citation Details In-Document Search Title: Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots The photovoltaic response of thin films of HgTe colloidal quantum dots in the 3-5 μm range is observed. With no applied bias, internal quantum efficiency exceeding 40%, specific detectivity above 10{sup 10}
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum ESPRESSO/PWscf Quantum ESPRESSO/PWscf Description Quantum ESPRESSO is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on the electronic structure codes PWscf, PHONON, CP90, FPMD, and Wannier. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft). How to Access Quantum ESPRESSO NERSC uses modules to manage access to software. To use the default version
Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard
2009-07-31
The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.
Golovashkin, A. I.; Zherikhina, L. N. Tskhovrebov, A. M.; Izmailov, G. N.; Ozolin, V. V.
2010-08-15
When comparing the operation of a superfluid helium matter wave quantum interferometer (He SQUID) with that of an ordinary direct-current quantum interferometer (dc SQUID), we estimate their resolution limitation that correspond to quantum fluctuations. An alternative mode of operation of the interferometer as a unified macroquantum system is considered.
Quantitative multiplexed quantum dot immunohistochemistry
Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R.
2008-09-19
Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.
Deviation from the Knudsen law on quantum gases
Babac, Gulru
2014-12-09
Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre 'Kurchatov Institute', Moscow (Russian Federation)
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Practical issues in quantum-key-distribution postprocessing
Fung, C.-H. Fred; Chau, H. F. [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Ma Xiongfeng [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada N2L 3G1 (Canada)
2010-01-15
Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.
Anisotropic Fermi Surface and Quantum Limit Transport in High...
Office of Scientific and Technical Information (OSTI)
Additional Journal Information: Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2160-3308 Publisher: American Physical Society Sponsoring Org: USDOE Office of Science (SC), ...
Quest for the quantum limit in three dimensional metals
Brooks, J.S.; Qualls, J.S.; Engel, L.W. [Florida State Univ., Tallahassee, FL (United States)] [and others
1996-11-01
The purpose of this work is to exploit ultra-high, flux compression type magnetic fields to achieve magnetic energies which are on the same or greater scale of the electronic structure in metallic systems. Under such conditions a metal. may become an insulator, may acquire a completely new electronic structure, or may develop novel configurations of electronic order. In this paper we consider experiments on quasi-two dimensional molecular conductors in both non-destructive pulsed fields to 60 T and in destructive flux compression fields to 700 T at low temperatures. New results on the molecular conductors {alpha}-(BEDT-TTF) {sub 2}NH{sub 4}Hg(SCN){sub 4} and (TMTSF){sub 2}ClO{sub 4} are discussed in experiments up to 60 T at low temperatures, and preliminary results on {alpha}-(BEDT-TTF){sub 2}NH{sub 4}Hg(SON){sub 4} in the 700 T MC1 series flux compression generators are presented. We argue that true direct dc electrical transport measurements in these materials at low temperatures up to 700 T appear to be within reach.
Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach
Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini
2015-05-14
We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.
Relating quantum discord with the quantum dense coding capacity
Wang, Xin; Qiu, Liang Li, Song; Zhang, Chi; Ye, Bin
2015-01-15
We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.
Quantum dense key distribution
Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.
2004-03-01
This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Audenaert, Koenraad M. R.
2014-11-15
In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.
'Giant' Nanocrystal Quantum Dots
U.S. Department of Energy (DOE) - all webpages (Extended Search)
'Giant' Nanocrystal Quantum Dots - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...
Heller, E.J. (Los Alamos National Lab., Albuquerque, NM); Davis, M.J.
1982-06-10
This paper reviews some of the opinions on quantum chaos put forth at the 1981 American Conference on Theoretical Chemistry and presents evidence to support the author's point of view. The degree of correspondence between classical and quantum onset and extent of chaos differs markedly according to the definition adopted for quantum chaos. At one extreme, a quantum generalization of the classical Kolmolgorov entropy which give zero entrophy for quantum systems with a discrete spectrum regardless of the classical properties, was a suitable foundation for the definition of quantum chaos. At the other, the quantum phase space definition shows generally excellent correspondence to the classical phase space measures. The authors preferred this approach. Another point of controversy is the question of whether the spectrum of energy levels (or its variation with some parameter of the Hamiltonian) is enough to characterize the quantum chaos (or lack of it), or whether more information is needed (i.e., eigenfunctions). The authors conclude that one does not want to rely upon eigenvalues alone to characterize the degree of chaos in the quantum dynamics.
Efficient self-consistent quantum transport simulator for quantum...
Office of Scientific and Technical Information (OSTI)
Journal Article: Efficient self-consistent quantum transport simulator for quantum ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: ...
Relaxation dynamics in correlated quantum dots
Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.
2014-12-04
We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.
Measurement-only topological quantum computation via anyonic...
Office of Scientific and Technical Information (OSTI)
Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANYONS; HALL EFFECT; INTERFEROMETRY; QUANTUM COMPUTERS; QUANTUM MECHANICS; QUANTUM TELEPORTATION; TOPOLOGY; ...
Quantum physics and human values
Stapp, H.P.
1989-09-01
This report discusses the following concepts: the quantum conception of nature; the quantum conception of man; and the impact upon human values. (LSP).
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Semiclassical states, effective dynamics, and classical emergence in loop quantum cosmology
Singh, Parampreet; Vandersloot, Kevin
2005-10-15
We construct physical semiclassical states annihilated by the Hamiltonian constraint operator in the framework of loop quantum cosmology as a method of systematically determining the regime and validity of the semiclassical limit of the quantum theory. Our results indicate that the evolution can be effectively described using continuous classical equations of motion with nonperturbative corrections down to near the Planck scale below which the Universe can only be described by the discrete quantum constraint. These results, for the first time, provide concrete evidence of the emergence of classicality in loop quantum cosmology and also clearly demarcate the domain of validity of different effective theories. We prove the validity of modified Friedmann dynamics incorporating discrete quantum geometry effects which can lead to various new phenomenological applications. Furthermore the understanding of semiclassical states allows for a framework for interpreting the quantum wave functions and understanding questions of a semiclassical nature within the quantum theory of loop quantum cosmology.
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Quantum mechanical approaches to in silico enzyme characterization and drug design
Nilmeier, J P; Fattebert, J L; Jacobson, M P; Kalyanaraman, C
2012-01-17
The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple, sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify substrate
Quantum random number generation
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing
2016-06-28
Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less
Toward quantum plasmonic networks
Holtfrerich, M. W.; Dowran, M.; Davidson, R.; Lawrie, B. J.; Pooser, R. C.; Marino, A. M.
2016-08-30
Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less
Bungay, H.R. )
1988-01-01
Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.
U.S. Department of Energy (DOE) - all webpages (Extended Search)
... you cancel and reissue credit cards, driver's license, etc. ... are 100% paid-in-full when you work with a Network Attorney. ... Child support, visitation, andor alimony in conjunction ...
Physical interpretation of Jeans instability in quantum plasmas
Akbari-Moghanjoughi, M.
2014-08-15
In this paper, we use the quantum hydrodynamics and its hydrostatic limit to investigate the newly posed problem of Jeans instability in quantum plasmas from a different point of view in connection with the well-known Chandrasekhar mass-limit on highly collapsed degenerate stellar configurations. It is shown that the hydrodynamic stability of a spherically symmetric uniform quantum plasma with a given fixed mass is achieved by increase in its mass-density or decrease in the radius under the action of gravity. It is also remarked that for masses beyond the limiting Jeans-mass, the plasma becomes completely unstable and the gravitational collapse would proceed forever. This limiting mass is found to depend strongly on the composition of the quantum plasma and the atomic-number of the constituent ions, where it is observed that heavier elements rather destabilize the quantum plasma hydrodynamically. It is also shown that the Chandrasekhar mass-limit for white dwarf stars can be directly obtained from the hydrostatic limit of our model.
Communication: Fully coherent quantum state hopping
Martens, Craig C.
2015-10-14
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Quantum histories without contrary inferences
Losada, Marcelo; Laura, Roberto
2014-12-15
In the consistent histories formulation of quantum theory it was shown that it is possible to retrodict contrary properties. We show that this problem do not appear in our formalism of generalized contexts for quantum histories. - Highlights: We prove ordinary quantum mechanics has no contrary properties. Contrary properties in consistent histories are reviewed. We prove generalized contexts for quantum histories have no contrary properties.
Direct measure of quantum correlation
Yu, Chang-shui [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Zhao, Haiqing [School of Science, Dalian Jiaotong University, Dalian 116028 (China)
2011-12-15
The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.
Spherically symmetric quantum horizons
Bojowald, Martin; Swiderski, Rafal
2005-04-15
Isolated horizon conditions specialized to spherical symmetry can be imposed directly at the quantum level. This answers several questions concerning horizon degrees of freedom, which are seen to be related to orientation, and its fluctuations at the kinematical as well as dynamical level. In particular, in the absence of scalar or fermionic matter the horizon area is an approximate quantum observable. Including different kinds of matter fields allows to probe several aspects of the Hamiltonian constraint of quantum geometry that are important in inhomogeneous situations.
Micic, O.I.; Jones, K.M.; Cahill, A.; Nozik, A.J.
1998-12-03
Solid films consisting of close-packed arrays of InP quantum dots have been prepared by slowly evaporating colloidal solutions of InP quantum dots. The diameters of the quantum dots were controlled to be between about 30 to 60 {angstrom}; size-selective precipitation yielded a size distribution of about 10% about the mean diameter. The arrays show regions of hexagonal order, as well as disordered regions. Oxide layers can form irreversibly on the quantum dot surface and limit the effectiveness of the size-selective precipitation. Photoluminescence spectra obtained from close-packed films of InP quantum dots formed from quantum dots with a single mean diameter and from a mixture of two quantum dot sizes show that energy transfer occurs from the photoexcited smaller quantum dots to the larger quantum dots. The efficiency of this energy transfer process is high.
Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo E-mail: diaferio@ph.unito.it
2013-04-10
The infall regions of galaxy clusters represent the largest gravitationally bound structures in a {Lambda}CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 < z < 0.3. The survey includes 22,680 unique MMT/Hectospec redshifts for individual galaxies; 10,145 of these galaxies are cluster members. For each cluster, we acquired high signal-to-noise spectra for {approx}200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a {Lambda}CDM universe) is on average (1.99 {+-} 0.11)M{sub 200}, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M{sub 200} and in L{sub X} demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.
The promise of quantum simulation
Muller, Richard P.; Blume-Kohout, Robin
2015-07-21
In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.
The promise of quantum simulation
Muller, Richard P.; Blume-Kohout, Robin
2015-07-21
In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH^{+} molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.
Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
based on molecular magnets that may make them suitable as qubits for quantum computers. Chemistry Aids Quantum Computing Quantum bits or qubits are the fundamental...
Turbocharging Quantum Tomography.
Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael
2015-01-01
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Single-dot optical emission from ultralow density well-isolated InP quantum dots
Ugur, A.; Hatami, F.; Masselink, W. T.; Vamivakas, A. N.; Lombez, L.; Atatuere, M.
2008-10-06
We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.
Trustworthiness of detectors in quantum key distribution with untrusted detectors
Qi, Bing
2015-02-25
Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear optics network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.
Note on quantum Minkowski space
Bentalha, Z.; Tahiri, M.
2008-09-15
In this work, some interesting details about quantum Minkowski space and quantum Lorentz group structures are revealed. The task is accomplished by generalizing an approach adopted in a previous work where quantum rotation group and quantum Euclidean space structures have been investigated. The generalized method is based on a mapping relating the q-spinors (precisely the tensor product of dotted and undotted fondamental q-spinors) to Minkowski q-vectors. As a result of this mapping, the quantum analog of Minkowski space is constructed (with a definite metric). Also, the matrix representation of the quantum Lorentz group is determined together with its corresponding q-deformed orthogonality relation.
Some properties of correlations of quantum lattice systems in thermal equilibrium
Frhlich, Jrg; Ueltschi, Daniel
2015-05-15
Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.
Quantum theory and Einstein's general relativity
v. Borzeszkowski, H.; Treder, H.
1982-11-01
We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies.
Comparison of the attempts of quantum discord and quantum entanglement...
Office of Scientific and Technical Information (OSTI)
Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 1A7 (Canada) Publication Date: 2011-03-15 OSTI Identifier: ...
CDSS: Dr. Hensinger on Quantum Computing
Office of Energy Efficiency and Renewable Energy (EERE)
Dr. Winfried Hensinger – Professor of Quantum Technologies, Ion Quantum Technology Group, Department of Physics and Astronomy, University of Sussex
Suppression of quantum chaos in a quantum computer hardware
Lages, J.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, UMR 5152 du CNRS, Universite Paul Sabatier, 31062 Toulouse Cedex 4 (France)
2006-08-15
We present numerical and analytical studies of a quantum computer proposed by the Yamamoto group in Phys. Rev. Lett. 89, 017901 (2002). The stable and quantum chaos regimes in the quantum computer hardware are identified as a function of magnetic field gradient and dipole-dipole couplings between qubits on a square lattice. It is shown that a strong magnetic field gradient leads to suppression of quantum chaos.
Random unitary maps for quantum state reconstruction
Merkel, Seth T. [Institute for Quantum Computing, Waterloo, Ontario N2L 3G1 (Canada); Riofrio, Carlos A.; Deutsch, Ivan H. [Center for Quantum Information and Control (CQuIC), Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, 87131 (United States); Flammia, Steven T. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)
2010-03-15
We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U{sub 0}. We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension {>=}d-2 out of the total dimension d{sup 2}-1. We determine the conditions on U{sub 0} such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.
Maunz, Peter Lukas Wilhelm; Sterk, Jonathan David; Lobser, Daniel; Parekh, Ojas D.; Ryan-Anderson, Ciaran
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
Quantum Solar | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Solar Jump to: navigation, search Name: Quantum Solar Place: Santa Fe, New Mexico Zip: 87507 Product: New Mexico-based PV cell technology company. References: Quantum Solar1 This...
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a HilbertSchmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: The helicity entangled states here are observer independent in non-inertial frames. It is explicitly shown that Quantum Discord for these states is observer independent. Geometric Quantum Discord is also not affected by acceleration increase. Extending to beyond single mode does not change the degree of entanglement. Beyond single mode approximation the degree of Quantum Discord is also preserved.
Quasiperiodically kicked quantum systems
Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.
1987-02-15
We consider a two-state system kicked quasiperiodically by an external force. When the two kicking frequencies assumed for the force are incommensurate, there can be quantum chaos in the sense that (a) the autocorrelation function of the state vector decays, (b) the power spectrum of the state vector is broadband, and (c) the motion on the Bloch sphere is ergodic. The time evolution of the state vector is nevertheless dynamically stable in the sense that memory of the initial state is retained. We also consider briefly the kicked quantum rotator and find, in agreement with Shepelyansky (Physica 8D, 208 (1983)), that the quantum localization effect is greatly weakened by the presence of two incommensurate driving frequencies.
Sandia National Laboratories: Quantum Systems
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum Systems Sensors Sandia leverages quantum mechanics to enable exquisite metrology devices, such as inertial sensors and frequency standards that go beyond the capabilities of conventional methods Custom Solutions Quantum Sensing We are leveraging quantum mechanics to enable sensors that go beyond the capabilities of conventional methods. Using the quantized states of matter, it is possible to build exquisite metrology devices such as frequency standards and inertial sensors. Our efforts
Quantum money with classical verification
Gavinsky, Dmitry
2014-12-04
We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.
Authentication of quantum messages.
Barnum, Howard; Crépeau, Jean-Claude; Gottesman, D.; Smith, A.; Tapp, Alan
2001-01-01
Authentication is a well-studied area of classical cryptography: a sender A and a receiver B sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified or replaced by a dishonest party with control of the communication line. In this paper we study the authentication of messages composed of quantum states. We give a formal definition of authentication in the quantum setting. Assuming A and B have access to an insecure quantum channel and share a private, classical random key, we provide a non-interactive scheme that both enables A to encrypt and authenticate (with unconditional security) an m qubit message by encoding it into m + s qubits, where the probability decreases exponentially in the security parameter s. The scheme requires a private key of size 2m + O(s). To achieve this, we give a highly efficient protocol for testing the purity of shared EPR pairs. It has long been known that learning information about a general quantum state will necessarily disturb it. We refine this result to show that such a disturbance can be done with few side effects, allowing it to circumvent cryptographic protections. Consequently, any scheme to authenticate quantum messages must also encrypt them. In contrast, no such constraint exists classically: authentication and encryption are independent tasks, and one can authenticate a message while leaving it publicly readable. This reasoning has two important consequences: On one hand, it allows us to give a lower bound of 2m key bits for authenticating m qubits, which makes our protocol asymptotically optimal. On the other hand, we use it to show that digitally signing quantum states is impossible, even with only computational security.
Quantum displacement receiver for M-ary phase-shift-keyed coherent states
Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio; Sasaki, Masahide; Pozza, Nicola Dalla; Assalini, Antonio
2014-12-04
We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.
Efetov, K.B. [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany)] [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany); [L.D. Landau Institute for Theoretical Physics, Moscow (Russia)
1997-07-01
Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped onto a supermatrix {sigma} model. It is argued that the 0D version of the {sigma} model may describe a broad class of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to be always finite for time reversal invariant systems. {copyright} {ital 1997} {ital The American Physical Society}
A modified Lax-Phillips scattering theory for quantum mechanics
Strauss, Y.
2015-07-15
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.
(Limiting the greenhouse effect)
Fulkerson, W.
1991-01-10
The Dahlem Conference on controlling CO{sub 2} in the atmosphere focused on research needs broadly defined. The RD D needs discussed tended to be social-institutional rather than technically oriented perhaps because of the propensity of most attendees, but many important ideas emerged, including those related to questions on technology adoption by both developed, emerging, or transition economics. The European attendees appeared to be strongly devoted to reducing emissions, and doing it soon using efficiency improvement and ultimately renewables. The importance of efficiency improvement was universally accepted, but the extent to which it can be relied upon is a major uncertainty for everyone except the most zealous. There was no detailed discussion of what could be done to encourage the more rapid adoption of renewables. Most attendees seemed to have discounted nuclear, but, at any rate, the problems of reviving nuclear worldwide were not discussed in detail.
Quantum Statistical Testing of a Quantum Random Number Generator
Humble, Travis S
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Comparison of quantum confinement effects between quantum wires and dots
Li, Jingbo; Wang, Lin-Wang
2004-03-30
Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.
Significant Quantum Effects in Hydrogen Activation
Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.
2014-05-27
Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.
Fault Current Limiters Superconducting & Solid-state Power Equipment Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and ...
National Nuclear Security Administration (NNSA)
Detection System (USNDS), which monitors compliance with the international Limited Test Ban Treaty (LTBT). The LTBT, signed by 108 countries, prohibits nuclear testing in the...
Quantum gravity effects in the Kerr spacetime
Reuter, M.; Tuiran, E.
2011-02-15
We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.
The Quantum Energy Density: Improved E
Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.
2013-01-01
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Nanowire terahertz quantum cascade lasers
Grange, Thomas
2014-10-06
Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.
Lincoln, Don
2016-07-12
The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilabâs Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.
Classical and quantum chaos in atomic systems
Delande, D.; Buchleitner, A. [Universite Pierre et Marie Curie, Paris (France)
1994-12-31
Atomic systems played a major role in the birth and growth of quantum mechanics. One central idea was to relate the well-known classical motion of the electron of a hydrogen atom--an ellipsis around the nucleus--to the experimentally observed quantization of the energy levels. This is the aim of the Bohr and Bohr-Sommerfeld models. These simple semiclassical models were unable to make any reliable prediction on the energy spectrum of the next simplest atom, helium. Because of the great success of quantum mechanics, the problem of correspondence between the classical and the quantal dynamics has not received much attention in the last 60 years. The fundamental question is (Gutzwiller, 1990). How can classical mechanics be understood as a limiting case within quantum mechanics? For systems with time-independent one-dimensional dynamics like the harmonic oscillator and the hydrogen atom, the correspondence is well understood. The restriction to such simple cases creates the erroneous impression that the classical behavior of simple systems is entirely comprehensible and easily described. During the last 20 years it has been recognized that this in not true and that a complex behavior can be obtained from simple equations of motion. This usually happens when the motion is chaotic, that is, unpredictable on a long time scale although perfectly deterministic (Henon, 1983). A major problem is that of understanding how the regular or chaotic behavior of the classical system is manifest in its quantum properties, especially in the semiclassical limit. 53 refs., 15 figs., 1 tab.
Deformation Quantization: Quantum Mechanic Lives and Works in...
Office of Scientific and Technical Information (OSTI)
It has been useful in describing quantum flows in: quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; 'Welcher Weg' discussions; semiclassical ...
Deformation Quantization: Quantum Mechanic Lives and Works in...
Office of Scientific and Technical Information (OSTI)
of the density matrix. It has been useful in describing quantum flows in: quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; 'Welcher Weg'...
Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension
Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro
2015-03-15
We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the
Reducing collective quantum state rotation errors with reversible dephasing
Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.
2014-12-29
We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21?dB in the context of collective population measurements of the spin states of an ensemble of 2.110{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.
Plasmonic trace sensing below the photon shot noise limit
Pooser, Raphael C.; Lawrie, Benjamin J.
2015-12-09
Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less
Plasmonic trace sensing below the photon shot noise limit
Pooser, Raphael C.; Lawrie, Benjamin J.
2015-12-09
Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainable with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.
DeShong, J.A.
1960-03-01
A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.
McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.
1998-01-01
Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.
Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule
Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim
2016-05-11
The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less
Goldsworthy, W.W.; Robinson, J.B.
1959-03-31
A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.
Hioe, W. ); Goto, E. )
1991-01-01
The quantum flux parametron (QFP) is an offspring of the parametron, an early flux-based logic device, and the Josephson junction. It is a single flux quantum device that works completely in the superconductive mode. While it has the speed of other Josephson devices that work on switching between the voltage and superconductive modes, its power is about one thousand times less. Hence, it promises to be an attractive alternative to both transistors and other Josephson devices. This book reports the latest research results on QFP applications as a logic device. In particular, a number of auxiliary circuits and a new logic gate are proposed for improving the device margin. Samples of these circuits and logic gate have been fabricated.
Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni
2016-02-01
For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2016-07-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
A tamper-indicating quantum seal
Williams, Brian P.; Britt, Keith A.; Humble, Travis S.
2016-01-04
Technical means for identifying when tampering occurs is a critical part of many containment and surveillance technologies. Conventional fiber optic seals provide methods for monitoring enclosed inventories, but they are vulnerable to spoofing attacks based on classical physics. We address these vulnerabilities with the development of a quantum seal that offers the ability to detect the intercept-resend attack using quantum integrity verification. Our approach represents an application of entanglement to provide guarantees in the authenticity of the seal state by verifying it was transmitted coherently. We implement these ideas using polarization-entangled photon pairs that are verified after passing through amore » fiber-optic channel testbed. Using binary detection theory, we find the probability of detecting inauthentic signals is greater than 0.9999 with a false alarm chance of 10–9 for a 10 second sampling interval. In addition, we show how the Hong-Ou-Mandel effect concurrently provides a tight bound on redirection attack, in which tampering modifies the shape of the seal. Our measurements limit the tolerable path length change to sub-millimeter disturbances. As a result, these tamper-indicating features of the quantum seal offer unprecedented security for unattended monitoring systems.« less
Spatially indirect excitons in coupled quantum wells
Lai, Chih-Wei Eddy
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were
Quantum error-correcting codes and devices
Gottesman, Daniel
2000-10-03
A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.
Improved limited discrepancy search
Korf, R.E.
1996-12-31
We present an improvement to Harvey and Ginsberg`s limited discrepancy search algorithm, which eliminates much of the redundancy in the original, by generating each path from the root to the maximum search depth only once. For a complete binary tree of depth d this reduces the asymptotic complexity from O(d+2/2 2{sup d}) to O(2{sup d}). The savings is much less in a partial tree search, or in a heavily pruned tree. The overhead of the improved algorithm on a complete binary tree is only a factor of b/(b - 1) compared to depth-first search. While this constant factor is greater on a heavily pruned tree, this improvement makes limited discrepancy search a viable alternative to depth-first search, whenever the entire tree may not be searched. Finally, we present both positive and negative empirical results on the utility of limited discrepancy search, for the problem of number partitioning.
Quantum rings of non-uniform thickness in magnetic field
Rodrguez-Prada, F. A.; Garca, L. F.; Mikhailov, I. D.
2014-05-15
We consider a model of crater-shaped quantum dot in form of a thin layer whose thickness linearly increases with the distance from the axis. We show that one-particle wave equation for the electron confined in such structure can be completely separated in the adiabatic limit when the quantum dot thickness is much smaller than its lateral dimension. Analytical solutions found for this model has been used as base functions for analysing the effect of non-homogeneity on the electronic spectrum in the framework of the exact diagonalization method.
Quantum chaos and fluctuations in isolated nuclear-spin systems
Ludlow, J. A.; Sushkov, O. P. [School of Physics, University of New South Wales, Sydney 2052 (Australia)
2007-01-15
Using numerical simulations we investigate dynamical quantum chaos in isolated nuclear spin systems. We determine the structure of quantum states, investigate the validity of the Curie law for magnetic susceptibility and find the spectrum of magnetic noise. The spectrum is the same for positive and negative temperatures. The study is motivated by recent interest in condensed-matter experiments for searches of fundamental parity- and time-reversal-invariance violations. In these experiments nuclear spins are cooled down to microkelvin temperatures and are completely decoupled from their surroundings. A limitation on statistical sensitivity of the experiments arises from the magnetic noise.
McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.
1998-04-21
Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.
Security Clearances; Limitations
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
SEC. 1072. SECURITY CLEARANCES; LIMITATIONS. (a) In General.-Title III of the Intelligence Reform and Terrorism Prevention Act of 2004 (50 U.S.C. 435b) is amended by adding at the end the following new section: "SEC. 3002. SECURITY CLEARANCES; LIMITATIONS. "(a) Definitions.-In this section: "(1) Controlled substance.-The term `controlled substance' has the meaning given that term in section 102 of the Controlled Substances Act (21 U.S.C. 802). "(2) Covered person.-The term
Quantum Information: Opportunities and Challenges
Bennink, Ryan S
2008-01-01
Modern society is shaped by the ability to transmit, manipulate, and store large amounts of information. Although we tend to think of information as abstract, information is physical, and computing is a physical process. How then should we understand information in a quantum world, in which physical systems may exist in multiple states at once and are altered by the very act of observation? This question has evolved into an exciting new field of research called Quantum Information (QI). QI challenges many accepted rules and practices in computer science. For example, a quantum computer would turn certain hard problems into soft problems, and would render common computationally-secure encryption methods (such as RSA) insecure. At the same time, quantum communication would provide an unprecedented kind of intrinsic information security at the level of the smallest physical objects used to store or transmit the information. This talk provides a general introduction to the subject of quantum information and its relevance to cyber security. In the first part, two of the stranger aspects of quantum physics namely, superposition and uncertainty are explained, along with their relation to the concept of information. These ideas are illustrated with a few examples: quantum ID cards, quantum key distribution, and Grover s quantum search algorithm. The state-of-the-art in quantum computing and communication hardware is then discussed, along with the daunting technological challenges that must be overcome. Relevant experimental and theoretical efforts at ORNL are highlighted. The talk concludes with speculations on the short- and long-term impact of quantum information on cyber security.
Quantum chaos for exact and broken K quantum number in the interacting-boson model
Paar, V.; Vorkapic, D. (Prirodoslovno-matematicki fakultet, University of Zagreb, 41000 Zagreb, Yugoslavia (YU))
1990-05-01
We show that the exact {ital K} quantum number in the SU(3) limit of the interacting-boson model has a strong effect on the fluctuation properties: Pure sequences of a single {ital K} value have {Delta}{sub 3} statistic close to the Gaussian overlap ensemble prediction while mixed sequences with combined {ital K} values are removed far from the Gaussian overlap ensemble because of {ital K} degeneracy, exceeding even the Poisson-ensemble prediction. Applying the extended interacting boson model to the realistic case of {sup 164}Er nucleus, we have demonstrated that weak breaking of the {ital K} quantum number introduces a very rapid change in fluctuation properties towards those of a pure sequence.
Quantum Enabled Security (QES) for Optical Communications
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Laboratory has developed Quantum Enabled Security (QES), a revolutionary new cybersecurity capability using quantum (single-photon) communications integrated with optical...
Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are...
Applied Quantum Technology AQT | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...
Second Generation Fractional Quantum Hall Effect
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Generation Fractional Quantum Hall Effect - Sandia Energy Energy Search Icon Sandia Home ... Second Generation Fractional Quantum Hall Effect HomeHighlights - Energy Research...
QuantumSphere Inc | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
QuantumSphere Inc Jump to: navigation, search Name: QuantumSphere Inc Place: Santa Ana, California Zip: Santa Ana, CA 92705 Product: Manufacturer of metallic nanopowders for...
Exploring quantum control landscapes: Topology, features, and...
Office of Scientific and Technical Information (OSTI)
Journal Article: Exploring quantum control landscapes: Topology, features, and optimization scaling Citation Details In-Document Search Title: Exploring quantum control landscapes: ...
Quantum emitters dynamically coupled to a quantum field
Acevedo, O. L.; Quiroga, L.; Rodrguez, F. J.; Johnson, N. F.
2013-12-04
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the systems quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.
Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps
Zurek, Wojciech H.
2014-06-05
Tracing flows of information in our quantum Universe explains why we see the world as classical. Quantum principle of superposition decrees every combination of quantum states a legal quantum state. This is at odds with our experience. Decoherence selects preferred pointer states that survive interaction with the environment. They are localized and effectively classical. They persist while their superpositions decohere. Here we consider emergence of `the classical' starting at a more fundamental pre-decoherence level, tracing the origin of preferred pointer states and deducing their probabilities from the core quantum postulates. We also explore role of the environment as medium through which observers acquire information. This mode of information transfer leads to perception of objective classical reality.
Quantum interference within the complex quantum Hamilton-Jacobi formalism
Chou, Chia-Chun; Sanz, Angel S.; Miret-Artes, Salvador; Wyatt, Robert E.
2010-10-15
Quantum interference is investigated within the complex quantum Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102 (2009) 250401], complex quantum trajectories display helical wrapping around stagnation tubes and hyperbolic deflection near vortical tubes, these structures being prominent features of quantum caves in space-time Argand plots. Here, we further analyze the divergence and vorticity of the quantum momentum function along streamlines near poles, showing the intricacy of the complex dynamics. Nevertheless, despite this behavior, we show that the appearance of the well-known interference features (on the real axis) can be easily understood in terms of the rotation of the nodal line in the complex plane. This offers a unified description of interference as well as an elegant and practical method to compute the lifetime for interference features, defined in terms of the average wrapping time, i.e., considering such features as a resonant process.
Quantum gravity slows inflation
Tsamis, N.C. |; Woodard, R.P.
1996-02-01
We consider the quantum gravitational back-reaction on an initially inflating, homogeneous and isotropic universe whose topology is T{sup 3} {times} {Re}. Although there is no secular effect at one loop, an explicit calculation shows that two-loop processes act to slow the rate of expansion by an amount which becomes non-pertubatively large at late times. By exploiting Feynman`s tree theorem we show that all higher loops act in the same sense. 18 refs., 1 fig.
Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min
2015-09-21
We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
G. GEIGER; ET AL
2000-11-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.
PERTURBATION APPROACH FOR QUANTUM COMPUTATION
G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH
2001-04-01
We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.
Quantum Dot Solar Cells with Multiple Exciton Generation
Hanna, M. C.; Beard, M. C.; Johnson, J. C.; Murphy, J.; Ellingson, R. J.; Nozik, A. J.
2005-11-01
We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum performance of various MEG QD solar cells in the detailed balance limit. We examined a two-cell tandem PV device with singlet fission (SF), QD, and normal dye (N) absorbers in the nine possible series-connected combinations to compare the tandem combinations and identify the combinations with the highest theoretical efficiency. We also calculated the maximum efficiency of an idealized single-gap MEG QD solar cell with M multiplications and its performance under solar concentration.
Transport signatures of quantum critically in Cr at high pressure.
Jaramillo, R.; Feng, Y.; Wang, J.; Rosenbaum, T. F.
2010-08-03
The elemental antiferromagnet Cr at high pressure presents a new type of naked quantum critical point that is free of disorder and symmetry-breaking fields. Here we measure magnetotransport in fine detail around the critical pressure, P{sub c} {approx} 10 GPa, in a diamond anvil cell and reveal the role of quantum critical fluctuations at the phase transition. As the magnetism disappears and T {yields} 0, the magntotransport scaling converges to a non-mean-field form that illustrates the reconstruction of the magnetic Fermi surface, and is distinct from the critical scaling measured in chemically disordered Cr:V under pressure. The breakdown of itinerant antiferromagnetism only comes clearly into view in the clean limit, establishing disorder as a relevant variable at a quantum phase transition.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2016-07-12
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Interface effect in coupled quantum wells
Hao, Ya-Fei
2014-06-28
This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.
Harris, William G. (Tampa, FL)
1985-01-01
A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.
Quantum interference in polyenes
Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo
2014-12-14
The explicit form of the zeroth Green's function in the Hckel model, approximated by the negative of the inverse of the Hckel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments if coherence in probe connections can be arranged in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.
Universal quantum computation in a semiconductor quantum wire network
Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta
2010-11-15
Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit {pi}/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10{sup -3} to 10{sup -4} in ordinary unprotected quantum computation.
Deformation quantization : quantum mechanics lives and works in phase-space.
Zachos, C.; High Energy Physics
2002-01-30
Wigner's quasi-probability distribution function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence (e.g. quantum computing); quantum chaos; 'Welcher Weg' discussions; semiclassical limits. It is also of importance in signal processing. Nevertheless, a remarkable aspect of its internal logic, pioneered by Moyal, has only emerged in the last quarter-century: It furnishes a third, alternative, formulation of Quantum Mechanics, independent of the conventional Hilbert Space, or Path Integral formulations. In this logically complete and self-standing formulation, one need not choose sides--coordinate or momentum space. It works in full phase-space, accommodating the uncertainty principle. This is an introductory overview of the formulation with simple illustrations.
Deformation Quantization: Quantum Mechanic Lives and Works in Phase-Space
Zachos, Cosmas (Argonne National Laboratory) [Argonne National Laboratory
2001-08-01
Wigner's 1932 quasi-probability Distribution Function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in: quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; 'Welcher Weg' discussions; semiclassical limits. It is also of importance in signal processing. Nevertheless, a remarkable aspect of its internal logic, pioneered by the late Moyal, has only emerged in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space, or Path Integral formulations. It is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner. Simple illustrations of this fact will be detailed.
Darmann, Francis Anthony
2013-10-08
A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.
Accelerating quantum instanton calculations of the kinetic isotope effects
Karandashev, Konstantin; Vaníček, Jiří
2015-11-21
Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.
Can quantum coherent solar cells break detailed balance?
Kirk, Alexander P.
2015-07-21
Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.
(Limiting the greenhouse effect)
Rayner, S.
1991-01-07
Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
Flavored quantum Boltzmann equations
Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States); Center for Theoretical Physics, University of California, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin, 53706 (United States) and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California, 91125 (United States); Theory Group, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada)
2010-05-15
We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.
Phase space quantum mechanics - Direct
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.
Quantum Gibbs ensemble Monte Carlo
Fantoni, Riccardo; Moroni, Saverio
2014-09-21
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
Quantum Field Theory & Gravity
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Quantum Field Theory and Gravity at Los Alamos The HEP effort at Los Alamos in this area is actively pursing a number of questions in this area. What is the final state of complete gravitational collapse? What happens at the event horizon? What is dark energy? How did the
Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study
Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A
2014-01-01
We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.
T-QUAKE Quantum Mechanical Microchip
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Principal application T-QUAKE Quantum Mechanical Microchip The quantum world defies intuition. One of its axioms, the Heisenberg Uncertainty Principle, states that any attempt to measure the position or momentum of a quantum object changes the object itself. Historically, this principle was viewed as a hindrance by scientists trying to examine quantum particles. But the same quantum effects that make them difficult to measure have long been of interest to the cryptography and intelligence
Dust-lower-hybrid instability with fluctuating charge in quantum plasmas
Jamil, M.; Ali, M.; Rasheed, A.; Zubia, K.; Salimullah, M.
2015-03-15
The instability of Dust-Lower-Hybrid (DLH) wave is examined in detail in the uniform dusty magnetoplasmas. The time dependent charging effects on dust particles around its equilibrium charge Q{sub d0} are taken into account based on Orbit-Limited Probe theory. The quantum characteristics of the system like Bohm potential and Fermi degenerate pressure are dealt using the quantum hydrodynamic model of plasmas. The external magnetic field and size of the dust particles have new physical effects over the dissipative instability of DLH wave in the quantum plasma regime.
Frustrated quantum phase diffusion and increased coherence of solitons due to nonlocality
Batz, Sascha; Peschel, Ulf
2011-03-15
We investigate the quantum properties of solitons with nonlocal self-interaction. We find significant changes when compared to the local interaction. Quantum phase diffusion of nonlocal solitons is always reduced with respect to the local interaction and vanishes in the strongly nonlocal limit. Thus, coherence is increased in the nonlocal case. Furthermore, we compare the intrinsic quantum wave packet spreading to the recently discussed classical Gordon-Haus effect for nonlocal solitons [V. Folli and C. Conti, Phys. Rev. Lett. 104, 193901 (2010)].
Timminco Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: Timminco Limited Place: Toronto, Ontario, Canada Zip: M5H 1J9 Product: Canadian manufacturer of magnesium and silicon; operates its...
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
CdSe Quantum-Dot-Sensitized Solar Cell with ~100% Internal Quantum...
Office of Scientific and Technical Information (OSTI)
CdSe Quantum-Dot-Sensitized Solar Cell with 100% Internal Quantum Efficiency Citation Details In-Document Search Title: CdSe Quantum-Dot-Sensitized Solar Cell with 100% Internal ...
Concurrence of quasipure quantum states
Mintert, Florian; Buchleitner, Andreas
2005-07-15
We derive an analytic approximation for the concurrence of weakly mixed bipartite quantum states--typical objects in state of the art experiments. This approximation is shown to be a lower bound of the concurrence of arbitrary states.
Quantum fluctuations in beam dynamics.
Kim, K.-J.
1998-06-04
Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.
Timelike Momenta In Quantum Electrodynamics
Brodsky, S. J.; Ting, S. C. C.
1965-12-01
In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.
Few Electron Quantum Dot coupling ...
Office of Scientific and Technical Information (OSTI)
Electron Quantum Dot coupling to Donor Implanted Electron Spins Martin Rudolph1. P. Harvey-Collard12, E. Nielson1, J.K. Gamble1, R. Muller1, T. Jacobson1, G. Ten-Eyck1, J. ...
Santa Fe New Mexican: For cybersecurity, in quantum encryption...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
For cybersecurity, in quantum encryption we trust Santa Fe New Mexican: For cybersecurity, in quantum encryption we trust Los Alamos physicists developed a quantum random number...
Promising future of quantum dots explored in conference
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Promising future of quantum dots explored Promising future of quantum dots explored in conference Researchers are gathering to reflect on two decades of quantum dot research at a ...
Nanoscale engineering boosts performance of quantum dot light...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission ...
The Quantum Way of Sensing | Argonne Leadership Computing Facility
U.S. Department of Energy (DOE) - all webpages (Extended Search)
quantum optics and spintronics. He counts as a pioneer in the field of solid state spin quantum physics and has explored applications in photonics, spintronics, quantum computing ...
DOE Science Showcase - Quantum Dots | OSTI, US Dept of Energy...
Office of Scientific and Technical Information (OSTI)
For additional information, see the OSTI Catalogue of Collections. RefreshLine.png Additional Resources Quantum dot, Wikipedia Quantum dot solar cell, Wikipedia Los Alamos Quantum ...
Deformation Quantization: Quantum Mechanic Lives and Works in...
Office of Scientific and Technical Information (OSTI)
It has been useful in describing quantum flows in: quantum optics; nuclear physics; ... Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 73 NUCLEAR PHYSICS AND ...
Convex polytopes and quantum separability
Holik, F.; Plastino, A.
2011-12-15
We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.
Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco
2010-09-15
We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Finite groups and quantum physics
Kornyak, V. V.
2013-02-15
Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.
SUPER ESP: Ultimate electrostatic precipitation
Plaks, N.
1991-01-01
The paper discusses SUPER ESP, a new electrostatic precipitator (ESP) concept, enabling high collection efficiencies with considerably smaller collection areas than has previously been possible. The new concept allows a major reduction in ESP size by using an alternating sequence of prechargers and short collector sections. The length of the collection section in each precharger/collector pair (module) dominates the optimization. The size reduction is greater for ESPs operating with high resistivity particulate matter than with low resistivity particulate matter. The relationship in number of modules, collector section size, and overall ESP collection is presented and discussed. Comparisons are given of ESP size for both conventional and SUPER ESP technology operating with either high or low resistivity particulate matter. Because of the size reduction, the cost of the SUPER ESP is projected to be lower than that of a conventional ESP of comparable efficiencY. The paper is based on an ESP model, ESPVI 4.0.
ASCR Workshop on Quantum Computing for Science
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Confidence limits and their errors
Rajendran Raja
2002-03-22
Confidence limits are common place in physics analysis. Great care must be taken in their calculation and use especially in cases of limited statistics. We introduce the concept of statistical errors of confidence limits and argue that not only should limits be calculated but also their errors in order to represent the results of the analysis to the fullest. We show that comparison of two different limits from two different experiments becomes easier when their errors are also quoted. Use of errors of confidence limits will lead to abatement of the debate on which method is best suited to calculate confidence limits.
Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.
Doerry, Armin Walter
2010-09-01
The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.
History dependent quantum random walks as quantum lattice gas automata
Shakeel, Asif E-mail: dmeyer@math.ucsd.edu Love, Peter J. E-mail: dmeyer@math.ucsd.edu; Meyer, David A. E-mail: dmeyer@math.ucsd.edu
2014-12-15
Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.
Quantum confinement in transition metal oxide quantum wells
Choi, Miri; Lin, Chungwei; Butcher, Matthew; Posadas, Agham B.; Demkov, Alexander A.; Rodriguez, Cesar; Zollner, Stefan; He, Qian; Borisevich, Albina Y.
2015-05-11
We report on the quantum confinement in SrTiO{sub 3} (STO) quantum wells (QWs) grown by molecular beam epitaxy. The QW structure consists of LaAlO{sub 3} (LAO) and STO layers grown on LAO substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized. Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry in the range of 1.0 eV–6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells. This demonstrates that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material.
Topological one-way quantum computation on verified logical cluster...
Office of Scientific and Technical Information (OSTI)
NOISE; QUANTUM COMPUTERS; QUBITS; STAR CLUSTERS; THREE-DIMENSIONAL CALCULATIONS; TOPOLOGY; VERIFICATION COMPUTERS; INFORMATION; MATHEMATICS; QUANTUM INFORMATION Word Cloud ...
Loss-tolerant quantum secure positioning with weak laser sources
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; Chitambar, Eric; Evans, Philip G.; Qi, Bing
2016-09-14
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less
Secure communications using quantum cryptography
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.
1997-08-01
The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.
The fundamental downscaling limit of field effect transistors
Mamaluy, Denis Gao, Xujiao
2015-05-11
We predict that within next 15 years a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs) will be reached. Specifically, we show that at room temperatures all FETs, irrespective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths. These findings were confirmed by performing quantum mechanical transport simulations for a variety of 6-, 5-, and 4-nm gate length Si devices, optimized to satisfy high-performance logic specifications by ITRS. Different channel materials and wafer/channel orientations have also been studied; it is found that altering channel-source-drain materials achieves only insignificant increase in switching energy, which overall cannot sufficiently delay the approaching downscaling limit. Alternative possibilities are discussed to continue the increase of logic element densities for room temperature operation below the said limit.
COMMENTARY:Limits to adaptation
Preston, Benjamin L
2013-01-01
An actor-centered, risk-based approach to defining limits to social adaptation provides a useful analytic framing for identifying and anticipating these limits and informing debates over society s responses to climate change.
Double logarithmic asymptotic behavior in quantum chromodynamics
Kirschner, R.
1981-08-01
The double logarithmic contributions to the quark-(anti)quark scattering and annihilation amplitudes are summed to all orders in quantum chromodynamics. The results are a generalization of the calculations of Gorshkov et al. in the case of quantum electrodynamics.
Quantum Process Matrix Computation by Monte Carlo
Energy Science and Technology Software Center
2012-09-11
The software package, processMC, is a python script that allows for the rapid modeling of small , noisy quantum systems and the computation of the averaged quantum evolution map.
U.S. Department of Energy (DOE) - all webpages (Extended Search)
QKarD Quantum Smart Card QKarD Quantum Smart Card Los Alamos National Laboratory (LANL) scientists have developed a revolutionary technology entitled "QKarD" that implements the...
Quantum kinetic theory of trapped particles in a strong electromagnetic field
Fromm, Andrea; Bonitz, Michael; Dufty, James
2008-12-15
The idea of treating quantum systems by semiclassical representations using effective quantum potentials (forces) has been successfully applied in equilibrium by many authors, see e.g. [D. Bohm, Phys. Rev. 85 (1986) 166 and 180; D.K. Ferry, J.R. Zhou, Phys. Rev. B 48 (1993) 7944; A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A 36 (2003) 5957 and references cited therein]. Here, this idea is extended to nonequilibrium quantum systems in an external field. A gauge-invariant quantum kinetic theory for weakly inhomogeneous charged particle systems in a strong electromagnetic field is developed within the framework of nonequilibrium Green's functions. The equation for the spectral density is simplified by introducing a classical (local) form for the kinetics. Nonlocal quantum effects are accounted for in this way by replacing the bare external confinement potential with an effective quantum potential. The equation for this effective potential is identified and solved for weak inhomogeneity in the collisionless limit. The resulting nonequilibrium spectral function is used to determine the density of states and the modification of the Born collision operator in the kinetic equation for the Wigner function due to quantum confinement effects.
Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors
Mueller-Ebhardt, Helge; Rehbein, Henning; Schnabel, Roman; Danzmann, Karsten; Li Chao; Mino, Yasushi; Chen Yanbei
2009-10-15
Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of {approx}10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that {delta}f{approx}f). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of {approx}200. This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.
Quantum photonics hybrid integration platform
Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.
2015-10-26
Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.
Nontoxic quantum dot research improves solar cells
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve unprecedented longevity and efficiency, according to a study by LANL and Sharp Corporation. December 10, 2013 Hunter McDaniel, Los Alamos National Laboratory postdoctoral researcher, works in the laboratory developing next-generation quantum dots that could revolutionize photovoltaic technology. Hunter McDaniel, Los
Super-radiance and open quantum systems
Volya, Alexander [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States); Zelevinsky, Vladimir [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2005-07-08
Quantum wires, loosely bound nuclei, molecules in chemical reactions and exotic narrow pentaquark states are different examples of open quantum mesoscopic systems. The coupling with and through continuum is their common feature. We discuss general properties of quantum systems in the regime of strong continuum coupling, when the mechanism of Dicke super-radiance changes intrinsic dynamics, signatures of quantum chaos, lifetime of unstable states and reaction cross sections. The examples are shown for various areas of mesoscopic physics.
Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Composites | Department of Energy Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot Composites Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot Composites Lead Performer: UbiQD, LLC - Los Alamos, NM DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Quantum dots composed of I-III-VI materials such as CuInS2 offer a compelling alternative to typical semiconductor quantum-dot systems, because
What the Blank Makes Quantum Dots Blink?
U.S. Department of Energy (DOE) - all webpages (Extended Search)
What the Blank Makes Quantum Dots Blink? What the Blank Makes Quantum Dots Blink? Calculations confirm that surface flaws are behind fluorescence intermittency in silicon nanocrystals June 15, 2015 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Quantum dots are semiconductors just a few nanometers in diameter that can glow Quantum dots (shown here dissolved in liquid under ultraviolet light) offer tantalizing prospects for new technologies if scientists can stop them blinking. (Photo by
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Epitaxial lift-off for solid-state cavity quantum electrodynamics
Greuter, Lukas; Najer, Daniel; Kuhlmann, Andreas V.; Starosielec, Sebastian; Warburton, Richard J.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.
2015-08-21
We demonstrate an approach to incorporate self-assembled quantum dots into a Fabry-Pérot-like microcavity. Thereby, a 3λ/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor-mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggest that we are close to the strong coupling regime.
On classical and quantum dynamics of tachyon-like fields and their cosmological implications
Dimitrijević, Dragoljub D. Djordjević, Goran S. Milošević, Milan; Vulcanov, Dumitru
2014-11-24
We consider a class of tachyon-like potentials, motivated by string theory, D-brane dynamics and inflation theory in the context of classical and quantum mechanics. A formalism for describing dynamics of tachyon fields in spatially homogenous and one-dimensional - classical and quantum mechanical limit is proposed. A few models with concrete potentials are considered. Additionally, possibilities for p-adic and adelic generalization of these models are discussed. Classical actions and corresponding quantum propagators, in the Feynman path integral approach, are calculated in a form invariant on a change of the background number fields, i.e. on both archimedean and nonarchimedean spaces. Looking for a quantum origin of inflation, relevance of p-adic and adelic generalizations are briefly discussed.
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige
2015-04-27
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.
Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon...
Office of Scientific and Technical Information (OSTI)
Quantum efficiency increases most at red and green wavelengths, indicating hydrogenation ... Research Org: National Renewable Energy Laboratory (NREL), Golden, CO. Sponsoring Org: ...
Characteristic operator functions for quantum input-plant-output models and coherent control
Gough, John E.
2015-01-15
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.
Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?
Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.
2014-04-21
The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The
Quantum critical behavior in a concentrated ternary solid solution
Sales, Brian C.; Bei, Hongbin; Stocks, George Malcolm; Samolyuk, German D.; McGuire, Michael A.; Jin, Ke; May, Andrew F.
2016-05-18
The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess –TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum criticalmore » region. Lastly, the limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system.« less
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrdinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Playing a quantum game with a qutrit
Sinha, Urbasi; Kolenderski, Piotr; Youning, Li; Zhao, Tong; Volpini, Matthew; Laflamme, Raymond; Jennewein, Thomas; Cabello, Adan
2014-12-04
The Aharon Vaidman (AV) quantum game [1] demonstrates the advantage of using simple quantum systems to outperform classical strategies. We present an experimental test of this quantum advantage by using a three-state quantum system (qutrit) encoded in a spatial mode of a single photon passing through a system of three slits [2,3]. We prepare its states by controlling the photon propagation and the number of open and closed slits. We perform POVM measurements by placing detectors in the positions corresponding to near and far field. These tools allow us to perform tomographic reconstructions of qutrit states and play the AV game with compelling evidence of the quantum advantage.
How much a quantum measurement is informative?
Dall'Arno, Michele; D'Ariano, Giacomo Mauro; Sacchi, Massimiliano F.
2014-12-04
The informational power of a quantum measurement is the maximum amount of classical information that the measurement can extract from any ensemble of quantum states. We discuss its main properties. Informational power is an additive quantity, being equivalent to the classical capacity of a quantum-classical channel. The informational power of a quantum measurement is the maximum of the accessible information of a quantum ensemble that depends on the measurement. We present some examples where the symmetry of the measurement allows to analytically derive its informational power.
Naked singularities and quantum gravity
Harada, Tomohiro; Iguchi, Hideo; Nakao, Ken-ichi; Singh, T. P.; Tanaka, Takahiro; Vaz, Cenalo
2001-08-15
There are known models of spherical gravitational collapse in which the collapse ends in a naked shell-focusing singularity for some initial data. If a massless scalar field is quantized on the classical background provided by such a star, it is found that the outgoing quantum flux of the scalar field diverges in the approach to the Cauchy horizon. We argue that the semiclassical approximation (i.e., quantum field theory on a classical curved background) used in these analyses ceases to be valid about one Planck time before the epoch of naked singularity formation, because by then the curvature in the central region of the star reaches the Planck scale. It is shown that during the epoch in which the semiclassical approximation is valid, the total emitted energy is about one Planck unit, and is not divergent. We also argue that back reaction in this model does not become important so long as gravity can be treated classically. It follows that the further evolution of the star will be determined by quantum gravitational effects, and without invoking quantum gravity it is not possible to say whether the star radiates away on a short time scale or settles down into a black hole state.
Engineering Light: Quantum Cascade Lasers
Claire Gmachl
2016-07-12
Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.
High Efficiency Colloidal Quantum Dot Phosphors
Kahen, Keith
2013-12-31
The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of
Authentication Protocol using Quantum Superposition States
Kanamori, Yoshito; Yoo, Seong-Moo; Gregory, Don A.; Sheldon, Frederick T
2009-01-01
When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Surface Induced Magnetism in Quantum Dots
Meulenberg, R W; Lee, J I
2009-08-20
The study of nanometer sized semiconductor crystallites, also known as quantum dots (QDs), has seen rapid advancements in recent years in scientific disciplines ranging from chemistry, physics, biology, materials science, and engineering. QD materials of CdSe, ZnSe, InP, as well as many others, can be prepared in the size range of 1-10 nm producing uniform, nearly monodisperse materials that are typically coated with organic molecules [1-3]. The strength of charge carrier confinement, which dictates the size-dependent properties, in these QDs depends on the nature of the material and can be correlated to the Bohr radius for the system of interest. For instance, the Bohr radius for CdSe is {approx} 5 nm, while in the more covalent structure of InP, the Bohr radius approaches {approx} 10 nm. The study of CdSe QDs has been particularly extensive during the last decade because they exhibit unique and tunable optical properties and are readily synthesized with high-crystallinity and narrow size dispersions. Although the core electronic properties of CdSe are explained in terms of the quantum confinement model, experimental efforts to elucidate the surface structure of these materials have been limited. Typically, colloidal CdSe QDs are coated with an organic surfactant, which typically consists of an organo-phosphine, -thiol, or -amine, that has the function of energetically relaxing defect states via coordination to partially coordinated surface atoms. The organic surfactant also acts to enhance carrier confinement and prevent agglomeration of the particles. Chemically, it has been shown that the bonding of the surfactant to the CdSe QD occurs through Cd atoms resulting cleavage of the Se atoms and formation of a Cd-rich (i.e. non-stoichiometric) particle [5].
Quantum Chaos400.jpg | OSTI, US Dept of Energy Office of Scientific and
Office of Scientific and Technical Information (OSTI)
Technical Information Quantum Chaos
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
PURAC Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
technology and project management company in the environment sector and specialising in water, wastewater and municpal waste treatment. References: PURAC Limited1 This article...
Lysanda Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
CM8 3GA Product: US-based vehicle engineering consultancy with a technology capable of playing a role in vehicle emissions management. References: Lysanda Limited1 This...
Solfex Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Jump to: navigation, search Name: Solfex Limited Address: Energy Arena Bannister Hall Works Off Shop Lane, Higher Walton Preston, Lancashire PR5 4DZ Place: Preston, United...
Souza Dos Santos, R.
2012-07-01
In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)
William L. Fisher; Eugene M. Kim
2000-12-01
A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum
Office of Scientific and Technical Information (OSTI)
Wells and Quantum Dots (Technical Report) | SciTech Connect Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots Citation Details In-Document Search Title: Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program
Zurek, W.H. [Los Alamos National Lab., NM (United States); Pas, J.P. [Los Alamos National Lab., NM (United States)]|[Ciudad Universitaria (Argentina). Dept. de Fisica
1995-08-01
Violation of correspondence principle may occur for very macroscopic byt isolated quantum systems on rather short timescales as illustrated by the case of Hyperion, the chaotically tumbling moon of Saturn, for which quantum and classical predictions are expected to diverge on a timescale of approximately 20 years. Motivated by Hyperion, we review salient features of ``quantum chaos`` and show that decoherence is the essential ingredient of the classical limit, as it enables one to solve the apparent paradox caused by the breakdown of the correspondence principle for classically chaotic systems.
FUEL CASK IMPACT LIMITER VULNERABILITIES
Leduc, D; Jeffery England, J; Roy Rothermel, R
2009-02-09
Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.
LANSCE Beam Current Limiter (XL)
Gallegos, F.R.; Hall, M.J.
1997-01-01
The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device.
Homogenization limit for a multiband effective mass model in heterostructures
Morandi, O.
2014-06-15
We study the homogenization limit of a multiband model that describes the quantum mechanical motion of an electron in a quasi-periodic crystal. In this approach, the distance among the atoms that constitute the material (lattice parameter) is considered a small quantity. Our model include the description of materials with variable chemical composition, intergrowth compounds, and heterostructures. We derive the effective multiband evolution system in the framework of the kp approach. We study the well posedness of the mathematical problem. We compare the effective mass model with the standard kp models for uniform and non-uniforms crystals. We show that in the limit of vanishing lattice parameter, the particle density obtained by the effective mass model, converges to the exact probability density of the particle.
Impact Limiter Tests of Four Commonly Used Materials And Limiter...
Office of Scientific and Technical Information (OSTI)
... of four impact limiter materials was tested at four different load rates, quasi-statically, 44 feet per second (ftjs), (a 9 meter drop test per lOCF71), 33 fts and 22 fts. ...
Experimental Limits on Gravitational Waves in the MHz frequency Range
Lanza, Robert Jr.
2015-03-01
This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10^{-21} Hz^{-1/2} level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10^{-21}Hz^{-1/2} at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.
Quantum simulations of physics problems
Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.
2003-01-01
If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.
Quantum Dot Light Emitting Diode
Keith Kahen
2008-07-31
The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.
Quantum Dot Light Emitting Diode
Kahen, Keith
2008-07-31
The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.
CORRELATIONS IN CONFINED QUANTUM PLASMAS
DUFTY J W
2012-01-11
This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed
Quantum state of the multiverse
Robles-Perez, Salvador; Gonzalez-Diaz, Pedro F.
2010-04-15
A third quantization formalism is applied to a simplified multiverse scenario. A well-defined quantum state of the multiverse is obtained which agrees with standard boundary condition proposals. These states are found to be squeezed, and related to accelerating universes: they share similar properties to those obtained previously by Grishchuk and Siderov. We also comment on related works that have criticized the third quantization approach.
Nuclear Structure at the Limits
Nazarewicz, W.
1998-01-12
One of the frontiers of today?s nuclear science is the ?journey to the limits? of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena, but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this series of lectures, current developments in nuclear structure at the limits are discussed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.
Nuclear Structure at the Limits
Nazarewicz, Witold
1997-12-31
One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure at the limits are discussed from a theoretical perspective.
Lignin structural alterations in thermochemical pretreatments with limited delignification
Pu, Yunqiao; Hu, Fan; Huang, Fang; Ragauskas, Arthur J.
2015-08-02
Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less
Lignin structural alterations in thermochemical pretreatments with limited delignification
Pu, Yunqiao; Hu, Fan; Huang, Fang; Ragauskas, Arthur J.
2015-08-02
Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion, and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.
The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states
Wu, Jiang; Passmore, Brandon; Manasreh, M. O.
2015-08-28
InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.
NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER
DeMille, David; LeHur, Karyn
2013-11-27
Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.
Photoluminescence of a quantum-dot molecule
Kruchinin, Stanislav Yu.; Rukhlenko, Ivan D.; Baimuratov, Anvar S.; Leonov, Mikhail Yu.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.
2015-01-07
The coherent coupling of quantum dots is a sensitive indicator of the energy and phase relaxation processes taking place in the nanostructure components. We formulate a theory of low-temperature, stationary photoluminescence from a quantum-dot molecule composed of two spherical quantum dots whose electronic subsystems are resonantly coupled via the Coulomb interaction. We show that the coupling leads to the hybridization of the first excited states of the quantum dots, manifesting itself as a pair of photoluminescence peaks with intensities and spectral positions strongly dependent on the geometric, material, and relaxation parameters of the quantum-dot molecule. These parameters are explicitly contained in the analytical expression for the photoluminescence differential cross section derived in the paper. The developed theory and expression obtained are essential in interpreting and analyzing spectroscopic data on the secondary emission of coherently coupled quantum systems.
Entanglement across a transition to quantum chaos
Mejia-Monasterio, Carlos [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria, via Vallegio 11, Como 22100 (Italy); Benenti, Guliano; Casati, Giulio [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria, via Vallegio 11, Como 22100 (Italy); Istituto Nazionale per la Fisica della Materia, Unita di Como, via Vallegio 11, Como 22100 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan (Italy); Carlo, Gabriel G. [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria, via Vallegio 11, Como 22100 (Italy); Istituto Nazionale per la Fisica della Materia, Unita di Como, via Vallegio 11, Como 22100 (Italy)
2005-06-15
We study the relation between entanglement and quantum chaos in one- and two-dimensional spin-1/2 lattice models, which exhibit mixing of the noninteracting eigenfunctions and transition from integrability to quantum chaos. Contrary to what occurs in a quantum phase transition, the onset of quantum chaos is not a property of the ground state but takes place for any typical many-spin quantum state. We study bipartite and pairwise entanglement measures--namely, the reduced von Neumann entropy and the concurrence--and discuss quantum entanglement sharing. Our results suggest that the behavior of the entanglement is related to the mixing of the eigenfunctions rather than to the transition to chaos.
Photocurrent extraction efficiency in colloidal quantum dot photovoltaics
Kemp, K. W.; Wong, C. T. O.; Hoogland, S. H.; Sargent, E. H.
2013-11-18
The efficiency of photocurrent extraction was studied directly inside operating Colloidal Quantum Dot (CQD) photovoltaic devices. A model was derived from first principles for a thin film p-n junction with a linearly spatially dependent electric field. Using this model, we were able to clarify the origins of recent improvement in CQD solar cell performance. From current-voltage diode characteristics under 1 sun conditions, we extracted transport lengths ranging from 39 nm to 86 nm for these materials. Characterization of the intensity dependence of photocurrent extraction revealed that the dominant loss mechanism limiting the transport length is trap-mediated recombination.
Self-referenced continuous-variable quantum key distribution protocol
Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan
2015-10-21
Here, we introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration ofmore » the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less
Self-referenced continuous-variable quantum key distribution protocol
Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan
2015-10-21
Here, we introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.
Plaxica Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Zip: SW7 2AZ Product: UK-based technology company developing a new generation of polymers derived from sustainable resources. References: Plaxica Limited1 This article is a...
Investigation of Quantum Dot?Quantum Dot Coupling at High Hydrostatic
Office of Scientific and Technical Information (OSTI)
Pressure. (Conference) | SciTech Connect Investigation of Quantum Dot?Quantum Dot Coupling at High Hydrostatic Pressure. Citation Details In-Document Search Title: Investigation of Quantum Dot?Quantum Dot Coupling at High Hydrostatic Pressure. Abstract not provided. Authors: Brener, Igal ; Liu, Sheng ; Fan, Hongyou ; Luk, Ting S. ; Li, Binsong ; Prasankumar, Rohit ; Sinclair, Michael B. Publication Date: 2014-09-01 OSTI Identifier: 1241660 Report Number(s): SAND2014-17977C 537696 DOE
Optimum phase space probabilities from quantum tomography
Roy, Arunabha S.; Roy, S. M.
2014-01-15
We determine a positive normalised phase space probability distribution P with minimum mean square fractional deviation from the Wigner distribution W. The minimum deviation, an invariant under phase space rotations, is a quantitative measure of the quantumness of the state. The positive distribution closest to W will be useful in quantum mechanics and in time frequency analysis. The position-momentum correlations given by the distribution can be tested experimentally in quantum optics.
Quantum and Dirac Materials for Energy Applications
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum and Dirac Materials Conference Quantum and Dirac Materials for Energy (QDM) Applications The purpose of the workshop is to discuss current status and future prospects for the quantum materials and Dirac materials for energy and information technology applications using recent advances in synthesis, characterization and modeling. Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for
Quantum & Energy Materials | Argonne National Laboratory
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum & Energy Materials Quantum & Energy Materials The CNM's Quantum and Energy Materials (QEM)* group seeks to take control of materials at the atomic and molecular scale to better understand and utilize their behavior and properties. By doing so, we aim to pave the way for breakthroughs in new energy conversion and power-efficient energy technologies. QEM research is comprised of several key areas including low-dimensional materials such as graphene and heterostructures formed by
Gate fidelity fluctuations and quantum process invariants
Magesan, Easwar; Emerson, Joseph [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Blume-Kohout, Robin [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2011-07-15
We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.
Kitaev models based on unitary quantum groupoids
Chang, Liang
2014-04-15
We establish a generalization of Kitaev models based on unitary quantum groupoids. In particular, when inputting a Kitaev-Kong quantum groupoid H{sub C}, we show that the ground state manifold of the generalized model is canonically isomorphic to that of the Levin-Wen model based on a unitary fusion category C. Therefore, the generalized Kitaev models provide realizations of the target space of the Turaev-Viro topological quantum field theory based on C.
Could Aluminum Nitride Produce Quantum Bits?
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and
Passive fault current limiting device
Evans, D.J.; Cha, Y.S.
1999-04-06
A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.
Passive fault current limiting device
Evans, Daniel J.; Cha, Yung S.
1999-01-01
A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G; Tringe, Joseph W
2014-12-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
2016-08-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas
2014-08-26
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Research Challenge 2: Quantum Dots and Phosphors
U.S. Department of Energy (DOE) - all webpages (Extended Search)
2: Quantum Dots and Phosphors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...
Jeans stability in collisional quantum dusty magnetoplasmas
Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
T-QUAKE Quantum Mechanical Microchip
U.S. Department of Energy (DOE) - all webpages (Extended Search)
3b) How does the product operate? T-QUAKE Quantum Mechanical Microchip Delivering quantum-encoded secret keys is known as Quantum Key Distribution, or QKD; in essence it involves transmitting a series of randomly generated, quantum-encoded bits of information between a sender and a receiver, Alice and Bob, over a distance. This string of bits, called qubits, becomes the secret key Alice and Bob use to interpret encoded messages sent over less-secure channels. In the case of T-QUAKE, which relies
Could Aluminum Nitride Produce Quantum Bits?
U.S. Department of Energy (DOE) - all webpages (Extended Search)
the cost of manufacturing quantum technologies could be significantly reduced. Using supercomputers at the National Energy Research Scientific Computing Center (NERSC), which is ...
Quantum Well Thermoelectric Truck Air Conditioning
Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode
Quantum Transport Effects and Coherent Ultrafast Multidimensional...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
If confirmed, these may explain the high efficiency of light harvesting and open up applications to quantum computing and information processing stemming from entanglement of ...
Coordinate time dependence in quantum gravity
Bojowald, Martin; Singh, Parampreet; Skirzewski, Aureliano
2004-12-15
The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated. Using ingredients of the group averaging method to solve constraints one can nevertheless introduce a classical coordinate time into the quantum theory, and use it to investigate the way a semiclassical continuous description emerges from discrete quantum evolution. Applying this technique to test effective classical equations of loop cosmology and their implications for inflation and bounces, we show that the effective semiclassical theory is in good agreement with the quantum description even at short scales.
Controlling thermal conductance through quantum dot roughening...
Office of Scientific and Technical Information (OSTI)
Journal Article: Controlling thermal conductance through quantum dot roughening at interfaces. Citation Details ... Publication Date: 2011-01-01 OSTI Identifier: 1110382 Report ...
Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the...
Quantum Consulting Inc | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Inc Jump to: navigation, search Name: Quantum Consulting Inc Place: Torrance, California Zip: 90505 Sector: Efficiency Product: Torrance-based energy consultancy, providing...
Quantum Consulting s founders | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
s founders Jump to: navigation, search Name: Quantum Consulting's founders Place: Berkeley, California Product: Founders of the energy consulting firm that was originally based in...
Theoretical & Experimental Aspects of Controlled Quantum Dynamics
U.S. Department of Energy (DOE) - all webpages (Extended Search)
& Experimental Aspects of Controlled Quantum Dynamics Professor Herschel Rabitz Princeton University Wednesday, March 25, 2015 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The...
Quantum Energy Solutions | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Solutions Jump to: navigation, search Name: Quantum Energy Solutions Place: Rancho Cordova, California Zip: 95742 Product: California-based energy management company that was...
Communication: Quantum molecular dynamics simulation of liquid...
Office of Scientific and Technical Information (OSTI)
Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...
Semiconductor nanocrystal quantum dot synthesis approaches towards...
Office of Scientific and Technical Information (OSTI)
In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings. Authors: Hu, Michael Z. 1 ; ...
Quantum Security for the Physical Layer
Humble, Travis S
2013-01-01
The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.
QuantumSphere | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Science & Technology Partnership Year 2008 QuantumSphere is a company located in Santa Ana,...
ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION (Conference...
Office of Scientific and Technical Information (OSTI)
of Energy (US) Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES...
Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces
Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei
2014-08-15
We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.
All-optical depletion of dark excitons from a semiconductor quantum dot
Schmidgall, E. R.; Schwartz, I.; Cogan, D.; Gershoni, D.; Gantz, L.; Heindel, T.; Reitzenstein, S.
2015-05-11
Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the dark exciton population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.
Super-resolution with a positive epsilon multi-quantum-well super-lens
Bak, A. O.; Giannini, V.; Maier, S. A.; Phillips, C. C.
2013-12-23
We design an anisotropic and dichroic quantum metamaterial that is able to achieve super-resolution without the need for a negative permittivity. When exploring the parameters of the structure, we take into account the limits of semiconductor fabrication technology based on quantum well stacks. By heavily doping the structure with free electrons, we infer an anisotropic effective medium with a prolate ellipsoid dispersion curve which allows for near-diffractionless propagation of light (similar to an epsilon-near-zero hyperbolic lens). This, coupled with low absorption, allows us to resolve images at the sub-wavelength scale at distances 6?times greater than equivalent natural materials.
Resonant tunnelling in a quantum oxide superlattice
Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung
2015-06-24
Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typicallymore » observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.« less
Resonant tunnelling in a quantum oxide superlattice
Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung
2015-06-24
Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO_{3} layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typically observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~10^{5}) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.
Promising future of quantum dots explored in conference
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Promising future of quantum dots explored Promising future of quantum dots explored in conference Researchers are gathering to reflect on two decades of quantum dot research at a special topical conference, "20 Years of Quantum Dots at Los Alamos" April 13, 2015 Quantum dot LSC devices under ultraviolet illumination. Quantum dot LSC devices under ultraviolet illumination. Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "This
Giant fifth-order nonlinearity via tunneling induced quantum interference
Office of Scientific and Technical Information (OSTI)
in triple quantum dots (Journal Article) | SciTech Connect Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots Citation Details In-Document Search Title: Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots Schemes for giant fifth-order nonlinearity via tunneling in both linear and triangular triple quantum dots are proposed. In both configurations, the real part of the fifth-order nonlinearity can be
An Early Quantum Computing Proposal (Technical Report) | SciTech...
Office of Scientific and Technical Information (OSTI)
Technical Report: An Early Quantum Computing Proposal Citation Details In-Document Search Title: An Early Quantum Computing Proposal You are accessing a document from the ...
Emergence of the Persistent Spin Helix in Semiconductor Quantum...
Office of Scientific and Technical Information (OSTI)
Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells Citation Details In-Document Search Title: Emergence of the Persistent Spin Helix in Semiconductor Quantum ...
QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...
Office of Scientific and Technical Information (OSTI)
of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...
Observation of a Macroscopically Quantum-Entangled Insulator
U.S. Department of Energy (DOE) - all webpages (Extended Search)
method can potentially pave the way for fault-tolerant (topological) quantum computing. ... Cava and M.Z. Hasan, "Observation of Unconventional Quantum Spin Textures in Topological ...
Universal Entanglement Entropy in 2D Conformal Quantum Critical...
Office of Scientific and Technical Information (OSTI)
Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CONFORMAL GROUPS; DIMERS; ENTROPY; WAVE FUNCTIONS; QUANTUM ...
Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors...
Office of Scientific and Technical Information (OSTI)
Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Title: Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Authors: Guo, Jing ; Chen, Xiao-Jia ...
Self-Referenced Continuous-Variable Quantum Key Distribution...
Office of Scientific and Technical Information (OSTI)
Self-Referenced Continuous-Variable Quantum Key Distribution Protocol Citation Details In-Document Search Title: Self-Referenced Continuous-Variable Quantum Key Distribution ...
Search for: "quantum dots" | SciTech Connect
Office of Scientific and Technical Information (OSTI)
... A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor ...
Large scale quantum simulations of electrode-electrolyte interfaces...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Large scale quantum simulations of electrode-electrolyte interfaces PI Name: Giulia Galli ... Science We will apply large-scale quantum simulation methods to model the ...
Nanotubes open new path toward quantum information technologies
U.S. Department of Energy (DOE) - all webpages (Extended Search)
... single photon sources could enable transformative quantum technologies including ultra-sensitive absorption measurements, sub-diffraction imaging, and linear quantum computing. ...
AQC Conference: Universal fault-tolerant adiabatic quantum computing...
Office of Scientific and Technical Information (OSTI)
Conference: AQC Conference: Universal fault-tolerant adiabatic quantum computing with quantum dots or donors. Citation Details In-Document Search Title: AQC Conference: Universal ...
PT -symmetric Quantum Mechanics for Real-time Electron Transport...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
PT -symmetric Quantum Mechanics for Real-time Electron Transport Simulations PI Name: ... Molecular electronics is a promising solution to extend Moore's law beyond the quantum ...
Quantum Oscillations in an Interfacial 2D Electron Gas. (Technical...
Office of Scientific and Technical Information (OSTI)
Quantum Oscillations in an Interfacial 2D Electron Gas. Citation Details In-Document Search Title: Quantum Oscillations in an Interfacial 2D Electron Gas. Abstract not provided....
Emerging Properties of Quantum Matter - Case Studies of Topological...
Office of Scientific and Technical Information (OSTI)
Emerging properties in quantum matter is a major theme of modern physics, with the promise ... Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM ...
Generation of even harmonics in coupled quantum dots (Journal...
Office of Scientific and Technical Information (OSTI)
Generation of even harmonics in coupled quantum dots Citation Details In-Document Search Title: Generation of even harmonics in coupled quantum dots Using the spatial-temporal...
Observation of a Macroscopically Quantum-Entangled Insulator
U.S. Department of Energy (DOE) - all webpages (Extended Search)
A New Form of Macroscopic Quantum Weirdness One of the strangest consequences of quantum mechanics is the possibility of seemingly instantaneous communication between...
Open-System Adiabatic Quantum Annealing Bob Lucas USC - Lockheed...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Open-System Adiabatic Quantum Annealing Bob Lucas USC - Lockheed Martin Quantum Computing Center April 29, 2015 Introduction | 2 Need More Capability? Application Specific Systems...
Observation of a Macroscopically Quantum-Entangled Insulator
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been...
Topological Hubbard Model and Its High-Temperature Quantum Hall...
Office of Scientific and Technical Information (OSTI)
Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Title: Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Authors: Neupert, Titus ; ...
capture quantum correlations Qasimi, Asma Al-; James, Daniel...
Office of Scientific and Technical Information (OSTI)
University of Toronto, Toronto, Ontario M5S 1A7 (Canada) 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; CAPTURE; ENTROPY; MIXED STATES; PURE STATES; QUANTUM...
Quantum Dots Promise to Significantly Boost Solar Cell Efficiencies...
Office of Scientific and Technical Information (OSTI)
Quantum Dots Promise to Significantly Boost Solar Cell Efficiencies (Fact Sheet) Citation Details In-Document Search Title: Quantum Dots Promise to Significantly Boost Solar Cell ...
Quantum effects in the dynamics of deeply supercooled water ...
Office of Scientific and Technical Information (OSTI)
Quantum effects in the dynamics of deeply supercooled water Citation Details In-Document Search Title: Quantum effects in the dynamics of deeply supercooled water Authors: Agapov, ...
Spin filtering in a double quantum dot device: Numerical renormalizati...
Office of Scientific and Technical Information (OSTI)
Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; MATHEMATICAL MODELS; MATHEMATICAL SOLUTIONS; QUANTUM DOTS; ...
An Early Quantum Computing Proposal (Technical Report) | SciTech...
Office of Scientific and Technical Information (OSTI)
This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be ... Resource Type: Technical Report Research Org: Los Alamos ...
Quantum Hall effects in a Weyl semimetal: Possible application...
Office of Scientific and Technical Information (OSTI)
Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates Title: Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates ...
Quantum chaos and order based on classically moving reference frames
Hai Wenhua [Department of Physics, Hunan Normal University, Changsha 410081 (China); Department of Physics, Jishou University, Jishou 416000, Hunan (China); Xie Qiongtao; Fang Jianshu [Department of Physics, Hunan Normal University, Changsha 410081 (China)
2005-07-15
We develop a mathematically consistent approach for treating the quantum systems based on moving classical reference frames. The classical and quantum exact solutions show excellently classical-quantum correspondence, in which the quantum chaotic coherent states correspond to the classically chaotic motions. Applying the approach to the periodically driven linear and nonlinear oscillators, the regular and chaotic quantum states and quantum levels, and the quantum chaotic regions are evidenced. The results indicate that chaos may cause the collapse of matter wave packets and suppress the quantum effect of energy.
Quantum control and pathway manipulation in rubidium (Journal...
Office of Scientific and Technical Information (OSTI)
Quantum control and pathway manipulation in rubidium This content will become publicly available on September 28, 2016 Prev Next Title: Quantum control and pathway ...
Searching for quantum optimal controls under severe constraints...
Office of Scientific and Technical Information (OSTI)
Searching for quantum optimal controls under severe constraints Prev Next Title: Searching for quantum optimal controls under severe constraints Authors: Riviello, Gregory ; ...
Quantum control and pathway manipulation in rubidium (Journal...
Office of Scientific and Technical Information (OSTI)
Quantum control and pathway manipulation in rubidium Citation Details In-Document Search This content will become publicly available on September 28, 2016 Title: Quantum control ...
Microscopic theory of quantum anomalous Hall effect in graphene...
Office of Scientific and Technical Information (OSTI)
Microscopic theory of quantum anomalous Hall effect in graphene Citation Details In-Document Search Title: Microscopic theory of quantum anomalous Hall effect in graphene Authors: ...
First-Ever Demonstration of Quantum Cryptography to Improve Security...
First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid ...
Effects of Strain and Quantum Confinement in Optically Pumped...
Office of Scientific and Technical Information (OSTI)
Effects of Strain and Quantum Confinement in Optically Pumped Nuclear Magnetic Resonance ... Citation Details In-Document Search Title: Effects of Strain and Quantum Confinement in ...
Observation of a Macroscopically Quantum-Entangled Insulator
U.S. Department of Energy (DOE) - all webpages (Extended Search)
matter, it could also have application to quantum computers because its information-processing properties would be insensitive to the presence of impurities, making quantum...
V Fuels Biodiesel Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...
Belize Electricity Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Belize Electricity Limited Jump to: navigation, search Logo: Belize Electricity Limited Name: Belize Electricity Limited Abbreviation: BEL Address: PO Box 327 Place: Belize City,...
Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells
Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.
On-chip generation and guiding of quantum light from a site-controlled quantum dot
Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.; Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J.; Schwagmann, Andre; Brody, Yarden; Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ
2014-03-10
We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Devicescale arrays of quantum dots are formed by a twostep regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12%??5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.
Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases
He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji
2015-08-14
We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less
Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study
Michael, Stephan; Chow, Weng; Schneider, Hans
2016-05-01
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
Quantum Decay of Dark Solitons
Gangardt, D. M.; Kamenev, A.
2010-05-14
Unless protected by the exact integrability, solitons are subject to dissipative forces, originating from a thermally fluctuating background. At low enough temperatures T background fluctuations should be considered as being quantized which enables us to calculate finite lifetime of the solitons {tau}{approx}T{sup -4}. We also find that the coherent nature of the quantum fluctuations leads to long-range interactions between the solitons mediated by the superradiation. Our results are of relevance to current experiments with ultracold atoms, while the approach may be extended to solitons in other media.
Quantum transport calculations using periodic boundaryconditions
Wang, Lin-Wang
2004-06-15
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
Coherent pulse position modulation quantum cipher
Sohma, Masaki; Hirota, Osamu
2014-12-04
On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.
Semianalytical quantum model for graphene field-effect transistors
Pugnaghi, Claudio; Grassi, Roberto Gnudi, Antonio; Di Lecce, Valerio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio
2014-09-21
We develop a semianalytical model for monolayer graphene field-effect transistors in the ballistic limit. Two types of devices are considered: in the first device, the source and drain regions are doped by charge transfer with Schottky contacts, while, in the second device, the source and drain regions are doped electrostatically by a back gate. The model captures two important effects that influence the operation of both devices: (i) the finite density of states in the source and drain regions, which limits the number of states available for transport and can be responsible for negative output differential resistance effects, and (ii) quantum tunneling across the potential steps at the source-channel and drain-channel interfaces. By comparison with a self-consistent non-equilibrium Green's function solver, we show that our model provides very accurate results for both types of devices, in the bias region of quasi-saturation as well as in that of negative differential resistance.
Self-assembly of Ge quantum dots on periodically corrugated Si surfaces
Buljan, M. Jerčinović, M.; Radić, N.; Facsko, S.; Baehtz, C.; Muecklich, A.; Grenzer, J.; Delač Marion, I.; Mikšić Trontl, V.; Kralj, M.; Holý, V.
2015-11-16
The fabrication of regularly ordered Ge quantum dot arrays on Si surfaces usually requires extensive preparation processing, ensuring clean and atomically ordered substrates, while the ordering parameters are quite limited by the surface properties of the substrate. Here, we demonstrate a simple method for fabrication of ordered Ge quantum dots with highly tunable ordering parameters on rippled Si surfaces. The ordering is achieved by magnetron sputter deposition, followed by an annealing in high vacuum. We show that the type of ordering and lattice vector parameters of the formed Ge quantum dot lattice are determined by the crystallographic properties of the ripples, i.e., by their shape and orientation. Moreover, the ordering is achieved regardless the initial amorphisation of the ripples surface and the presence of a thin oxide layer.
Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory
Kim, Young Rae; Jo, Yong Eun; Sung, Yeo Hyun; Won, Ui Yeon; Shin, Yong Seon; Kang, Won Tae; Yu, Woo Jong E-mail: micco21@skku.edu; Lee, Young Hee E-mail: micco21@skku.edu
2015-03-09
In this study, we have demonstrated nonvolatile memory devices using graphene quantum-dots (GQDs) trap layers with indium zinc oxide (IZO) semiconductor channel. The Fermi-level of GQD was effectively modulated by tunneling electrons near the Dirac point because of limited density of states and weak electrostatic screening in monolayer graphene. As a result, large gate modulation was driven in IZO channel to achieve a subthreshold swing of 5.21 V/dec (300 nm SiO{sub 2} gate insulator), while Au quantum-dots memory shows 15.52 V/dec because of strong electrostatic screening in metal quantum-dots. Together, discrete charge traps of GQDs enable stable performance in the endurance test beyond 800 cycles of programming and erasing. Our study suggests the exciting potential of GQD trap layers to be used for a highly promising material in non-volatile memory devices.
Practical private database queries based on a quantum-key-distribution protocol
Jakobi, Markus; Simon, Christoph; Gisin, Nicolas; Bancal, Jean-Daniel; Branciard, Cyril; Walenta, Nino; Zbinden, Hugo
2011-02-15
Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing which element she is interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum-key-distribution protocol, with changes only in the classical postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions in order to protect both the user and the database. We think that the scope exists for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.
Rath, Arup K.; Lasanta, Tania; Bernechea, Maria; Diedenhofen, Silke L.; Konstantatos, Gerasimos
2014-02-10
Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties, carrier lifetime, and mobility, in a facile way.
Dynamical bifurcation as a semiclassical counterpart of a quantum phase transition
Buonsante, P.; Vezzani, A.
2011-12-15
We illustrate how dynamical transitions in nonlinear semiclassical models can be recognized as phase transitions in the corresponding--inherently linear--quantum model, where, in a statistical-mechanics framework, the thermodynamic limit is realized by letting the particle population go to infinity at fixed size. We focus on lattice bosons described by the Bose-Hubbard (BH) model and discrete self-trapping (DST) equations at the quantum and semiclassical levels, respectively. After showing that the Gaussianity of the quantum ground states is broken at the phase transition, we evaluate finite-population effects by introducing a suitable scaling hypothesis; we work out the exact value of the critical exponents and provide numerical evidence confirming our hypothesis. Our analytical results rely on a general scheme obtained from a large-population expansion of the eigenvalue equation of the BH model. In this approach the DST equations resurface as solutions of the zeroth-order problem.
Quantum chaos of atoms in a resonator driven by an external resonant field
Berman, G.P.; Bulgakov, E.N.; Holm, D.D. (Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes at Krasnoyarsk Polytechnical Institute, Theoretical Department at Krasnoyarsk State University, 660036, Krasnoyarsk (Russian Federation) Theoretical Division, MS-B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))
1994-06-01
A system of [ital N] two-level atoms in a resonator is considered interacting with a resonant eigenmode field and with an external coherent field, with a frequency slightly different from the frequency of the atomic transition. A model Hamiltonian is constructed for describing the slow quantum dynamics of the system, and a set of closed [ital c]-number equations for time-dependent quantum expectation values is derived in the boson and spin coherent states. In the region of parameters for developed chaos in the semiclassical limit (when the radiation field is considered classically) we show that the semiclassical approximation is violated by quantum effects at the time scale [tau][sub [h bar
Time-reversal symmetry breaking and the field theory of quantum chaos
Simons, B.D. [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom)] [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom); Agam, O. [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States)] [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States); Andreev, A.V. [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)] [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)
1997-04-01
Recent studies have shown that the quantum statistical properties of systems which are chaotic in their classical limit can be expressed in terms of an effective field theory. Within this description, spectral properties are determined by low energy relaxation modes of the classical evolution operator. It is in the interaction of these modes that quantum interference effects are encoded. In this paper we review this general approach and discuss how the theory is modified to account for time-reversal symmetry breaking. To keep our discussion general, we will also briefly describe how the theory is modified by the presence of an additional discrete symmetry such as inversion. Throughout, parallels are drawn between quantum chaotic systems and the properties of weakly disordered conductors. {copyright} {ital 1997 American Institute of Physics.}
Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells
Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.
2014-01-07
In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9?eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the ?(k?=?0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407?meV above the GaAs valence band maximum.
Signatures of quantum radiation reaction in laser-electron-beam collisions
Wang, H. Y.; Yan, X. Q.; Zepf, M.
2015-09-15
Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations.
Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots
Mary, K. A. Ann; Unnikrishnan, N. V.; Philip, Reji
2014-07-01
We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.
Materials Frontiers to Empower Quantum Computing
Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher
2015-06-11
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.
Quantum cryptography over underground optical fibers
Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.
1996-05-01
Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``
Lorentz violating supersymmetric quantum electrodynamics
Bolokhov, Pavel A.; Groot Nibbelink, Stefan; Pospelov, Maxim
2005-07-01
The theory of supersymmetric quantum electrodynamics is extended by interactions with external vector and tensor backgrounds, that are assumed to be generated by some Lorentz-violating (LV) dynamics at an ultraviolet scale perhaps related to the Planck scale. Exact supersymmetry requires that such interactions correspond to LV operators of dimension five or higher, providing a solution to the naturalness problem in the LV sector. We classify all dimension five and six LV operators, analyze their properties at the quantum level and describe observational consequences of LV in this theory. We show that LV operators do not induce destabilizing D-terms, gauge anomaly, and the Chern-Simons term for photons. We calculate the renormalization group evolution of dimension five LV operators and their mixing with dimension three LV operators, controlled by the scale of the soft-breaking masses. Dimension five LV operators are constrained by low-energy precision measurements at 10{sup -10}-10{sup -5} level in units of the inverse Planck scale, while the Planck-scale suppressed dimension six LV operators are allowed by observational data.
Ultrasensitive measurement of MEMS cantilever displacement sensitivity below the shot noise limit
Pooser, Raphael C; Lawrie, Benjamin J
2015-01-01
The displacement of micro-electro-mechanical-systems (MEMs) cantilevers is used to measure a variety of phe- nomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to un- cooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented de- tectors or interference measurements. Until recently, var- ious noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light eld, called the shot noise limit (SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics below this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the rst direct measurement of a MEMs cantilever displace- ment with sub-SNL sensitivity, thus enabling ultratrace sensing, imaging, and microscopy applications. By com- bining multi-spatial-mode quantum light sources with a simple dierential measurement, we show that sub-SNL MEMs displacement sensitivity is highly accessible com- pared to previous eorts that measured the displacement of macroscopic mirrors with very distinct spatial struc- tures crafted with multiple optical parametric ampliers and locking loops[9]. We apply this technique to a com- mercially available microcantilever in order to detect dis- placements 60% below the SNL at frequencies where the microcantilever is shot-noise-limited. These results sup- port a new class of quantum MEMS sensor whose ulti- mate signal to noise ratio is determined by the correla- tions possible in quantum optics systems.
Enhanced optical limiting effects of graphene materials in polyimide
Gan, Yao; Feng, Miao; Zhan, Hongbing
2014-04-28
Three different graphene nanostructure suspensions of graphene oxide nanosheets (GONSs), graphene oxide nanoribbons (GONRs), and graphene oxide quantum dots (GOQDs) are prepared and characterized. Using a typical two-step method, the GONSs, GONRs, and GOQDs are incorporated into a polyimide (PI) matrix to synthesize graphene/PI composite films, whose nonlinear optical (NLO) and optical limiting (OL) properties are investigated at 532?nm in the nanosecond regime. The GONR suspension exhibits superior NLO and OL effects compared with those of GONSs and GOQDs because of its stronger nonlinear scattering and excited-state absorption. The graphene/PI composite films exhibit NLO and OL performance superior to that of their corresponding suspensions, which is attributed primarily to a combination of nonlinear mechanisms, charge transfer between graphene materials and PI, and the matrix effect.
Tritium Detection Methods and Limitations
Office of Environmental Management (EM)
Detection Methods and Limitations Tritium Focus Group Meeting, April 2014 Tom Voss, Northern New Mexico DOE-HDBK-1105-2002 RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1105-2002 Radiological Training for Tritium Facilities U.S. Department of Energy, Radiological Control Programs for Special Tritium Compounds, DOE-STD- draft, Washington, D.C.
Summary of Dissolved Concentration Limits
Yueting Chen
2001-06-11
According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M&O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits.
Si quantum dots in silicon nitride: Quantum confinement and defects
Goncharova, L. V. Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.; Nguyen, P. H.
2015-12-14
Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiN{sub x}:H) matrix was examined over a broad range of stoichiometries from Si{sub 3}N{sub 2.08} to Si{sub 3}N{sub 4.14}, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiN{sub x} films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH{sub 4} and NH{sub 3} gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si{sub 3}N{sub x} compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si{sub 3}N{sub 3.15}) in which the maximum of light emission is observed.
Ice and water droplets on graphite: A comparison of quantum and classical simulations
Ramírez, Rafael; Singh, Jayant K.; Müller-Plathe, Florian; Böhm, Michael C.
2014-11-28
Ice and water droplets on graphite have been studied by quantum path integral and classical molecular dynamics simulations. The point-charge q-TIP4P/F potential was used to model the interaction between flexible water molecules, while the water-graphite interaction was described by a Lennard-Jones potential previously used to reproduce the macroscopic contact angle of water droplets on graphite. Several energetic and structural properties of water droplets with sizes between 10{sup 2} and 10{sup 3} molecules were analyzed in a temperature interval of 50–350 K. The vibrational density of states of crystalline and amorphous ice drops was correlated to the one of ice Ih to assess the influence of the droplet interface and molecular disorder on the vibrational properties. The average distance of covalent OH bonds is found 0.01 Å larger in the quantum limit than in the classical one. The OO distances are elongated by 0.03 Å in the quantum simulations at 50 K. Bond distance fluctuations are large as a consequence of the zero-point vibrations. The analysis of the H-bond network shows that the liquid droplet is more structured in the classical limit than in the quantum case. The average kinetic and potential energy of the ice and water droplets on graphite has been compared with the values of ice Ih and liquid water as a function of temperature. The droplet kinetic energy shows a temperature dependence similar to the one of liquid water, without apparent discontinuity at temperatures where the droplet is solid. However, the droplet potential energy becomes significantly larger than the one of ice or water at the same temperature. In the quantum limit, the ice droplet is more expanded than in a classical description. Liquid droplets display identical density profiles and liquid-vapor interfaces in the quantum and classical limits. The value of the contact angle is not influenced by quantum effects. Contact angles of droplets decrease as the size of the water droplet
RLTec formerly ResponsiveLoad Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
and substations which will respond to grid behaviour, and may even ultimately store off-peak electricity to release at peak time, in a distributed manner. References:...
Quantum ion-acoustic wave oscillations in metallic nanowires
Moradi, Afshin
2015-05-15
The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.
Quantum measurements of atoms using cavity QED
Dada, Adetunmise C.; Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, Martin L.; Kendon, Vivien M. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Everitt, Mark S. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)
2011-04-15
Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.
Smith, Kyle K. G.; Poulsen, Jens Aage Nyman, Gunnar; Rossky, Peter J.
2015-06-28
We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.
Experimental quantum multimeter and one-qubit fingerprinting
Du Jiangfeng; Zou Ping; Peng Xinhua; Oi, Daniel K. L.; Ekert, Artur; Kwek, L. C.; Oh, C. H.
2006-10-15
There has been much recent effort to realize quantum devices in many different physical systems. Among them, nuclear magnetic resonance (NMR) has been the first to demonstrate nontrivial quantum algorithms with small numbers of qubits and hence is a prototype for the key ingredients needed to build quantum computers. An important building block in many quantum applications is the scattering circuit, which can be used as a quantum multimeter to perform various quantum information processing tasks directly without recourse to quantum tomography. We implement in NMR a three-qubit version of the multimeter and also demonstrate a single-qubit fingerprinting.
The quantum Hall effect helicity
Shrivastava, Keshav N.
2015-04-16
The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.
Measurement analysis and quantum gravity
Albers, Mark; Kiefer, Claus; Reginatto, Marcel
2008-09-15
We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.
Charge state hysteresis in semiconductor quantum dots
Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.
2014-11-03
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
A quantum measure of the multiverse
Vilenkin, Alexander
2014-05-01
It has been recently suggested that probabilities of different events in the multiverse are given by the frequencies at which these events are encountered along the worldline of a geodesic observer (the ''watcher''). Here I discuss an extension of this probability measure to quantum theory. The proposed extension is gauge-invariant, as is the classical version of this measure. Observations of the watcher are described by a reduced density matrix, and the frequencies of events can be found using the decoherent histories formalism of Quantum Mechanics (adapted to open systems). The quantum watcher measure makes predictions in agreement with the standard Born rule of QM.
Resonator-quantum well infrared photodetectors
Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.
2013-11-11
We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.
Uniqueness of measures in loop quantum cosmology
Hanusch, Maximilian
2015-09-15
In Ashtekar and Campiglia [Classical Quantum Gravity 29, 242001 (2012)], residual diffeomorphisms have been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). We show that, in the homogeneous isotropic case, unitarity of the translations with respect to the extended ℝ-action (exponentiated reduced fluxes in the standard approach) singles out the Bohr measure on both the standard quantum configuration space ℝ{sub Bohr} as well as on the Fleischhack one (ℝ⊔ℝ{sub Bohr}). Thus, in both situations, the same condition singles out the standard kinematical Hilbert space of LQC.
Superfluid {sup 4}He Quantum Interference Grating
Sato, Yuki; Joshi, Aditya; Packard, Richard
2008-08-22
We report the first observation of quantum interference from a grating structure consisting of four weak link junctions in superfluid {sup 4}He. We find that an interference grating can be implemented successfully in a superfluid matter wave interferometer to enhance its sensitivity while trading away some of its dynamic range. We also show that this type of device can be used to measure absolute quantum mechanical phase differences. The results demonstrate the robust nature of superfluid phase coherence arising from quantum mechanics on a macroscopic scale.
Towards bulk based preconditioning for quantum dotcomputations
Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang
2006-05-25
This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2013-01-01
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
Generalized measurements via a programmable quantum processor
Rosko, Marian; Buzek, Vladimir; Chouha, Paul Robert; Hillery, Mark
2003-12-01
We show that it is possible to control the trade-off between information gain and disturbance in generalized measurements of qudits by utilizing a programmable quantum processor. This universal quantum machine allows us to perform a generalized measurement on the initial state of the input qudit to construct a Husimi function of this state. The trade-off between the gain and the disturbance of the qudit is controlled by the initial state of ancillary system that acts as a program for the quantum-information distributor. The trade-off fidelity does not depend on the initial state of the qudit.
SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7A
Billings, A.
2011-04-19
same sludge scenarios were also tested with Frit 702 and all glasses did not exhibit sulfur layers on the surfaces of the glass melts at spiking levels up to 0.80 wt% SO{sub 4}{sup 2-}. An ultimate SO{sub 4}{sup 2-} limit was not defined with Frit 702, but if projected SO{sub 4}{sup 2-} concentrations are expected to increase with the onset of SB7a processing, a higher limit is achievable with Frit 702 than is achievable with Frit 418. Given the anticipated concentration of SO{sub 4}{sup 2-} for SB7a, a SO{sub 4}{sup 2-} limit of 0.6 wt % SO{sub 4}{sup 2-} is recommended for processing using Frit 418. Once the confirmed SB7a composition is known and should a higher limit be needed, SRNL can re-evaluate the limit based on the actual composition and provide an updated recommendation. It has been observed that higher levels of SO{sub 4}{sup 2-} in glass can be retained with compositional changes to the frit, as was demonstrated by the glasses fabricated using Frit 702. SRNL also recommends the continuation of studies to define a more 'global' sulfate concentration limit to account for future sludge batch composition uncertainties.
Kaszlikowski, Dagomir; Lim, J.Y.; Willeboordse, Frederick H.; Oi, D.K.L.; Gopinathan, Ajay; Kwek, L.C.
2005-01-01
We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain classes of Bell diagonal states are resistant to any attempt at incoherent eavesdropping.
Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying
2014-10-28
The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.
Surface plasmon oscillations on a quantum plasma half-space
Moradi, Afshin
2015-01-15
We investigate the propagation of surface electrostatic oscillations on a quantum plasma half-space, taking into account the quantum effects. We derive the quantum surface wave frequencies of the system, by means the quantum hydrodynamic theory in conjunction with the Poisson equation and applying the appropriate additional quantum boundary conditions. Numerical results show in the presence of the slow nonlocal variations, plasmon wave energies of the system are significantly modified and plasmonic oscillations with blue-shifted frequencies emerge.
Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots
Tian, Si-Cong Tong, Cun-Zhu Ning, Yong-Qiang; Wan, Ren-Gang
2015-02-15
Schemes for giant fifth-order nonlinearity via tunneling in both linear and triangular triple quantum dots are proposed. In both configurations, the real part of the fifth-order nonlinearity can be greatly enhanced, and simultaneously the absorption is suppressed. The analytical expression and the dressed states of the system show that the two tunnelings between the neighboring quantum dots can induce quantum interference, resulting in the giant higher-order nonlinearity. The scheme proposed here may have important applications in quantum information processing at low light level.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))
1990-12-15
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes
Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard; Yarrison-Rice, Jan; Gao, Qiang; Tan, Hoe; Jagadish, Chennupati; Etheridge, Joanne; Wong, Bryan M.
2013-12-04
We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.
Kushwaha, Manvir S.
2014-12-15
Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level
Nonradiative Recombination Pathways in Noncarcinogenic Quantum...
Energy.gov [DOE] (indexed site)
Lead Performer: UbiQD, LLC - Los Alamos, NM DOE Total Funding: 150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Quantum dots ...
An uncertainty principle for unimodular quantum groups
Crann, Jason; Kalantar, Mehrdad E-mail: mkalanta@math.carleton.ca
2014-08-15
We present a generalization of Hirschman's entropic uncertainty principle for locally compact Abelian groups to unimodular locally compact quantum groups. As a corollary, we strengthen a well-known uncertainty principle for compact groups, and generalize the relation to compact quantum groups of Kac type. We also establish the complementarity of finite-dimensional quantum group algebras. In the non-unimodular setting, we obtain an uncertainty relation for arbitrary locally compact groups using the relative entropy with respect to the Haar weight as the measure of uncertainty. We also show that when restricted to q-traces of discrete quantum groups, the relative entropy with respect to the Haar weight reduces to the canonical entropy of the random walk generated by the state.
Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards...
Office of Scientific and Technical Information (OSTI)
Large-Scale Industrial Production for Energy Applications CrossMark Michael Z. Hu* and ... The large quantity demands of high-quality quantum dots for advanced energy applications ...
Nontoxic quantum dot research improves solar cells
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Nancy Ambrosiano Communications Office (505) 667-0471 Email "For the first time, we have certified the performance of a quantum dot sensitized solar cell at greater than 5 percent, ...
Supersymmetric q-deformed quantum mechanics
Traikia, M. H.; Mebarki, N.
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.
Nuclear Scission and Quantum Localization (Journal Article) ...
Office of Scientific and Technical Information (OSTI)
Nuclear Scission and Quantum Localization Citation Details ... 1183533 Report Number(s): LLNL-JRNL-473099 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article ...
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Chen, Guan Hua; Zheng, Xiao
2013-12-14
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
Non-abelian fractional quantum hall effect for fault-resistant...
Office of Scientific and Technical Information (OSTI)
Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Citation Details In-Document Search Title: Non-abelian fractional quantum hall...
Electron Spin Dynamics in Semiconductor Quantum Dots
Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.
2011-07-15
An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.
First principle thousand atom quantum dot calculations
Wang, Lin-Wang; Li, Jingbo
2004-03-30
A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.
Dichromatic Langmuir waves in degenerate quantum plasma
Dubinov, A. E. Kitayev, I. N.
2015-06-15
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
The Holy Grail of quantum optical communication
García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.
2014-12-04
Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels.
Ultrabroad stimulated emission from quantum well laser
Wang, Huolei; Zhou, Xuliang; Yu, Hongyan; Mi, Junping; Wang, Jiaqi; Bian, Jing; Wang, Wei; Pan, Jiaoqing; Ding, Ying; Chen, Weixi
2014-06-23
Observation of ultrabroad stimulated emission from a simplex quantum well based laser at the center wavelength of 1.06??m is reported. With increased injection current, spectrum as broad as 38?nm and a pulsed output power of ?50?mW have been measured. The experiments show evidence of an unexplored broad emission regime in the InGaAs/GaAs quantum well material system, which still needs theoretical modeling and further analysis.
Galilei invariant technique for quantum system description
Kamuntavi?ius, Gintautas P.
2014-04-15
Problems with quantum systems models, violating Galilei invariance are examined. The method for arbitrary non-relativistic quantum system Galilei invariant wave function construction, applying a modified basis where center-of-mass excitations have been removed before Hamiltonian matrix diagonalization, is developed. For identical fermion system, the Galilei invariant wave function can be obtained while applying conventional antisymmetrization methods of wave functions, dependent on single particle spatial variables.
Limited-life cartridge primers
Makowiecki, Daniel M.; Rosen, Robert S.
2005-04-19
A cartridge primer which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML's would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers.
Limited-life cartridge primers
Makowiecki, D.M.; Rosen, R.S.
1998-06-30
A cartridge primer is described which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML`s would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers. 10 figs.
Limited-life cartridge primers
Makowiecki, Daniel M.; Rosen, Robert S.
1998-01-01
A cartridge primer which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML's would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers.
On variational definition of quantum entropy
Belavkin, Roman V.
2015-01-13
Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.
WaikatoLink Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: WaikatoLink Limited Place: New Zealand Sector: Services Product: General Financial & Legal Services ( Individual Angel network )...
Power Projects Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: Power Projects Limited Address: PO Box 25456 Panama Street Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic...
Nufcor International Limited Nufcor | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited (Nufcor) Place: United Kingdom Sector: Services Product: UK-based uranium marketing services company. References: Nufcor International Limited (Nufcor)1 This article...
Voith Hydro Wavegen Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Voith Hydro Wavegen Limited Jump to: navigation, search Name: Voith Hydro Wavegen Limited Region: United Kingdom Sector: Marine and Hydrokinetic Website: www.wavegen.co.uk This...
Cape Systems Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: Cape Systems Limited Place: Rock Sound, Bahamas Sector: Services Product: Offers installation and site surveying services for clean...
SRSL Ethanol Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
SRSL Ethanol Limited Jump to: navigation, search Name: SRSL Ethanol Limited Place: Mumbai, Maharashtra, India Product: Mumbai-based ethanol subsidiary of Shree Renuka Sugars...
Rix Biodiesel Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Rix Biodiesel Limited Jump to: navigation, search Name: Rix Biodiesel Limited Place: Hull, United Kingdom Zip: HU8 7JR Product: Manufacture, blends and resells biodiesel....
Tidal Energy Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: Tidal Energy Limited (TEL) Place: Cardiff, Wales, United Kingdom Zip: CF23 8RS Product: Tidal stream device developer. Coordinates:...
China Innovation Investment Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Innovation Investment Limited Jump to: navigation, search Name: China Innovation Investment Limited Place: Hong Kong Sector: Solar Product: Hong Kong-listed alternative energy...
Gujarat Ambuja Cements Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: Gujarat Ambuja Cements Limited Place: Mumbai, India Zip: 400 021 Sector: Biomass Product: Indian cement company. the company...
Catamount Energy Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: Catamount Energy Limited Place: United Kingdom Sector: Wind energy Product: Wind power project developer working on projects in Scotland....
Central Electronics Limited CEL | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Electronics Limited CEL Jump to: navigation, search Name: Central Electronics Limited (CEL) Place: Sahibabad, Uttar Pradesh, India Zip: 201010 Sector: Solar Product: String...
Clipper Windpower Europe Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Clipper Windpower Europe Limited Jump to: navigation, search Name: Clipper Windpower Europe Limited Place: London, Greater London, United Kingdom Zip: SE1 7TJ Sector: Wind energy...
BFC Solutions Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
BFC Solutions Limited Jump to: navigation, search Name: BFC Solutions Limited Place: Taunton, England, United Kingdom Zip: TA1 PEJ Sector: Carbon Product: Somerset-based...
Greenergy Biofuels Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Biofuels Limited Jump to: navigation, search Name: Greenergy Biofuels Limited Place: London, Greater London, United Kingdom Zip: WC1V 7BD Sector: Biofuels Product: Imports, blends...
Transmission Capital Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Transmission Capital Limited Jump to: navigation, search Name: Transmission Capital Limited Place: London, United Kingdom Zip: EC2V 7HR Sector: Renewable Energy, Services Product:...
Impact Capital Partners Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Capital Partners Limited Jump to: navigation, search Name: Impact Capital Partners Limited Place: Los Angeles, California Zip: CA 90067-1509 Product: Los Angeles-based, investment...
Universal Carbon Credits Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...
Carbon Trust Enterprises Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Enterprises Limited Jump to: navigation, search Name: Carbon Trust Enterprises Limited Place: London, United Kingdom Zip: WC2A 2AZ Sector: Carbon Product: Carbon Trust Enterprises...
Carbon Limiting Technologies | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limiting Technologies Jump to: navigation, search Name: Carbon Limiting Technologies Place: London, Greater London, United Kingdom Zip: N1 8HA Sector: Carbon Product: UK-based...
Harvard Dedicated Energy Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Harvard Dedicated Energy Limited Jump to: navigation, search Name: Harvard Dedicated Energy Limited Place: Massachusetts Phone Number: (617) 495-5560 Website: www.energyandfaciliti...
United Biofuels Private Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...
Mauktika Energy Limited MEL | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Mauktika Energy Limited MEL Jump to: navigation, search Name: Mauktika Energy Limited (MEL) Place: Hyderabad, Andhra Pradesh, India Zip: 500033 Sector: Renewable Energy Product:...
United Group Limited | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited Jump to: navigation, search Name: United Group Limited Place: Perth, Western Australia, Australia Zip: 6001 Product: The United Group Resources (UGL) division is an EPC and...
Renewable Fuels Limited RFL | Open Energy Information
OpenEI (Open Energy Information) [EERE & EIA]
Limited RFL Jump to: navigation, search Name: Renewable Fuels Limited (RFL) Place: York, United Kingdom Zip: YO19 6ET Sector: Biomass Product: Supplies various biomass fuels and...
Distance growth of quantum states due to initial system-environment correlations
Dajka, J.; Luczka, J.
2010-07-15
Intriguing features of the distance between two arbitrary states of an open quantum system are identified that are induced by initial system-environment correlations. As an example, we analyze a qubit dephasingly coupled to a bosonic environment. Within tailored parameter regimes, initial correlations are shown to substantially increase the distance between two qubit states evolving to long-time-limit states according to exact non-Markovian dynamics. It exemplifies the breakdown of the distance contractivity of the reduced dynamics.
Analytical results from the quantum theory of a single-emitter nanolaser
Larionov, Nikolay V.; Kolobov, Mikhail I.
2011-11-15
We provide analytical results obtained in the framework of the quantum theory for a single-emitter nanolaser: an incoherently pumped single two-level system interacting with a single-cavity mode of finite finesse. In the good-cavity limit we analytically calculate the linewidth of such a laser, its amplitude fluctuation spectrum, and the intracavity Mandel Q parameter. Our analytical results are in very good agreement with numerical simulations of the master equation.
Ultra Thin Quantum Well Materials
Dr Saeid Ghamaty
2012-08-16
This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would
Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.
2016-02-22
Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less
Colloidal quantum dot solar cells on curved and flexible substrates
Kramer, Illan J.; Moreno-Bautista, Gabriel; Minor, James C.; Kopilovic, Damir; Sargent, Edward H.
2014-10-20
Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods—such as spin-coating—that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.
Fractional quantum Hall junctions and two-channel Kondo models
Sandler, Nancy P.; Fradkin, Eduardo
2001-06-15
A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at {nu}=1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green{close_quote}s function has a branch cut and the impurity entropy is equal to S=1/2ln2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.
Orbital ferromagnetism and the Chandrasekhar mass-limit
Akbari-Moghanjoughi, M.
2012-05-15
In this paper, we use quantum magnetohydrodynamic as well as magnetohydrostatic (MHS) models for a zero-temperature Fermi-Dirac plasma to show the fundamental role of Landau orbital ferromagnetism (LOFER) on the magnetohydrostatic stability of compact stars. It is revealed that the generalized flux-conserved equation of state of form B={beta}{rho}{sup 2s/3} only with conditions 0{<=}s{<=}1 and 0{<=}{beta}<{radical}(2{pi}) can lead to a stable compact stellar configuration. The distinct critical value {beta}{sub cr}={radical}(2{pi}) is shown to affect the magnetohydrostatic stability of the LOFER (s = 1) state and the magnetic field strength limit on the compact stellar configuration. Furthermore, the value of the parameter {beta} is remarked to fundamentally alter the Chandrasekhar mass-radius relation and the known mass-limit on white dwarfs when the star is in LOFER state. Current findings can help to understand the role of flux-frozen ferromagnetism and its fundamental role on hydrostatic stability of relativistically degenerate super-dense plasmas such as white dwarfs.
Sellner, Bernhard; Kathmann, Shawn M.
2014-11-14
Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Josephson phase diffusion in the superconducting quantum interference device ratchet
Spiechowicz, Jakub; Łuczka, Jerzy
2015-05-15
We study diffusion of the Josephson phase in the asymmetric superconducting quantum interference device (SQUID) subjected to a time-periodic current and pierced by an external magnetic flux. We analyze a relation between phase diffusion and quality of transport characterized by the dc voltage across the SQUID and efficiency of the device. In doing so, we concentrate on the previously reported regime [J. Spiechowicz and J. Łuczka, New J. Phys. 17, 023054 (2015)] for which efficiency of the SQUID attains a global maximum. For long times, the mean-square displacement of the phase is a linear function of time, meaning that diffusion is normal. Its coefficient is small indicating rather regular phase evolution. However, it can be magnified several times by tailoring experimentally accessible parameters like amplitudes of the ac current or external magnetic flux. Finally, we prove that in the deterministic limit this regime is essentially non-chaotic and possesses an unexpected simplicity of attractors.
Nonlocal microscopic theory of quantum friction between parallel metallic slabs
Despoja, Vito
2011-05-15
We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.
(In,Mn)As multilayer quantum dot structures
Bouravleuv, Alexei; Sapega, Victor; Nevedomskii, Vladimir; Khrebtov, Artem; Samsonenko, Yuriy; Cirlin, George
2014-12-08
(In,Mn)As multilayer quantum dots structures were grown by molecular beam epitaxy using a Mn selective doping of the central parts of quantum dots. The study of the structural and magneto-optical properties of the samples with three and five layers of (In,Mn)As quantum dots has shown that during the quantum dots assembly, the out-diffusion of Mn from the layers with (In,Mn)As quantum dots can occur resulting in the formation of the extended defects. To produce a high quality structures using the elaborated technique of selective doping, the number of (In,Mn)As quantum dot layers should not exceed three.
Quantum nonlocal effects on optical properties of spherical nanoparticles
Moradi, Afshin
2015-02-15
To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.
Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots
Xu, Xingsheng
2015-03-02
For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.
Tamper-indicating quantum optical seals
Humble, Travis S; Williams, Brian P
2015-01-01
Confidence in the means for identifying when tampering occurs is critical for containment and surveillance technologies. Fiber-optic seals have proven especially useful for actively surveying large areas or inventories due to the extended transmission range and flexible layout of fiber. However, it is reasonable to suspect that an intruder could tamper with a fiber-optic sensor by accurately replicating the light transmitted through the fiber. In this contribution, we demonstrate a novel approach to using fiber-optic seals for safeguarding large-scale inventories with increased confidence in the state of the seal. Our approach is based on the use of quantum mechanical phenomena to offer unprecedented surety in the authentication of the seal state. In particular, we show how quantum entangled photons can be used to monitor the integrity of a fiber-optic cable - the entangled photons serve as active sensing elements whose non-local correlations indicate normal seal operation. Moreover, we prove using the quantum no-cloning theorem that attacks against the quantum seal necessarily disturb its state and that these disturbances are immediately detected. Our quantum approach to seal authentication is based on physical principles alone and does not require the use of secret or proprietary information to ensure proper operation. We demonstrate an implementation of the quantum seal using a pair of entangled photons and we summarize our experimental results including the probability of detecting intrusions and the overall stability of the system design. We conclude by discussing the use of both free-space and fiber-based quantum seals for surveying large areas and inventories.
fig2_quantum_chaos.png | OSTI, US Dept of Energy Office of Scientific and
Office of Scientific and Technical Information (OSTI)
Technical Information fig2_quantum_chaos.png
Quantum chaos in one dimension?
Ujfalusi, Laszlo; Varga, Imre; Schumayer, Daniel [Elmeleti Fizika Tanszek, Fizikai Intezet, Budapesti Muszaki es Gazdasagtudomanyi Egyetem, H-1521 Budapest (Hungary); Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016 (New Zealand)
2011-07-15
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit N{yields}{infinity} the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist.
Three dimensional time-gated tracking of non-blinking quantum dots in live cells
DeVore, Matthew S.; Werner, James H.; Goodwin, Peter M.; Keller, Aaron M.; Hollingsworth, Jennifer A.; Wilson, Bridget S.; Cleyrat, Cedric; Lidke, Diane S.; Ghosh, Yagnaseni; Stewart, Michael H.; et al
2015-03-12
Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. As a result, signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.
Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser
Phillips, Mark C.; Bernacki, Bruce E.
2012-12-26
Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.
Three dimensional time-gated tracking of non-blinking quantum dots in live cells
DeVore, Matthew S.; Werner, James H.; Goodwin, Peter M.; Keller, Aaron M.; Hollingsworth, Jennifer A.; Wilson, Bridget S.; Cleyrat, Cedric; Lidke, Diane S.; Ghosh, Yagnaseni; Stewart, Michael H.; Stich, Dominik G.; Phipps, Mary E.
2015-12-03
Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. As a result, signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.
The von Neumann model of measurement in quantum mechanics
Mello, Pier A.
2014-01-08
We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The von Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.
Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach
Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Pina, Ll.; Rubayo-Soneira, J.
2012-08-07
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.
Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet
Zapf, Vivien
2012-06-01
I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.
Near-Infrared Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots
Jain, Prashant K.; Luther, Joey; Ewers, Trevor; Alivisatos, A. Paul
2010-10-12
Quantum confinement of electronic wavefunctions in semiconductor quantum dots (QDs) yields discrete atom-like and tunable electronic levels, thereby allowing the engineering of excitation and emission spectra. Metal nanoparticles, on the other hand, display strong resonant interactions with light from localized surface plasmon resonance (LSPR) oscillations of free carriers, resulting in enhanced and geometrically tunable absorption and scattering resonances. The complementary attributes of these nanostructures lends strong interest toward integration into hybrid nanostructures to explore enhanced properties or the emergence of unique attributes arising from their interaction. However, the physicochemical interface between the two components can be limiting for energy transfer and synergistic coupling within such a hybrid nanostructure. Therefore, it is advantageous to realize both attributes, i.e., LSPRs and quantum confinement within the same nanostructure. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots. This opens up possibilities for light harvesting, non-linear optics, optical sensing and manipulation of solid-state processes in single nanocrystals.
Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel
2015-08-21
Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.
Quantum superposition principle and gravitational collapse: Scattering times for spherical shells
Ambrus, M.; Hajicek, P.
2005-09-15
A quantum theory of spherically symmetric thin shells of null dust and their gravitational field is studied. In Nucl. Phys. B603, 555 (2001), it has been shown how superpositions of quantum states with different geometries can lead to a solution of the singularity problem and black hole information paradox: the shells bounce and re-expand and the evolution is unitary. The corresponding scattering times will be defined in the present paper. To this aim, a spherical mirror of radius R{sub m} is introduced. The classical formula for scattering times of the shell reflected from the mirror is extended to quantum theory. The scattering times and their spreads are calculated. They have a regular limit for R{sub m}{yields}0 and they reveal a resonance at E{sub m}=c{sup 4}R{sub m}/2G. Except for the resonance, they are roughly of the order of the time the light needs to cross the flat space distance between the observer and the mirror. Some ideas are discussed of how the construction of the quantum theory could be changed so that the scattering times become considerably longer.
Next-Generation "Giant" Quantum Dots: Performance-Engineered...
Energy.gov [DOE] (indexed site)
This project seeks to develop quantum-dot downconverters to be used in LED lighting. The focus will be on synthesizing red-emitting quantum dots, revealing their failure ...
Spin-orbit interaction in multiple quantum wells
Hao, Ya-Fei
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Quantum and Dirac Materials for Energy Applications Conference...
U.S. Department of Energy (DOE) - all webpages (Extended Search)
Quantum and Dirac Materials for Energy Applications Quantum and Dirac Materials for Energy Applications Conference (QDM-15) WHEN: Mar 08, 2015 8:00 AM - Mar 11, 2015 5:00 PM WHERE:...
Surface treatment of nanocrystal quantum dots after film deposition
Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro
2015-02-03
Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.
ONSET OF CHAOS IN A MODEL OF QUANTUM COMPUTATION (Conference...
Office of Scientific and Technical Information (OSTI)
Clearly, if this happens in a quantum computer, it may lead to a destruction of the ... Numerical analysis 2 of a simplest model of quantum computer (2D model of 12-spins with ...
Effect of Cusps in Time-Dependent Quantum Mechanics (Journal...
Office of Scientific and Technical Information (OSTI)
Effect of Cusps in Time-Dependent Quantum Mechanics Title: Effect of Cusps in Time-Dependent Quantum Mechanics Authors: Yang, Zeng-hui ; Maitra, Neepa T. ; Burke, Kieron ...
Quantum-mechanical aspects of classically chaotic driven systems
Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.
1987-01-01
This paper treats atoms and molecules in laser fields as periodically driven quantum systems. The paper concludes by determining that stochastic excitation is possible in quantum systems with quasiperiodic driving. 17 refs. (JDH)
Berman, G.P. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bulgakov, E.N. [Kirensky Institute of Physics, 660036, Krasnoyarsk (Russia)] [Kirensky Institute of Physics, 660036, Krasnoyarsk (Russia); Campbell, D.K. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States)] [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States); Krive, I.V. [Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, 310164, Kharkov (Ukraine)] [Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, 310164, Kharkov (Ukraine)
1997-10-01
We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}