National Library of Energy BETA

Sample records for tx antrim mi

  1. Approach to Recover Hydrocarbons from Currently Off-Limit Areas of the Antrim Formation, MI Using Low-Impact Technologies

    SciTech Connect

    James Wood; William Quinlan

    2008-09-30

    The goal of this project was to develop and execute a novel drilling and completion program in the Antrim Shale near the western shoreline of Northern Michigan. The target was the gas in the Lower Antrim Formation (Upper Devonian). Another goal was to see if drilling permits could be obtained from the Michigan DNR that would allow exploitation of reserves currently off-limits to exploration. This project met both of these goals: the DNR (Michigan Department of Natural Resources) issued permits that allow drilling the shallow subsurface for exploration and production. This project obtained drilling permits for the original demonstration well AG-A-MING 4-12 HD (API: 21-009-58153-0000) and AG-A-MING 4-12 HD1 (API: 21-009-58153-0100) as well as for similar Antrim wells in Benzie County, MI, the Colfax 3-28 HD and nearby Colfax 2-28 HD which were substituted for the AG-A-MING well. This project also developed successful techniques and strategies for producing the shallow gas. In addition to the project demonstration well over 20 wells have been drilled to date into the shallow Antrim as a result of this project's findings. Further, fracture stimulation has proven to be a vital step in improving the deliverability of wells to deem them commercial. Our initial plan was very simple; the 'J-well' design. We proposed to drill a vertical or slant well 30.48 meters (100 feet) below the glacial drift, set required casing, then angle back up to tap the resource lying between the base to the drift and the conventional vertical well. The 'J'-well design was tested at Mancelona Township in Antrim County in February of 2007 with the St. Mancelona 2-12 HD 3.

  2. Screening restimulation candidates in the Antrim Shale

    SciTech Connect

    Hopkins, C.W.; Frantz, J.H. Jr.; Tatum, C.L.; Hill, D.G.

    1994-12-31

    This paper describes a simple method to identify, prioritize, and evaluate restimulation candidates in the Antrim Shale of the Michigan Basin. This work is being performed as part of an ongoing field-based Gas Research Institute (GRI) project investigating the Antrim Shale. There are between 500 and 1,000 Antrim Shale wells which could be candidates for restimulation due to previous screenouts and/or flowback problems, when sand consolidation material was not used. However, all of these wells might not benefit from restimulation, due to either poor reservoir quality or because the wells are already effectively stimulated. Based on historical results, the authors estimate the increase in reserves from restimulation could be between 50 and 400 MMscf per well, which could add 50 to 200 Bscf in future reserves from the 500--1,000 candidate wells.

  3. Additional potential for older, Antrim Shale wells

    SciTech Connect

    Frantz, J.H. Jr.; Hopkins, C.W.; Hill, D.G.

    1995-09-01

    The Gas Research Institute (GRI) has been performing evaluations to estimate the recompletion and restimulation potential in older, Antrim Shale wells. The recompletion potential is two-fold: (1) wells that can be deepened to the productive Norwood interval, and (2) wells with Upper Antrim potential. There are also numerous restimulation candidates due to sand flowback and/or other problems. The Antrim Shale is an organic-rich naturally fractured formation which produces both gas and water. Operators today typically complete the Lachine and Norwood intervals but many older wells were not drilled deep enough to encounter to Norwood. We performed an evaluation to determine the optimal deepening method using actual and simulated data. We estimate there are over 500 deepening candidates with total potential reserve additions of 50 Bscf. The Upper antrim formation can be added in approximately 1,500 existing wells throughout several counties. This interval is uphole from the Lachine and Norwood. In this phase of the project, we collected production and reservoir data from several Upper Antrim tests across the basin. We estimate the Upper Antrim could add total new reserves of 100 to 200 Bscf from al the recompletion candidates across the basin. In the restimulation evaluation, we developed a novel injection test unit to help operators identify the best restimulation candidates in a cost effective manner. The injection test determines if an effective hydraulic fracture is connected to the wellbore. Based on 60 test wells, we estimate the restimulations could add 50 to 200 Bscf of future reserves from the 500 to 1,000 candidate wells.

  4. Antrim, New Hampshire: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Antrim, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0309142, -71.9389689 Show Map Loading map... "minzoom":false,"mapping...

  5. Antrim shale development technology project. Final report, June 1993-November 1996

    SciTech Connect

    Frantz, J.H.; Hopkins, C.W.; Zuber, M.D.

    1996-11-01

    The objectives of the Antrim Shale research project were (1) developing practical reservoir engineering method for thr Antrim, (2) developing cost effective methods for identifying restimulation candidates, (3) evaluating recompletion candidates (Norwood deepenings and Upper Antrim completion), and (4) advancing the effectiveness of hydraulic fracturing in the Antrim.

  6. Antrim shale fractured reservoirs: Their potential throughout the Michigan Basin

    SciTech Connect

    Manger, K.C.; Woods, T.J.; Curtis, J.B.; Zuber, M.D.

    1996-09-01

    Antrim shale gas production grew from 0.4 Bcf in 1987 to 156 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model contains an Antrim resource base description that was developed in 1991. It was based on industry activity through 1990 and only covered the northern extent of the Antrim surrounding the current play. Significant technological improvements since then have resulted in projected near-term production lagging actual production by one to two years. Even so, the 1996 Edition of the GRI Baseline Projection predicts Antrim production will reach 1 Tcf by the year 2015. Given the 1996 projection results, a reassessment of the potential for producing gas from Antrim shale-type fractured reservoirs was initiated. The analysis identified general geological characteristics that appear to contribute to successful wells and extrapolated them to the rest of the Michigan Basin. Data used included production and well data through 1995, GRI-funded studies, and proprietary studies and data on the Antrim and deeper formations significant to gas origin and thermal maturity. Initial results suggest four {open_quotes}Resource Areas{close_quotes} based on comparison to the existing play using the following geological factors: (1) extent and thicknesses of the Lachine and Norwood organic shales; (2) regional structural expression of potential fracturing; (3) total depth relating to probability of open fractures; and (4) probability of biogenic gas contribution.

  7. Estimating fracture geometry in the naturally fractured Antrim Shale

    SciTech Connect

    Hopkins, C.W.; Frantz, J.H. Jr.; Hill, D.G.

    1995-12-31

    The Antrim Shale of the Michigan Basin has been an active gas play with over 3,500 wells drilled over the last 5 years. There is substantial evidence that the Antrim must be fracture stimulated to be economical and that two-stage treatments provide the best results. However, due to the shallow depths (500-2300 ft) and naturally fractured nature of the Antrim, fracture geometry is complex, and determination of optimal fracture treatments is not straight forward. Because historical field comparisons did not provide insight on the optimal fracture treatments, the Gas Research Institute (GRI) instituted a field-based project for the specific purpose of evaluating the geometry of hydraulic fractures in the Antrim. Open- and cased-hole tests were performed on two separate Antrim wells - a shallow producer (600 {+-} ft) and a deep producer (1550 {+-} ft). Open-hole testing and data collection consisted of in-situ stress and mechanical property testing with Halliburton`s THE{trademark} Tool (9 tests) and a detailed suite of geophysical logs including dipole sonic logs and natural fracture detection logs. Cased-hole testing consisted of pre- and post-fracture injection/falloff tests, minifracture treatments, multiple isotope tracer and tracer logs, and treating pressure and production data analysis. The shallow depths, low in-situ stresses, and extremely fractured nature of the Antrim probably results in the preferential opening of existing fractures instead of the creation of new fracture planes. As a result, the creation of multiple fractures and severe near wellbore tortuosity is likely. Therefore, the natural fractures are responsible for increased leakoff and will greatly impact created fracture geometry. The results also suggest that creating long propped hydraulic fractures in the Antrim is not likely due to the creation of multiple fractures.

  8. The Antrim shale, fractured gas reservoirs with immense potential

    SciTech Connect

    Manger, K.C.; Woods, T.J. Curtis, J.B.

    1996-12-31

    Antrim shale gas production has grown from 0.4 Bcf of gas in 1987 to 127 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model`s Antrim resource base description was developed in 1991 based on industry activity through 1990. The 1991 description estimated 32 Tcf of recoverable resource, and was limited to northern Michigan which represents only part of the Antrim`s total potential. This description indicated production could increase manyfold, even with low prices. However, its well recovery rate is less than current industry results and projected near term production lags actual production by 1 to 2 years. GRI is updating its description to better reflect current industry results and incorporate all prospective areas. The description in northern Michigan is updated using production and well data through 1994 and results from GRI`s research program. The description is then expanded to the entire basin. Results indicate the northern resource is somewhat larger than the previous estimate and the wells perform better. Extrapolation to the entire basin using a geologic analog model approximately doubles the 1991 estimate. The model considers depositional, structural, and tectonic influences; fracturing; organic content; thermal history; and hydrocarbon generation, migration and storage. Pleistocene glaciation and biogenic gas are also included for areas near the Antrim subcrop.

  9. Evaluating the antrim shale formation using a Geographic Information System

    SciTech Connect

    Carlton, R.B. )

    1994-08-01

    The Antrim Shale formation is currently the most active exploration play in the Michigan basin. With more than 3500 producing wells, the Antrim Shale has significantly increased Michigan's natural gas reserves. The Antrim Shale now accounts for over 50% of Michigan's daily natural gas production. C-Map is a vector-based Geographic Information System developed at Michigan State University. It is used throughout Michigan, primarily by state and local government agencies, to assist in programs that range from resource management to civic planning. Although not originally designed for oil and gas exploration, many of the features found in C-Map are ideally suited to this task. Exploration functions performed on C-Map include the creation of base maps, data posting, and thematic mapping. Interfaces written into C-MAP also allow for computer gridding, contouring, and 3-D modeling using commercial software designed for this purpose. C-MAP can also be used in conjunction with Michigan's Resource Inventory System, the digital land-use database developed by the Michigan Department of Natural Resources. The unconventional nature of the Antrim Shale reservoir, along with the large volume of wells drilled and data collected have combined to make the Antrim Shale a very difficult play to evaluate. C-Map, with its analytical tools, low cost, and compatibility with an existing digital land-use database for Michigan is an ideal exploration tool for companies and individuals attempting to enhance their understanding of this challenging play.

  10. Evaluating the optimal Norwood deepening method in the Antrim Shale

    SciTech Connect

    Frantz, J.H. Jr.; Tatum, C.L.; Bezilla, M.; Kalnbach, B.W.; Wilkinson, J.G.

    1994-12-31

    The purpose of this paper is to present the results of a Gas Research Institute (GRI) evaluation to determine the optimal and completion technique for the Norwood Antrim Shale unit in older Antrim wells in the Michigan Basin, including the potential range of Norwood production responses. There are approximately 500 older Antrim wells not drilled through the Norwood, that could be deepened below their current Lachine unit completion. GRI performed this work because operators are uncertain of the best deepening/completion procedure, the potential productivity of the Norwood, and the appropriate well spacing for the Norwood completions. In this paper, the authors show the results of actual field case histories and simulates performance projections to determine the optimal Norwood deepening method and well spacing.

  11. Antrim shale bibliography: Selected references. Topical report, March 1994

    SciTech Connect

    Picciano, L.; Armstrong, T.S.

    1994-03-01

    More than 90 publications on research and exploration in the Antrim Shale are listed. They include technical reports; workshop and symposium presentations; journal articles; papers from the Society of Petroleum Engineers and the Society of Core Analysts; government and miscellaneous reports; and theses.

  12. The Antrim shale, fractured gas reservoirs with immense potential

    SciTech Connect

    Manger, K.C. ); Woods, T.J. ) Curtis, J.B. )

    1996-01-01

    Antrim shale gas production has grown from 0.4 Bcf of gas in 1987 to 127 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model's Antrim resource base description was developed in 1991 based on industry activity through 1990. The 1991 description estimated 32 Tcf of recoverable resource, and was limited to northern Michigan which represents only part of the Antrim's total potential. This description indicated production could increase manyfold, even with low prices. However, its well recovery rate is less than current industry results and projected near term production lags actual production by 1 to 2 years. GRI is updating its description to better reflect current industry results and incorporate all prospective areas. The description in northern Michigan is updated using production and well data through 1994 and results from GRI's research program. The description is then expanded to the entire basin. Results indicate the northern resource is somewhat larger than the previous estimate and the wells perform better. Extrapolation to the entire basin using a geologic analog model approximately doubles the 1991 estimate. The model considers depositional, structural, and tectonic influences; fracturing; organic content; thermal history; and hydrocarbon generation, migration and storage. Pleistocene glaciation and biogenic gas are also included for areas near the Antrim subcrop.

  13. Hydrogeochemistry of the Antrim Shale (Devonian) in the Michigan Basin

    SciTech Connect

    Martini, A.M.; Walter, L.M.; Richards, J.A.; Budai, J.M. . Dept. of Geological Sciences)

    1994-04-01

    The Antrim shale has been the focus of active exploration and production in the Michigan Basin since 1987. The producing trend is presently located along the northern rim of the basin, but new ventures are expanding into the southern part of the basin and a predictive model for gas generation and production is greatly needed. The authors have undertaken a geochemical investigation of the waters co-produced with gases in the Antrim shale. There is unusual regional variability in the water chemistry. For example, salinity ranges from near potable water to nearly 10 times the salinity of ocean water within a distance of 80 km. Understanding the origin of solutes, waters and natural gas being produced from the Antrim Shale will aid in developing a model for natural gas generation and migration within the basin. The chemical and isotopic compositions of Antrim waters suggest that there are two sources of water and salinity within the reservoir: (1) saline, high-bromide basinal brine moving updip into the producing areas, and (2) ancient, dilute glacial melt water. Either of these waters can gain additional NaCl from dissolving Br-poor halite located within the updip pinch-out of the Detroit River Salt. When plotted geographically, variations in these components exhibit distinct regional patterns and may ultimately highlight major water and gas migration avenues. In addition to variable water salinity, the authors' preliminary results suggest that complexities in natural gas chemistry are reflected in the composition of coexisting waters.

  14. Antrim shale bibliography: Selected references. Topical report, June 1995

    SciTech Connect

    Picciano, L.

    1995-06-01

    The Antrim Shale citations listed in this bibliography present select research reports, papers, and workshops that provide an overview of research and development (R&D) efforts related to this resource. Section I lists only publications resulting directly from GRI`s research investment, or reviews that extensively utilized GRI results. The second section focuses on non-GRI technical publications sponsored by such organizations as the Department of Energy, the Society of Petroleum Engineers, and the U.S. Geological Survey.

  15. Fracture analysis of the upper devonian antrim shale, Michigan basin

    SciTech Connect

    Richards, J.A.; Budai, J.M.; Walter, L.M.; Abriola, L.M. )

    1994-08-01

    The Antrim Shale is a fractured, unconventional gas reservoir in the northern Michigan basin. Controls on gas production are poorly constrained but must depend on the fracture framework. Analyses of fracture geometry (orientation, spacing, and aperture width) were undertaken to better evaluate reservoir permeability and, hence, pathways for fluid migration. Measurements from nearly 600 fractures were made from outcrop, core, and Formation MicroScanner logs covering three members of the Antrim Shale (Norwood, Paxton, Lachine) and the Ellsworth Shale. Fracture analyses indicate pronounced reservoir anisotropy among the members. Together related with lithologic variations, this leads to unique reservoir characteristics within each member. There are two dominant fracture sets, northeast-southwest and northwest-southeast. Fracture density varies among stratigraphic intervals but always is lowest in the northwest-southeast fracture set and is greatest in the northeast-southwest fracture set. While aperture width decreases markedly with depth, subsurface variation in mean aperture width is significant. Based on fracture density and mean aperture width, the Norwood member has the largest intrinsic permeability and the Ellsworth Shale the lowest intrinsic permeability. The highest intrinsic fracture permeability in all intervals is associated with the northeast-southwest fracture set. The Norwood and Lachine members thus exhibit the best reservoir character. This information is useful in developing exploration strategies and completion practices in the Antrim Shale gas play.

  16. Hydrogeochemistry of the antrim shale northern michigan basin. Annual report, September 1, 1993-May 1, 1995

    SciTech Connect

    Walter, L.M.; Budai, J.M.; Abriola, L.M.; Stearns, C.H.; Martini, A.M.

    1996-01-12

    This study was intended to document gradients in fluid chemistry over the producing trend of the Antrim Shale in the northern Michigan Basin, relate these geochemical gradients to fracture networks or structures within the reservoir, and establish their signifcance relative to the hydrology of the Antrim and gas production potential of the unit.

  17. Advances in hydraulic fracturing technology in the antrim shale. Topical report, July 1994-December 1996

    SciTech Connect

    Frantz, J.H.; Hopkins, C.W.

    1996-12-01

    The primary objectives of this study were to evaluate hydraulic fracture geometry in the naturally-fractured Antrim Shale. As part of this research, stress profiling and numerous hydraulic fracture experiments were performed. The research project performed field-based studies to better understand hyraulic fracture growth in the Antrim. This understanding will make it possible to verify the optimal stimulation treatment for operators to use during the next five years. The research results succeeded in determining how hydraulic fractures grow in the Antrim Shale formation.

  18. Characterization of Michigan Antrim Shale reservoirs based on analysis of field-level data

    SciTech Connect

    Zuber, M.D.; Voneiff, G.W.; Frantz, J.H. Jr.; Gatens, J.M. III

    1994-12-31

    This paper focuses on the production characteristics of the Antrim Shale in the Michigan Basin. The authors have used a large database of Antrim project-level data, including production data; information regarding completion, stimulation and operational practices; and the results of production forecasts for 42 producing projects to provide insights into the impact of various completion and operational practices on Antrim well productivity. They have used a production indicator to map well performance and identify wells of above or below average well quality. They have found that advances in completion and operational practices have increased well productivity.

  19. Michigan antrim shale production facilities and equipment. Topical report, June 1995-March 1996

    SciTech Connect

    Christopherson, R.

    1996-04-01

    This report summarizes the results from a Gas Research Institute (GRI) sponsored study to document and evaluate the production facilities and operating practices used in the Michigan Basin Antrim Shale. This report provides a historical documentation of this evolution for future Antrim developers, but focuses on the current operator practices. Economic analyses are presented to illustrate the best combination of individual well production equipment, flowline type, and processing equipment to maximize project returns.

  20. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: ...

  1. US WSC TX Site Consumption

    Energy Information Administration (EIA) (indexed site)

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  2. Geochemical constraints on microbial methanogenesis in an unconventional gas reservoir: Devonian Antrim shale, Michigan

    SciTech Connect

    Martini, A.M.; Budal, J.M.; Walter, L.M. )

    1996-01-01

    The Upper Devonian Antrim Shale is a self-sourced, highly fractured gas reservoir. It subcrops around the margin of the Michigan Basin below Pleistocene glacial drift, which has served as a source of meteoric recharge to the unit. The Antrim Shale is organic-rich (>10% total organic carbon), hydrogen-rich (Type I kerogen) and thermally immature (R[sub o] = 0.4 to 0.6). Reserve estimates range from 4-8 Tcf, based on assumptions of a thermogenic gas play. Chemical and isotopic properties measured in the formation waters show significant regional variations and probably delineate zones of increased fluid flow controlled by the fracture network. [sup 14]C determinations on dissolved inorganic carbon indicate that freshwater recharge occurred during the period between the last glacial advance and the present. The isotopic composition of Antrim methane ([delta][sup 13]C = -49 to -59[per thousand]) has been used to suggest that the gas is of early thermogenic origin. However, the highly positive carbon of co-produced CO[sub 2] gas ([delta][sup 13]C [approximately] +22[per thousand]) and DIC in associated Antrim brines ([delta][sup 13]C = +19 to +31[per thousand]) are consistent with bacterially mediated fractionation. The correlation of deuterium in methane ([delta]D = -200 to -260[per thousand]) with that of the co-produced waters (SD = -20 to -90176) suggests that the major source of this microbial gas is via the CO[sub 2] reduction pathway within the reservoir. Chemical and isotopic results also demonstrate a significant (up to 25%) component of thermogenic gas as the production interval depth increases. The connection between the timing of groundwater recharge, hydrogeochemistry and gas production within the Antrim Shale, Michigan Basin, is likely not unique and may find application to similar resources elsewhere.

  3. Geochemical constraints on microbial methanogenesis in an unconventional gas reservoir: Devonian Antrim shale, Michigan

    SciTech Connect

    Martini, A.M.; Budal, J.M.; Walter, L.M.

    1996-12-31

    The Upper Devonian Antrim Shale is a self-sourced, highly fractured gas reservoir. It subcrops around the margin of the Michigan Basin below Pleistocene glacial drift, which has served as a source of meteoric recharge to the unit. The Antrim Shale is organic-rich (>10% total organic carbon), hydrogen-rich (Type I kerogen) and thermally immature (R{sub o} = 0.4 to 0.6). Reserve estimates range from 4-8 Tcf, based on assumptions of a thermogenic gas play. Chemical and isotopic properties measured in the formation waters show significant regional variations and probably delineate zones of increased fluid flow controlled by the fracture network. {sup 14}C determinations on dissolved inorganic carbon indicate that freshwater recharge occurred during the period between the last glacial advance and the present. The isotopic composition of Antrim methane ({delta}{sup 13}C = -49 to -59{per_thousand}) has been used to suggest that the gas is of early thermogenic origin. However, the highly positive carbon of co-produced CO{sub 2} gas ({delta}{sup 13}C {approximately} +22{per_thousand}) and DIC in associated Antrim brines ({delta}{sup 13}C = +19 to +31{per_thousand}) are consistent with bacterially mediated fractionation. The correlation of deuterium in methane ({delta}D = -200 to -260{per_thousand}) with that of the co-produced waters (SD = -20 to -90176) suggests that the major source of this microbial gas is via the CO{sub 2} reduction pathway within the reservoir. Chemical and isotopic results also demonstrate a significant (up to 25%) component of thermogenic gas as the production interval depth increases. The connection between the timing of groundwater recharge, hydrogeochemistry and gas production within the Antrim Shale, Michigan Basin, is likely not unique and may find application to similar resources elsewhere.

  4. US WSC TX Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US TX No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  5. CleanTX Foundation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  6. AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT MI54 I See...

    National Nuclear Security Administration (NNSA)

    MI54 I See Block 16C I REQ. NO. Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 2. AMENDMENTIMODIFICATION NO. 1 3. EFFECTIVE DATE 1 4. ...

  7. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TX | Department of Energy 2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: Notice of Intent to Prepare an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas

  8. EDF Industrial Power Services (TX), LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EDF Industrial Power Services (TX), LLC Jump to: navigation, search Name: EDF Industrial Power Services (TX), LLC Place: Texas Phone Number: 877-432-4530 Website:...

  9. Price of Freeport, TX Liquefied Natural Gas Exports to Mexico...

    Energy Information Administration (EIA) (indexed site)

    Freeport, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) Price of Freeport, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic...

  10. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    Energy Information Administration (EIA) (indexed site)

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  11. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    Energy Information Administration (EIA) (indexed site)

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  12. TX-100 manufacturing final project report.

    SciTech Connect

    Ashwill, Thomas D.; Berry, Derek S.

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three

  13. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million...

    Energy Information Administration (EIA) (indexed site)

    Grande, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Rio Grande, TX ... 05312016 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Rio Grande

  14. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  15. Impact of reservoir properties and fractures on gas production, antrim shale, Michigan Basin. Topical report, January 1994

    SciTech Connect

    Caramanica, F.P.; Lorenzen, J.

    1994-01-01

    Eleven wells in Olsego, Ogemaw, and Sanilac Counties, Michigan were analyzed by use of the Antrim Shale specific log analysis model, and showed average porosities in each of three Antrim Shale Units (Lachine, Paxton, Norwood Shales) were constant for each unit in the three counties. The Norwood has the highest average porosity and the Paxton has the lowest. The Norwood Shale has the highest bulk volume hydrocarbons (BVH), whereas those values in the Lachine and Paxton are lower. The high BVH values for the Ogemaw County wells were not reflected in gas production rates, and commercial rates of gas production are not tied to the reservoir properties of: porosity, volume hydrocarbons, water saturation, formation resistivity, kerogen volume, and bulk volume of water. Enhanced formation image analysis techniques showed that the abundance of open and partially open fractures, as well as fracture intersections in the Lachine and Norwood Shales, are controlling factors for gas production. Fractures were mapped with respect to the borehole in 12 wells in the three counties. A fracture factor Z(sub f) was plotted against average gas production rates (Q) for eight Olsego County wells and one Ogemaw County well, and a relationship between the two may be established.

  16. RAPID/Roadmap/6-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-TX-b) The Texas...

  17. RAPID/Roadmap/19-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Water Access and Water Rights Overview (19-TX-a) In the late 1960's Texas...

  18. RAPID/Roadmap/14-TX-d | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-TX-d) Section 401 of the Clean Water Act (CWA)...

  19. RAPID/Roadmap/11-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Human Remains Process (11-TX-b) This flowchart illustrates the procedure a...

  20. RAPID/Roadmap/11-TX-c | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    11-TX-c.2 - Does the Project Area Contain a Recorded Archaeological Site? However, oil, gas, or other mineral exploration, production, processing, marketing, refining, or...

  1. RAPID/Roadmap/11-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered? If the developer discovers potential human remains during any...

  2. RAPID/Roadmap/15-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Permit to Construct (15-TX-a) This flowchart illustrates the general...

  3. RAPID/Roadmap/3-TX-i | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

  4. Price Liquefied Freeport, TX Natural Gas Exports Price to United...

    Annual Energy Outlook

    United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

  5. RAPID/Roadmap/6-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    must obtain the proper oversizeoverweight permit from the Texas Department of Motor Vehicles (TxDMV). 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating...

  6. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  7. Measurement of the direct <mi>CP> -violating parameter <mi>Ami><mi>CP> in the decay <mi>D>+<mi>Kmi>-<mimi>+<mi>π>+

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-12-01

    We measure the direct mi>Cmi>mi>P>-violating parameter mi>Ami>mi>Cmi>mi>Pmi> for the decay of the charged charm meson, mi>Dmi>+mi>Kmi>-mi>πmi>+mi>πmi>+ (and charge conjugate), using the full 10.4 mi>fbmi>-1 sample of mi>p>mi>p>¯ collisions at mi>smi>=1.96 mi>TeVmi> collected by the D0 detector at the Fermilab Tevatron collider. We extract the raw reconstructed charge asymmetry by fitting the invariant mass distributions for the sum and difference of charge-specific samples. This quantity is then corrected for detector-related asymmetries using data-driven methods and for possible physics asymmetries (from mi>B>mi>D

  8. Freeport, TX Liquefied Natural Gas Exports to Turkey (Million...

    Energy Information Administration (EIA) (indexed site)

    Turkey (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - No Data ...

  9. Freeport, TX Liquefied Natural Gas Exports to Egypt (Million...

    Energy Information Administration (EIA) (indexed site)

    Egypt (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - No Data ...

  10. Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...

    Energy Information Administration (EIA) (indexed site)

    Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  11. TxDOT Access Management Manual | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Access Management Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TxDOT Access Management ManualLegal Abstract Manual prepared...

  12. RAPID/Roadmap/12-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Contribute Contact Us State Biological Resource Considerations (12-TX-a) In Texas, no person may capture, trap, take, or kill, or attempt to capture, trap, take, or kill,...

  13. Freeport, TX Liquefied Natural Gas Exports Price to Egypt (Dollars...

    Energy Information Administration (EIA) (indexed site)

    Price to Egypt (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price to Egypt (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  14. RAPID/Roadmap/19-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    19-TX-b.6 - Does the Developer Own the Overlying Land? In Texas, the right to acquire and pump ground water is tied to the ownership of the land overlying the groundwater aquifer....

  15. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update

    individual company data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Alamo, TX Natural Gas Exports to...

  16. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...

    Annual Energy Outlook

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA...

  17. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update

    data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Alamo, TX Natural Gas Imports by Pipeline from...

  18. RAPID/Roadmap/19-TX-e | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    will not interfere with other water rights. 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  19. RAPID/Roadmap/3-TX-e | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    the leasing process. 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  20. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 392 1,937 10 168 2013 529 130 ...

  1. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million...

    Energy Information Administration (EIA) (indexed site)

    to Mexico (Million Cubic Feet) Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6,264 5,596 5,084 ...

  2. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  3. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  4. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  5. Advances in antrim shale technology, workshop sponsored by Gas Research Institute in cooperation with the Michigan Section SPE. Held in Mt. Pleasant, Michigan on December 13, 1994. Topical report

    SciTech Connect

    Hill, D.G.

    1994-12-01

    This collection of papers and presentations covers the following four sections of the workshop: (1) geologic/natural fracture characterization; (2) Gas Research Institute`s (GRI`s) Antrim Shale technology development project; (3) new project updates; and (4) new technology applications.

  6. ARM - Field Campaign - TX-2002 AIRS Validation Campaign

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsTX-2002 AIRS Validation Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : TX-2002 AIRS Validation Campaign 2002.11.18 - 2002.12.13 Lead Scientist : Robert Knuteson Abstract NASA is conducting an aircraft campaign for the validation of the AIRS and MODIS instruments on the EOS Aqua platform. The NASA high altitude ER-2 aircraft will be based in San Antonio, Texas. The ARM SGP central facility is one of the ground

  7. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  8. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    Energy Information Administration (EIA) (indexed site)

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  9. File:03-TX-e - Lease of Texas Parks & Wildlife Department Land...

    OpenEI (Open Energy Information) [EERE & EIA]

    3-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife...

  10. File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this...

  11. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  12. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  13. Rotary mode core sampling approved checklist: 241-TX-113

    SciTech Connect

    Fowler, K.D.

    1998-08-03

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-113 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  14. Rotary mode core sampling approved checklist: 241-TX-116

    SciTech Connect

    FOWLER, K.D.

    1999-02-24

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-116 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  15. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 2014 2,664 2015 2,805 2,728 2,947 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  16. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 2 3 1 2 8 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  17. Laredo, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 0 2016 3 7 8 18 12 21 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  18. Microsoft Word - TX-100 Final Report - SAND2007-6066.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manager: Tom Ashwill Abstract This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and...

  19. Price of Freeport, TX Natural Gas LNG Imports from Other Countries...

    Gasoline and Diesel Fuel Update

    Other Countries (Nominal Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports from Other Countries (Nominal Dollars per Thousand Cubic Feet) Year Jan Feb...

  20. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation system that supplies all of the home's electricity, heating, and cooling on site. The tri-generator is powered by a

  1. US ENC MI Site Consumption

    Energy Information Administration (EIA) (indexed site)

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  2. Staubli TX-90XL robot qualification at the LLIHE.

    SciTech Connect

    Covert, Timothy Todd

    2010-10-01

    The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

  3. ,"TX, State Offshore Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 15.19 10.00 10.00 10.00 10.00 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Pric

  5. CX-100 and TX-100 blade field tests.

    SciTech Connect

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  6. US ENC MI Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US MI No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  7. File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  8. TxDOT - Right of Way Forms webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Right of Way Forms webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TxDOT - Right of Way Forms webpage Abstract This webpage provides the...

  9. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 28 26 28 23 14 18 24 25 25 24 ...

  10. Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Mexico (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to Mexico

  11. Real-time sub-<mi>>ngstrom...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub-<mi>>ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Kisielowski, Christian; Wang,...

  12. ORNL measurements at Hanford Waste Tank TX-118

    SciTech Connect

    Koehler, P.E.; Mihalczo, J.T.

    1995-02-01

    A program of measurements and calculations to develop a method of measuring the fissionable material content of the large waste storage tanks at the Hanford, Washington, site is described in this report. These tanks contain radioactive waste from the processing of irradiated fuel elements from the plutonium-producing nuclear reactors at the Hanford site. Time correlation and noise analysis techniques, similar to those developed for and used in the Nuclear Weapons Identification System at the Y-12 Plant in Oak Ridge, Tennessee, will be used at the Hanford site. Both ``passive`` techniques to detect the neutrons emitted spontaneously from the waste in the tank and ``active`` techniques using AmBe and {sup 252}Cf neutron sources to induce fissions will be used. This work is divided into three major tasks: (1) development of high-sensitivity neutron detectors that can selectively count only neutrons in the high {gamma} radiation fields in the tanks, (2) Monte Carlo neutron transport calculations using both the KENO and MCNP codes to plan and analyze the measurements, and (3) the measurement of time-correlated neutrons by time and frequency analysis to distinguish spontaneous fission from sources inside the tanks. This report describes the development of the detector and its testing in radiation fields at the Radiation Calibration Facility at Oak Ridge National Laboratory and in tank TX-118 at the 200 W area at Westinghouse Hanford Company.

  13. Mi GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mi GmbH Jump to: navigation, search Name: Mi GmbH Place: Switzerland Zip: CH-6340 Sector: Solar Product: Baar-based manufacturer and distributor of fruit juices. The firm is also...

  14. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    SciTech Connect

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  15. miRNAs in brain development

    SciTech Connect

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  16. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  17. ,"Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  18. ,"Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  19. ,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release

  20. ,"Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  1. ,"Rio Grande, TX Natural Gas Pipeline Exports to Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Grande, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rio Grande, TX Natural Gas Pipeline Exports to Mexico (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  2. ,"Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  3. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601 2,644 2,897 2014 2,664 2015 2,805 2,728 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas

  4. Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157 3,085 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to South Korea

  5. Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Peru

  6. Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Norway (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,709 2,918 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Norway

  7. Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108 2012 2,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Yemen

  8. Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.43 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  9. Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 2,994 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from All Countries

  10. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX Liquefied Natural Gas Exports to Egyp

  11. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Other Countries (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports

  12. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars

    Energy Information Administration (EIA) (indexed site)

    per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  13. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX

    Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  14. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,414 4,236 5,595 6,174 4,938 ...

  15. DOE - Office of Legacy Management -- Detrex Corp - MI 10

    Office of Legacy Management (LM)

    Detroit , Michigan MI.10-1 Evaluation Year: 1987 MI.10-2 Site Operations: Conducted experimental runs relative to picklingdegreasing of one handful of uranium turnings MI.10-1...

  16. DOE - Office of Legacy Management -- Adrian - MI 01

    Office of Legacy Management (LM)

    Adrian - MI 01 FUSRAP Considered Sites Adrian, MI Alternate Name(s): Bridgeport Brass Co. Special Metals Extrusion Plant Bridgeport Brass Company General Motors General Motors Company, Adrian MI.01-1 Location: 1450 East Beecher Street, Adrian, Michigan MI.01-3 Historical Operations: Performed uranium extrusion research and development and metal fabrication work for the AEC using uranium, thorium, and plutonium. MI.01-2 Eligibility Determination: Eligible MI.01-1 Radiological Survey(s):

  17. DOE - Office of Legacy Management -- Oliver Corp - MI 11

    Office of Legacy Management (LM)

    OLIVER CORP. (MI.11 ) Eliminated from further consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: Behnke Warehousing Incorporated MI.11-1...

  18. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  19. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 12.95 14.71 2015 15.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from

  20. Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  1. Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Price (Dollars per Thousand Cubic Feet) Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 17 17 2016 10 8 8 10 10 10 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  2. The NuMI neutrino beam

    DOE PAGES [OSTI]

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  3. The NuMI Neutrino Beam

    SciTech Connect

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Berstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A.B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallahger, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M.S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Sher, S. Moed; Moore, C. D.; Morfin, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlovic, Z.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfutzner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  4. Texas A&M University College Station, TX 77843-3366

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MS #3366 Texas A&M University College Station, TX 77843-3366 Ph: 979-845-1411 Fax: 979-458-3213 Beam Time Request Form In order to be scheduled you must fill in and return this form by FAX (979-458-3213) or email to Henry Clark (clark@comp.tamu.edu) TO SCHEDULE CYCLOTRON TIME: Please indicate in the appropriate spaces below the number of 8 hour shifts you need, your preferred start date and the beams you intend to use. Since we cannot always schedule your preferred start date, please also

  5. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  6. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2014 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  7. ,"El Paso, TX Natural Gas Pipeline Exports to Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Exports to Mexico (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  8. ,"El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  9. ,"Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2014 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  10. ,"McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2014 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  11. Price of Freeport, TX Liquefied Natural Gas Exports Price to Turkey

    Energy Information Administration (EIA) (indexed site)

    (Dollars per Thousand Cubic Feet) Price to Turkey (Dollars per Thousand Cubic Feet) Price of Freeport, TX Liquefied Natural Gas Exports Price to Turkey (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 15.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  12. Price of Freeport, TX Liquefied Natural Gas Exports to Egypt (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Egypt (Dollars per Thousand Cubic Feet) Price of Freeport, TX Liquefied Natural Gas Exports to Egypt (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 16.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by

  13. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 13.83 4.51 2010's 6.96 9.27 10.53 14.85 13.88 15.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Exports to

  14. Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.06 2.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  15. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  16. ,"Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  17. ,"TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"TX, RRC District 1 Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"TX, RRC District 1 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"TX, RRC District 1 Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"TX, RRC District 10 Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"TX, RRC District 10 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"TX, RRC District 10 Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"TX, RRC District 2 Onshore Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"TX, RRC District 3 Onshore Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"TX, RRC District 4 Onshore Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"TX, RRC District 5 Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"TX, RRC District 5 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"TX, RRC District 5 Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"TX, RRC District 6 Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"TX, RRC District 6 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"TX, RRC District 6 Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"TX, RRC District 7B Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"TX, RRC District 7B Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"TX, RRC District 7B Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"TX, RRC District 7C Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"TX, RRC District 7C Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"TX, RRC District 7C Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"TX, RRC District 8 Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"TX, RRC District 8 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"TX, RRC District 8 Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"TX, RRC District 8A Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"TX, RRC District 8A Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"TX, RRC District 8A Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"TX, RRC District 9 Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"TX, RRC District 9 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"TX, RRC District 9 Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  7. ,"TX, State Offshore Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"TX, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"TX, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015" ,"Next

  10. ,"TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  11. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.09 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  12. Freeport, TX Liquefied Natural Gas Exports to India (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Liquefied Natural Gas Exports to India (Million Cubic Feet) (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to India (Million Cubic Feet) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,120 2,873 2012 3,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural

  13. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and

    Energy Information Administration (EIA) (indexed site)

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,706 2012 2,872 2014 2,994 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point

  14. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,902 4,896 4,100 18,487 4,900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  15. Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Dollars per Thousand Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 16.950 17.180 2016 9.870 7.860 8.270 9.780 9.710 9.710 9.710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  16. Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0.512 0.497 2016 2.732 6.966 8.196 17.926 12.429 21.171 22.582 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  17. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 1. Interim research report

    SciTech Connect

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG). Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced LPG and differentials between propane and gasoline/diesel in infrastructure costs for a fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Sensitivity analyses are performed on the discount rate, price of propane, maintenance savings, vehicle utilization, diesel vehicles, extended vehicle life, original equipment manufacturer (OEM) vehicles, and operating and infrastructure costs. The best results are obtained when not converting diesel vehicles, converting only large fleets, and extending the period the vehicle is kept in service. Combining these factors yields results that are most cost-effective for TxDOT. This is volume one of two volumes.

  18. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 2. Interim research report

    SciTech Connect

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-11-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG), commonly called propane. Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced propane and differentials between propane and gasoline/diesel in infrastructure costs, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT locations that can be converted to propane without additional financial outlays. This is volume two of two volumes.

  19. Port Huron, MI Liquefied Natural Gas Exports to Canada (Million...

    Energy Information Administration (EIA) (indexed site)

    Huron, MI Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  20. DOE - Office of Legacy Management -- Naval Ordnance Plant - MI...

    Office of Legacy Management (LM)

    Eliminated from further consideration under FUSRAP - Referred to DoD for action Designated ... MI.0-03-1 Site Disposition: Eliminated - No Authority - Referred to DoD MI.0-03-1 ...

  1. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    SciTech Connect

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai; Esau, Christine; Gusev, Yuriy; Lerner, Megan R.; Postier, Russell G.; Brackett, Daniel J.; Schmittgen, Thomas D.

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  2. “Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- <mi>Tmi>c> superconductors

    SciTech Connect

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recently it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the <mi>d>-wave nodal lines (nodal gap) contrasts the common understanding of the <mi>d>-wave pairing symmetry, which challenges the present theories for the high-<mi>Tmi><mi>c>superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-<mi>Tmi><mi>c>superconductors.

  3. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  4. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  5. Characterization of function and regulation of miR-24-1 and miR-31

    SciTech Connect

    Sun Fenyong; Wang Jiayi; Pan Qiuhui; Yu Yongchun; Zhang Yue; Wan Yang; Wang Ju; Li Xiaoyan; Hong An

    2009-03-13

    To date, numerous microRNAs (miRNAs) have been discovered. However, the function of these miRNAs is largely unknown. While our knowledge of miRNA post-transcriptional processing has greatly expanded in recent years, we have a limited understanding of the regulation and transcription of miRNA genes. In this study, we characterized two BMP-2 upregulated miRNAs, miR-24-1 and miR-31, in mesenchymal stem cells and showed their opposing function in controlling cellular proliferation, and adipogenesis. Furthermore, we are the first to identify and characterize mouse intronic miR-23b{approx}27b{approx}24-1 and intergenic miR-31 genes. Moreover, we found that pri-miR-23b, pri-miR-27b, and pri-miR-24-1 are transcribed independently and their expression profiles are unique when cells are treated with BMP-2, even though they are located closely together.

  6. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  7. Magnetocrystalline anisotropy in <mi>UMn>2<mi>Ge>2 and related Mn-based actinide ferromagnets

    SciTech Connect

    Parker, David S.; Ghimire, Nirmal; Singleton, John; Thompson, J. D.; Bauer, Eric D.; Baumbach, Ryan; Mandrus, David; Li, Ling; Singh, David J.

    2015-05-04

    We present magnetization isotherms in pulsed magnetic fields up to 62 Tesla, supported by first principles calculations, demonstrating a huge uniaxial magnetocrystalline anisotropy energy - approximately 20 MJ/m3 - in <mi>UMn>2<mi>Ge>2. This large anisotropy results from the extremely strong spin-orbit coupling affecting the uranium 5 f electrons, which in the calculations exhibit a substantial orbital moment exceeding 2 μB. Finally, we also find from theoretical calculations that a number of isostructural Mn-actinide compounds are expected to have similarly large anisotropy.

  8. DOE - Office of Legacy Management -- Star Cutter Corp - MI 15

    Office of Legacy Management (LM)

    Eliminated - Potential for contamination considered remote based on limited scope and quantity of materials handled MI.15-2 Radioactive Materials Handled: Yes Primary ...

  9. MINOS Experiment and NuMI Beam Home Page

    U.S. Department of Energy (DOE) - all webpages

    NuMI-MINOS Neutrino Logo NuMI Beamline and MINOS Experiment Neutrino Logo The MINOS Experiment and NuMI Beamline Fermilab Logo MINOS Experiment Links ◊ MINOS for the Public ◊ Scientific Results ◊ MINOS at Work ◊ NuMI at Work ◊ MINOS+ Experiment Fermilab Neutrino Links ◊ Neutrino FAQ ◊ MINOS Underground Areas at Fermilab ◊ PPD Intensity Frontier Dept Back to - - - ◊ Fermilab at Work ◊ Fermilab Home the MINOS Far Detector in the Soudan Mine MINOS collaborators assembling the

  10. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes

    DOE PAGES [OSTI]

    Come, Jeremy; Xie, Yu; Naguib, Michael; Jesse, Stephen; Kalinin, Sergei V.; Gogotsi, Yury; Kent, Paul R. C.; Balke, Nina

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti3C2Tx) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  11. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  12. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    SciTech Connect

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the

  13. ,"TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  14. ,"TX, RRC District 1 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  15. ,"TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  16. ,"TX, RRC District 10 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  17. ,"TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  18. ,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  19. ,"TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  20. ,"TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  1. ,"TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2010" ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  3. ,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  4. ,"TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  5. ,"TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  6. ,"TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  8. ,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  9. ,"TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  10. ,"TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  11. ,"TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  13. ,"TX, RRC District 5 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  14. ,"TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  15. ,"TX, RRC District 6 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  16. ,"TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  17. ,"TX, RRC District 7B Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"TX, RRC District 7B Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  19. ,"TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  1. ,"TX, RRC District 7C Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"TX, RRC District 7C Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  3. ,"TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2010" ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  5. ,"TX, RRC District 8 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  6. ,"TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  7. ,"TX, RRC District 8A Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"TX, RRC District 8A Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  9. ,"TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2012" ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  11. ,"TX, RRC District 9 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  12. ,"TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015"

  13. miR-92a family and their target genes in tumorigenesis and metastasis

    SciTech Connect

    Li, Molin; Guan, Xingfang; Sun, Yuqiang; Mi, Jun; Shu, Xiaohong; Liu, Fang; Li, Chuangang

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  14. Port Huron, MI Natural Gas Pipeline Imports From Canada (Million...

    Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 262 - No Data Reported; ...

  15. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  16. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells

    SciTech Connect

    Zhang, Mingjun; Wang, Xiaolei; Li, Wanhu; Cui, Yongchun

    2015-05-08

    Although a series of oncogenes and tumor suppressors were identified in the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism were still not fully understood. The current study explored the expression profile of miR-107 and miR-25 in GAC patients and their downstream regulative network. qRT-PCR analysis was performed to quantify the expression of these two miRNAs in serum samples from both patients and healthy controls. Dual luciferase assay was conducted to verify their putative bindings with LATS2. MTT assay, cell cycle assay and transwell assay were performed to explore how miR-107 and miR-25 regulate proliferation and invasion of gastric cancer cells. Findings of this study demonstrated that total miR-107 or miR-25 expression might be overexpressed in gastric cancer patients and they can simultaneously and synchronically regulate LATS2 expression, thereby affecting gastric cancer cell growth and invasion. Therefore, the miR-25/miR-107-LATS2 axis might play an important role in proliferation and invasion of the gastric cancer cells. - Highlights: • Total miR-107 and miR-25 expression is significantly increased in GAC patients. • Both miR-107 and miR-25 can promote proliferation and invasion of GAC cells. • Both miR-107 and miR-25 can target LATS2 and regulate its expression. • miR-107 and miR-25 regulate proliferation and invasion of GAC cells though LATS2.

  17. Better Buildings Residential Network Program Sustainability/Working...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    * Ann Arbor, MI * Atlanta, GA * Austin, TX * Boulder, CO * Marquette, MI * Omaha, NE * Opportunity Studies * Superior Watersheds * Clean Energy Coalition (MI) 7152013 ...

  18. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  19. MiR-218 Mediates tumorigenesis and metastasis: Perspectives and implications

    SciTech Connect

    Lu, Ying-fei; Zhang, Li; Waye, Mary Miu Yee; Fu, Wei-ming; Zhang, Jin-fang

    2015-05-15

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. As a highly conserved miRNA across a variety of species, microRNA-218 (miR-218) was found to play pivotal roles in tumorigenesis and progression. A group of evidence has demonstrated that miR-218 acts as a tumor suppressor by targeting many oncogenes related to proliferation, apoptosis and invasion. In this review, we provide a complex overview of miR-218, including its regulatory mechanisms, known functions in cancer and future challenges as a potential therapeutic target in human cancers. - Highlights: • miR-218 is frequently down regulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  20. Alternating magnetic anisotropy of Li2(Li1xTx)N(T=Mn,Fe,Co,andNi)

    DOE PAGES [OSTI]

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreAs a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less

  1. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE PAGES [OSTI]

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  2. NuMI Low Energy Flux Prediction Release

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NuMI Low Energy Flux Prediction Release Neutrino Flux Predictions for the NuMI Beam hep-ex/1607.00704 Data Ancillary data files for this result are available on arXiv at http://arxiv.org/src/1607.00704/anc Among the available data files are: pdf file describing format of all the available files root file of all the available fluxes python code to read and process MINERvA's flux predictions Text Files of the flux, uncertainties, and covariance matrix, with units of neutrinos/m^2/POT, in 0.5 GeV

  3. miRNA-205 affects infiltration and metastasis of breast cancer

    SciTech Connect

    Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xian 710300 ; Liao, Hehe; Deng, Zhiping; Yang, Po; Du, Ning; Zhanng, Yunfeng; Ren, Hong

    2013-11-08

    Highlights: We detected expression of miR-205 in breast cancer cell lines and tissue samples. We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. We suggest the lower expression of miR-205 play a role in breast cancer onset. These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expression level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3? untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.

  4. Ground Motion Studies at NuMI

    SciTech Connect

    Mayda M. Velasco; Michal Szleper

    2012-02-20

    Ground motion can cause significant deterioration in the luminosity of a linear collider. Vibration of numerous focusing magnets causes continuous misalignments, which makes the beam emittance grow. For this reason, understanding the seismic vibration of all potential LC sites is essential and related efforts in many sites are ongoing. In this document we summarize the results from the studies specific to Fermilab grounds as requested by the LC project leader at FNAL, Shekhar Mishra in FY04-FY06. The Northwestern group focused on how the ground motion effects vary with depth. Knowledge of depth dependence of the seismic activity is needed in order to decide how deep the LC tunnel should be at sites like Fermilab. The measurements were made in the NuMI tunnel, see Figure 1. We take advantage of the fact that from the beginning to the end of the tunnel there is a height difference of about 350 ft and that there are about five different types of dolomite layers. The support received allowed to pay for three months of salary of Michal Szleper. During this period he worked a 100% of his time in this project. That include one week of preparation: 2.5 months of data taking and data analysis during the full period of the project in order to guarantee that we were recording high quality data. We extended our previous work and made more systematic measurements, which included detailed studies on stability of the vibration amplitudes at different depths over long periods of time. As a consequence, a better control and more efficient averaging out of the daytime variation effects were possible, and a better study of other time dependences before the actual depth dependence was obtained. Those initial measurements were made at the surface and are summarized in Figure 2. All measurements are made with equipment that we already had (two broadband seismometers KS200 from GEOTECH and DL-24 portable data recorder). The offline data analysis took advantage of the full Fourier spectra

  5. DOE - Office of Legacy Management -- Mitts-Merrill Co - MI 14

    Office of Legacy Management (LM)

    1993 MI.14-2 Site Operations: Reduced thorium metal chunks into particle sized pieces ... Primary Radioactive Materials Handled: Thorium MI.14-1 Radiological Survey(s): Yes - ...

  6. DOE - Office of Legacy Management -- Mitts-Merrel Co - MI 14

    Office of Legacy Management (LM)

    1993 MI.14-2 Site Operations: Reduced thorium metal chunks into particle sized pieces ... Primary Radioactive Materials Handled: Thorium MI.14-1 Radiological Survey(s): Yes - ...

  7. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    SciTech Connect

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-02-15

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.

  8. Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1...

  9. Neutron scattering study of spin ordering and stripe pinning in superconducting <mi>La>1.93<mi>Sr>0.07<mi>CuO>4

    SciTech Connect

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; Winn, B. L.; Chang, S.; Hücker, M.; Gu, G. D.; Tranquada, J. M.

    2015-11-20

    The relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in <mi>La>1.93<mi>Sr>0.07<mi>CuO>4 a superconductor with a transition temperature of Tc = 20 K. At T<< Tc, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2 planes. Moreover, we observed a weak elastic (3 30) superlattice peak that implies a reduced lattice symmetry. The presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La2-xSrxCuO4. The coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.

  10. MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma

    SciTech Connect

    Xiong, Xinkui; Sun, Daoyi; Chai, Hao; Shan, Wengang; Yu, Yue; Pu, Liyong; Cheng, Feng

    2015-09-18

    The dysregulation of micro (mi)RNAs is associated with cancer development. The miRNA miR-145 is downregulated in intrahepatic cholangiocarcinoma (ICC); however, its precise role in tumor progression has not yet been elucidated. Novel (nua) kinase family (NUAK)1 functions as an oncogene in various cancers and is a putative target of miR-145 regulation. In this study, we investigated the regulation of NUAK1 by miR-145 in ICC. We found that miR-145 level was significantly decreased in ICC tissue and cell lines, which corresponded with an increase in NUAK1 expression. NUAK1 was found to be a direct target of miR-145 regulation. The overexpression of miR-145 in ICC cell lines inhibited proliferation, growth, and invasion by suppressing NUAK1 expression, which was associated with a decrease in Akt signaling and matrix metalloproteinase protein expression. Similar results were observed by inhibiting NUAK1 expression. These results demonstrate that miR-145 can prevent ICC progression by targeting NUAK1 and its downstream effectors, and can therefore be useful for clinical diagnosis and targeted therapy of ICC. - Highlights: • MiR-145 suppresses ICC proliferation and invasion abilities. • We demonstrated that miR-145 directly targets NUAK1 in ICC. • MiR-145 expression in ICC was associated with Akt signaling and MMPs expression.

  11. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    SciTech Connect

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  12. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    SciTech Connect

    Luo, Shuang; Wang, Jidong; Ma, Ying; Yao, Zhenwei; Pan, Hongjuan

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  13. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function

    DOE PAGES [OSTI]

    Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury

    2015-12-08

    MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T standsmore » for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less

  14. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    SciTech Connect

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  15. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1

    SciTech Connect

    Lerner, Mikael; Harada, Masako; Loven, Jakob; Castro, Juan; Davis, Zadie; Oscier, David; Henriksson, Marie; Sangfelt, Olle; Grander, Dan; Corcoran, Martin M.

    2009-10-15

    The microRNAs miR-15a and miR-16-1 are downregulated in multiple tumor types and are frequently deleted in chronic lymphocytic leukemia (CLL), myeloma and mantle cell lymphoma. Despite their abundance in most cells the transcriptional regulation of miR-15a/16-1 remains unclear. Here we demonstrate that the putative tumor suppressor DLEU2 acts as a host gene of these microRNAs. Mature miR-15a/miR-16-1 are produced in a Drosha-dependent process from DLEU2 and binding of the Myc oncoprotein to two alterative DLEU2 promoters represses both the host gene transcript and levels of mature miR-15a/miR-16-1. In line with a functional role for DLEU2 in the expression of the microRNAs, the miR-15a/miR-16-1 locus is retained in four CLL cases that delete both promoters of this gene and expression analysis indicates that this leads to functional loss of mature miR-15a/16-1. We additionally show that DLEU2 negatively regulates the G1 Cyclins E1 and D1 through miR-15a/miR-16-1 and provide evidence that these oncoproteins are subject to miR-15a/miR-16-1-mediated repression under normal conditions. We also demonstrate that DLEU2 overexpression blocks cellular proliferation and inhibits the colony-forming ability of tumor cell lines in a miR-15a/miR-16-1-dependent way. Together the data illuminate how inactivation of DLEU2 promotes cell proliferation and tumor progression through functional loss of miR-15a/miR-16-1.

  16. HIA 2015 DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C./Green Extreme Homes, CDC, McKinley Project, Garland TX

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Franklin Homes, L.C./ Green Extreme Homes, CDC McKinley Project Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research.

  17. Microfluidic Molecular Assay Platform for the Detection of miRNAs...

    Office of Scientific and Technical Information (OSTI)

    Article: Microfluidic Molecular Assay Platform for the Detection of miRNAs, mRNAs, Proteins, and Post-translational Modifications at Single-cell Resolution. Citation Details...

  18. DOE - Office of Legacy Management -- Baker-Perkins Co - MI 13

    Office of Legacy Management (LM)

    Site Disposition: Eliminated - Potential for contamination remote based on limited scope of activities at the site MI.13-3 Radioactive Materials Handled: Yes Primary ...

  19. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    SciTech Connect

    Shao, Mingchen; Geng, Yiwei; Lu, Peng; Xi, Ying; Wei, Sidong; Wang, Liuxing; Fan, Qingxia; Ma, Wang

    2015-09-04

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.

  20. Groundwater protection for the NuMI project

    SciTech Connect

    Wehmann, A.; Smart, W.; Menary, S.; Hylen, J.; Childress, S.

    1997-10-01

    The physics requirements for the long base line neutrino oscillation experiment MINOS dictate that the NuMI beamline be located in the aquifer at Fermilab. A methodology is described for calculating the level of radioactivation of groundwater caused by operation of this beamline. A conceptual shielding design for the 750 meter long decay pipe is investigated which would reduce radioactivation of the groundwater to below government standards. More economical shielding designs to meet these requirements are being explored. Also, information on local geology, hydrogeology, government standards, and a glossary have been included.

  1. SU-E-J-48: Imaging Origin-Radiation Isocenter Coincidence for Linac-Based SRS with Novalis Tx

    SciTech Connect

    Geraghty, C; Workie, D; Hasson, B

    2015-06-15

    Purpose To implement and evaluate an image-based Winston-Lutz (WL) test to measure the displacement between ExacTrac imaging origin and radiation isocenter on a Novalis Tx system using RIT V6.2 software analysis tools. Displacement between imaging and radiation isocenters was tracked over time. The method was applied for cone-based and MLC-based WL tests. Methods The Brainlab Winston-Lutz phantom was aligned to room lasers. The ExacTrac imaging system was then used to detect the Winston- Lutz phantom and obtain the displacement between the center of the phantom and the imaging origin. EPID images of the phantom were obtained at various gantry and couch angles and analyzed with RIT calculating the phantom center to radiation isocenter displacement. The RIT and Exactrac displacements were combined to calculate the displacement between imaging origin and radiation isocenter. Results were tracked over time. Results Mean displacements between ExacTrac origin and radiation isocenter were: VRT: −0.1mm ± 0.3mm, LNG: 0.5mm ± 0.2mm, LAT: 0.2mm ± 0.2mm (vector magnitude of 0.7 ± 0.2mm). Radiation isocenter was characterized by the mean of the standard deviations of the WL phantom displacements: σVRT: 0.2mm, σLNG: 0.4mm, σLAT: 0.6mm. The linac couch base was serviced to reduce couch walkout. This reduced σLAT to 0.2mm. These measurements established a new baseline of radiation isocenter-imaging origin coincidence. Conclusion The image-based WL test has ensured submillimeter localization accuracy using the ExacTrac imaging system. Standard deviations of ExacTrac-radiation isocenter displacements indicate that average agreement within 0.3mm is possible in each axis. This WL test is a departure from the tradiational WL in that imaging origin/radiation isocenter agreement is the end goal not lasers/radiation isocenter.

  2. LBNL: Architecture 2030 District Program and Small Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Silicon Valley City of San Jose - San Jose, CA - Arizona State University - Phoenix, AZ - Emerging 2030 Districts - Ann Arbor, MI; Detroit, MI; San Antonio, TX; Ithaca, ...

  3. ~tx410.ptx

    Energy Information Administration (EIA) (indexed site)

    ASA Committee Discussion. . . . . . . . . . . 48 Breakout Sessions New Biodiesel Fuel ... ASA Summary of New Biodiesel Fuel Survey. . .128 Barbara Forsyth ASA Summary of Economics ...

  4. ~tx421.ptx

    Energy Information Administration (EIA) (indexed site)

    ... time periods in which that 12 price really jumped around. ... term energy outlooks and long-term energy 13 outlooks right. ... and 20 coal and the other fuel groups, we're 21 releasing ...

  5. Training Session: Euless, TX

    Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  6. D&TX

    Office of Legacy Management (LM)

    Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un 1 0 * the >rt &Fzz d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS of Science a2 3152-37 ...

  7. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  8. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19

    SciTech Connect

    Shan, Nianxi; Shen, Liangfang; Wang, Jun; He, Dan; Duan, Chaojun

    2015-01-02

    Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues and cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC.

  9. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    SciTech Connect

    Zhai, Jian; Qu, Shuping; Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia; Qu, Zengqiang; Wu, Dong

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  10. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells

    SciTech Connect

    Li, Junxia; Shan, Fabo; Xiong, Gang; Wang, Ju-Ming; Wang, Wen-Lin; Xu, Xueqing; Bai, Yun

    2014-03-28

    Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma.

  11. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC

    SciTech Connect

    Li, Xin; Wang, Hong-liang; Peng, Xin; Zhou, Hui-fang; Wang, Xin

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer miR-1297 was found to be overexpressed in LSCC and contribute to the cell progression. Black-Right-Pointing-Pointer PTEN was confirmed to be a target gene of miR-1297. Black-Right-Pointing-Pointer Downregulation of PTEN can rescue the proliferation and invasion ability of miR-1297 downregulated Hep-2 cells. Black-Right-Pointing-Pointer Downregulation of miR-1297 inhibits tumor growth in vivo. -- Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.

  12. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2

    SciTech Connect

    Fu, Jing; Xu, Xiaojie; Kang, Lei; Zhou, Liying; Wang, Shibin; Lu, Juming; Cheng, Long; Fan, Zhongyi; Yuan, Bin; Tian, Peirong; Zheng, Xiaofei; Yu, Chengze; Ye, Qinong; Lv, Zhaohui

    2014-03-07

    Highlights: • miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. • The miR-30a/EYA2 axis regulates breast cancer cell proliferation and migration. • The miR-30a/EYA2 axis modulates G1/S cell cycle progression. • The miR-30a/EYA2 axis is dysregulated in breast cancer patients. - Abstract: Eye absent (Eya) proteins are involved in cell fate determination in a broad spectrum of cells and tissues. Aberrant expression of Eya2 has been documented in a variety of cancers and correlates with clinical outcome. However, whether microRNAs (miRNAs) can regulate Eya2 expression remains unknown. Here, we show that miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. Overexpression of Eya2 in miR-30a-transfected breast cancer cells effectively rescued the inhibition of cell proliferation and migration caused by miR-30a. Knockdown of Eya2 by small-interfering RNA (siRNA) in breast cancer cells mimicked the effect induced by miR-30a and abolished the ability of miR-30a to regulate breast cancer cell proliferation and migration. The miR-30a/Eya2 axis could regulate G1/S cell cycle progression, accompanied by the modulation of expression of cell cycle-related proteins, including cyclin A, cyclin D1, cyclin E, and c-Myc. Moreover, miR-30a expression was downregulated in breast cancer patients, and negatively correlated with Eya2, which was upregulated in breast cancer patients. These data suggest that the miR-30a/Eya2 axis may play an important role in breast cancer development and progression and that miR-30a activation or Eya2 inhibition may be a useful strategy for cancer treatment.

  13. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    SciTech Connect

    Liu, Shikai; Song, Lili Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-04-17

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.

  14. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    SciTech Connect

    Zhou, Chuanyi; Shen, Liangfang; Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi

    2015-02-27

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells.

  15. Marysville, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10 1,827 135 2000's NA NA 74 0 303 0 24 876 2,252 5,651 2010's 5,694 9,946 8,099 2,337 4,650 1,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Marysville, MI Natural Gas Imports by Pipeli

  16. Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.48 2.17 2.06 2000's NA NA 3.95 -- 7.80 -- 7.07 7.59 8.59 3.80 2010's 4.44 4.42 2.99 4.15 6.86 2.73 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Marysville, MI Natural Gas

  17. NuMI proton kicker extraction magnet termination resistor system

    SciTech Connect

    Reeves, S.R.; Jensen, C.C.; /Fermilab

    2005-05-01

    The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert{reg_sign} FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert{reg_sign} must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert{reg_sign} processing system are described. Early performance results will be presented.

  18. Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells

    SciTech Connect

    Kim, Byeong-Moo; Choi, Michael Y.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generate mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.

  19. miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma

    SciTech Connect

    Zhu, Hongling; Fang, Jin; Zhang, Jichen; Zhao, Zefei; Liu, Lianyong; Wang, Jingnan; Xi, Qian; Gu, Mingjun

    2014-07-18

    Highlights: miR-182 and CHL1 expression patterns are negatively correlated. CHL1 is a direct target of miR-182 in PTC cells. miR-182 suppression inhibits PTC cell growth and invasion. CHL1 is involved in miR-182-mediated cell behavior. - Abstract: In this study, we investigated the role and underlying mechanism of action of miR-182 in papillary thyroid carcinoma (PTC). Bioinformatics analysis revealed close homolog of LI (CHL1) as a potential target of miR-182. Upregulation of miR-182 was significantly correlated with CHL1 downregulation in human PTC tissues and cell lines. miR-182 suppressed the expression of CHL1 mRNA through direct targeting of the 3?-untranslated region (3?-UTR). Downregulation of miR-182 suppressed growth and invasion of PTC cells. Silencing of CHL1 counteracted the effects of miR-182 suppression, while its overexpression mimicked these effects. Our data collectively indicate that miR-182 in PTC promotes cell proliferation and invasion through direct suppression of CHL1, supporting the potential utility of miR-182 inhibition as a novel therapeutic strategy against PTC.

  20. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial–mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells

    SciTech Connect

    Liu, Dongjing; Wu, Jilin; Liu, Meizhou; Yin, Hui; He, Jiantai; Zhang, Bo

    2015-09-04

    Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulated miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the

  1. miR-128 and its target genes in tumorigenesis and metastasis

    SciTech Connect

    Li, Molin, E-mail: molin_li@hotmail.com [Dalian Medical University, Dalian 116044 (China); Fu, Weiming [Center for Food Safety and Environmental Technology, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458 (China); Wo, Lulu; Shu, Xiaohong [Dalian Medical University, Dalian 116044 (China); Liu, Fang [The second affiliated hospital of Dalian Medical University, Dalian 116023 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [The second affiliated hospital of Dalian Medical University, Dalian 116023 (China)

    2013-12-10

    MicroRNAs (miRNAs) are a class of endogenous, non-coding, 1824 nucleotide length single-strand RNAs that could modulate gene expression at post-transcriptional level. Previous studies have shown that miR-128 enriched in the brain plays an important role in the development of nervous system and the maintenance of normal physical functions. Aberrant expression of miR-128 has been detected in many types of human tumors and its validated target genes are involved in cancer-related biological processes such as cell proliferation, differentiation and apoptosis. In this review, we will summarize the roles of miR-128 and its target genes in tumorigenesis and metastasis. - Highlights: Aberrant expression of miR-128 can be observed in many kinds of malignant tumors. The molecular mechanisms regulating miR-128 expression are elucidated. Roles of miR-128 and its target genes in tumorigenesis and metastasis are summarized.

  2. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation

    SciTech Connect

    Mizuno, Yosuke; Yagi, Ken; Tokuzawa, Yoshimi; Kanesaki-Yatsuka, Yukiko; Suda, Tatsuo; Katagiri, Takenobu; Fukuda, Toru; Maruyama, Masayoshi; Okuda, Akihiko; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Tashiro, Hideo; Okazaki, Yasushi

    2008-04-04

    Although various microRNAs regulate cell differentiation and proliferation, no miRNA has been reported so far to play an important role in the regulation of osteoblast differentiation. Here we describe the role of miR-125b in osteoblastic differentiation in mouse mesenchymal stem cells, ST2, by regulating cell proliferation. The expression of miR-125b was time-dependently increased in ST2 cells, and the increase in miR-125b expression was attenuated in osteoblastic-differentiated ST2 cells induced by BMP-4. The transfection of exogenous miR-125b inhibited proliferation of ST2 cells and caused inhibition of osteoblastic differentiation. In contrast, when the endogenous miR-125b was blocked by transfection of its antisense RNA molecule, alkaline phosphatase activity after BMP-4 treatment was elevated. These results strongly suggest that miR-125b is involved in osteoblastic differentiation through the regulation of cell proliferation.

  3. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  4. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer

    Office of Scientific and Technical Information (OSTI)

    Cells by Targeting the TLR1/NF-κB Signaling Pathway (Journal Article) | SciTech Connect miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway Citation Details In-Document Search Title: miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation.

  5. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    SciTech Connect

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.

  6. File:USDA-CE-Production-GIFmaps-MI.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MI.pdf Jump to: navigation, search File File history File usage Michigan Ethanol Plant Locations Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Full...

  7. Simulations of neutron multiplicity measurements with MCNP-PoliMi.

    SciTech Connect

    Mattingly, John K.; Pozzi, Sara A.; Clarke, Shaun D.; Dennis, Ben D.; Miller, Eric C.

    2010-09-01

    The heightened focus on nuclear safeguards and accountability has increased the need to develop and verify simulation tools for modeling these applications. The ability to accurately simulate safeguards techniques, such as neutron multiplicity counting, aids in the design and development of future systems. This work focuses on validating the ability of the Monte Carlo code MCNPX-PoliMi to reproduce measured neutron multiplicity results for a highly multiplicative sample. The benchmark experiment for this validation consists of a 4.5-kg sphere of plutonium metal that was moderated by various thicknesses of polyethylene. The detector system was the nPod, which contains a bank of 15 3He detectors. Simulations of the experiments were compared to the actual measurements and several sources of potential bias in the simulation were evaluated. The analysis included the effects of detector dead time, source-detector distance, density, and adjustments made to the value of {nu}-bar in the data libraries. Based on this analysis it was observed that a 1.14% decrease in the evaluated value of {nu}-bar for 239Pu in the ENDF-VII library substantially improved the accuracy of the simulation.

  8. Climate Action Champions: Sault Ste. Marie Tribe of Chippewa Indians, MI |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Sault Ste. Marie Tribe of Chippewa Indians, MI Climate Action Champions: Sault Ste. Marie Tribe of Chippewa Indians, MI The Sault Ste. Marie Tribe of Chippewa Indians is a 44,000-strong federally recognized Indian tribe that is an economic, social and cultural force in its community across the eastern Upper Peninsula counties of Chippewa, Luce, Mackinac, Schoolcraft, Alger, Delta and Marquette, with housing and tribal centers, casinos, and other enterprises that employ

  9. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    SciTech Connect

    Zhang, Jie; Zheng, Fangxia; Yu, Gang; Yin, Yanhua; Lu, Qingyang

    2013-11-01

    Highlights: miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. miR-196a expression elevated proliferation and migration of cervical cancer cells. miR-196a inhibited NTN4 expression by binding 3?-UTR region of NTN4 mRNA. NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 23 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3?-untranslated region (3?-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the functional role of

  10. <mi>B> -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R. S.; Witzel, O.

    2015-03-01

    We calculate the mi>Bmi>-meson decay constants mi>fmi>mi>Bmi>, mi>fmi>mi>Bmi>mi>smi>, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic mi>b> quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of mi>ami>0.11, 0.086 fm with unitary pion masses as light as mi>Mmi>mi>πmi>290mi>MeV>; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the mi>b> quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the

  11. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1

    SciTech Connect

    Xu, Zhengyu; Wang, Tao

    2014-06-27

    Highlights: • miR-214 is upregulated in human OS tissues and inversely correlated with LZTS1 expression. • miR-214 directly targets LZTS1 by binding to its 3′-UTR. • miR-214 promotes OS cell proliferation, invasion and tumor growth. • Overexpression of LZTS1 reverses miR-214-induced proliferation and invasion of OS cells. - Abstract: Previous studies have shown that miR-214 functions either as an oncogene or a tumor suppressor in various human cancer types. The role of this microRNA in osteosarcoma (OS) is presently unclear. Here, we demonstrated that miR-214 is frequently upregulated in OS specimens, compared with noncancerous bone tissues. Bioinformatics analysis further revealed leucine zipper, putative tumor suppressor 1 (LZTS1) as a potential target of miR-214. Expression patterns of miR-214 were inversely correlated with those of LZTS1 mRNA and protein in OS tissues. Data from reporter assays showed that miR-214 directly binds to the 3′-untranslated region (3′-UTR) of LZTS1 mRNA and suppresses expression at both transcriptional and translational levels. In functional assays, miR-214 promoted OS cell proliferation, invasion and tumor growth in nude mice, which could be reversed by overexpression of LZTS1. Taken together, our data provide compelling evidence that miR-214 functions as an onco-miRNA in OS, and its oncogenic effects are mediated chiefly through downregulation of LZTS1.

  12. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    SciTech Connect

    Zhang, Zhan-Guo Chen, Wei-Xun Wu, Yan-Hui Liang, Hui-Fang Zhang, Bi-Xiang

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  13. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    SciTech Connect

    Chen, Liang; Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 ; Tang, Yanping; Wang, Jian; Yan, Zhongjie; Xu, Ruxiang

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  14. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity

    SciTech Connect

    Zhou, Yuan; Wang, Hui; Wang, Cong; Qiu, Xuefeng; Benson, Mikael; Yin, Xiaoqin; Xiang, Zou; Li, Dongmei; and others

    2015-08-15

    Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through the regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.

  15. Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    SciTech Connect

    Wang, Bo; Li, Dongping; Kovalchuk, Anna; Litvinov, Dmitry; Kovalchuk, Olga

    2014-09-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27b transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor

  16. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    SciTech Connect

    Xiao, Can; Wang, Lili; Zhu, Lifang; Zhang, Chenping; Zhou, Jianhua

    2014-11-28

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.

  17. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway

    SciTech Connect

    Zhang, Yu; Wei, Guangkuan; Di, Zhiyong; Zhao, Qingjie

    2014-09-26

    Graphical abstract: - Highlights: • Alcohol upregulates miR-339-5p expression. • miR-339-5p inhibits the NF-kB pathway. • miR-339-5p interacts with and blocks activity of IKK-beat and IKK-epsilon. • miR-339-5p modulates IL-1β, IL-6 and TNF-α. - Abstract: Alcohol-induced neuroinflammation is mediated by the innate immunesystem. Pro-inflammatory responses to alcohol are modulated by miRNAs. The miRNA miR-339-5p has previously been found to be upregulated in alcohol-induced neuroinflammation. However, little has been elucidated on the regulatory functions of this miRNA in alcohol-induced neuroinflammation. We investigated the function of miR-339-5p in alcohol exposed brain tissue and isolated microglial cells using ex vivo and in vitro techniques. Our results show that alcohol induces transcription of miR 339-5p, IL-6, IL-1β and TNF-α in mouse brain tissue and isolated microglial cells by activating NF-κB. Alcohol activation of NF-κB allows for nuclear translocation of the NF-κB subunit p65 and expression of pro-inflammatory mediators. miR-339-5p inhibited expression of these pro-inflammatory factors through the NF-κB pathway by abolishing IKK-β and IKK-ε activity.

  18. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    SciTech Connect

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  19. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    SciTech Connect

    Qin, Bing; Xiao, Bo; Liang, Desheng; Xia, Jian; Li, Ye; Yang, Huan

    2011-06-24

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the

  20. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    SciTech Connect

    Yuan, Jian; Xiao, Gelei; Peng, Gang; Liu, Dingyang; Wang, Zeyou; Liao, Yiwei; Liu, Qing; Wu, Minghua; Yuan, Xianrui

    2015-02-06

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.

  1. The NuMI proton beam at Fermilab successes and challenges

    SciTech Connect

    Childress, S.; /Fermilab

    2008-11-01

    The NuMI beam at Fermilab has delivered over 5 x 10{sup 20} 120 GeV protons to the neutrino production target since the start for MINOS [1] neutrino oscillation experiment operation in 2005. We report on proton beam commissioning and operation status, including successes and challenges with this beam.

  2. DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study of a DOE Zero Energy Ready home in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy efficiency demonstration...

  3. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    SciTech Connect

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  4. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer

    SciTech Connect

    Li, Qiaoyan; Zhu, Fufan; Chen, Puxiang

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Both miR-7 and miR-218 down-regulates HoxB3 expression by targeting the 3 Prime -UTR of HoxB3 mRNA. Black-Right-Pointing-Pointer A reverse correlation between the levels of endogenous miR-7, miR218 and HoxB3 expression. Black-Right-Pointing-Pointer Epigenetic changes involve in the reactivation of HoxB3. Black-Right-Pointing-Pointer Both miRNAs inhibits the cell cycle and clone formation of breast cancer cells. -- Abstract: Many microRNAs have been implicated as key regulators of cellular growth and differentiation and have been found to dysregulate proliferation in human tumors, including breast cancer. Cancer-linked microRNAs also alter the epigenetic landscape by way of DNA methylation and post-translational modifications of histones. Aberrations in Hox gene expression are important for oncogene or tumor suppressor during abnormal development and malignancy. Although recent studies suggest that HoxB3 is critical in breast cancer, the putative role(s) of microRNAs impinging on HoxB3 is not yet fully understood. In this study, we found that the expression levels of miR-7 and miR-218 were strongly and reversely associated with HoxB3 expression. Stable overexpression of miR-7 and miR-218 was accompanied by reactivation of tumor suppressor genes including RASSF1A and Claudin-6 by means of epigenetic switches in DNA methylation and histone modification, giving rise to inhibition of the cell cycle and clone formation of breast cancer cells. The current study provides a novel link between overexpression of collinear Hox genes and multiple microRNAs in human breast malignancy.

  5. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    SciTech Connect

    Chen, Chao; Wu, Chao-Qun; Zhang, Zong-Qi; Yao, Ding-Kang; Zhu, Liang

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  6. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    SciTech Connect

    Zheng, Peihao; Guo, Honggang; Li, Guangchao; Han, Siqi; Luo, Fei; Liu, Yi

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  7. ~tx22C0.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    + + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE

  8. ~txF74.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The voltage source converters or the 10 HVDC stations today are very lossy. 11 Not the ... pushed real hard. 8 Now, nothing against HVDC, I 9 really do believe that the line ...

  9. About ZERH Sessions: Austin, TX

    Energy.gov [DOE]

    10:00 a.m. - 12:30 p.m. An Overview: What is it, and how do I participate?This session discusses the critical components that define a truly zero energy ready home (ZERH), how builders are able to...

  10. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR...

    Office of Scientific and Technical Information (OSTI)

    in prostate cancer Citation Details In-Document Search Title: RLIP76-dependent suppression of PI3KAKTBcl-2 pathway by miR-101 induces apoptosis in prostate cancer MicroRNA-101 ...

  11. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    SciTech Connect

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  12. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  13. Measurement of Pi-K Ratios from the NuMI Target

    SciTech Connect

    Seun, Sin Man

    2007-07-01

    Interactions of protons (p) with the NuMI (Neutrinos at the Main Injector) target are used to create the neutrino beam for the MINOS (Main Injector Neutrino Oscillation Search) Experiment. Using the MIPP (Main Injector Particle Production) experimental apparatus, the production of charged pions and kaons in p+NuMI interactions is studied. The data come from a sample of 2 x 106 events obtained by MIPP using the 120 GeV/c proton beam from the Main Injector at Fermi National Accelerator Laboratory in Illinois, USA. Pions and kaons are identified by measurement in a Ring Imaging Cherenkov detector. Presented are measurements of π-+, K-/K+, π+/K+ and π-/K- production ratios in the momentum range pT < 2 GeV/c transversely and 20 GeV/c < pz < 90 GeV/c longitudinally. Also provided are detailed comparisons of the MIPP NuMI data with the MIPP Thin Carbon data, the MIPP Monte Carlo simulation and the current MINOS models in the relevant momentum ranges.

  14. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    SciTech Connect

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young; Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870; BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 ; Lee, Sun Young; Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 ; Bae, Yong Chan; Jung, Jin Sup

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  15. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro

    SciTech Connect

    Deng, Jun; Lei, Wan; Fu, Jian-Chun; Zhang, Ling; Li, Jun-He; Xiong, Jian-Ping

    2014-01-17

    Highlight: MiR-21 plays a significant role in 5-FU resistance. This role might be attributed to targeting of hMSH2 as well as TP and DPD via miR-21 targeted hMSH2. Indirectly targeted TP and DPD to influence 5-FU chemotherapy sensitivity. -- Abstract: 5-Fluorouracil (5-FU) is a classic chemotherapeutic drug that has been widely used for colorectal cancer treatment, but colorectal cancer cells are often resistant to primary or acquired 5-FU therapy. Several studies have shown that miR-21 is significantly elevated in colorectal cancer. This suggests that this miRNA might play a role in this resistance. In this study, we investigated this possibility and the possible mechanism underlying this role. We showed that forced expression of miR-21 significantly inhibited apoptosis, enhanced cell proliferation, invasion, and colony formation ability, promoted G1/S cell cycle transition and increased the resistance of tumor cells to 5-FU and X radiation in HT-29 colon cancer cells. Furthermore, knockdown of miR-21 reversed these effects on HT-29 cells and increased the sensitivity of HT-29/5-FU to 5-FU chemotherapy. Finally, we showed that miR-21 targeted the human mutS homolog2 (hMSH2), and indirectly regulated the expression of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD). These results demonstrate that miR-21 may play an important role in the 5-FU resistance of colon cancer cells.

  16. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    of Michigan, Ann Arbor, MI (United States); Mackin, D; Beddar, S MD Anderson Cancer Center, Houston, TX (United States); Zheng, Y Procure Proton Therapy Center,...

  17. SU-E-J-121: Measuring Prompt Gamma Emission Profiles with a Multi...

    Office of Scientific and Technical Information (OSTI)

    of Michigan, Ann Arbor, MI (United States); Mackin, D; Beddar, S MD Anderson Cancer Center, Houston, TX (United States); Zheng, Y Procure Proton Therapy Center,...

  18. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling; Li, Fang; Chai, Haiyun; Tao, Xin; Wang, Haili; Ji, Aifang

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeutic gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.

  19. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR-101 induces apoptosis in prostate cancer

    SciTech Connect

    Yang, Jing; Song, Qi; Cai, Yi; Wang, Peng; Wang, Min; Zhang, Dong

    2015-08-07

    MicroRNA-101 (miR-101) participates in carcinogenesis and tumor progression in various cancers. However, its biological functions in prostate cancer are still unclear. Here, we demonstrate that miR-101 represents a critical role in regulating cell apoptosis in prostate cancer cells. We first demonstrated that miR-101 treatment promoted apoptosis in DU145 and PC3 cells by using flow cytometric analysis and transmission electron microscopy (TEM). To verify the mechanisms, we identified a novel miR-101 target, Ral binding protein 1 (RLIP76). We found miR-101 transfection significantly suppresses RLIP76 expression, which can transactivate phosphorylation of PI3K-Akt signaling, and resulted in an amplification of Bcl2-induced apoptosis. Furthermore, we demonstrated that RLIP76 overexpression could reverse the anti-tumor effects of miR-101 in DU145 and PC3 cells by using flow cytometry assay and MTT assay. Taken together, our results revealed that the effect of miR-101 on prostate cancer cell apoptosis was due to RLIP76 regulation of the PI3K/Akt/Bcl-2 signaling pathway. - Highlights: • miR-101 inhibited prostate cancer cell proliferation and enhanced apoptosis. • miR-101 directly targeted and regulated RLIP76 expression. • miR-101 suppressed PI3K/Akt/Bcl-2 signaling pathway by targeting RLIP76.

  20. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    SciTech Connect

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  1. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1

    SciTech Connect

    Wu, Huijuan; Xiao, ZhengHua; Wang, Ke; Liu, Wenxin; Hao, Quan

    2013-11-29

    Highlights: •MiR-145 is downregulated in human ovarian cancer. •MiR-145 targets p70S6K1 and MUC1. •p70S6K1 and MUC1 are involved in miR-145 mediated tumor cell growth and cell invasion, respectively. -- Abstract: MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate gene expression at post-transcriptional levels. Previous studies have shown that miR-145 is downregulated in human ovarian cancer; however, the roles of miR-145 in ovarian cancer growth and invasion have not been fully demonstrated. In the present study, Northern blot and qRT-PCR analysis indicate that miR-145 is downregulated in ovarian cancer tissues and cell lines, as well as in serum samples of ovarian cancer, compared to healthy ovarian tissues, cell lines and serum samples. Functional studies suggest that miR-145 overexpression leads to the inhibition of colony formation, cell proliferation, cell growth viability and invasion, and the induction of cell apoptosis. In accordance with the effect of miR-145 on cell growth, miR-145 suppresses tumor growth in vivo. MiR-145 is found to negatively regulate P70S6K1 and MUC1 protein levels by directly targeting their 3′UTRs. Importantly, the overexpression of p70S6K1 and MUC1 can restore the cell colony formation and invasion abilities that are reduced by miR-145, respectively. MiR-145 expression is increased after 5-aza-CdR treatment, and 5-aza-CdR treatment results in the same phenotype as the effect of miR-145 overexpression. Our study suggests that miR-145 modulates ovarian cancer growth and invasion by suppressing p70S6K1 and MUC1, functioning as a tumor suppressor. Moreover, our data imply that miR-145 has potential as a miRNA-based therapeutic target for ovarian cancer.

  2. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    SciTech Connect

    Zhuang, Ming; Gao, Wen; Xu, Jing; Wang, Ping; Shu, Yongqian

    2014-06-06

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.

  3. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect

    Auty, David John

    2010-05-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0% {bar {nu}}{sub {mu}}, which can be separated from the {nu}{sub {mu}} because the MINOS detectors are magnetized. This makes it possible to study {bar {nu}}{sub {mu}} oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the {bar {nu}}{sub {mu}} oscillation parameters and comparing them with those for {nu}{sub {mu}}, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam {bar {nu}}{sub {mu}} before. It is also possible to produce an almost pure {bar {nu}}{sub {mu}} beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% {bar {nu}}{sub {mu}} component of the forward horn current NuMI beam. The {bar {nu}}{sub {mu}} of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3{sub -7.6}{sup +7.6}(stat.){sub -3.6}{sup +3.6}(syst.) events. This corresponds to a 1.9 {sigma} deficit, and a best fit value of {Delta}{bar m}{sub 32}{sup 2} = 18 x 10{sup -3} eV{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23} = 0.55. This thesis focuses particularly on the selection of {bar {nu}}{sub {mu}} events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The thesis also investigates how the systematic errors affect the

  4. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  5. ,"Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  6. Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Dollars per Thousand Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.07 2.06 2.21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  7. ,"St. Clair, MI Natural Gas Pipeline Exports to Canada (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Exports to Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","St. Clair, MI Natural Gas Pipeline Exports to Canada (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  8. ,"St. Clair, MI Natural Gas Pipeline Imports From Canada (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","St. Clair, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  9. Assessment of radiological releases from the NuMI facility during MINOS and NOvA operations

    SciTech Connect

    Martens, Mike; /Fermilab

    2007-04-01

    This report makes projections of the radiological releases from the NuMI facility during operations for the MINOS and NO ?A experiments. It includes an estimate of the radionuclide levels released into the atmosphere and the estimated tritium and sodium-22 concentrations in the NuMI sump water and Fermilab pond system. The analysis was performed for NuMI operations with a beam power on target increased from the present 400 kW design up to a possible 1500 kW with future upgrades. The total number of protons on target was assumed to be 18 x 10{sup 20} after the completion of MINOS and 78 x 10{sup 20} after the completion of NO ?A.

  10. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    SciTech Connect

    Zhang, Wei Wei; Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng; Yan, Yun Qin; Li, Guang Peng

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  11. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    SciTech Connect

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  12. ,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release

  13. miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2

    SciTech Connect

    Zhou, Jing; Tian, Ye; Li, Juan; Lu, Binbin; Sun, Ming; Zou, Yanfen; Kong, Rong; Luo, Yanhong; Shi, Yongguo; Wang, Keming; Ji, Guozhong

    2013-04-05

    Highlights: ? miR-206 was downexpressed in tumor samples compared with matched normal samples. ? Enhanced expression of miR-206 could inhibit breast cancer growth in vitro. ? Luciferase confirmed miR-206 functions as an anti-oncogene by targeting cyclinD2. ? A reverse correlation between miR-206 and cyclinD2 in breast cancer was found. -- Abstract: MicroRNAs act as important gene regulators in human genomes, and their aberrant expression is linked to many malignancies. Aberrant expression of miR-206 has been frequently reported in cancer studies; however, the role and mechanism of its function in breast cancer remains unclear. Quantitative real-time PCR was performed to detect the relative expression levels of miR-206 in breast cancer and normal breast tissues. Lower expression of miR-206 in breast cancer tissues was associated with larger tumour size and a more advanced clinical stage. Further in vitro observations showed that the enforced expression of miR-206 in MCF-7 breast cancer cells inhibited cell growth by blocking the G1/S transition and suppressed cell proliferation and colony formation, implying that miR-206 functions as a tumour suppressor in the progression of breast cancer. Interestingly, Luciferase assays first revealed that miR-206 inhibited cyclinD2 expression by targeting two binding sites in the 3?-untranslated region of cyclinD2 mRNA. qRT-PCR and Western blot assays verified that miR-206 reduced cyclinD2 expression at both the mRNA and protein levels. A reverse correlation between miR-206 and cyclinD2 expression was noted in breast cancer tissues. Altogether, our results identify a crucial tumour suppressive role of miR-206 in the progression of breast cancer, at least partly via up-regulation of the expression of cyclinD2, and suggest that miR-206 might be a candidate prognostic predictor or an anticancer therapeutic target for breast cancer patients.

  14. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1

    SciTech Connect

    Xu, Juan; Li, Li; Yun, Hui-fang; Han, Ye-shan

    2015-08-07

    Background: Diabetic vascular smooth muscle cells (VSMCs) exhibit significantly increased rates of proliferation and migration, which was the most common pathological change in atherosclerosis. In addition, the study about the role for miRNAs in the regulation of VSMC proliferation is just beginning to emerge and additional miRNAs involved in VSMC proliferation modulation should be identified. Methods: The expression of miR-138 and SIRT1 were examined in SMCs separated from db/db mice and in SMC lines C-12511 exposed to high glucose with qRT-PCR and western blot. The regulation of miR-138 on the expression of SMCs was detected with luciferase report assay. VSMCs proliferation and migration assays were performed to examine the effect of miR-138 inhibitor on VSMCs proliferation and migration. Results: We discovered that higher mRNA level of miR-138 and reduced expression of SIRT1 were observed in SMCs separated from db/db mice and in SMC lines C-12511. Moreover, luciferase report assay showed that the activity of SIRT1 3′-UTR was highly increased by miR-138 inhibitor and reduced by miR-138 mimic. In addition, we examined that the up-regulation of NF-κB induced by high glucose in SMCs was reversed by resveratrol and miR-138 inhibitor. MTT and migration assays showed that miR-138 inhibitor attenuated the proliferation and migration of smooth muscle cells. Conclusion: In this study, we revealed that miR-138 might promote proliferation and migration of SMC in db/db mice through suppressing the expression of SIRT1. - Highlights: • Higher mRNA level of miR-138 was observed in SMCs from db/db mice. • The mRNA and protein level of SIRT1 in SMCs from db/db mice were greatly reduced. • miR-138 could regulate the expression of SIRT1 in SMCs. • SIRT1 overexpression reversed the up-regulation of acetylized p65 and NF-κB induced by high glucose. • MiR-138 inhibitor reversed VSMCs proliferation and migration induced by high glucose.

  15. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    SciTech Connect

    Lan, Fengming; Yue, Xiao; Ren, Gang; Li, Hongqi; Ping, Li; Wang, Yingjie; Xia, Tingyi

    2015-01-01

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.

  16. St. Clair, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14,132 11,855 34,592 33,388 2000's 17,198 21,747 28,441 5,202 22,853 18,281 10,410 9,633 9,104 6,544 2010's 5,591 5,228 3,531 6,019 16,409 9,024 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural

  17. U.S. Total Imports

    Energy Information Administration (EIA) (indexed site)

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  18. Observation of Disappearance of Muon Neutrinos in the NuMI Beam

    SciTech Connect

    Pavlovic, Zarko

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector long-baseline neutrino experiment designed to study the disappearance of muon neutrinos. MINOS will test the vμ → vτ oscillation hypothesis and measure precisely Δm232 and sin223 oscillation parameters. The source of neutrinos for MINOS experiment is Fermilab's Neutrinos at the Main Injector (NuMI) beamline. The energy spectrum and the composition of the beam is measured at two locations, one close to the source and the other 735 km down-stream in the Soudan Mine Underground Laboratory in northern Minnesota. The precision measurement of the oscillation parameters requires an accurate prediction of the neutrino flux at the Far Detector. This thesis discusses the calculation of the neutrino flux at the Far Detector and its uncertainties. A technique that uses the Near Detector data to constrain the uncertainties in the calculation of the flux is described. The data corresponding to an exposure of 2.5 x 1020 protons on the NuMI target is presented and an energy dependent disappearance pattern predicted by neutrino oscillation hypotheses is observed in the Far Detector data. The fit to MINOS data, for given exposure, yields the best fit values for Δm$2\\atop{23}$ and sin223 to be (2.38$+0.20\\atop{-0.16}$) x 10-3 eV2/c4and 1.00-0.08, respectively.

  19. Validation of the MCNPX-PoliMi Code to Design a Fast-Neutron Multiplicity Counter

    SciTech Connect

    J. L. Dolan; A. C. Kaplan; M. Flaska; S. A. Pozzi; D. L. Chichester

    2012-07-01

    Many safeguards measurement systems used at nuclear facilities, both domestically and internationally, rely on He-3 detectors and well established mathematical equations to interpret coincidence and multiplicity-type measurements for verifying quantities of special nuclear material. Due to resource shortages alternatives to these existing He-3 based systems are being sought. Work is also underway to broaden the capabilities of these types of measurement systems in order to improve current multiplicity analysis techniques. As a part of a Material Protection, Accounting, and Control Technology (MPACT) project within the U.S. Department of Energy's Fuel Cycle Technology Program we are designing a fast-neutron multiplicity counter with organic liquid scintillators to quantify important quantities such as plutonium mass. We are also examining the potential benefits of using fast-neutron detectors for multiplicity analysis of advanced fuels in comparison with He-3 detectors and testing the performance of such designs. The designs are being developed and optimized using the MCNPX-PoliMi transport code to study detector response. In the full paper, we will discuss validation measurements used to justify the use of the MCNPX-PoliMi code paired with the MPPost multiplicity routine to design a fast neutron multiplicity counter with liquid scintillators. This multiplicity counter will be designed with the end goal of safeguarding advanced nuclear fuels. With improved timing qualities associated with liquid scintillation detectors, we can design a system that is less limited by nuclear materials of high activities. Initial testing of the designed system with nuclear fuels will take place at Idaho National Laboratory in a later stage of this collaboration.

  20. T-1025 IU SciBath-768 detector tests in MI-12

    SciTech Connect

    Tayloe, Rex; Cooper, R.; Garrison, L.; Thornton, T.; Rebenitsch, L.; DeJongh, Fritz; Loer, Benjamin; Ramberg, Erik; Yoo, Jonghee; /Fermilab

    2012-02-11

    This is a memorandum of understanding between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Department of Physics and Center for Exploration of Energy and Matter, Indiana University, who have committed to participate in detector tests to be carried out during the 2012 Fermilab Neutrino program. The memorandum is intended solely for the purpose of recording expectations for budget estimates and work allocations for Fermilab, the funding agencies and the participating institutions. it reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this memorandum to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents. The experimenters propsoe to test their prototype 'SciBat-768' detector in the MI-12 building for 3 months (February-April) in Spring 2012. The major goal of this effort is to measure or limit the flux of beam-induced neutrons in a far-off-axis (> 45{sup o}) location of the Booster Neutrino Beamline (BNB). This flux is of interest for a proposed coherent neutral-current neutrino-argon elastic scattering experiment. A second goal is to collect more test data for the SciBath-768 to enable better understanding and calibration of the device. The SciBath-768 detector successfully ran for 3 months in the MINOS Underground Area in Fall 2011 as testbeam experiment T-1014 and is currently running above ground in the MINOS service building. For the run proposed here, the experiments are requesting: space in MI-12 in which to run the SciBath detector during February-April 2012 while the BNB is operating; technical support to help with moving the equipment on site; access to power, internet, and accelerator signals; and a small office space from which to run and monitor the experiment.

  1. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    SciTech Connect

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen; Ye, Lihong; Song, Tianqiang; Zhang, Xiaodong

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  2. The RNA-binding protein PCBP2 facilitates gastric carcinoma growth by targeting miR-34a

    SciTech Connect

    Hu, Cheng-En; Liu, Yong-Chao; Zhang, Hui-Dong; Huang, Guang-Jian

    2014-06-13

    Highlights: • PCBP2 is overexpressed in human gastric cancer. • PCBP2 high expression predicts poor survival. • PCBP2 regulates gastric cancer growth in vitro and in vivo. • PCBP2 regulates gastric cancer apoptosis by targeting miR-34a. - Abstract: Gastric carcinoma is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. However, the mechanism underling gastric cancer is still not fully understood. Here in the present study, we identify the RNA-binding protein PCBP2 as an oncogenic protein in human gastric carcinoma. Our results show that PCBP2 is up-regulated in human gastric cancer tissues compared to adjacent normal tissues, and that high level of PCBP2 predicts poor overall and disease-free survival. Knockdown of PCBP2 in gastric cancer cells inhibits cell proliferation and colony formation in vitro, whereas opposing results are obtained when PCBP2 is overexpressed. Our in vivo subcutaneous xenograft results also show that PCBP2 can critically regulate gastric cancer cell growth. In addition, we find that PCBP2-depletion induces apoptosis in gastric cancer cells via up-regulating expression of pro-apoptotic proteins and down-regulating anti-apoptotic proteins. Mechanically, we identify that miR-34a as a target of PCBP2, and that miR-34a is critically essential for the function of PCBP2. In summary, PCBP2 promotes gastric carcinoma development by regulating the level of miR-34a.

  3. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    SciTech Connect

    Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying; Yue, Patrick Ying-Kit; Wong, Ricky Ngok-Shun

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  4. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    SciTech Connect

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs.

  5. A Flexible Baseline Design for the Advanced High Temperature Reactor Using Metallic Internals (AHTR-MI)

    SciTech Connect

    Peterson, Per F.; Haihua, Zhao

    2006-07-01

    The Advanced High Temperature Reactor (AHTR) is a novel reactor concept that uses clean liquid fluoride salts as a high temperature primary coolant for conventional graphite matrix, coated particle fuels. The very large volumetric heat capacity and excellent natural circulation heat transfer provided by liquid salts enables the design of high-temperature reactors with passive safety features and thermal powers ranging from 2400 to 4000 MW(t). To make optimal use of existing design information, early AHTR designs were modeled upon the S-PRISM sodium pool-reactor design, but introduced an insulated reactor vessel. Subsequent work has shown that liquid-salt cooled systems share important similarities with pressurized water reactors, which use a closed primary loop. This article discusses the use of a closed primary loop immersed in a separate buffer salt tank, which permits the primary loop components to be fabricated from metallic materials (AHTR-MI). This approach may provide several key advantages over open loop approaches, including very large thermal inertia. (authors)

  6. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    SciTech Connect

    Li, Weina; He, Fei

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  7. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    SciTech Connect

    Andrews, Mike; Appel, Jeffrey A.; Bogert, Dixon; Childress, Sam; Cossairt, Don; Griffing, William; Grossman, Nancy; Harding, David; Hylen, Jim; Kuchler, Vic; Laughton, Chris; /Fermilab /Argonne /Brookhaven /LBL, Berkeley

    2009-05-01

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES&H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to

  8. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    SciTech Connect

    Liu, Fabao; You, Xiaona; Chi, Xiumei; Wang, Tao; Ye, Lihong; Niu, Junqi; Zhang, Xiaodong

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  9. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  10. ~txF7D.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American

  11. TX, RRC District 1 Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    26 144 436 1,266 1,324 1,427 1996-2014 Lease Condensate (million bbls) 6 28 128 257 158 233 1998-2014 Total Gas (billion cu ft) 743 1,725 3,627 6,524 4,317 7,542 1996-2014 Nonassociated Gas (billion cu ft) 719 1,545 2,960 4,532 2,079 4,721 1996-2014 Associated Gas (billion cu ft) 24 180 667 1,992 2,238 2,821

  12. TX, RRC District 10 Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    9 35 51 70 70 46 1996-2014 Lease Condensate (million bbls) 27 55 54 59 41 68 1998-2014 Total Gas (billion cu ft) 2,325 3,353 2,954 2,906 2,062 2,744 1996-2014 Nonassociated Gas (billion cu ft) 2,162 3,138 2,633 2,579 1,728 2,486 1996-2014 Associated Gas (billion cu ft) 163 215 321 327 334 258

  13. TX, RRC District 5 Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    0 1 29 12 28 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 9,039 9,340 8,784 3,255 2,729 3,216 1996-2014 Nonassociated Gas (billion cu ft) 9,039 9,340 8,779 3,237 2,724 3,201 1996-2014 Associated Gas (billion cu ft) 0 0 5 18 5 15

  14. TX, RRC District 6 Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    2 11 16 32 18 40 1996-2014 Lease Condensate (million bbls) 21 34 25 39 27 42 1998-2014 Total Gas (billion cu ft) 5,690 7,090 6,712 4,849 4,273 4,458 1996-2014 Nonassociated Gas (billion cu ft) 5,671 6,977 6,596 4,643 4,087 4,373 1996-2014 Associated Gas (billion cu ft) 19 113 116 206 186 8

  15. TX, RRC District 8 Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    679 790 934 1,144 1,057 1,441 1996-2014 Lease Condensate (million bbls) 6 44 19 29 30 20 1998-2014 Total Gas (billion cu ft) 2,469 2,518 2,891 2,626 2,752 3,333 1996-2014 Nonassociated Gas (billion cu ft) 1,427 1,157 991 335 402 368 1996-2014 Associated Gas (billion cu ft) 1,042 1,361 1,900 2,291 2,350 2,965

  16. TX, RRC District 9 Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    5 21 20 32 20 39 1996-2014 Lease Condensate (million bbls) 8 8 12 8 10 4 1998-2014 Total Gas (billion cu ft) 4,168 4,274 2,974 2,824 2,455 2,133 1996-2014 Nonassociated Gas (billion cu ft) 3,935 4,043 2,724 2,452 2,236 1,763 1996-2014 Associated Gas (billion cu ft) 233 231 250 372 219 370

  17. TX, State Offshore Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    0 0 1 0 0 0 1996-2014 Lease Condensate (million bbls) 2 0 1 0 1 0 1998-2014 Total Gas (billion cu ft) 61 29 29 24 15 10 1996-2014 Nonassociated Gas (billion cu ft) 59 29 25 22 13 10 1996-2014 Associated Gas (billion cu ft) 2 0 4 2 2 0

  18. Microsoft Word - abstract-lacognata-tx_2012

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,) 16 O reaction is an important fluorine destruction channel in ...

  19. Alamo, TX Natural Gas Exports to Mexico

    Annual Energy Outlook

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  20. Alamo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View...

  1. Clint, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    87,449 96,722 101,585 108,573 123,670 126,022 1997-2015 Pipeline Prices 4.61 4.29 3.08 4.05 4.68 2.70 1997

  2. Penitas, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  3. Penitas, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    1,371 6,871 0 0 0 0 1996-2015 Pipeline Prices 4.94 4.19 -- -- -- -- 1996

  4. Micro-Grids for Colonias (TX)

    SciTech Connect

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  5. Roma, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    36,813 65,794 133,769 138,340 154,471 168,049 1999-2015 Pipeline Prices 4.55 4.14 2.86 3.80 4.62 2.79

  6. Microsoft Word - abstract-lacognata-tx_2012

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE 19 F(p,α 0 ) 16 O REACTION AT ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post- AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of

  7. Hidalgo, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

  8. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Total To Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to

  9. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Tremblay, Julien [DOE JGI

    2013-01-25

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  10. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    SciTech Connect

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L.; Booth, Benjamin W.; Evans-Holm, Martha; Venken, Koen J.T.; Levis, Robert W.; Spradling, Allan C.; Hoskins, Roger A.; Bellen, Hugo J.

    2015-03-31

    Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.

  11. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    DOE PAGES [OSTI]

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L.; et al

    2015-03-31

    Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstratemore » reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.« less

  12. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    J He Z University of Michigan Ann Arbor MI United States Mackin D Beddar S MD Anderson Cancer Center Houston TX United States Zheng Y Procure Proton Therapy Center Oklahoma City OK...

  13. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern

    SciTech Connect

    El Tayebi, H.M.; Omar, K.; Hegy, S.; El Maghrabi, M.; El Brolosy, M.; Hosny, K.A.; Esmat, G.; Abdelaziz, A.I.

    2013-05-10

    Highlights: The oncogenic miR-17-5p is downregulated in non-metastatic hepatocellular carcinoma patients. E2F-1 and c-MYC transcripts are upregulated in non-metastatic HCC patients. miR-17-5p forced overexpression inhibited E2F-1 and c-MYC expression in HuH-7 cells. miR-17-5p mimicking increased HuH-7 cell growth, proliferation, migration and colony formation. miR-17-5p is responsible for HCC progression among the c-MYC/E2F-1/miR-17-5p triad members. -- Abstract: E2F-1, c-MYC, and miR-17-5p is a triad of two regulatory loops: a negative and a positive loop, where c-MYC induces the expression of E2F-1 that induces the expression of miR-17-5p which in turn reverses the expression of E2F-1 to close the loop. In this study, we investigated this triad for the first time in hepatocellular carcinoma (HCC), where miR-17-5p showed a significant down-regulation in 23 non-metastatic HCC biopsies compared to 10 healthy tissues; however, E2F-1 and c-MYC transcripts were markedly elevated. Forced over-expression of miR-17-5p in HuH-7 cells resulted in enhanced cell proliferation, growth, migration and clonogenicity with concomitant inhibition of E2F-1 and c-MYC transcripts expressions, while antagomirs of miR-17-5p reversed these events. In conclusion, this study revealed a unique pattern of expression for miR-17-5p in non-metastatic HCC patients in contrast to metastatic HCC patients. In addition we show that miR-17-5p is the key player among the triad that tumor growth and spread.

  14. Resonances in Coupled <mimi><mi>Kmi>-<mi>ηK> Scattering from Quantum Chromodynamics

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  15. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    SciTech Connect

    Marshall, John Stuart

    2008-06-01

    This thesis presents the results of an analysis of vμ disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current vμ interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 1020 protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current vμ events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 ± 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as Δm$2\\atop{32}$ = 2.29$+0.14\\atop{-0.14}$ x 10-3 eV2 and sin223

  16. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    SciTech Connect

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.

  17. Microfluidic Molecular Assay Platform for the Detection of miRNAs, mRNAs, Proteins, and Posttranslational Modifications at Single-Cell Resolution

    DOE PAGES [OSTI]

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    Cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, andmoreflow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cells physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.less

  18. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    DOE PAGES [OSTI]

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR formore » nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.« less

  19. Figure F5. Oil and gas supply model regions

    Gasoline and Diesel Fuel Update

    6 Appendix F Figure F5. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT Northeast (1) Gulf of Mexico Gulf Coast (2) Midcontinent (3) Rocky Mountain (5) West Coast (6) Pacific Offshore North Slope AK TX TX NM TX Southwest (4) Onshore North Slope Other Alaska Source: U.S. Energy Information Administration, Office of

  20. Pantex Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC)

    TX Collingsworth County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Donley County, TX Floyd County, TX Gaines County, TX Garza County, TX Gray ...

  1. Pantex Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC)

    TX Cottle County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Dickens County, TX Donley County, TX Floyd County, TX Gaines County, TX ...

  2. Preliminary Measurement of Neutrino Oscillation Parameters By NuMI/MINOS and Calibration Studies for Improving this Measurement

    SciTech Connect

    Symes, Philip Andrew

    2005-11-01

    This thesis explains the origins of neutrinos and their interactions, and the phenomenon of neutrino oscillations. Experiments for measuring neutrino oscillations are mentioned and the experiment investigated in this thesis, the ''Main Injector Neutrino Oscillation Search'', and its neutrino beam, the Fermi National Accelerator Laboratory's ''Neutrinos At The Main Injector'', are described. MINOS is a long baseline (735 km) neutrino oscillation experiment with a near and a far detector, intended to make precision measurements of the atmospheric sector neutrino oscillation parameters. A measurement is made of the ''atmospheric'' neutrino oscillation parameters, Δm$2\\atop{23}$ and sin2(2θ23), using neutrinos from the NuMI beam. The results of this analysis are compared to measurements at MINOS using neutrinos from the atmosphere and with other experiments. A more detailed method of beam neutrino analysis is discussed, and the extra calibrations needed to perform that analysis properly are described, with special attention paid to two aspects of the calibration, which comprise the bulk of work for this thesis. The light injection calibration system uses LEDs to illuminate the detector readout and provides a normalization of the stability of the detector over time. The hardware and different modi operandi of the system are described. There is a description of installation and commissioning of the system at one of the MINOS detectors. The response normalization of each detector with cosmic ray muons is described. Special attention is paid to the explanation of necessary corrections that must be made to the muon sample in order for the sample to be used to calibrate each detector to the specified accuracy. The performance of the calibration is shown.

  3. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    SciTech Connect

    Niner, Evan David

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  4. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    SciTech Connect

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: Arsenite evokes IL-6 secretion. IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. Inflammation is involved in arsenite-induced EMT.

  5. Differential cross sections for the reactions <mimi><mi>pmi><mi>pη> and <mimi><mi>pmi><mi>pmi><mi>η>'

    SciTech Connect

    Williams, M.; Krahn, Z.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Bookwalter, C.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D’Angelo, A.; Daniel, A.; Vita, R. De; Sanctis, E. De; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mikhailov, K.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pieschacon, D.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.

    2009-10-29

    In high-statistics differential cross sections for the reactions γ p -> p η and γ p -> p η' the CLAS at Jefferson Lab was used to measure the center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the η' measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

  6. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    SciTech Connect

    Furman, M. A.

    2010-12-11

    We present simulation results of the build-up of the electron-cloud density n{sub e} in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N{sub t} = (2-5) x 10{sup 13}, and the beam kinetic energy in the range E{sub k} = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) {delta}{sub max} vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N{sub t} there is a clear threshold behavior of n{sub e} as a function of {delta}{sub max} in the range {approx} 1.1-1.3. (2) At fixed {delta}{sub max}, there is a threshold behavior of n{sub e} as a function of N{sub t} provided {delta}{sub max} is sufficiently high; the threshold value of N{sub t} is a function of the characteristics of the region being simulated. (3) The dependence on E{sub k} is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  7. The Office of Minority Economic Impact (MI) was established in Fiscal Year 1979 pursuant to Section 641 Title V1, Part 3 of the National Energy Conservation Policy Act (Public Law 95-619), dated November 9, 1978

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minority Economic Impact (MI) was established in Fiscal Year 1979 pursuant to Section 641 Title V1, Part 3 of the National Energy Conservation Policy Act (Public Law 95- 619), dated November 9, 1978. The following is MI's legislative mandate. PART 3 - - MINORITY ECONOMIC IMPACT SEC. 641. MINORITY ECONOMIC IMPACT. "(a) Establishment of Office of Minority Economic Impact -- Title II of the Department of Energy Organization Act (42 U.S.C. 7131 - - 7139) is amended by adding at the end thereof

  8. U.S. Department of Energy

    Gasoline and Diesel Fuel Update

    ... TX ROBERTS INDIAN CREEK 1909833001 TX GREGG LONGVIEW 1976560001 TX SMITH CHAPEL HILL ... TX STEPHENS SHACKELFORD 170 4916171012 TX IRION MERTZON 4916171017 TX SMITH TYLER GAS ...

  9. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Sabine Pass, LA Total To Barbados Miami, FL Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Dominican Republic Sabine Pass, LA Total

  10. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner

    SciTech Connect

    Fang, Dengfeng; Yang, Hui; Lin, Jing; Teng, Yi; Jiang, Yingying; Chen, Jiao; Li, Yu

    2015-02-20

    In bone, different concentration of estrogen leads to various of physiological processes in osteoblast, such as the proliferation, migration, and apoptosis in an estrogen receptor-dependent manner. But little was known about the estrogen effects on osteosarcoma (OS). In this study, OS cell MG-63 was treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) with the presence or absence of estrogen receptor α (ERα), for evaluating the E2 effects on proliferation, migration, invasion, colony formation and apoptosis. Consistent with a previous study, high dose of E2 treatment dramatically downregulated expressing level of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1). The observation of upregulation of miR-9 after a high dose of E2 treatment indicated the cause of MALAT-1 reduction. Downregulation of MALAT-1 promoted the combination of SFPQ/PTBP2 complex. It was also observed that the proliferation, migration, invasion, colony formation and apoptosis of OS cells were remarkably affected by high dose of E2 treatment, but not by low dose, in an ERα independent manner. Furthermore, the abolishment of the effects on these physiological processes caused by ectopic expression of miR-9 ASOs suggested the necessity of miR-9 in MALAT-1 regulation. Here we found that the high dose of E2 treatment upregulated miR-9 thus posttranscriptionally regulated MALAT-1 RNA level in OS cells, and then the downregulation of MALAT-1 inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) processes in the E2-dose dependent and ER-independent ways. - Highlights: • E2 affects osteosarcoma cell MG-63 in an Estrogen receptor-independent way. • High dose of E2 treatment upregulates miR-9 which target to MALAT-1 RNA. • Upregulated miR-9 degrades MALAT-1 and thus affects combination of SFPQ/PTBP2. • E2 treatment block cell proliferation, colony formation, mobility, and enhance apoptosis.

  11. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 159 155 151 135 135 127 118 210 210 257 243 213 2012 281 269 283 258 201 247 244 256 228 247 246 212 2013 259 236 246 250 ...

  12. RAPID/Roadmap/7-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is intended to be sold at wholesale, including the owner or operator of electric energy storage equipment or facilities to which the Public Utility Regulatory Act applies; Does...

  13. Price Liquefied Freeport, TX Natural Gas Exports to India (Dollars...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 8.66 11.10 -- --

  14. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0 2,664...

  15. RAPID/Roadmap/3-TX-f | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    address of the surface owner of record in the tax assessor's office; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  16. RAPID/Roadmap/3-TX-d | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in the section, and county or counties in which the land lies; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  17. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  18. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    Annual Energy Outlook

    8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  19. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    1 1 2005-2013 Adjustments 0 0 0 1 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  20. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    1 2 2005-2013 Adjustments 0 0 0 1 1 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  1. TX, RRC District 1 Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    398 2,399 5,910 8,868 7,784 11,945 1977-2014 Adjustments -22 -95 53 122 161 81 1977-2014 Revision Increases 105 424 2,221 1,896 1,141 4,001 1977-2014 Revision Decreases 104 320 174 1,548 2,833 872 1977-2014 Sales 35 466 1,193 32 91 150 2000-2014 Acquisitions 50 416 1,139 19 127 173 2000-2014 Extensions 143 1,023 1,657 2,884 1,076 1,766 1977-2014 New Field Discoveries 358 117 24 38 2 0 1977-2014 New Reservoir Discoveries in Old Fields 0 15 2 1 11 16 1977-2014 Estimated Production 82 113 218 422

  2. TX, RRC District 10 Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    6,882 7,663 7,513 7,253 7,034 7,454 1977-2014 Adjustments 188 -172 -76 301 41 127 1977-2014 Revision Increases 526 1,252 795 1,022 891 910 1977-2014 Revision Decreases 1,060 958 1,413 2,427 1,369 1,101 1977-2014 Sales 46 131 1,089 132 533 1,387 2000-2014 Acquisitions 68 96 579 671 813 1,846 2000-2014 Extensions 837 1,263 1,687 1,003 532 657 1977-2014 New Field Discoveries 0 0 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 14 0 92 0 1977-2014 Estimated Production 553 569 650 698

  3. TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    800 2,090 3,423 5,462 5,910 6,559 1977-2014 Adjustments -90 -10 178 -19 -219 -84 1977-2014 Revision Increases 190 333 425 403 985 633 1977-2014 Revision Decreases 372 302 550 614 1,462 732 1977-2014 Sales 22 18 162 11 370 1,327 2000-2014 Acquisitions 5 30 634 195 426 1,267 2000-2014 Extensions 86 178 1,001 2,446 1,595 1,462 1977-2014 New Field Discoveries 11 307 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 13 9 113 69 27 103 1977-2014 Estimated Production 259 237 306 430 534 673

  4. TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve

    Energy Information Administration (EIA) (indexed site)

    Changes, and Production 5 47 229 506 594 706 1979-2014 Adjustments 3 1 13 -26 7 -9 2009-2014 Revision Increases 2 4 33 54 98 70 2009-2014 Revision Decreases 6 4 20 15 162 89 2009-2014 Sales 0 0 6 0 10 139 2009-2014 Acquisitions 0 0 80 22 24 137 2009-2014 Extensions 1 15 91 272 179 208 2009-2014 New Field Discoveries 0 21 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 9 3 1 0 2009-2014 Estimated Production 3 5 18 33 49 6

  5. TX, RRC District 2 Onshore Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    14 53 242 711 615 825 1996-2014 Lease Condensate (million bbls) 1 22 100 369 268 438 1998-2014 Total Gas (billion cu ft) 648 886 1,504 3,707 2,477 4,014 1996-2014 Nonassociated Gas (billion cu ft) 617 810 1,104 2,307 1,567 2,454 1996-2014 Associated Gas (billion cu ft) 31 76 400 1,400 910 1,560

  6. TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    2,616 2,588 2,260 2,154 2,307 2,199 1977-2014 Adjustments -124 82 -95 164 49 -191 1977-2014 Revision Increases 490 482 375 604 547 370 1977-2014 Revision Decreases 369 319 252 631 284 264 1977-2014 Sales 174 184 274 214 103 142 2000-2014 Acquisitions 190 199 204 182 130 171 2000-2014 Extensions 288 175 104 121 119 222 1977-2014 New Field Discoveries 61 20 16 10 3 27 1977-2014 New Reservoir Discoveries in Old Fields 11 25 3 8 9 20 1977-2014 Estimated Production 509 508 409 350 317 321

  7. TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve

    Energy Information Administration (EIA) (indexed site)

    Changes, and Production 75 76 81 63 67 1979-2014 Adjustments 3 -2 3 13 -8 1 2009-2014 Revision Increases 20 19 18 20 12 9 2009-2014 Revision Decreases 10 16 9 16 17 8 2009-2014 Sales 1 4 11 8 2 3 2009-2014 Acquisitions 1 12 10 4 4 7 2009-2014 Extensions 10 10 6 6 3 4 2009-2014 New Field Discoveries 3 1 0 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 1 0 0 1 3 2009-2014 Estimated Production 17 20 16 14 11 10

  8. TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    6,728 7,014 9,458 8,743 9,640 11,057 1977-2014 Adjustments -127 3 358 635 225 82 1977-2014 Revision Increases 774 1,084 2,271 965 905 1,496 1977-2014 Revision Decreases 1,419 850 1,087 2,072 1,491 786 1977-2014 Sales 260 208 939 550 424 505 2000-2014 Acquisitions 309 180 1,245 65 523 1,148 2000-2014 Extensions 506 943 1,452 1,162 1,977 843 1977-2014 New Field Discoveries 45 24 7 1 0 2 1977-2014 New Reservoir Discoveries in Old Fields 309 3 23 5 1 19 1977-2014 Estimated Production 1,013 893 886

  9. TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve

    Energy Information Administration (EIA) (indexed site)

    Changes, and Production 96 202 181 228 223 1979-2014 Adjustments -2 -1 4 28 83 -16 2009-2014 Revision Increases 15 12 47 17 23 16 2009-2014 Revision Decreases 16 14 35 100 74 24 2009-2014 Sales 5 2 10 3 8 4 2009-2014 Acquisitions 3 2 20 2 5 18 2009-2014 Extensions 7 37 94 53 38 26 2009-2014 New Field Discoveries 3 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 1 0 0 0 2009-2014 Estimated Production 11 12 15 18 20 21

  10. TX, RRC District 5 Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision Increases 1,904 1,577 3,693 336 3,338 740 1977-2014 Revision Decreases 1,458 1,274 2,157 8,168 769 1,417 1977-2014 Sales 31 1 10,556 529 93 614 2000-2014 Acquisitions 277 5 10,694 289 574 1,229 2000-2014 Extensions 2,992 3,457 3,034 387 188 193 1977-2014 New Field Discoveries 0 0 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 3 24 0 1977-2014 Estimated Production 1,718

  11. TX, RRC District 6 Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296 -1,010 128 -272 1977-2014 Revision Increases 1,820 2,660 4,894 2,108 2,089 1,979 1977-2014 Revision Decreases 2,225 2,680 5,464 5,203 1,404 1,178 1977-2014 Sales 358 505 3,938 290 429 842 2000-2014 Acquisitions 243 955 3,944 393 572 614 2000-2014 Extensions 1,671 2,173 1,670 979 409 562 1977-2014 New Field Discoveries 0 51 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 41 51 268 7 7 0 1977-2014 Estimated

  12. TX, RRC District 7B Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014 Revision Increases 144 260 387 41 405 203 1977-2014 Revision Decreases 193 231 344 983 223 355 1977-2014 Sales 494 3 683 142 18 2 2000-2014 Acquisitions 27 0 1,855 116 15 0 2000-2014 Extensions 319 220 109 205 2 8 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 53 0 1977-2014 Estimated Production 171 149 196 265 228 181

  13. TX, RRC District 7B Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    8 8 13 19 12 16 1996-2014 Lease Condensate (million bbls) 0 1 0 0 0 0 1998-2014 Total Gas (billion cu ft) 737 897 890 857 629 464 1996-2014 Nonassociated Gas (billion cu ft) 714 890 878 840 617 407 1996-2014 Associated Gas (billion cu ft) 23 7 12 17 12 5

  14. TX, RRC District 7C Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments 29 68 -311 639 -236 764 1977-2014 Revision Increases 355 535 684 421 693 1,343 1977-2014 Revision Decreases 447 710 708 1,113 889 1,177 1977-2014 Sales 90 575 260 84 129 636 2000-2014 Acquisitions 97 451 271 106 127 886 2000-2014 Extensions 263 496 305 708 568 865 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 2 10 0 46 104 1 1977-2014 Estimated Production 328 315 293 309 328 424

  15. TX, RRC District 7C Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    221 286 301 438 400 642 1996-2014 Lease Condensate (million bbls) 10 13 4 14 3 5 1998-2014 Total Gas (billion cu ft) 1,619 1,659 1,551 1,844 1,540 2,305 1996-2014 Nonassociated Gas (billion cu ft) 875 789 447 387 157 318 1996-2014 Associated Gas (billion cu ft) 744 870 1,104 1,457 1,383 1,98

  16. TX, RRC District 8 Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    6,672 7,206 7,039 7,738 8,629 9,742 1977-2014 Adjustments 233 304 -703 395 243 -395 1977-2014 Revision Increases 828 1,082 1,056 1,115 1,154 2,164 1977-2014 Revision Decreases 1,375 1,268 1,028 1,549 1,060 1,388 1977-2014 Sales 260 363 185 385 608 734 2000-2014 Acquisitions 194 758 482 656 575 771 2000-2014 Extensions 747 568 676 1,023 1,223 1,429 1977-2014 New Field Discoveries 1 0 4 7 0 1 1977-2014 New Reservoir Discoveries in Old Fields 25 2 1 1 26 32 1977-2014 Estimated Production 545 549

  17. TX, RRC District 8A Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    413 418 419 433 367 361 1996-2014 Lease Condensate (million bbls) 6 11 5 6 0 0 1998-2014 Total Gas (billion cu ft) 376 369 360 336 309 258 1996-2014 Nonassociated Gas (billion cu ft) 2 1 1 1 1 1 1996-2014 Associated Gas (billion cu ft) 374 368 359 335 308 25

  18. TX, RRC District 9 Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    10,904 12,464 10,115 8,894 9,195 8,791 1977-2014 Adjustments 18 336 -110 -725 378 248 1977-2014 Revision Increases 610 1,070 2,850 212 1,087 793 1977-2014 Revision Decreases 503 221 5,564 1,048 636 1,036 1977-2014 Sales 71 92 1,204 353 583 139 2000-2014 Acquisitions 86 46 1,432 281 18 0 2000-2014 Extensions 2,400 1,147 850 977 396 346 1977-2014 New Field Discoveries 0 0 10 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 14 7 0 46 244 0 1977-2014 Estimated Production 687 733 613 611 603

  19. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and

    Energy Information Administration (EIA) (indexed site)

    Production 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales 0 0 2009-2010 Acquisitions 0 0 2009-2010 Extensions 0 0 2009-2010 New Field Discoveries 0 0 2009-2010 New Reservoir Discoveries in Old Fields 0 0 2009-2010 Estimated Production 0 0 0 0 2007-2010

  20. RAPID/Roadmap/7-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    defined in PUCT Substantive Rule 25.173(c) and must meet the requirements of 25.173. A power generating company may participate in the program and may generate RECs and buy or...

  1. RAPID/Roadmap/7-TX-c | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in this state a facility to provide retail electric utility service. If a power producer is not a "retail electric utility" then the developer is not required to obtain a...

  2. TX, RRC District 3 Onshore Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update

    (million bbls) 14 15 14 25 13 19 1998-2014 Total Gas (billion cu ft) 798 879 714 671 735 709 1996-2014 Nonassociated Gas (billion cu ft) 685 739 627 556 502 527 1996-2014...

  3. RAPID/Roadmap/14-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wyoming. On October 9, 2015, the U.S. Court of Appeals for the Sixth Circuit issued a stay halting implementation of the new rule nationwide pending its own determination of its...

  4. TX, State Offshore Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 10 0 0 0 8 0 1981-2014 Estimated Production 40 27 21 22 14 10 ...

  5. TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Acquisitions 0 4 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1981-2014 ...

  6. TX, RRC District 8A Dry Natural Gas Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions 8 14 10 16 23 8 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 1 1 0 0 1977-2014 Estimated Production 108 93 94 97 99 ...

  7. TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  8. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 942 1,260 1,471 1,990 2000's 2,114 1,896 1,914 1,969 2,258 2,132 2,118 1,955 1,695 1,237 2010's ...

  9. TX, RRC District 4 Onshore Proved Nonproducing Reserves

    Energy Information Administration (EIA) (indexed site)

    80 3 1 7 6 1996-2014 Lease Condensate (million bbls) 23 43 83 90 132 115 1998-2014 Total Gas (billion cu ft) 2,663 3,171 4,489 4,755 5,850 6,564 1996-2014 Nonassociated Gas ...

  10. RAPID/Roadmap/4-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and written evidence confirming that it is not delinquent in paying its franchise taxes. The application to prospect must be accompanied by the appropriate filing fee....

  11. RAPID/Roadmap/14-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    specifically CWA 319(b). The Management Program outlines Texas' comprehensive strategy to protect and restore water quality impacted by nonpoint sources of pollution....

  12. McAllen, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    0,627 56,569 68,425 78,000 79,396 61,402 1998-2015 Pipeline Prices 4.52 4.19 2.95 3.84 4.62 2.85 1998

  13. RAPID/Roadmap/19-TX-c | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    post-office address of the applicant; Identify the source of water supply; State the nature and purposes of the proposed use or uses and the amount of water to be used for each...

  14. RAPID/Roadmap/18-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    used in connection with an activity associated with the exploration, development, or production of oil, gas, or geothermal resources, or any other activity regulated by the...

  15. RAPID/Roadmap/5-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    for exploratory wells, commercial drilling operations, geothermal wells, and co-production wells. A geothermal resource well is a well drilled within the established...

  16. RAPID/Roadmap/14-TX-c | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    A reservoir is considered to be in a productive reservoir if there is any current or past production of oil, gas, or geothermal resources within 2 mile radius of the proposed well...

  17. RAPID/Roadmap/13-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit requirement. If the...

  18. RAPID/Roadmap/3-TX-g | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    must report on the status of the exploration, development, and production of geothermal energy and associated resources under the land governed by Tex. Nat. Rec. Code Sec. 141...

  19. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Energy Information Administration (EIA) (indexed site)

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  20. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  1. RAPID/Roadmap/3-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Act Lands' are defined in the Texas Administrative Code as "any public free school or asylum lands, whether surveyed or unsurveyed, sold with a mineral classification or...

  2. RAPID/Roadmap/3-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    following: A diagram of the project showing all structures and dimensions; A copy of a tax statement as proof of ownership of littoral property; A vicinity map showing project...

  3. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million...

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 8,045 2015 15,984 17,668 21,372 22,842 23,041 24,529 29,766 30,441 29,787 31,090...

  4. RAPID/Roadmap/1-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land use planning in Texas is delegated to municipalities. 01TXALandUsePlanning.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  5. RAPID/Roadmap/19-TX-d | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Quality (TCEQ) handles transfers of surface water rights. 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  6. RAPID/Roadmap/3-TX-c | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  7. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

  8. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    13,691 16,032 19,747 11,513 13,592 2007-2013 Adjustments 657 105 233 -516 -70 2009-2013 Revision Increases 928 643 3,094 30 2,922 2009-2013 Revision Decreases 587 405 1,405 6,895...

  9. TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    48 24 90 61 583 649 2007-2013 Adjustments -1 53 -79 249 -21 2009-2013 Revision Increases 2 20 45 19 121 2009-2013 Revision Decreases 22 0 12 47 112 2009-2013 Sales 0 0 0 19 50...

  10. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    2 435 1,564 5,123 8,340 7,357 2007-2013 Adjustments 5 8 0 47 315 2009-2013 Revision Increases 1 322 2,141 1,852 1,083 2009-2013 Revision Decreases 0 251 48 1,272 2,818 2009-2013...

  11. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    73 1,161 4,381 6,584 4,172 4,633 2007-2013 Adjustments 40 1,968 26 -225 564 2009-2013 Revision Increases 422 1,206 2,322 999 513 2009-2013 Revision Decreases 8 1,319 1,860 2,907...

  12. TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    0 0 1 6 24 2007-2013 Adjustments 0 0 1 1 -3 2009-2013 Revision Increases 0 0 0 1 2 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 4 2009-2013 Acquisitions 0 0 0 2 0...

  13. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    78 565 2,611 3,091 4,377 2007-2013 Adjustments 53 0 185 300 592 2009-2013 Revision Increases 0 66 792 253 174 2009-2013 Revision Decreases 0 12 295 1,160 819 2009-2013 Sales 0 0 75...

  14. TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    10,756 12,573 10,276 9,260 9,580 2007-2013 Adjustments 179 533 42 -483 378 2009-2013 Revision Increases 580 1,044 3,005 200 1,092 2009-2013 Revision Decreases 469 191 5,864...

  15. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 2010-2013 Adjustments 6 237 494 40 2010-2013 Revision Increases 6 388 326 839 2010-2013...

  16. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    0 0 0 0 37 37 2007-2013 Adjustments 0 0 -1 11 6 2009-2013 Revision Increases 0 0 0 31 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 1 2009-2013 Acquisitions 0 0...

  17. High Performance Builder Spotlight: GreenCraft, Lewisville, TX

    SciTech Connect

    2011-01-01

    In October and November 2009, the TimberCreek Zero Energy House in Lewisville, Texas, opened as a Building America Demonstration House. The 2,538-foot,three-bedroom, 2½-bath custom-built home showed a home energy rating score (HERS) of 56 without the solar photovoltaics and a HERS score of 1 with PV.

  18. RAPID/Roadmap/8-TX-a | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a Certificate of Convenience and Necessity (CCN). However, minor modifications and maintenance to an existing transmission system may not need a CCN. 08TXATransmissionSiting.pdf...

  19. RAPID/Roadmap/8-TX-b | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the...

  20. Price of Freeport, TX Liquefied Natural Gas Exports to Brazil...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12.74 2012 10.68 10.57 12.21 2014 15.51 2015 17.44 12.8

  1. Price of Freeport, TX Liquefied Natural Gas Exports to Brazil...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.74 11.19 -- 15.51 15.1

  2. Rio Bravo, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    62,914 74,790 75,026 78,196 76,154 81,837 1999-2015 Pipeline Prices 4.42 4.14 2.94 3.88 4.47 2.71

  3. Rio Grande, TX Natural Gas Exports to Mexico

    Energy Information Administration (EIA) (indexed site)

    2013 2014 2015 View History Pipeline Volumes 0 8,045 310,965 2013-2015 Pipeline Prices -- 4.42 2.85 2013

  4. RAPID/Roadmap/8-TX-f | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of the total load of the secondary network under consideration; The TDU may postpone processing an application for an individual distributed generation facility if the total...

  5. Rio Bravo, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.58 4.26 4.13 4.36 4.44 4.69 4.56 4.22 4.03 3.68 3.34 3.32 2012 2.85 2.64 2.34 2.09 2.59 2.56 3.05 3.00 2.97 3.44 3.65 ...

  6. Rio Bravo, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.99 6.13 8.02 6.51 6.80 9.11 3.91 2010's 4.42 4.14 2.94 3.88 4.47 2.71

  7. Transactive Controls R&D (Tx-R&D)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and communication technologies (ICT). - Most common signal is economics based: ... ICT & related physical hardware) that allow applications to be programmed and negotiate...

  8. TX, State Offshore Nonassociated Natural Gas Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    161 128 113 88 56 42 1981-2014 Adjustments -29 -7 -24 7 -10 -2 1981-2014 Revision Increases 29 20 70 14 9 17 1981-2014 Revision Decreases 21 35 65 9 19 19 1981-2014 Sales 3 20 2 23 ...

  9. TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    Energy Information Administration (EIA) (indexed site)

    3 2 1 1 1 1 1981-2014 Adjustments -1 0 -1 0 0 1 2009-2014 Revision Increases 1 0 1 0 0 0 2009-2014 Revision Decreases 0 0 1 0 0 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions ...

  10. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    1 1 1 2005-2014 Adjustments 0 0 0 1 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  11. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    8 7 7 2005-2014 Adjustments 0 0 0 9 0 5 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 4 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  12. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    71 47 49 2005-2014 Adjustments 0 0 0 81 -17 -37 2009-2014 Revision Increases 0 0 0 0 0 21 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 ...

  13. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    Energy Information Administration (EIA) (indexed site)

    1 2 4 2005-2014 Adjustments 0 0 0 1 1 -5 2009-2014 Revision Increases 0 0 0 0 0 9 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 Acquisitions 0 0 0 ...

  14. TX, RRC District 1 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    96 263 893 2,031 2,360 2,887 2009-2014 Adjustments -3 -20 7 -19 -60 83 2009-2014 Revision Increases 19 16 95 302 288 330 2009-2014 Revision Decreases 19 10 52 253 237 262 2009-2014 Sales 0 4 33 7 90 56 2009-2014 Acquisitions 0 9 33 6 123 86 2009-2014 Extensions 8 137 593 1,194 484 591 2009-2014 New Field Discoveries 4 54 29 19 2 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 2 8 11 18 2009-2014 Estimated Production 10 15 44 112 192 263

    398 2,399 5,910 8,868 7,784 11,945 1977-2014

  15. TX, RRC District 10 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945 Lease Separation

    456 2,332 5,227 6,516 4,442 7,733 1979-2014 Adjustments 5 -95 -42 20 120 -73 1979-2014 Revision Increases 110 430 2,184 1,620 702 3,462 1979-2014 Revision Decreases 110 331 116

  16. TX, RRC District 2 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454 Lease Separation

    6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Adjustments 223 -144 -5 213 23 233 1979-2014 Revision Increases 492 1,288 593 1,044 762 801 1979-2014 Revision Decreases 1,120 868

  17. TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559 After Lease Separation

    837 2,101 2,766 3,986 4,348 4,802 1979-2014 Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572

  18. TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19 After Lease Separation

    2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Adjustments -105 56 -29 164 -99 52 1979-2014 Revision Increases 456 419 355 608 335 290 1979-2014 Revision Decreases 338 288 225 655

  19. TX, RRC District 5 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    4 22 28 65 47 62 2009-2014 Adjustments -4 1 5 1 5 4 2009-2014 Revision Increases 5 3 8 11 1 3 2009-2014 Revision Decreases 1 3 3 3 22 7 2009-2014 Sales 0 0 6 0 0 19 2009-2014 Acquisitions 0 0 6 24 0 19 2009-2014 Extensions 1 0 0 9 4 21 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 3 4 5 6 6

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision

  20. TX, RRC District 6 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    24 240 232 252 267 299 2009-2014 Adjustments 3 3 16 18 -37 19 2009-2014 Revision Increases 38 45 38 17 35 62 2009-2014 Revision Decreases 29 29 43 31 26 27 2009-2014 Sales 3 5 28 18 13 94 2009-2014 Acquisitions 4 11 21 23 26 80 2009-2014 Extensions 8 9 6 30 49 12 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 18 18 18 19 19 20

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296