National Library of Energy BETA

Sample records for turbine blade testing

  1. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  2. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at WINDPOWER | Department of Energy Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER March 28, 2014 - 5:11pm Addthis This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams

  3. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    SciTech Connect

    Desmond, M.; Hughes, S.; Paquette, J.

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  4. Wind turbine blade testing system using base excitation

    DOEpatents

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  5. Dual-axis resonance testing of wind turbine blades

    DOEpatents

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  6. Wind Turbine Blade Testing System Using Base Excitation - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Like all rotating machines, wind turbines are generators of fatigue, and every revolution of its components including the turbine blades produces a load or fatigue cycle, with each ...

  7. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable ... of time needed to fatigue test wind turbine blades.
    Dual-axis testing can ...

  8. Aerodynamic testing of a rotating wind turbine blade

    SciTech Connect

    Butterfield, C.P.; Nelsen, E.N.

    1990-01-01

    Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

  9. Large Wind Turbine Blade Test Facilities to be in Mass., Texas - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Large Wind Turbine Blade Test Facilities to be in Mass., Texas Access to waterways key; NREL to continue testing smaller blades in Colorado June 25, 2007 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to test the next generation of giant wind turbine blades. The Department of Energy (DOE) announced the blade test facility cooperative research and

  10. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    SciTech Connect

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  11. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  12. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    DOE PAGES [OSTI]

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; et al

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less

  13. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    SciTech Connect

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; Klute, Sandra M.; Pedrazzani, Renee; Werlink, Rudy; Newman, John

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.

  14. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  15. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    DOE PAGES [OSTI]

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less

  16. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    SciTech Connect

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicable in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.

  17. Cooled snubber structure for turbine blades

    SciTech Connect

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  18. Comparison of strength and load-based methods for testing wind turbine blades

    SciTech Connect

    Musial, W.D.; Clark, M.E.; Egging, N.

    1996-11-01

    The purpose of this paper is to compare two methods of blade test loading and show how they are applied in an actual blade test. Strength and load-based methods were examined to determine the test load for an Atlantic Orient Corporation (AOC) 15/50 wind turbine blade for fatigue and static testing. Fatigue load-based analysis was performed using measured field test loads extrapolated for extreme rare events and scaled to thirty-year spectra. An accelerated constant amplitude fatigue test that gives equivalent damage at critical locations was developed using Miner`s Rule and the material S-N curves. Test load factors were applied to adjust the test loads for uncertainties, and differences between the test and operating environment. Similar analyses were carried, out for the strength-based fatigue test using the strength of the blade and the material properties to determine the load level and number of constant amplitude cycles to failure. Static tests were also developed using load and strength criteria. The resulting test loads were compared and contrasted. The analysis shows that, for the AOC 15/50 blade, the strength-based test loads are higher than any of the static load-based cases considered but were exceeded in the fatigue analysis for a severe hot/wet environment.

  19. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326

    SciTech Connect

    Hughes, S.

    2012-05-01

    This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

  20. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    DOEpatents

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  1. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 17 ... SERVICE LIFE; SHEAR PROPERTIES; SILICA; TESTING; TOLERANCE; TURBINE BLADES; WIND TURBINES ...

  2. Snubber assembly for turbine blades

    DOEpatents

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  3. Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America

    SciTech Connect

    Cotrell, J.; Musial, W.; Hughes, S.

    2006-05-01

    The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

  4. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Energy.gov [DOE] (indexed site)

    and create U.S. jobs by improving labor productivity in wind turbine blade construction. ... Certain components of wind turbine blades are naturally more suitable to domestic ...

  5. Sandia's 2016 Wind Turbine Blade Workshop Beings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2016 Wind Turbine Blade Workshop Beings - Sandia Energy Energy Search Icon Sandia Home ... Twitter Google + Vimeo Newsletter Signup SlideShare Sandia's 2016 Wind Turbine Blade ...

  6. Blade Testing Trends (Presentation)

    SciTech Connect

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  7. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  8. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  9. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  10. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  11. Turbine blade tip gap reduction system

    SciTech Connect

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  12. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    SciTech Connect

    Taylor, Stuart G.; Farinholt, Kevin M.; Jeong, Hyomi; Jang, JaeKyung; Park, Gyu Hae; Todd, Michael D.; Farrar, Charles R.; Ammerman, Curtt N.

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

  13. Blade Materials and Substructures Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Wind turbine blades are subjected to a higher number of complex loading cycles not ... polymers (composites) and other materials used to construct wind-turbine blades. ...

  14. Panel resonant behavior of wind turbine blades.

    SciTech Connect

    Paquette, Joshua A.; Griffith, Daniel Todd

    2010-03-01

    The principal design drivers in the certification of wind turbine blades are ultimate strength, fatigue resistance, adequate tip-tower clearance, and buckling resistance. Buckling resistance is typically strongly correlated to both ultimate strength and fatigue resistance. A composite shell with spar caps forms the airfoil shape of a blade and reinforcing shear webs are placed inside the blade to stiffen the blade in the flap-wise direction. The spar caps are dimensioned and the shear webs are placed so as to add stiffness to unsupported panel regions and reduce their length. The panels are not the major flap-wise load carrying element of a blade; however, they must be designed carefully to avoid buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static testing of blades under a simulated extreme loading condition. The focus of this paper is on the use of experimental modal analysis to measure localized resonances of the blade panels. It can be shown that the resonant behavior of these panels can also provide a means to evaluate buckling resistance by means of analytical or experimental modal analysis. Further, panel resonances have use in structural health monitoring by observing changes in modal parameters associated with panel resonances, and use in improving panel laminate model parameters by correlation with test data. In recent modal testing of wind turbine blades, a set of panel modes were measured. This paper will report on the findings of these tests and accompanying numerical and analytical modeling efforts aimed at investigating the potential uses of panel resonances for blade evaluation, health monitoring, and design.

  15. Turbine blade platform seal

    DOEpatents

    Zagar, Thomas W.; Schiavo, Anthony L.

    2001-01-01

    A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.

  16. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  17. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  18. DOE's New Large Blade Test Facility in Massachusetts Completes...

    Office of Environmental Management (EM)

    May, the Wind Technology Testing Center (WTTC), in Boston, Massachusetts, has come up to full speed testing the long wind turbine blades produced for today's larger wind turbines. ...

  19. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  20. Blade for a gas turbine

    DOEpatents

    Liang, George

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  1. Structural Testing at the NWTC Helps Improve Blade Design and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biaxial fatigue test of an MHI Wind Power Americas, Inc. turbine blade at the NWTC. Photo ... National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. ...

  2. Wooden wind turbine blade manufacturing process

    DOEpatents

    Coleman, Clint

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  3. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  4. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  5. SCALING OF COMPOSITE WIND TURBINE BLADES FOR

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    COMPOSITE MATERIALS FOR MEGAWATT-SCALE WIND TURBINE BLADES: DESIGN CONSIDERATIONS AND ... Both VARTM and prepreg materials have particular design challenges for manufacturing ...

  6. Neutron Computed Tomography of Turbine Blade

    SciTech Connect

    Bilheux, Hassina

    2015-06-03

    ORNL Researcher Hassina Bilheux explains the ability of SNS to explore the internal structure of a 3D-printed turbine blade.

  7. DOE’s New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests

    Office of Energy Efficiency and Renewable Energy (EERE)

    Since opening its doors for business in May, the Wind Technology Testing Center (WTTC), in Boston, Massachusetts, has come up to full speed testing the long wind turbine blades produced for today's larger wind turbines.

  8. Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongqi Wind Turbine Blade Engineering Co Ltd Jump to: navigation, search Name: Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd Place: Tianjin Municipality, China Sector: Wind...

  9. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  10. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February...

  11. Multiple piece turbine rotor blade

    DOEpatents

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  12. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  13. Wind Turbine Blade Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Turbine Blade Design Wind Turbine Blade Design Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building

  14. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  15. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  16. Turbine blade tip with offset squealer

    DOEpatents

    Bunker, Ronald Scott

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  17. Wind Turbine Blade Design | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fabric Wind Turbine Blade Design Offers Clean Energy Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Fabric Wind Turbine Blade Design Offers Clean Energy Today, conventional wind turbine blade designs use fiberglass, which is heavy and the manufacturing process is extremely hands-on and time intensive. A new approach

  18. Cooling arrangement for a tapered turbine blade

    DOEpatents

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  19. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  20. Coatings for the protection of turbine blades from erosion

    SciTech Connect

    Walsh, P.N.; Quets, J.M.; Tucker, R.C. Jr.

    1995-01-01

    Many types of turbines, including aircraft gas turbines, steam turbines, and power recovery turbines, suffer from solid particle erosion caused by a variety of materials ingested into the machines. Utilization of various laboratory erosion tests tailored to the specific application by using various erodents, temperatures, velocities, and angles of impact, have been shown to be effective in the development and selection of coatings for the erosion protection of turbine blades and other components. Detonation gun coatings have demonstrated their efficacy in providing substantial protection in many situations. It has now been shown that several tungsten carbide and chromium carbide Super D-Gun{trademark} coatings not only have better erosion resistance than their D-Gun analogs, but cause little or no degradation of the fatigue properties of the blade alloys. Nonetheless, caution should be employed in the application of any laboratory data to a specific situation and additional testing done as warranted by the turbine designer.

  1. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  2. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  3. New Wind Turbine Dynamometer Test Facility Dedicated at NREL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  4. SNL Begins Field Testing on First SMART Blades

    Energy.gov [DOE]

    The Department of Energy (DOE) Sandia National Laboratories (SNL) completed fabrication and began field testing a set of wind turbine blades with active load control capabilities.

  5. Sandia Wind-Turbine Blade Flaw Detection Experiments in Denmark

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind-Turbine Blade Flaw Detection Experiments in Denmark - Sandia Energy Energy Search ... Twitter Google + Vimeo GovDelivery SlideShare Sandia Wind-Turbine Blade Flaw Detection ...

  6. SNL Researchers Assess Wind Turbine Blade Inspection and Repair...

    Energy.gov [DOE] (indexed site)

    A picture of several wind turbine blade panels set out on a table and held in place with metal clamps. Flaws in wind turbine blades emanating from the manufacturing process are an ...

  7. Methods of making wind turbine rotor blades

    DOEpatents

    Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew

    2008-04-01

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  8. 2014 Sandia Wind Turbine Blade Workshop

    Energy.gov [DOE]

    The U.S. Energy Department's Sandia National Laboratories will host its 2014 Sandia Wind Turbine Blade Workshop at the Marriott Pyramid North in Albuquerque, New Mexico. The workshop provides a unique, blade focused collaborative forum that will bring together wind energy leaders from industry, academia, and government. Stay tuned for updates. Information regarding past Wind Workshops can be found at: http://windworkshops.sandia.gov/.

  9. Utilization of localized panel resonant behavior in wind turbine blades.

    SciTech Connect

    Griffith, Daniel Todd

    2010-11-01

    The shear webs and laminates of core panels of wind turbine blades must be designed to avoid panel buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static loading of a blade to failure under a simulated extreme loading condition. This paper examines an alternative means for evaluating blade buckling resistance using non-destructive modal tests or FEA. In addition, panel resonances can be utilized for structural health monitoring by observing changes in the modal parameters of these panel resonances, which are only active in a portion of the blade that is susceptible to failure. Additionally, panel resonances are considered for updating of panel laminate model parameters by correlation with test data. During blade modal tests conducted at Sandia Labs, a series of panel modes with increasing complexity was observed. This paper reports on the findings of these tests, describes potential ways to utilize panel resonances for blade evaluation, health monitoring, and design, and reports recent numerical results to evaluate panel resonances for use in blade structural health assessment.

  10. Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine

    SciTech Connect

    Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

    1981-12-01

    This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

  11. Advanced protective coatings for gas turbine blading

    SciTech Connect

    Czech, N.; Stamm, W.

    1998-07-01

    The new gas turbines now being marketed are characterized by outputs and efficiencies which were unthinkable just a few years ago. A key factor for achieving efficiency is the highest possible turbine inlet temperature, currently approx. 1,400 C. In such a machine, it is the turbine blades which are subjected to the greatest thermal and mechanical stresses. They are also subjected to extreme chemical stress in the form of oxidation, which in the following is understood as the corrosive action due almost exclusively to the temperature of the turbine blade surface and (to a much lesser degree) the pressure and oxygen content of the hot gas. In many cases, this is compounded by hot corrosion, which results in accelerated oxidation due to impurities in the fuel and air. In terms of physics, this demanding challenge requires the use of cooling techniques which push the envelope of feasibility. In terms of materials engineering, an innovative multifaceted solution is called for. In more concrete terms, this means a combination of convection, impingement and film cooling of blades made of the strongest high-temperature alloy materials and coated with one or possibly multiple coatings. The base material ensures the blade's mechanical integrity while the coating(s) provide(s) protection against the oxidizing and corrosive attack, as well as the thermal stresses which cannot be sufficiently mitigated by cooling. The superiority of single crystal materials over polycrystalline or directionally solidified nickel-base superalloys is illustrated. The coating is a third-generation NiCoCrAIY VPS (vacuum plasma spray) coating. In the paper, the authors discuss the current status of coating developments for large, stationary gas turbines and present solutions for achieving important development objectives.

  12. Rotor blades for turbine engines

    DOEpatents

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  13. Dynamic stall on wind turbine blades

    SciTech Connect

    Butterfield, C.P.; Simms, D.; Scott, G. ); Hansen, A.C. )

    1991-12-01

    Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

  14. Turbine blade with contoured chamfered squealer tip

    DOEpatents

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axially extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.

  15. Method of making a wooden wind turbine blade

    DOEpatents

    Coleman, Clint

    1984-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  16. Method of making a wooden wind turbine blade

    DOEpatents

    Coleman, C.

    1984-08-14

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

  17. Turbine blade with tuned damping structure

    SciTech Connect

    Campbell, Christian X.; Messmann, Stephen J.

    2015-09-01

    A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.

  18. Aerodynamic performance of the 17-m-diameter Darrieus wind turbine in the three-bladed configuration: an addendum

    SciTech Connect

    Worstell, M.H.

    1980-02-01

    The US Department of Energy (DOE)/Sandia 17-m wind turbine has been tested in the three-bladed configuration at five rotational speeds. These data are presented along with some fundamental comparisons to the earlier two-bladed results. Also included is the theoretical output of the three-bladed 17-m wind turbine at two selected rotational speeds.

  19. Aerodynamic Wind-Turbine Blade Design for the National Rotor...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerodynamic Wind-Turbine Blade Design for the National Rotor Testbed - Sandia Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  20. 2015 Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany - Sandia Energy Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  1. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee ...

  2. CX-100 and TX-100 blade field tests.

    SciTech Connect

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  3. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, recently acquired a significant piece of testing equipment needed to offer its industry partners a full state-of-the-art suite of wind turbine blade certification tests.

  4. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect

    Claytor, Thomas N; Ammerman, Curtt N; Park, Gyu Hae; Farinholt, Kevin M; Farrar, Charles R; Atterbury, Marie K

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  5. Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades

    SciTech Connect

    Sheldahl, R.E.; Klimas, P.C.; Feltz, L.V.

    1980-03-01

    A 5-metre-diameter vertical-axis wind turbine has undergone continued testing since 1976 at the Sandia Laboratories Wind Turbine site. The latest tests of this machine have been with extruded aluminum blades of NACA-0015 airfoil cross section. The results of these tests at several turbine rotational speeds are presented and compared with earlier test results. A performance comparison is made with a vortex/lifting line computational code. The performance of the turbine with the extruded blades met all expectations.

  6. Tip cap for a turbine rotor blade

    DOEpatents

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  7. Multiple piece turbine blade/vane

    DOEpatents

    Kimmel, Keith D

    2013-02-05

    An air cooled turbine blade or vane of a spar and shell construction with the shell made from a high temperature resistant material that must be formed from an EDM process. The shell and the spar both have a number of hooks extending in a spanwise direction and forming a contact surface that is slanted such that a contact force increases as the engaging hooks move away from one another. The slanted contact surfaces on the hooks provides for an better seal and allows for twisting between the shell and the spar while maintaining a tight fit.

  8. SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods

    Energy.gov [DOE]

    Flaws in wind turbine blades emanating from the manufacturing process are an important factor in blade reliability. To reduce uncertainty in the blade manufacturing process and improve their design and performance, SNL is working with industry to evaluate nondestructive inspection (NDI) technologies.

  9. Turbine blade having a constant thickness airfoil skin

    DOEpatents

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  10. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing A screenshot of the cover of the 3D blade manufacturing brochure. Innovation in the design and manufacturing of wind power generation components continues to be critical to achieving our national goals. As a result of this challenge, the U.S. Department of Energy's Wind Program and Advanced Manufacturing Office are partnering with public

  11. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February 20, 2015 EERE's Wind Program announced a Notice of Intent to issue a funding opportunity titled "U.S. Wind Manufacturing: Larger Blades to Access Greater Wind Resources and Lower Costs." This funding will support the research and development of technological innovations to improve the manufacturing, transportation, and

  12. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    DOE PAGES [OSTI]

    Choi, Seong-Won; Farinholt, Kevin M.; Taylor, Stuart G.; Light-Marquez, Abraham; Park, Gyuhae

    2014-01-01

    This paper presents the experimental results of active-sensing structural health monitoring (SHM) techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrantmore » further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.« less

  13. Recovery Act-Funded 90-m Blade Test Facility Commissioned May...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011. The center is the first commercial large blade test...

  14. Modal analysis and SHM investigation of CX-100 wind turbine blade

    SciTech Connect

    Deines, Krystal E; Marinone, Timothy; Schultz, Ryan A; Farinholt, Kevin R; Park, Gyuhae

    2010-11-08

    This paper presents the dynamic characterization of a CX-100 wind turbine blade using modal testing. Obtaining a thorough dynamic characterization of turbine blades is important because they are complex structures, making them very difficult to accurately model without supplementing with experimental data. The results of this dynamic characterization can be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. Also covered is an exploration into Structural Health Monitoring (SHM) techniques employed on the blade surface to detect changes in the blade dynamic properties. SHM design parameters such as traveling distance of the wave were examined . Results obtained during modal and SHM testing will provide a baseline for future work in blade damage detection and mitigation.

  15. Determining effects of turbine blades on fluid motion

    DOEpatents

    Linn, Rodman Ray; Koo, Eunmo

    2011-05-31

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  16. Determining effects of turbine blades on fluid motion

    DOEpatents

    Linn, Rodman Ray; Koo, Eunmo

    2012-05-01

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  17. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  18. Turbine blade with spar and shell

    DOEpatents

    Davies, Daniel O.; Peterson, Ross H.

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  19. Rotational effects on turbine blade cooling

    SciTech Connect

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L.

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  20. New Funding Opportunity to Develop Larger Wind Turbine Blades...

    Energy Saver

    The Energy Department today announced 1.8 million in funding for the development of larger wind turbine blades that will help capture more power from wind resources and increase ...

  1. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Energy.gov [DOE] (indexed site)

    Wind deployment can provide U.S. jobs, U.S. manufacturing, and lease and tax revenues in ... WORKING TOGETHER TO BUILD A FASTER AND LEANER FUTURE FOR WIND TURBINE BLADE MANUFACTURING ...

  2. First wind turbine blade delivered to Pantex | National Nuclear...

    National Nuclear Security Administration (NNSA)

    owned wind farm in the country and will provide approximately 60 percent of the average annual electricity need for the Pantex Plant. First wind turbine blade delivered to Pantex

  3. Microsoft Word - Increased Strength in Wind Turbine Blades through...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DE-AC04-94AL85000 Increased Strength in Wind Turbine Blades through Innovative Structural ... It is believed that the issue of noise emanating from the flat-back airfoils should be ...

  4. Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine

    SciTech Connect

    Fleming, P.; Wright, A. D.; Finersh, L. J.

    2010-12-01

    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

  5. User's Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind Turbine

    SciTech Connect

    Bir, G. S.

    2010-09-01

    This guide explains how to use MBC3, a MATLAB-based script NREL developed to perform multi-blade coordinate transformation of system matrices for three-bladed wind turbines. In its current form, MBC3 can be applied to system matrices generated by FAST.2.

  6. Turbine blade squealer tip rail with fence members

    DOEpatents

    Little, David A

    2012-11-20

    A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second location adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.

  7. Turbine blades and systems with forward blowing slots

    SciTech Connect

    Zuteck, Michael D.; Zalusky, Leigh; Lees, Paul

    2015-09-15

    A blade for use in a wind turbine comprises a pressure side and suction side meeting at a trailing edge and leading edge. The pressure side and suction side provide lift to the turbine blade upon the flow of air from the leading edge to the trailing edge and over the pressure side and suction side. The blade includes one or more openings at the suction side, in some cases between the leading edge and the trailing edge. The one or more openings are configured to provide a pressurized fluid towards the leading edge of the blade, in some cases at an angle between about 0.degree. and 70.degree. with respect to an axis oriented from a centerline of the blade toward the leading edge.

  8. Dynamically Adjustable Wind Turbine Blades: Adaptive Turbine Blades, Blown Wing Technology for Low-Cost Wind Power

    SciTech Connect

    2010-02-02

    Broad Funding Opportunity Announcement Project: Caitin is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.

  9. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES

    SciTech Connect

    Amarendra K. Rai

    2006-12-04

    Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

  10. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  11. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema

    Felker, Fort

    2016-07-12

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  12. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect

    Felker, Fort

    2013-11-13

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  13. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National ... Leishman, J. G., "Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines," ...

  14. Modal analysis and SHM investigation of CX-100 wind turbine blade

    SciTech Connect

    Deines, Krystal E; Marinone, Timothy; Schultz, Ryan A; Farinholt, Kevin M; Park, Gyuhae

    2011-01-24

    This paper presents the dynamic characterization of a CX100 blade using modal testing. Obtaining a thorough dynamic characterization of these turbine blades is important because they are complex structures, making them difficult to monitor for damage initiation and subsequent growth. This dynamic characterization was compared to a numerical model developed for validation. Structural Health Monitoring (SHM) techniques involving Lamb wave propagation, frequency response functions, and impedance based methods were also used to provide insight into blade dynamic response. SHM design parameters such as traveling distance of the wave, sensing region of the sensor and the power requirements were examined. Results obtained during modal and SHM testing will provide a baseline for future damage detection and mitigation techniques for wind turbine blades.

  15. Estimation of Blade and Tower Properties for the Gearbox Research Collaborative Wind Turbine

    SciTech Connect

    Bir, G.S.; Oyague, F.

    2007-11-01

    This report documents the structural and modal properties of the blade and tower of a 3-bladed 750-kW upwind turbine to develop an aeroelastic model of the wind turbine.

  16. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    SciTech Connect

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  17. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  18. Turbine blade damping device with controlled loading

    SciTech Connect

    Marra, John J

    2013-09-24

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  19. Turbine blade damping device with controlled loading

    DOEpatents

    Marra, John J.

    2015-09-29

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  20. Gas turbine blade with intra-span snubber

    DOEpatents

    Merrill, Gary B.; Mayer, Clinton

    2014-07-29

    A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.

  1. Optical Blade Position Tracking System Test

    SciTech Connect

    Fingersh, L. J.

    2006-01-01

    The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

  2. Effects of blade preset pitch/offset on curved-blade Darrieus vertical axis wind turbine performance

    SciTech Connect

    Klimas, P.C.; Worstell, M.H.

    1981-10-01

    Current designs of curved-blade Darrieus vertical-axis wind turbines (VAWTs) have blades mounted in such a way that the position vector from the axis of rotation intersects the blade chord perpendicularly between the -25% and -50% chord points. This paper describes the effects on aerodynamic performance of the Sandia National Laboratories' (SNL) 5-m-dia turbine when its symmetrical cross-section blades are mounted such that the axis of rotation-blade chord position vector effects a normal intersection with the blade chord at points between -180% and +77% chord. These variations produce significant changes in cut-in tip-speed ratio, peak efficiency, and peak power.

  3. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    SciTech Connect

    Snowberg, D.; Hughes, S.

    2013-04-01

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  4. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  5. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect

    Carlson, Clinton P; Schichting, Alexander D; Quellette, Scott; Farinholt, Kevin M; Park, Gyuhae

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  6. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  7. Turbine blade and non-integral platform with pin attachment

    SciTech Connect

    Campbell, Christian X; Eng, Darryl; Marra, John J

    2015-01-27

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  8. Turbine blade and non-integral platform with pin attachment

    DOEpatents

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  9. Ice accretion modeling for wind turbine rotor blades

    SciTech Connect

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A.

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  10. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  11. Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011

    Energy.gov [DOE]

    The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, now offers a full suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011.

  12. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    SciTech Connect

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  13. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  14. Aeroelastically coupled blades for vertical axis wind turbines

    DOEpatents

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  15. Adaptor assembly for coupling turbine blades to rotor disks

    DOEpatents

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  16. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  17. Straight-bladed Darrieus wind turbines a protagonists view

    SciTech Connect

    Migliore, P.G.

    1984-08-01

    The technology development and market penetration of Darrieus and propeller-type wind turbines is addressed. Important characteristics of competing configurations are compared, and it is claimed that aerodynamic efficiency is not a distinguishing feature. Advantages of the Darrieus machine include omni-directionality and selflimitation, but propeller types require less rotor length per unit swept area. It is argued that the straight-bladed Darrieus is much simpler than the curved-bladed and should be capable of comparable aerodynamic efficiency. Some of the problems of structural design, as well as blade induced drag losses and support-arm counter torque, diminish rapidly as machine size is increased. Taper ratio has similar beneficial effects.

  18. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  19. Preform spar cap for a wind turbine rotor blade

    DOEpatents

    Livingston, Jamie T.; Driver, Howard D.; van Breugel, Sjef; Jenkins, Thomas B.; Bakhuis, Jan Willem; Billen, Andrew J.; Riahi, Amir

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  20. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Energy.gov [DOE] (indexed site)

    Act, the WTTC is one of the largest blade test facilities in the world, testing some of ... tests on the larger blades at higher test frequencies-and thus shorter testing ...

  1. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  2. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  3. Incipient Crack Detection in Composite Wind Turbine Blades

    SciTech Connect

    Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi; Jang, Jae Kyeong; Park, Gyuhae; Farinholt, Kevin; Farrar, Charles R.; Ammerman, Curtt N.; Todd, Michael D.; Lee, Jung-Ryul

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

  4. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    SciTech Connect

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

  5. Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades: Preprint

    SciTech Connect

    Schreck, S. J.

    2007-01-01

    To better understand wind turbine flow physics, time dependent blade surface pressure data were acquired from the NREL Unsteady Aerodynamics Experiment.

  6. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  7. Image Analysis of Turbine Blades Using CT Scans| GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    turbine blades in a jet or gas engine. If large enough, they can have significant impact on performance, durability, and safety of the engine. Detecting these flaws before turbine ...

  8. Multi-piece wind turbine rotor blades and wind turbines incorporating same

    DOEpatents

    Moroz,; Mieczyslaw, Emilian [San Diego, CA

    2008-06-03

    A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

  9. Testing America's Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing America's Wind Turbines Testing America's Wind Turbines View All Maps Addthis

  10. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Energy.gov [DOE] (indexed site)

    wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel ...

  11. Aeroelastic analysis of a Darrieus type wind turbine blade with troposkien geometry

    SciTech Connect

    Nitzsche, F.

    1983-01-01

    The troposkien geometry has been invoked in structural modeling of blades belonging to a class of vertical axis wind turbines called Darrieus rotors. Although it is free of bending stresses in the equilibrium position, determined by a constant angular velocity, tests have indicated that under certain conditions serious vibrations about the original shape may occur. A new approach is proposed to study the general problem of free vibration of one-dimensional structures and in particular one of a blade initially curved in the troposkien shape. The present scheme links for the first time two already existing ideas: the transfer matrices which were first developed in the 50's and the relatively recent idea of integrating matrices. Modal superposition is employed to study the flutter problem when the blade is aerodynamically loaded according to two hypothetical experiments. In the first, a vacuum chamber containing the rotating troposkien blade is brought up to the sea level air density. The second experiment consists of placing the rotating blade in the wind tunnel, increasing the velocity of the wind from zero to characteristic values in the operating range of the turbine. Two different analytical treatments are employed in each one of the aforementioned experiments. The root-locus method of tracing complex roots of the flutter determinant in the frequency-domain is used in the first experiment, whereas the Floquet-Liapunov stability theory is applied to the second. The stability of the blade as a function of different support conditions, elastic axis location, turbine speed and structural damping is studied in detail.

  12. Sources of fatigue damage to passive yaw wind turbine blades

    SciTech Connect

    Laino, D.J.

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  13. Steam as turbine blade coolant: Experimental data generation

    SciTech Connect

    Wilmsen, B.; Engeda, A.; Lloyd, J.R.

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  14. Swept Blade Aero-Elastic Model for a Small Wind Turbine (Presentation)

    SciTech Connect

    Damiani, R.; Lee, S.; Larwood, S.

    2014-07-01

    A preprocessor for analyzing preswept wind turbines using the in-house aero-elastic tool coupled with a multibody dynamic simulator was developed. A baseline 10-kW small wind turbine with straight blades and various configurations that featured bend-torsion coupling via blade-tip sweep were investigated to study their impact on ultimate loads and fatigue damage equivalent loads.

  15. Developments in blade shape design for a Darrieus vertical axis wind turbine

    SciTech Connect

    Ashwill, T.D.; Leonard, T.M.

    1986-09-01

    A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a ''buildable'' blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.

  16. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    SciTech Connect

    Naughton, Jonathan W.

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  17. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1995-04-11

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk. 6 figures.

  18. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L.

    1995-01-01

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk.

  19. Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.

    SciTech Connect

    Cairns, Douglas S.; Riddle, Trey; Nelson, Jared

    2011-02-01

    Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

  20. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  1. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite

  2. Blading designs to improve thermal performance of HP and IP steam turbines

    SciTech Connect

    Chen, S.; Martin, H.F.

    1996-12-31

    Improved blade designs are available for high pressure and intermediate pressure steam turbines for increased thermal efficiency. These designs and the technology used to develop and verify them are discussed in this paper. The blading designs include twisted blade designs and full three dimensional designs. Appropriate strategies are discussed for the application of these different types of blading for new and retrofit applications. The market place in the electric energy industry in the United States is changing. The impact of this change on the need for improved blade designs and application strategies for the use of this blading is also discussed.

  3. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    SciTech Connect

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  4. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Mandell, John; Agastra, Pancasatya

    2011-11-01

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  5. Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.

    SciTech Connect

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.; Sears, Aaron T.; Agastra, Pancasatya; Laird, Daniel L.; Samborsky, Daniel D.

    2010-12-01

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of

  6. Automated ultrasonic inspection of turbine blade tenons results summary

    SciTech Connect

    Kotteakos, B.

    1996-12-31

    Cracks occurring in turbine blade tenons have the possibility of producing severe damage if not detected. Undetected cracks can propagate to a critical size, resulting in loss of shroud, excessive vibration and consequential unit shut down. Advances in the development of ultrasonic techniques have provided Southern California Edison Company (SCE) with an effective method of detecting tenon cracking prior to crack propagation to critical size. The ultrasonic system utilized by SCE incorporates focused array technology and automated scanning techniques and provides many advantages over the conventional manual scanning techniques. This paper addresses the system utilized by the company and the results of inspections since the introduction of the equipment to the power generation industry.

  7. Energy Department Awards $1.8 Million to Develop Wind Turbine Blades to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Access Better Wind Resources and Reduce Costs | Department of Energy 1.8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs Energy Department Awards $1.8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs September 15, 2015 - 9:00am Addthis The Energy Department today announced the selection of two organizations to develop larger wind turbine blades that can take advantage of better wind resources and can lower costs.

  8. Composite turbine blade design options for Claude (open) cycle OTEC power systems

    SciTech Connect

    Penney, T.R.

    1985-11-01

    Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

  9. Effect of Manufacturing-Induced Defects on Reliability of Composite Wind Turbine Blades

    SciTech Connect

    Julie Chen; Christopher Niezrecki; James Sherwood; Peter Avitabile; Mark Rumsey; Scott Hughes; Stephen Nolet; et al.

    2012-08-31

    In support of DOE’s efforts on developing “affordable, reliable domestic wind power”, this ARRA project brought together a strong, complementary team from academia (University of Massachusetts Lowell), two DOE laboratories (NREL and Sandia), and a major wind turbine blade manufacturer (TPI) to address one of the key issues affecting wind power cost and reliability – manufacturing-induced defects in the blades. The complexity of this problem required the assembled team’s expertise in materials – specifically textile and composite structures – finite element modeling, composites manufacturing, mechanical characterization, structural dynamics, nondestructive inspection (NDI) and structural health monitoring (SHM), sensors, and wind turbine blade testing. This final report summarizes the results of this project.

  10. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    SciTech Connect

    J.L. Rovey K. Chandrashekhara

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  11. Approach to the fatigue analysis of vertical-axis wind-turbine blades

    SciTech Connect

    Veers, P.S.

    1981-09-01

    A cursory analysis of the stress history of wind turbine blades indicates that a single stress level at each wind speed does not adequately describe the blade stress history. A statistical description is required. Blade stress data collected from the DOE/ALCOA Low Cost experimental turbines indicate that the Rayleigh probability density function adequately describes the distribution of vibratory stresses at each wind speed. The Rayleigh probability density function allows the distribution of vibratory stresses to be described by the RMS of the stress vs. time signal. With the RMS stress level described for all wind speeds, the complete stress history of the turbine blades is known. Miner's linear cumulative damage rule is used as a basis for summing the fatigue damage over all operating conditions. An analytical expression is derived to predict blade fatigue life.

  12. Progress Toward Luminescence-Based VAATE Turbine Blade And Vane Temperature Measurement

    SciTech Connect

    Jenkins, Tom P.; Allison, Stephen W; Eldridge, Jeffrey I.; Niska, R. H.; Condevaux, J. J.; Wolfe, Doug E.; Jordan, Eric H.; Heeg, Bauke

    2012-01-01

    Progress towards fielding luminescence-based temperature measurements for the Versatile Affordable Advanced Turbine Engine (VAATE) program is described. The near term programmatic objective is to monitor turbine vane temperatures and health by luminescence from a rare-earth doped thermal barrier coating (TBC), or from a thermographic phosphor layer coated onto a TBC. The first goal is to establish the temperature measurement capability to 1300 C with 1 percent uncertainty in a test engine. An eventual goal is to address rotating turbine blades in an F135 engine. The project consists of four phases, of which the first two have been completed and are described in this paper. The first phase involved laser heating of a 2.54-cm-diameter test sample, coated with a TBC and a thermographic phosphor layer, to produce a thermal gradient across the TBC layer similar to that expected in a turbine engine. Phosphor temperatures correlated well with those measured by long wavelength pyrometry. In the second phase, 10x10- cm coupons were exposed to a jet fuel flame at a burner rig facility. The thermographic phosphor/TBC combination survived the aggressive flame and high exhaust gas velocity, even though the metal substrate melted. Reliable temperature measurements were made up to about 1400 C using YAG:Dy as the thermographic phosphor. In addition, temperature measurements using YAG:Tm showed very desirable background radiation suppression.

  13. Pressure distributions on an operating vertical-axis wind-turbine blade element

    SciTech Connect

    Akins, R.E.; Klimas, P.C.; Croll, R.H.

    1983-01-01

    Efforts to validate aerodynamic models of vertical-axis wind turbines have been limited by a lack of appropriate measurements as stall begins to occur along the blade. In order to measure the forces acting on a blade through stall and in post-stall, a blade has been instrumented using flush-mounted pressure transducers. Data have been obtained on an appropriate range of turbine operating conditions. These data indicate that at high incident wind speeds, dynamic stall occurs on the upwind portion of the rotation.

  14. Hot spot detection system for vanes or blades of a combustion turbine

    DOEpatents

    Twerdochlib, Michael

    1999-01-01

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

  15. Hot spot detection system for vanes or blades of a combustion turbine

    DOEpatents

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  16. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE PAGES [OSTI]

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less

  17. VP 100: New Facility in Boston to Test Large-Scale Wind Blades

    Energy.gov [DOE]

    Thanks in part to funding from the Recovery Act, the Wind Technology Testing Center in Massachusetts will be first in the U.S. to test wind turbine blades up to 300 feet in length -- creating 300 construction jobs and 30 permanent design jobs in the process.

  18. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    SciTech Connect

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural

  19. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  20. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    SciTech Connect

    Wang, Jy-An John; Ren, Fei

    2010-09-01

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing

  1. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

  2. PPG and MAG Team Up for Turbine Blade Research

    Energy.gov [DOE]

    Two companies work together to move forward in the industry, researching materials and processes that could lead to stronger, more reliable wind blades.

  3. Horizontal-Axis Wind Turbine Wake Sensitivity to Different Blade...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U inflow angle at blade section relative to plane of rotation + , degrees angular velocity of rotor, rads SW iF T Scaled Wind Farm Technology x time average of...

  4. Development and turbine engine performance of three advanced rhenium containing superalloys for single crystal and directionally solidified blades and vanes

    SciTech Connect

    Broomfield, R.W.; Ford, D.A.; Bhangu, J.K.; Thomas, M.C.; Frasier, D.J.; Burkholder, P.S.; Harris, K.; Erickson, G.L.; Wahl, J.B.

    1998-07-01

    Turbine inlet temperatures over the next few years will approach 1,650 C (3,000 F) at maximum power for the latest large commercial turbofan engines, resulting in high fuel efficiency and thrust levels approaching 445 kN (100,000 lbs). High reliability and durability must be intrinsically designed into these turbine engines to meet operating economic targets and ETOPS certification requirements. This level of performance has been brought about by a combination of advances in air cooling for turbine blades and vanes, design technology for stresses and airflow, single crystal and directionally solidified casting process improvements, and the development and use of rhenium (Re) containing high {gamma}{prime} volume fraction nickel-base superalloys with advanced coatings, including full-airfoil ceramic thermal barrier coatings. Re additions to cast airfoil superalloys not only improves creep and thermo-mechanical fatigue strength, but also environmental properties including coating performance. Re dramatically slows down diffusion in these alloys at high operating temperatures. A team approach has been used to develop a family of two nickel-base single crystal alloys (CMSX-4 containing 3% Re and CMSX-10 containing 6% Re) and a directionally solidified, columnar grain nickel-base alloy (CM 186 LC containing 3% Re) for a variety of turbine engine applications. A range of critical properties of these alloys is reviewed in relation to turbine component engineering performance through engine certification testing and service experience. Industrial turbines are now commencing to use this aero developed turbine technology in both small and large frame units in addition to aero-derivative industrial engines. These applications are demanding, with high reliability required for turbine airfoils out to 25,000 hours, with perhaps greater than 50% of the time spent at maximum power. Combined cycle efficiencies of large frame industrial engines are scheduled to reach 60% in the US

  5. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (ORNL) Big Area Additive Manufacturing (BAAM) system. BAAM is 500 to 1,000 times faster and capable of printing polymer components over 10 times larger than today's industrial additive machines. With research blades measuring 13 meters (42 feet) in length, BAAM provides the necessary scale and foundation for this ground-breaking advancement in blade research and manufacturing. The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) plays a strategic role

  6. Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-08-01

    Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.

  7. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    SciTech Connect

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

    2014-06-01

    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  8. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    SciTech Connect

    Huyer, S. [Univ. of Colorado, Boulder, CO (US)] [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  9. A novel technique for blade-to-blade velocity measurements in a turbine cascade

    SciTech Connect

    Goss, L.P.; Post, M.E.; Trump, D.D.; Sarka, B.; Macarthur, C.D.

    1989-01-01

    A two-color particle-image velocimetry technique has been developed to study two-dimensional velocity flowfields. In the method, a green-colored laser sheet (formed by a doubled Nd-YAG laser) and a red-colored laser sheet (formed by a Nd:YAG-pumped dye laser) are used sequentially to expose the particle positions. Direction and particle displacement can be uniquely determined with the method because the green-particle image occurs before the red-particle image by a known time increment. The method is particularly useful for complex flowfields where the normal 180-deg directional ambiguity of single-color techniques can be troublesome. Velocity data for a turbine-cascade test section have been obtained with the two-color technique. 15 refs.

  10. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  11. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  12. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  13. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    SciTech Connect

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  14. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  15. Residual stresses in darrieus vertical axis wind turbine blades

    SciTech Connect

    Veers, P.

    1981-04-01

    A numerical package called RESID has been assembled to calculate the residual stresses in VAWT blades induced during cold forming. Using a strength of materials - elementary beam theory approach, RESID models the material response with a bilinear stress-strain curve, and the cross-sectional geometry with an array of area increments. Through an iterative solution procedure residual stresses are predicted for a specified final radius of curvature or applied bending moment. RESID results are compared to theoretical solutions for simple geometries and with MARC Finite element results for VAWT blade geometries. Calculating residual stress levels, determining acceptable residual stress levels, and a method of reducing residual stresses are discussed. A complete listing and sample run are included in the appendicies.

  16. Liberty Turbine Test Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade

    SciTech Connect

    Butterfield, C.P.

    1988-11-01

    Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

  18. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    SciTech Connect

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more

  19. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    DOEpatents

    Wetzel, Kyle Kristopher

    2014-06-24

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  20. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    DOEpatents

    Wetzel, Kyle Kristopher

    2008-03-18

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  1. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    SciTech Connect

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  2. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    SciTech Connect

    Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.

  3. SMART wind turbine rotor. Design and field test

    SciTech Connect

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  4. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  5. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  6. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    SciTech Connect

    van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  7. Inspection system for a turbine blade region of a turbine engine

    DOEpatents

    Smed, Jan P.; Lemieux, Dennis H.; Williams, James P.

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  8. NREL: Wind Research - Dynamometer Test Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  9. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    SciTech Connect

    Guntur, S.; Schreck, S.; Sorensen, N. N.; Bergami, L.

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  10. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  11. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Office of Environmental Management (EM)

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work ...

  12. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect

    Hughes, S.

    2012-05-01

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  13. Test Program for High Efficiency Gas Turbine Exhaust Diffuser...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Test Program for High Efficiency Gas Turbine Exhaust Diffuser Citation Details In-Document Search Title: Test Program for High Efficiency Gas Turbine Exhaust ...

  14. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable ...

  15. In-field use of laser Doppler vibrometer on a wind turbine blade

    SciTech Connect

    Rumsey, M.; Hurtado, J.; Hansche, B.

    1998-12-31

    One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

  16. Test of a coaxial blade tuner at HTS FNAL

    SciTech Connect

    Pischalnikov, Y.; Barbanotti, S.; Harms, E.; Hocker, A.; Khabiboulline, T.; Schappert, W.; Bosotti, A.; Pagani, C.; Paparella, R.; /LASA, Segrate

    2011-03-01

    A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. The stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.

  17. Characterization of waviness in wind turbine blades using air coupled ultrasonics

    SciTech Connect

    Chakrapani, Sunil Kishore; Dayal, Vinay; Hsu, David K.; Barnard, Daniel J.; Gross, Andrew

    2011-06-23

    Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air-coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effect of waviness in thick composites, and how it affects the life and performance of the composite.

  18. Recovery Act-Funded 90-m Blade Test Facility Commissioned May...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 May 20, 2011 - 3:06pm Addthis This is ...

  19. Innovative system for wind turbine testing

    SciTech Connect

    Camporeale, S.M.; Fortunato, B.; Marilli, G.

    1998-07-01

    An innovative system for testing small wind turbine models, is presented. The system is especially designed for Darrieus type turbines. The turbine is directly coupled to a direct current machine and a chopper, electronically controlled by means of a Pulse Width Modulator, is used to supply the circuit. The system is used for driving the turbine during the start-up procedure and for braking at various speeds during the performance test. In the paper the main characteristics of the electronic system are described and compared with a traditional system. The main goal of the electronic control is to increase the accuracy in the measurements of torque and speed for each steady state point of the turbine characteristic curve. Another useful advantage provided by the electronic control is related to the possibility of fine tuning the load in order to obtain a large number of steady state experimental points describing the characteristic curve of the turbine. Moreover the system is suitable for integration in an automatic data acquisition and control system. The experimental results, obtained in testing a small turbine in a wind tunnel by means of the electronic control system are presented and discussed at the end of the paper.

  20. NWTC Researchers Field-Test Advanced Control Turbine Systems...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants Researchers at the National Renewable ...

  1. Using partial safety factors in wind turbine design and testing

    SciTech Connect

    Musial, W.D.; Butterfield, C.

    1997-09-01

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  2. Using partial safety factors in wind turbine design and testing

    SciTech Connect

    Musial, W.D.

    1997-12-31

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  3. NREL: Wind Research - Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing ... Power performance, noise, loads, and power quality testing: NREL is one of only two ...

  4. Establishment of Small Wind Turbine Regional Test Centers (Presentation)

    SciTech Connect

    Sinclair, K.

    2011-09-16

    This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

  5. Secretary Chu, Governor Patrick Announce $25 Million for Massachusetts Wind Technology Testing Center

    Energy.gov [DOE]

    Funding will create new jobs and accelerate development of nation's only large wind turbine blade test facility

  6. Testing Controls to Mitigate Fatigue Loads in the Controls Advanced Research Turbine

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2009-01-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional (3D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory are designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. This paper describes testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control methods. The controller uses independent blade pitch to regulate the turbine's speed in Region 3, mitigate the effects of shear across the rotor disk, and add active damping to the tower's first fore-aft bending mode. Additionally, a separate generator torque control loop is designed to add active damping to the tower's first side-side mode and the first drivetraintorsion mode. This paper discusses preliminary implementation and field tests of this controller in the Controls Advanced Research Turbine at the National Renewable Energy Laboratory. Also included are preliminary comparisons of the performance of this controller to results from a typical baseline Proportional-Integral-Derivative controller designed with just Region 3 speed regulation as the goal.

  7. Modal testing of the vertical axis wind turbine

    SciTech Connect

    Miller, D.E.; Nord, A.R.

    1980-01-01

    The VAWT is a 17-meter structure which has been tested in a variety of configurations. Early in the program there were three fiberglass blades reinforced with struts. A later configuration had two aluminum blades. Both of these have been tested by the modal analysis group. There is also a three-bladed aluminum structure which will be tested in the coming months. Test results are presented.

  8. Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine

    Energy.gov [DOE]

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  9. Combining Turbine Blade-Strike and Life Cycle Models to Assess Mitigation Strategies for Fish Passing Dams

    SciTech Connect

    Ferguson, John W.; Ploskey, Gene R.; Leonardsson, Kjell; Zabel, Richard W.; Lundqvist, Hans

    2008-08-01

    Combining the two models produced a rapid, cost effective tool for assessing dam passage impacts to fish populations and prioritizing among mitigation strategies for conserving fish stocks in regulated rivers. Estimated mortality of juvenile and adult Atlantic salmon (Salmo salar) and sea trout (S. trutta) passing turbines at two dams in northern Sweden was significantly higher for Kaplan turbines compared to Francis turbines, and for adult fish compared to juveniles based on blade strike models. Mean probability of mortality ranged from 6.7% for salmon smolts passing Francis turbines to >100% for adult salmon passing Kaplan turbines. Life cycle modeling allowed benefits to be assessed for three alternatives that mitigated this mortality. Salmon population responses varied considerably among alternatives and rivers: growth rates improved as much as 17.9%, female escapements increased up to 669%, and more than 1,300 additional female salmon were produced in one case. Protecting both smolts and adults provided benefits, and in one river, mitigating turbine mortality alone was estimated to have met the production capacity of the available habitat.

  10. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  11. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-07-11

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figs.

  12. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  13. Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint

    SciTech Connect

    Schreck, S.; Robinson, M.

    2007-08-01

    This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

  14. Interagency Field Test Evaluates Co-operation of Turbines and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department ...

  15. NREL: Wind Research - Small Wind Turbine Independent Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack of small wind turbine systems that are independently tested and certified. To ...

  16. Darrieus wind turbine: construction and testing

    SciTech Connect

    Abbott, K.; Christianson, L.L.; Hellickson, M.A.

    1982-12-01

    A Darrieus was designed and constructed to be mechanically coupled to a heat pump for agricultural applications. This design minimized the cost of a cantilevered Darrieus and was suitable for testing purposes. All turbine components operated satisfactorily during testing, but the upper bearing and torque tube may fail after extended use. Performance characteristics of a variable-speed Darrieus were found by measuring wind speed, turbine torque, and turbine rotational speed, while the Darrieus operated. A hydraulic dynamometer was used to step-wise load the Darrieus to maintain high efficiencies. Performance curves were developed by using the statistical method of bins and multiple, least square regression analysis. Optimal performance for a variable-speed Darrieus system was determined and used to evaluate the turbine performance. Cantilevered support of the Darrieus was adequate for shaft rotational speeds less than 180 r/min. Vibrations due to a mass imbalance prevented the rotational speeds from being higher. Resonance conditions were detected at rotational speeds of 50 and possibly 180 r/min. The variable-speed system operated near the predicted optimal efficiency to a rotational speed of 120 r/min but above 120 r/min efficiencies decreased because the rotor was loaded down to prevent overspeeding and because of the inertial effect of the turbine. Variable-speed operation resulted in an efficiency of 31.8 percent. Efficiency of the variable-speed system would have been higher if the turbine had operated at higher rotational speeds and if a more optimal method of loading was used.

  17. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  18. Synfuel-powered turbines under test

    SciTech Connect

    Stadelman, J.R.

    1980-09-01

    The results of an extensive test program on 12 coal-derived and 3 oil shale-derived liquid fuels developed by Mobil Research and Development Corp., Westinghouse Electric Corp., and Electric Power Research Institute (EPRI), were reported at ASME's 25th Annual Gas Turbine Conference in New Orleans in Mar. 1980 in a two-part paper titled ''Combustion Effects of Coal Liquids and other Synthetic Fuels in Gas Turbine Combustors''. Investigators at the three firms concluded that the coal and shale liquids tested were basically satisfactory, from an operational standpoint, for use in present combustion turbines. According to J. R. Stadelman (Westinghouse Electr. Corp.), it is now known that the lower-nitrogen, lighter synthetic liquid fuels can be used in today's turbines when sufficient quantities are available; and a commercial-size plant may begin testing these fuels in early 1981 when three liquid-coal pilot plants will be in operation. The pilot plants will demonstrate the production of Gulf Oil Corp.'s solvent-refined coal (SRC-2), Exxon Corp.'s EDS (Exxon Donor Solvent) process fuel, and H-Coal fuel made by Dynalectron Corp.'s Hydrocarbon Research Inc. EPRI and the U.S. Department of Energy are supporting the development of such synthetic fuels.

  19. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  20. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  1. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  2. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    SciTech Connect

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu; Zhang, Jilong

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power received by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.

  3. Microsoft Word - Modeling and Testing of 9m Research Blades Paquette...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Testing of 9m Research Blades * Joshua Paquette , Daniel Laird , and D. Todd Griffith Sandia National Laboratories ** , Albuquerque, NM, 87185, USA Laura Rip...

  4. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. The Massachusetts Wind Technology Testing Center (WTTC), a joint effort by the U.S. Department of Energy (DOE), the Massachusetts Clean Energy Center, and the National Renewable Energy Laboratory (NREL), was recently accredited

  5. Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-07-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

  6. Duration Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-12-01

    This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  7. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  8. Structural Testing Laboratory | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structural Testing Laboratory NREL's structural test facilities enable the characterization and validation of wind turbine blades and components. A photo of a wind turbine blade inside a testing room with sensors mounted to the surface of the blade. The extreme operating loads experienced by blades during field operation and accelerated fatigue lifetime loading can be simulated and tested in one of three laboratories at the National Wind Technology Center (NWTC). Facilities are capable of

  9. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  10. Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Blade Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Blade Co Ltd Place: Hebei Province, China Sector: Wind energy Product: Wind turbine blade maker....

  11. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  12. Department of Energy to Invest up to $4 Million for Wind Turbine...

    Energy.gov [DOE] (indexed site)

    been selected to negotiate cooperative research and development agreements (CRADAs) to design, build, and operate new facilities to test the next generation of wind turbine blades. ...

  13. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect

    Karlson, Benjamin; LeBlanc, Bruce Philip.; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz; Keck, Chris; Sullivan, Jonathan; Brigada, David; Parker, Lorri; Younger, Richard; Biddle, Jason

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  14. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  15. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-01-10

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figures.

  16. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  17. Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    van Dam, J.; Baker, D.; Jager, D.

    2010-02-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  18. Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    van Dam, J.; Baker, D.; Jager, D.

    2010-05-01

    This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  19. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  20. Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade

    SciTech Connect

    Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

    2012-02-01

    Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

  1. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    SciTech Connect

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  2. RIT rotor vibration testing. Test report. [Radial inflow turbines

    SciTech Connect

    Chartier, G L

    1982-09-27

    A radial inflow turbine (RIT) B rotor, including the impeller and shaft, was examined experimentally to determine vibratory characteristics. It was concluded that there are no specific speeds within the operating range with adequate resonance encroachment margins. It is recommended that performance tests be carried out with caution.

  3. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  4. Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

    SciTech Connect

    William C. Leighty; DOE Project Officer - Keith Bennett

    2005-10-04

    Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

  5. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  6. Variable speed wind turbine control system

    SciTech Connect

    Conley, E.

    1981-08-01

    Variable speed wind turbine operation is discussed for potential increased energy production if the turbine rotor is controlled to operate at constant blade tip speed to wind speed ratio. Two variable speed control systems are compared to a constant speed control system during field tests of a 5m Darrieus type wind turbine generator. 6 refs.

  7. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Energy.gov [DOE] (indexed site)

    field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector technologies in mitigating that interference. ...

  8. Controller Field Tests on the NREL CART2 Turbine

    SciTech Connect

    Bossanyi, E.; Wright, A.; Fleming, P.

    2010-12-01

    This document presents the results of the field tests carried out on the CART2 turbine at NREL to validate individual pitch control and active tower damping.

  9. SMART Wind Turbine Rotor: Design and Field Test

    Office of Energy Efficiency and Renewable Energy (EERE)

    Design and field test results from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

  10. Duration Test Report for the SWIFT Wind Turbine

    SciTech Connect

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  11. Safety and Function Test Report for the SWIFT Wind Turbine

    SciTech Connect

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  12. Strain gauge validation experiments for the Sandia 34-meter VAWT (vertical axis wind turbine) Test Bed

    SciTech Connect

    Sutherland, H.J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to ''equivalent'' gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system. 8 refs., 20 figs., 3 tabs.

  13. An Exploration of Wind Energy & Wind Turbines

    Education - Teach & Learn

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  14. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1994-12-13

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion. 3 figures.

  15. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L. (Alpine, CA)

    1994-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion.

  16. Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Part of the reason for this lack of development is that operations and maintenance (O&M) costs are expected to be significantly higher for offshore wind turbines than onshore wind ...

  17. Simulation of the Manufacturing of Non-Crimp Fabric-Reinforced Composite Wind Turbine Blades to Predict the Formation of Wave Defects

    SciTech Connect

    Fetfatsidis, K. A.; Sherwood, J. A. [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

    2011-05-04

    NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP registered is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromise the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.

  18. Duration Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2013-06-01

    This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

  19. Investigating the Effects of Flatback Airfoils and Blade Slenderness...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SLENDERNESS ON THE DESIGN OF LARGE WIND TURBINE BLADES D. Todd Griffith Sandia National ... axis wind turbine and a series of large blade design studies for 100-meter blades. ...

  20. Turbine test report. Addendum to final report

    SciTech Connect

    Elliott, T.J.; Batton, W.D.

    1984-07-01

    The radial inflow turbine developed for the NASA 404 program 25-ton solar air conditioner (RCWS-2-2753-GO) was tested for performance. Using the converging-only nozzles designed for this system, a peak efficiency of 86% was measured at a pressure ratio of 2.7 and a velocity ratio of 0.66. Near the design pressure ratio of 3.5 and velocity ratio of 0.645, the measured pressure ratio of 3.5 and velocity of 0.645, the measured efficiency was 84% instead of the predicted 82%. Data are presented for pressure ratios of 2.7, 3.6, and velocity ratio ranges of 0.20 to 0.85. This covers the normal operating range of interest in this machine. The performance is better than predicted. This indicates that some of the loss coefficient values assumed during the original analysis were conservative.

  1. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  2. Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade

    SciTech Connect

    Connell, J.R.; Morris, V.R. . Dept. of Civil Engineering; Pacific Northwest Lab., Richland, WA )

    1989-09-01

    Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate. 5 refs., 9 figs.

  3. Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code

    SciTech Connect

    Sullivan, W. N.; Leonard, T. M.

    1980-11-01

    An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

  4. Passive load control for large wind turbines.

    SciTech Connect

    Ashwill, Thomas D.

    2010-05-01

    Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

  5. Full-scale turbine-missile-casing tests. Final report. [PWR; BWR

    SciTech Connect

    Yoshimura, H.R.; Schamaun, J.T.

    1983-01-01

    Results are presented of two full-scale tests simulating the impact of turbine disk fragments on simple ring and shell structures that represent the internal stator blade ring and the outer housing of an 1800-rpm steam turbine casing. The objective was to provide benchmark data on both the energy-absorbing mechanisms of the impact process and, if breakthrough occured, the exit conditions of the turbine missile. A rocket sled was used to accelerate a 1527-kg (3366-lb) segment of a turbine disk, which impacted a steel ring 12.7 cm (5 in.) thick and a steel shell 3.2 cm (1.25 in.) thick. The impact velocity of about 150 m/s (492 ft/s) gave a missile kinetic energy corresponding to the energy of a fragment from a postulated failure at the design overspeed (120% of operating speed). Depending on the orientation of the missile at impact, the steel test structure either slowed the missile to 60% of its initial translational velocity or brought it almost to rest (an energy reduction of 65 and 100%, respectively). The report includes structural and finite element analysis and data interpretation, estimates of energy during impact, missile displacement and velocity histories, and selected strain gage data.

  6. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MITIGATION TECHNOLOGIES | Department of Energy INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES The documents below include 1) a report that summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly available results from the tests and 2) summaries of three field tests designed to measure the impact of wind

  7. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  8. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  9. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  10. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  11. Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint

    SciTech Connect

    Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

    2015-01-01

    This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

  12. Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators

    SciTech Connect

    Hibbs, R.; Chen, Y.; Nikitopoulos, D.

    1995-10-01

    The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

  13. Sweep-twist adaptive rotor blade : final project report.

    SciTech Connect

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  14. Deposition of Graded Thermal Barrier Coatings for Gas Turbine...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National ... thermal barrier coatings on gas turbine blades and vanes which increase the ...

  15. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  16. Pin and roller attachment system for ceramic blades

    DOEpatents

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  17. Pin and roller attachment system for ceramic blades

    DOEpatents

    Shaffer, James E. (Maitland, FL)

    1995-01-01

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints.

  18. Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

  19. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  20. Blade reliability collaborative :

    SciTech Connect

    Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

    2013-04-01

    The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

  1. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  2. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  3. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges

  4. Turbines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Turbines Hydrogen Turbine photo Hydrogen Turbines The NETL Hydrogen Turbine Program manages a research, development, and demonstration (RD&D) portfolio of projects designed to remove environmental concerns about the future use of fossil fuels through development of revolutionary, near-zero-emission advanced turbine technologies. More Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency,

  5. Experimental Test Plan DOE Tidal and River Reference Turbines

    SciTech Connect

    Neary, Vincent S; Hill, Craig; Chamorro, Leonardo; Gunawan, Budi

    2012-09-01

    Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

  6. Mini-modal testing of wind turbines using novel excitation

    SciTech Connect

    Lauffer, J.P.; Carne, T.G.; Nord, A.R.

    1984-01-01

    Modal testing of wind turbines can be fairly difficult because placing transducers on tall structures and providing low frequency excitation create problems. Moderate-size turbines are 100 to 200 feet tall, and their modal frequencies are very low, 0.1 to 5.0 Hz. In the mini-modal concept, only a limited number of response measurements are used in conjunction with a reasonably accurate finite element model to determine the modal parameters. Several techniques of low frequency excitation were explored, including impact, wind, step-relaxation, and human input. In tests using the mini-modal concept with human excitation, modal frequencies of large turbines have been determined in less than one day. As one application of these techniques, a prototype turbine was tested and two modal frequencies were found to be very close to integral multiples of the operating speed, which would cause a resonant condition. The design was modified to shift these frequencies, and the turbine was retested to confirm the expected changes in the modal frequencies.

  7. Ceramic blade attachment system

    DOEpatents

    Frey, deceased, Gary A. (late of Poway, CA); Jimenez, Oscar D. (Escondia, CA)

    1996-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed therebetween. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. And, a pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade.

  8. Ceramic blade attachment system

    DOEpatents

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  9. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    SciTech Connect

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  10. Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995

    SciTech Connect

    1996-01-01

    This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

  11. Dynamometer Test Facilities | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamometer Test Facilities Dynamometers test wind turbine drivetrains by replacing the rotor and blades of a turbine with a powerful motor. The National Wind Technology Center features dynamometers that can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). Photo of large blue and red test machinery with a man looking up at it. Capabilities Perform steady-state testing to determine a turbine's "power curve": how its electrical production relates to the input

  12. Response of Juvenile Pacific Lamprey to Turbine Passage

    SciTech Connect

    Dauble, D.

    2009-09-14

    To help determine the Pacific lamprey’s ability to survive turbine passage, Pacific Northwest National Laboratory scientists conducted laboratory tests designed to simulate a fish’s passage through the turbine environment. Juvenile Pacific lamprey were subjected to two of three aspects of passage: pressure drop and shear stress. The third aspect, blade strike, was not tested.

  13. Wanapum Dam Advanced Hydro Turbine Upgrade Project: Part 2 - Evaluation of Fish Passage Test Results Using Computational Fluid Dynamics

    SciTech Connect

    Dresser, Thomas J.; Dotson, Curtis L.; Fisher, Richard K.; Graf, Michael J.; Richmond, Marshall C.; Rakowski, Cynthia L.; Carlson, Thomas J.; Mathur, Dilip; Heisey, Paul G.

    2007-10-10

    This paper, the second part of a 2 part paper, discusses the use of Computational Fluid Dynamics (CFD) to gain further insight into the results of fish release testing conducted to evaluate the modifications made to upgrade Unit 8 at Wanapum Dam. Part 1 discusses the testing procedures and fish passage survival. Grant PUD is working with Voith Siemens Hydro (VSH) and the Pacific Northwest National Laboratory (PNNL) of DOE and Normandeau Associates in this evaluation. VSH has prepared the geometry for the CFD analysis corresponding to the four operating conditions tested with Unit 9, and the 5 operating conditions tested with Unit 8. Both VSH and PNNL have conducting CFD simulations of the turbine intakes, stay vanes, wicket gates, turbine blades and draft tube of the units. Primary objectives of the analyses were: determine estimates of where the inserted fish passed the turbine components determine the characteristics of the flow field along the paths calculated for pressure, velocity gradients and acceleration associated with fish sized bodies determine the velocity gradients at the structures where fish to structure interaction is predicted. correlate the estimated fish location of passage with observed injuries correlate the calculated pressure and acceleration with the information recorded with the sensor fish utilize the results of the analysis to further interpret the results of the testing. This paper discusses the results of the CFD analyses made to assist the interpretation of the fish test results.

  14. Comparison of field and wind tunnel Darrieus wind turbine data

    SciTech Connect

    Sheldahl, R.E.

    1981-01-01

    A 2-m-dia Darrieus Vertical Axis Wind Turbine with NACA-0012 blades was extensively tested in the Vought Corporation Low Speed Wind Tunnel. This same turbine was installed in the field at the Sandia National Laboratories Wind Turbine Test Site and operated to determine if field data corresponded to data obtained in the wind tunnel. It is believed that the accuracy of the wind tunnel test data was verified and thus the credibility of that data base was further established.

  15. Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response

    SciTech Connect

    George, R.L.; Connell, J.R.

    1984-09-01

    This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

  16. Testing of a direct drive generator for wind turbines

    SciTech Connect

    Sondergaard, L.M.

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  17. A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades

    SciTech Connect

    Simms, D.A.; Robinson, M.C.; Hand, M.M.; Fingersh, L.J.

    1995-01-01

    NREL has completed the initial twisted blade field tests of the ``Unsteady Aerodynamics Experiment.`` This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

  18. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  19. Detailed analysis of the ANO-2 turbine trip test

    SciTech Connect

    McDonald, T.A.; Tessier, J.H.; Senda, Y.; Waterman, M.D.

    1983-01-01

    A RELAP5/MOD1 (Cycle 18) computer code simulation of the ANO-2 turbine trip test from 98% power level was performed for use in vendor code qualification studies. Results focused on potential improvements to simulation capabilities and plant data acquisition systems to provide meaningful comparisons between the calculations and the test data. The turbine trip test was selected because it resulted in an unplanned sequence of events that broadly affected the plant process systems and their controls. The pressurizer spray valve stuck open at an undetermined flow area, and an atmospheric dump valve remained stuck fully open while several atmospheric dump and secondary side safety valves were unavailable throughout. Thus, although the plant remained always in a safe condition, this transient potentially provided an unusual set of data against which the fidelity of a NSSS simulation by RELAP5/MOD1 along with certain vendor analysis codes might be judged.

  20. Ceramic blade with tip seal

    DOEpatents

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  1. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect

    1995-06-01

    Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

  2. Risk assessment of Cumberland unit 2 L-O blades

    SciTech Connect

    Lam, T.C.T.; Puri, A.

    1996-12-31

    Concern about the reliability of the 1,300 mw Cumberland steam turbine units after an unexpected blade tip failure in the fall of 1995 caused TVA to conduct an investigation into the current reliability of the L-O blades. A probabilistic model based on the measured frequencies, damping and material fatigue data was generated. The influence of significant erosion damage on the blade natural frequencies and on the local stresses was estimated. A probabilistic model of the local fatigue limit was generated based on test data. Monte Carlo simulation was employed to estimate the probability of blade failure by comparing the dynamic stress with the fatigue limit. Risk assessment of the blade failure is presented.

  3. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  4. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    SciTech Connect

    Klimas, P.C.; Sladky, J.F. Jr.

    1985-01-01

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  5. Lightning protection system for a wind turbine

    DOEpatents

    Costin, Daniel P.; Petter, Jeffrey K.

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  6. Microsoft PowerPoint - Sandia2012_BladeWorkshop_Capellaro [Kompatibili...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stiftungslehrstuhl Windenergie am Institut fr Flugzeugbau Design Challenges for Bend Twist Coupled Blades for Wind Turbines: and application to standard blades 2012 Sandia Wind ...

  7. Microsoft PowerPoint - STP Blade Failure_Hentschel_SWPA Conf...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stockton Turbine Blade Failure Spillway Tainter Gates Tailrace Powerhouse Switchyard BUILDING STRONG Stockton Power Plant Cross Section Location of failed blade section Runner ...

  8. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  9. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  10. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  11. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  12. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  13. Enormous blades for offshore energy

    Energy.gov [DOE]

    Sandia’s design for giant wind turbine blades that are stowed at dangerous wind speeds to reduce the risk of damage. | Courtesy of TrevorJohnston.com/Popular Science

  14. Analysis of the ANO-2 turbine trip test

    SciTech Connect

    McDonald, T.A.; Tessier, J.H.; Senda, Y.; Waterman, M.D.

    1983-01-01

    The start-up tests performed with the Arkansas Nuclear One-Unit Two (ANO-2) plant provided an opportunity for studying the validity of certain integral systems codes. In particular, the turbine trip from 98.2 percent full power test was investigated with the RELAP5/MOD1 (cycle 18) ode. A detailed plant model was developed and used to understand the test reports. The early depressurization portion of the transient was reproduced; however, the resultant repressurization was not well represented due to uncertainty in the data and plant response. As a result of these computations and detailed analyses of the test data considerable insight was drawn as to the best way to perform and gather data from such integral systems tests for use in code verification studies.

  15. Turbine seal assembly

    SciTech Connect

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  16. Expanding Small Wind Turbine Certification Testing - Establishment of Regional Test Centers (Poster)

    SciTech Connect

    Jimenez, A.; Bowen, A.; Forsyth, T.; Huskey, A.; Sinclair, K.; van Dam, J.; Smith, J.

    2010-05-01

    Presented at the WINDPOWER 2010 Conference & Exhibition, 23-26 May 2010, Dallas, Texas. The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. To reduce certification testing costs, DOE/NREL is assisting in establishing a network of Regional Test Centers (RTCs) to conduct SWT third-party certification testing. To jump-start these RTCs, DOE/NREL is providing financial and technical assistance for an initial round of tests. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification. This poster describes the project, describes how it fits within broader SWT certification activities, and provides current status.

  17. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  18. Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.

  19. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine...

    Office of Scientific and Technical Information (OSTI)

    can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. ...

  20. Safety and Function Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-10-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of the Small Wind Turbine Independent Testing project. Safety and function testing is one of up to five tests that may be performed on the turbines. Other tests include duration, power performance, acoustic noise, and power quality. Viryd Technologies, Inc. of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.

  1. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  2. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  3. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines

  4. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOEpatents

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  5. Angel wing seals for blades of a gas turbine and methods for determining angel wing seal profiles

    DOEpatents

    Wang, John Zhiqiang

    2003-01-01

    A gas turbine has buckets rotatable about an axis, the buckets having angel wing seals. The seals have outer and inner surfaces, at least one of which, and preferably both, extend non-linearly between root radii and the tip of the seal body. The profiles are determined in a manner to minimize the weight of the seal bodies, while maintaining the stresses below predetermined maximum or allowable stresses.

  6. NREL: Wind Research - Structural Testing Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and improve new blade designs, analyze blade structural properties, and improve their manufacturing processes. As wind turbines grow in size and their blades become longer and...

  7. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect

    Bowen, A.; Huskey, A.; Hur, J.; Jager, D.; van Dam, J.; Smith, J.

    2010-05-01

    Poster presented at the AWEA 2010 conference illustrates NREL's testing of five small wind turbines in the first round of its independent testing project. Tests include power performance, noise, duration, safety and function, and power quality (where applicable).

  8. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  9. Innovative wind turbines. The circulation control vertical axis wind turbine. Final report, May 1, 1978-December 31, 1979

    SciTech Connect

    Walters, R.E.; Migliore, P.G.; Wolfe, W.P.

    1980-01-01

    An indoor facility was developed for use in the aerodynamic testing of Darrieus wind turbine blades. A three-component internal strain gage balance was used to deduce lift, drag and moment coefficients of blades whose angle of attack, chord to radius ratio and Reynolds number can be systematically varied. The unusual flow field of this test environment necessitates unique downwash corrections for angle of attack and induced drag.

  10. Wind Turbine Control Systems | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL is researching new control methodologies for both land-based wind turbines and offshore wind turbines. A photo of a wind turbine against blue sky with white blades on their ...

  11. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  12. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  13. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  14. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  15. Performance and market evaluation of the bladeless turbine

    SciTech Connect

    Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

    1982-10-01

    The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

  16. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  17. Enormous Blades for Offshore Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enormous Blades for Offshore Energy Enormous Blades for Offshore Energy February 8, 2016 - 2:00pm Addthis Sandia's design for giant wind turbine blades that are stowed at dangerous wind speeds to reduce the risk of damage. | Courtesy of TrevorJohnston.com/Popular Science Stephanie Holinka Sandia National Laboratories A new design for gigantic blades longer than two football fields could help bring offshore 50-megawatt (MW) wind turbines to the United States and the world. Sandia's research on

  18. Eddy-current system for the vibration-testing of blades

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention is an improved system for the vibration-testing of cantilevered non-ferrous articles by inducing eddy currents therein. The principal advantage of the system is that relatively little heat is generated in the article being vibrated. Thus, a more accurate measurement of the fatigue characteristics of the article is obtained. Furthermore, the generation of relatively little heat in the blade permits tests to be conducted in low-pressure atmospheres simulating certain actual processes environments. Heat-generation in the vibrated article is minimized by utilizing eddy currents which are generated by an electromagnet whose magnetic field varies but does not change polarity. The typical winding for the electromagnet is excited with pulsating d.c. That is, the winding is alternately charged by connecting it across a d.c. power supply and then discharged by connecting it across a circuit for receiving current generated in the winding by self-induction. Preferably, the discharge circuit is designed so that the waveform of the discharging current approximates that of the charging current.

  19. Reduction of radar cross-section of a wind turbine

    DOEpatents

    McDonald, Jacob Jeremiah; Brock, Billy C.; Clem, Paul G.; Loui, Hung; Allen, Steven E.

    2016-08-02

    The various technologies presented herein relate to formation of a wind turbine blade having a reduced radar signature in comparison with a turbine blade fabricated using conventional techniques. Various techniques and materials are presented to facilitate reduction in radar signature of a wind turbine blade, where such techniques and materials are amenable for incorporation into existing manufacturing techniques without degradation in mechanical or physical performance of the blade or major alteration of the blade profile.

  20. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect

    Gevorgian, V.

    2012-02-01

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  1. Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

  2. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect

    Berry, Derek

    2007-09-01

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  3. First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains: Workshop Proceedings

    SciTech Connect

    Gevorgian, V.; Link, H.; McDade, M.; Mander, A.; Fox, J. C.; Rigas, N.

    2013-11-01

    This report summarizes the proceedings of the First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains, held from June 13 to 14, 2013, at the National Renewable Energy Laboratory's National Wind Technology Center, located south of Boulder, Colorado. The workshop was sponsored by the U.S. Department of Energy and cohosted by the National Renewable Energy Laboratory and Clemson University under ongoing collaboration via a cooperative research and development agreement. The purpose of the workshop was to provide a forum to discuss the research, testing needs, and state-of-the-art apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both dynamometer testing of wind turbine drivetrains ('ground testing') and field testing grid-connected wind turbines. Four sessions followed by discussions in which all attendees of the workshop were encouraged to participate comprised the workshop.

  4. Innovative Drivetrain Testing for Wind Turbines Nears Completion

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind turbines wouldn't do their job without a drivetrain--and EERE's National Renewable Energy Laboratory has developed a new system that promises greater efficiency at less cost.

  5. Ceramic blade with tip seal

    DOEpatents

    Glezer, Boris; Bhardwaj, Narender K.; Jones, Russell B.

    1997-01-01

    The present gas turbine engine (10) includes a disc assembly (64) defining a disc (66) having a plurality of blades (70) attached thereto. The disc (66) has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc (66). A shroud assembly (100) is attached to the gas turbine engine (10) and is spaced from the plurality of blades (70) a preestablished distance forming an interface (108) therebetween. Positioned in the interface is a seal (110) having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades (70).

  6. Airfoil and blade optimization for a direct-drive, permanent magnet wind generator

    SciTech Connect

    Dini, P.; Bayly, E.

    1996-12-31

    A new blade is designed for a small, variable-speed wind turbine by relying on available theoretical design and analysis methods. The performance predictions are compared to field test measurements and are found to be optimistic. This feedback sheds light on the interpretation of the theoretical results and is used to refine the design method. 9 refs., 10 figs.

  7. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  8. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  9. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  10. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)

    SciTech Connect

    McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

    2013-04-01

    In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  11. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  12. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  13. Power Performance Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Murphy, M.; van Dam, J.

    2012-12-01

    This report contains the results of the power performance test that was performed on a Viryd CS8 wind turbine as part of the DOE Independent Testing project. The test is an accredited test to the IEC 61400-12-1 power performance standard.

  14. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  15. Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008

    SciTech Connect

    Devenport, W.; Burdisso, R. A.; Camargo, H.; Crede, E.; Remillieux, M.; Rasnick, M.; Van Seeters, P.

    2010-05-01

    The U.S. Department of Energy (DOE), working through its National Renewable Energy Laboratory (NREL), is engaged in a comprehensive research effort to improve the understanding of wind turbine aeroacoustics. The motivation for this effort is the desire to exploit the large expanse of low wind speed sites that tend to be close to U.S. load centers. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center (NWTC) is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. NWTC researchers are working hand in hand with engineers in industry to ensure that research findings are available to support ongoing design decisions.

  16. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  17. Microsoft PowerPoint - 2014 HydroPower - Stockton Turbine Replacement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    at 52 MW Single vertical axis Kaplan unit New turbine runner has 7 blades versus 6 on the old runner New turbine runner has 7 blades versus 6 on the old runner ...

  18. Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle

    SciTech Connect

    2015-04-13

    A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.

  19. Microsoft Word - RM1_Tidal Turbine_NREL Bir, Lawson, Li_2011...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    OMAE2011-50063 STRUCTURAL DESIGN OF A HORIZONTAL-AXIS TIDAL CURRENT TURBINE COMPOSITE BLADE ABSTRACT This paper describes the structural design of a tidal turbine composite blade. ...

  20. Energy Department Awards $1.8 Million to Develop Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs Energy Department Awards 1.8 Million to Develop Wind Turbine Blades to Access Better Wind ...

  1. Methods and apparatus for rotor blade ice detection

    DOEpatents

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  2. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  3. 2014 WIND POWER PROGRAM PEER REVIEW-TEST FACILITIES

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Facilities March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Test Facilities Blade Test Facilities-Scott Hughes, National Renewable Energy Laboratory Massachusetts Large Blade Testing Facility-Rahul Yarala, WTTC, Massachusetts Clean Energy Center NREL Dynamometer Facilities-Robb Wallen, National Renewable Energy Laboratory Clemson University Wind Turbine Drivetrain Testing Facility-Nikolaos Rigas, Clemson University Controllable Grid Interface (CGI)-Mark McDade, National

  4. Finite element analysis and modal testing of a rotating wind turbine

    SciTech Connect

    Carne, T.G.; Lobitz, D.W.; Nord, A.R.; Watson, R.A.

    1982-05-10

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  5. Finite-element analysis and modal testing of a rotating wind turbine

    SciTech Connect

    Carne, T.G.; Lobitz, D.W.; Nord, A.R.; Watson, R.A.

    1982-10-01

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  6. Wind Turbine Manufacturing Transforms with Three-Dimensional...

    Energy.gov [DOE] (indexed site)

    to create wind turbine blade molds. Photo of a large machine in a warehouse-style building. This research promises to reduce the cost of blade manufacturing and wind energy ...

  7. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  8. Jet spoiler arrangement for wind turbine

    SciTech Connect

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  9. Jet spoiler arrangement for wind turbine

    SciTech Connect

    Cyrus, J. D.; Kadlec, E. G.; Klimas, P. C.

    1985-03-12

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  10. Computer control for remote wind turbine operation

    SciTech Connect

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J.

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  11. Test and analysis results for two Synergy Power Corp. wind turbines

    SciTech Connect

    Davis, D.; Hansen, C.

    1996-12-31

    The testing and modeling of small (rotor diameter 10.3 m and 12.8 m) wind turbines is the subject of this paper. The paper focuses primarily on the ADAMS computer model for dynamic analysis. The code calculates design loads, optimizes tilt configuration, and helps to interpret test results. A comparison of some of the modeling predictions is made to test data for validation purposes. The ADAMS model was found to accurately predict performance characteristics and loads for free-tilting turbines. ADAMS was found to be relatively successful in modeling the free tilt and variable rotors. The model also showed that tilting behavior is dependent on the restoring moment from the rotor aerodynamics as well as on surface aerodynamics. The effects of changes in air density on the power curve, load predictions, and analysis of emergency stops were also performed satisfactorily with the model. 15 figs.

  12. Rim seal for turbine wheel

    DOEpatents

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  13. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    SciTech Connect

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  14. Cooling scheme for turbine hot parts

    DOEpatents

    Hultgren, Kent Goran; Owen, Brian Charles; Dowman, Steven Wayne; Nordlund, Raymond Scott; Smith, Ricky Lee

    2000-01-01

    A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

  15. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  16. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  17. Turbines Market is Expected to Reach USD 191.87 Billion by 2020...

    OpenEI (Open Energy Information) [EERE & EIA]

    reaction turbines, the feed material e.g. air in case of wind turbines and rivers or dams in case of hydropower ones, goes 'through' the blades to drive the turbine. Currently,...

  18. Wind turbine spoiler

    DOEpatents

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  19. Wind turbine spoiler

    DOEpatents

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  20. Gas turbine sealing apparatus

    DOEpatents

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  1. Field test report of the Department of Energy's 100-kW vertical axis wind turbine

    SciTech Connect

    Nellums, R.O.

    1985-02-01

    Three second-generation Darrieus-type vertical axis wind turbines of approximately 120-kW capacity per unit were installed in 1980-1981. Through March 1984, over 9000 hours of operation had been accumulated, including 6600 hours of operation on the unit installed in Bushland, Texas. The turbines were heavily instrumented and have yielded a large amount of test data. This report summarizes the test results of this program, including aerodynamic, structural, drive-train, and economic data. Among the most favorable results were an aerodynamic peak performance coefficient of 0.41; fundamental structural integrity requiring few repairs and no major component replacements as of March 1984; and an average prototype fabrication cost of approximately $970 per peak kilowatt of output. The report closes with a review of potential design improvements.

  2. Method and apparatus for wind turbine braking

    DOEpatents

    Barbu, Corneliu; Teichmann, Ralph; Avagliano, Aaron; Kammer, Leonardo Cesar; Pierce, Kirk Gee; Pesetsky, David Samuel; Gauchel, Peter

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  3. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators Ryan Schkoda, Curtiss Fox, and Ramtin Hadidi Clemson University Vahan Gevorgian, Robb Wallen, and Scott Lambert National Renewable Energy Laboratory Technical Report NREL/TP-5000-64787 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  4. Wireless, Passive Ceramic Strain Sensors for Turbine Engine Applications

    SciTech Connect

    An, Linan

    2015-03-31

    The overall objective of this project is to develop a high-temperature wireless passive ceramic strain sensor for online, real-time monitoring turbine blade.

  5. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  6. Nordic Turbines Inc formerly Vista Dorada Corporation | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Wind energy Product: Massachusetts-based manufacturer of large scale two-blade wind turbines. Coordinates: 45.751935, -120.902959 Show Map Loading map......

  7. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  8. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    SciTech Connect

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  9. Vertical axis wind turbine

    SciTech Connect

    Kutcher, H.R.

    1984-05-15

    A Darrieus-type vertical axis wind turbine is disclosed which includes a vertically extending rotor tube mounted on a support structure with two or three rotor blades of troposkein configuration on the rotor tube for rotating the tube in response to wind energy and thereby drive a generator to produce electrical power. The turbine includes an erection hinge which permits assembly of the rotor tube and blades at close to ground level followed by upward hinging of the rotor assembly to a vertical position. It also includes a system for automatically lubricating the top bearing upon erection and a system for visually tensioning the guy cables.

  10. OUT Success Stories: Advanced Airfoils for Wind Turbines

    DOE R&D Accomplishments

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  11. Performance augmentation with vortex generators: Design and testing for stall-regulated AWT-26 turbine

    SciTech Connect

    Griffin, D.A.

    1996-12-31

    A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.

  12. Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report

    SciTech Connect

    Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

    1987-04-01

    The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

  13. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  14. Modal testing of a very flexible 110 m wind turbine structure

    SciTech Connect

    Carne, T.G.; Lauffer, J.P.; Gomez, A.J.; Benjannet, Hassine

    1988-01-01

    Modal Testing of immense and very flexible structures poses a number of problems. It requires innovative excitation techniques since the modal frequencies of these stuctures can be quite low. Also, substantial energy must be input to the structure to obtain reasonable levels of response. In this paper, results are presented from a modal test of the 110 m tall EOLE wind turbine which had four modal frequencies below 1.0 Hz. Step-relaxation and wind were used to excite the structure. 5 refs., 14 figs., 2 tabs.

  15. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  16. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    SciTech Connect

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  17. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  18. Single casing reheat turbine

    SciTech Connect

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  19. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines

    SciTech Connect

    Sheldahl, R E; Klimas, P C

    1981-03-01

    When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

  20. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    SciTech Connect

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  1. 14th Annual international meeting of wind turbine test stations: Proceedings

    SciTech Connect

    Not Available

    1994-11-01

    These proceedings are of the 14th Annual International Meeting of Test Stations. As the original charter states these meetings are intended to be an international forum for sharing wind turbine testing experiences. By sharing their experiences they can improve testing skills and techniques. As with all new industries the quality of the products is marked by how well they learn from their experiences and incorporate this learning into the next generation of products. The test station`s role in this process is to provide accurate information to the companies they serve. This information is used by designers to conform and improve their designs. It is also used by certification agencies for confirming the quality of these designs. By sharing of experiences they are able to accomplished these goals, serve these customers better and ultimately improve the international wind energy industry.

  2. A Fish-eye View of Riverine Hydropower Systems: Understanding the Biological Response to Turbine Passage

    SciTech Connect

    Pracheil, Brenda M; DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-01-01

    Fish populations that have been traditionally thought of as completely fragmented by dams still maintain limited, one-way connectivity from upstream to downstream reaches via downstream turbine passage. This one-way connectivity may be important to population dynamics, but can also introduce a new and significant source of mortality due to turbine-induced fish injury and mortality. Mechanistically, fish injury and mortality associated with downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. The overarching goals of this project are two-fold: 1. To inform biological limitations of fish for use in creating and testing advanced turbine designs (e.g., research and development) and 2. To provide insight into locations that would be good initial locations for deploying advanced turbines (e.g., marketing). This report is an initial step in linking physical forces to injury and mortality rates to provide a better understanding turbine-associated injury and mortality rates for turbine designers and manufacturers and examine the spatial distribution of hydropower, turbines, and fishes across the U.S.A. to determine locations that may be good candidates for advanced turbine designs. We also use this report to present an initial approach for selecting species for further laboratory and field studies that examine the impacts of hydropower on fishes.

  3. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    SciTech Connect

    Glasdam, Jakob Baerholm; Gevorgian, Vahan; Wallen, Robb; Bak, Claus Leth; Kocewiak, Lukasz Hubert; Hjerrild, Jesper

    2014-11-13

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory's (NREL's) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine generator (WTG) installed in NREL's new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced and unbalanced voltage low and high fault ride-through. Furthermore, the paper provides insight into the performance of commercial WTGs during both normal and abnormal operating conditions.

  4. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  5. FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

    2003-06-01

    In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology

  6. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  7. An aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.; Smith, C.E.

    1981-01-01

    The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.

  8. Damage measurements on the NWTC direct-drive, variable-speed test bed

    SciTech Connect

    Sutherland, H.J.; Carlin, P.W.

    1998-12-31

    The NWTC (National Wind Technology Center) Variable-Speed Test Bed turbine is a three-bladed, 10-meter, downwind machine that can be run in either fixed-speed or variable-speed mode. In the variable-speed mode, the generator torque is regulated, using a discrete-stepped load bank to maximize the turbine`s power coefficient. At rated power, a second control loop that uses blade pitch to maintain rotor speed essentially as before, i.e., using the load bank to maintain either generator power or (optionally) generator torque. In this paper, the authors will use this turbine to study the effect of variable-speed operation on blade damage. Using time-series data obtained from blade flap and edge strain gauges, the load spectrum for the turbine is developed using rainflow counting techniques. Miner`s rule is then used to determine the damage rates for variable-speed and fixed-speed operation. The results illustrate that the controller algorithm used with this turbine introduces relatively large load cycles into the blade that significantly reduce its service lifetime, while power production is only marginally increased.

  9. wind-turbine fleet reliability

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    wind-turbine fleet reliability - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers wind-turbine fleet reliability Home...

  10. How Does a Wind Turbine Work?

    Energy.gov [DOE]

    Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

  11. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and

  12. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  13. Development of the helical reaction hydraulic turbine. Final...

    Office of Scientific and Technical Information (OSTI)

    the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. ...

  14. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  15. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being

  16. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  17. Prediction of stochastic blade loads for three-bladed, rigid-hub rotors

    SciTech Connect

    Wright, A.D.; Weber, T.L.; Thresher, R.W.; Butterfield, C.P.

    1989-11-01

    Accurately predicting wind turbine blade loads and response is important for the design of future wind turbines. The need to include turbulent wind inputs in structural dynamics models is widely recognized. In this paper, the Force and Loads Analysis Program (FLAP) code will be used to predict turbulence-induced bending moments for the SERI Combined Experiment rotor blade and the Howden 330-kW blade. FLAP code predictions will be compared to the power spectra of measured blade-bending moments. Two methods will be used to generate turbulent wind inputs to FLAP: a theoretical simulation: the Pacific Northwest Laboratories (PNL) simulation theory; and measured wind-speed data taken from an array of anemometers upwind of the turbine. Turbulent wind-speed time series are input to FLAP for both methods outlined above. Power spectra of predicted flap-bending moments are compared to measured results for different wind conditions. Conclusions are also drawn as to the ability of the turbulence simulation models to provide accurate wind input to FLAP and to FLAP's ability to accurately simulate blade response to turbulence. Finally, suggestions are made as to needed improvements in the theoretical model. 11 refs., 8 figs.

  18. Customized airfoils and their impact on VAWT (Vertical-Axis Wind Turbine) cost of energy

    SciTech Connect

    Berg, D.E.

    1990-01-01

    Sandia National Laboratories has developed a family of airfoils specifically designed for use in the equatorial portion of a Vertical-Axis Wind Turbine (VAWT) blade. An airfoil of that family has been incorporated into the rotor blades of the DOE/Sandia 34-m diameter VAWT Test Bed. The airfoil and rotor design process is reviewed. Comparisons with data recently acquired from flow visualization tests and from the DOE/Sandia 34-m diameter VAWT Test Bed illustrate the success that was achieved in the design. The economic optimization model used in the design is described and used to evaluate the effect of modifications to the current Test Bed blade. 1 tab., 11 figs., 13 refs.

  19. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  20. Wind turbine of cross-flow type

    SciTech Connect

    Ljungstrom, O.

    1982-04-20

    Wind turbine of cross-flow type with curved or in sections straight vanes (1,2,9). Two vanes or sets of blades are formed in planes parallel to the rotor axis (3) and with the blade planes disposed approximately perpendicularly to one another.

  1. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-01-31

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  2. The Long-Term Inflow and Structural Test Program

    SciTech Connect

    SUTHERLAND,HERBERT J; JONES,PERRY L.; NEAL,BYRON A.

    2000-10-17

    The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this test program. This turbine and its two sister turbines are located in Bushland, TX a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. These three-axis anemometers are placed approximately 2-diameters upstream of the turbine in a pattern designed to describe the inflow. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

  3. Full-scale wind turbine rotor aerodynamics research

    SciTech Connect

    Simms, D A; Butterfield, C P

    1994-11-01

    The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve wind turbine technology at the NREL National Wind Technology Center (NWTC). One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent in stall-controlled HAWTs. Optimally twisted blades and innovative instrumentation and data acquisition systems will be used in these tests. Data can now be acquired and viewed interactively during turbine operations. This paper describes the NREL Unsteady Aerodynamics Experiment and highlights planned future research activities.

  4. Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Santos, Rick; van Dam, Jeroen

    2015-07-16

    The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 Wind Turbine Generator Systems – Part 13: Measurement of mechanical loads; First Edition 2001-06 [1]. The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL’s quality system requires that all applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.

  5. Influence of Control on the Pitch Damping of a Floating Wind Turbine

    SciTech Connect

    Jonkman, J. M.

    2008-03-01

    This paper presents the influence of conventional wind turbine blade-pitch control actions on the pitch damping of a wind turbine supported by an offshore floating barge with catenary moorings.

  6. BLADED IMPELLER FOR TURBOBLOWERS

    DOEpatents

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  7. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  8. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    SciTech Connect

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor. 15 references.

  9. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge

  10. NREL: Wind Research - Small Wind Turbine Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in ... Testing included power performance, safety and function, noise, and partial loads tests. ...

  11. Multiple piece turbine airfoil

    SciTech Connect

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  12. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  13. Electrical generation using a vertical-axis wind turbine

    SciTech Connect

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  14. On the Fatigue Analysis of Wind Turbines

    SciTech Connect

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  15. Lifting system and apparatus for constructing wind turbine towers

    DOEpatents

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  16. Parametric analysis of thermal stratification during the Monju turbine trip test

    SciTech Connect

    Sofu, T.

    2012-07-01

    CFD-based simulation techniques are evaluated using a simplified symmetric Monju model to study multi-dimensional mixing and heat transfer in the upper plenum during a turbine trip test. When the test starts and core outlet temperatures drop due to reactor shutdown, the cooler sodium is trapped near the bottom of the vessel and the hotter (less dense) primary sodium at the higher elevations stays largely stagnant for an extended period of time inhibiting natural circulation. However, the secondary flow through a set of holes on the inner barrel bypasses the thermally stratified region as a shorter path to the intermediate heat exchanger and improves the natural circulation flow rate to cool the core. The calculations with strict adherence to benchmark specifications predict a much shorter duration for thermal stratification in the upper plenum than the experimental data indicates. In this paper, the results of a parametric analysis are presented to address this discrepancy. Specifically, the role of the holes on the inner barrel is reassessed in terms of their ability to provide larger by-pass flow. Assuming inner barrel holes with rounded edge produces results more consistent with the experiments. (authors)

  17. Wind turbine rotor aileron

    DOEpatents

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  18. Wind turbine trailing-edge aerodynamic brake design

    SciTech Connect

    Quandt, G.

    1996-01-01

    This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

  19. Hydrodynamic blade guide

    DOEpatents

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  20. Compliant sleeve for ceramic turbine blades

    DOEpatents

    Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern

    2000-01-01

    A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.

  1. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    SciTech Connect

    Tangler, J.L.

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  2. Help Wanted at Kansas Wind Blade Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wanted at Kansas Wind Blade Company Help Wanted at Kansas Wind Blade Company July 12, 2010 - 12:00pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Last year, Israel Sanchez, a 31-year-old Newton, Kan., resident, was painting the blades of wind turbines for Enertech, Inc., a small-scale wind manufacturer. Now he's assembling the entire system. "They promoted me," says Sanchez, taking a quick break from the assembly line in the 10,000 square-foot plant in

  3. Wind Turbine Structural Health Monitoring

    Energy Innovation Portal

    2011-02-08

    LANL researchers are developing unique sensors in tandem with proprietary high-fidelity finite element models as well as the LANL WindBlade modeling and simulation capability that couples aeroelastic dynamic force loads with atmospheric wind conditions and system environment. The LANL Intelligent Wind Turbine Program is seeking dialogue with potential industrial collaborators to discuss long-term partnership opportunities....

  4. Composite fan blade

    SciTech Connect

    Farr, J.D.

    1993-08-31

    A composite fan blade is described for a prop fan engine comprising: a support disk having a plurality of hinge lugs formed therein, the disk being connected to an engine drive means; a bushing element; a fan blade formed from a first set of radially oriented unidirectional layers of fibers, the first set of layers of fibers being wrapped around the bushing element to form an elongated front side, an elongated back side, and a portion encompassing the bushing element; a blade platform formed from a second set of unidirectional layers of fibers having a first and a second end which are both wrapped around respective resin filler elements to form resin filled support pockets, the second set of unidirectional layers of fibers being wrapped around the portion of the fan blade encompassing the bushing element to place the resin filled support pockets against the portion of the fan blade encompassing the bushing element, wherein the fan blade and the blade platform form a fan blade assembly, the fan blade assembly having a plurality of hinge slots formed therein; and a pin element extending through the hinge formed by the plurality of hinge lugs in the support disk and the plurality of hinge slots in the fan blade assembly for attaching the fan blade assembly to the support disk.

  5. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  6. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    SciTech Connect

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  7. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  8. Wind turbine rotor hub and teeter joint

    DOEpatents

    Coleman, Clint; Kurth, William T.; Jankowski, Joseph

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  9. Turbine vane structure

    DOEpatents

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  10. Methods and apparatus for rotor load control in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  11. Recent Darrieus vertical-axis wind turbine aerodynamical experiments at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  12. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  13. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor Tower Nacelle

  14. How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Wind Turbine Works How a Wind Turbine Works June 20, 2014 - 9:09am Addthis How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor

  15. How Do Wind Turbines Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Basics » How Do Wind Turbines Work? How Do Wind Turbines Work? Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click on the image to see an animation of wind at work. Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main

  16. Blade platform seal for ceramic/metal rotor assembly

    DOEpatents

    Wertz, John L.

    1982-01-01

    A combination ceramic and metal turbine rotor for use in high temperature gas turbine engines includes a metal rotor disc having a rim with a plurality of circumferentially spaced blade root retention slots therein to receive a plurality of ceramic blades, each including side platform segments thereon and a dovetail configured root slidably received in one of the slots. Adjacent ones of the platform segments including edge portions thereon closely spaced when the blades are assembled to form expansion gaps in an annular flow surface for gas passage through the blades and wherein the assembly further includes a plurality of unitary seal members on the rotor connected to its rim and each including a plurality of spaced, axially extending, flexible fingers that underlie and conform to the edge portions of the platform segments and which are operative at turbine operating temperatures and speeds to distribute loading on the platform segments as the fingers are seated against the underside of the blade platforms to seal the gaps without undesirably stressing thin web ceramic sections of the platform.

  17. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES [OSTI]

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  18. Nanomaterial Applications Range From Eyeliner to Turbines | GE...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jet-engine turbine blades are made of Ni-base superalloys, containing precipitate particles in the size ranges of (400-600) nm.These nano-precipitates (called g') attribute to the ...

  19. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

  20. Fixed wake theory for vertical axis wind turbines

    SciTech Connect

    Wilson, R.E.; Walker, S.N.

    1983-11-01

    A theory for vertical axis wind turbines has been developed using a fixed wake approach. The theory combines some of the best features of vortex and streamtube approaches. This approach accounts for flow differences between fore-and-aft blade positions that are predicted by vortex methods while retaining the low computation costs associated with streamtube theories. The theory is applied to high tip speed ratio operation of a Darrieus Rotor where the use of linear aerodynamics results in explicit calculation of the induced velocities. Comparison to test results shows good agreement.

  1. 3D blade mold

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    blade mold - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  2. Blade Reliability Collaborative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... effects that these loads have on the initiation and growth of damage in flawed blades. ...

  3. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  4. Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    1997-06-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

  5. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  6. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

  7. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

  8. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1980-01-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tip-speed-ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  9. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1981-04-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  10. Aerodynamic and aeroacoustic for wind turbine

    SciTech Connect

    Mohamed, Maizi; Rabah, Dizene

    2015-03-10

    This paper describes a hybrid approach forpredicting noise radiated from the rotating Wind Turbine (HAWT) blades, where the sources are extracted from an unsteady Reynolds-Averaged-Navier Stocks (URANS) simulation, ANSYS CFX 11.0, was used to calculate The near-field flow parameters around the blade surface that are necessary for FW-H codes. Comparisons with NREL Phase II experimental results are presented with respect to the pressure distributions for validating a capacity of the solver to calculate the near-field flow on and around the wind turbine blades, The results show that numerical data have a good agreement with experimental. The acoustic pressure, presented as a sum of thickness and loading noise components, is analyzed by means of a discrete fast Fourier transformation for the presentation of the time acoustic time histories in the frequency domain. The results convincingly show that dipole source noise is the dominant noise source for this wind turbine.

  11. Wind turbine with automatic pitch and yaw control

    DOEpatents

    Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.

    1978-01-01

    A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.

  12. Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration

    SciTech Connect

    Siemens Westinghouse

    2000-12-31

    The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: {lg_bullet} System efficiency that will exceed 60%(lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. {lg_bullet} An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. {lg_bullet} Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. {lg_bullet} Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. {lg_bullet} Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. {lg_bullet} Water consumption minimized to levels consistent with cost and efficiency goals. {lg_bullet} Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III extension activities for a three month period. Additional details may be

  13. Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration

    SciTech Connect

    Siemens Westinghouse

    2001-09-30

    The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: (1) System efficiency that will exceed 60% (lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. (2) An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. (3) Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. (4) Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. (5) Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. (6) Water consumption minimized to levels consistent with cost and efficiency goals. (7) Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III Extension activities for a three month period. Additional details may be found in monthly technical progress reports covering the

  14. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  15. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect

    T.E. Lippert; D.M. Bachovchin

    2004-03-31

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. In addition to kinetic modeling and experimental task, CFD modeling (by Texas A&M) of airfoil injection and its effects on blade aerodynamics and turbine performance. This report discusses validation of the model against single-vane combustion test data from Siemens Westinghouse, and parametric studies of injection reheat in a modern turbine. The best location for injection is at the trailing edge of the inlet guide vane. Combustion is incomplete at trailing edges of subsequent vanes. Recommendations for further development are presented.

  16. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  17. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric

  18. Vertical axis windmill: Performance evaluation and estimation of energy output with Darrieus turbines

    SciTech Connect

    Braga, S.L.; Orlando, A.F.; Saboya, F.E.M.

    1983-12-01

    The growing demand for renewable energy resources gave rise to practically rediscovering the Darrieus wind turbine in the sixties. The economic feasibility of its utilization however is dependend upon the local wind energy and the knowledge of the performance of the turbine under different operating conditions. Several turbines have been tested in this research for different values of the solidity, which is related to the mass of the turbine blade. A method has been developed to determine the performance of small wind rotors, which can be done in small wind tunnels. This methodology significantly reduces testing time and research costs, besides providing a continuous function for the power coefficient, that is, the fraction of the wind energy that can be extracted by the turbine. By using power coefficient and wind velocity data, a numerical simulation of the performance of the turbines is carried out for one year period, under a constant speed operating condition; for two cities in Brazil. The equipment operates in this condition with simple controls and generates electric energy at constant frequency. The experimental performance data were found to closely fit those of Blackwell, Sheldahl and Feltz.

  19. Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors

    SciTech Connect

    Sale, D.; Jonkman, J.; Musial, W.

    2009-08-01

    This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

  20. System for damping vibrations in a turbine

    SciTech Connect

    Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis

    2015-11-24

    A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.