National Library of Energy BETA

Sample records for tungsten halogen spotlights

  1. Spotlights

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spotlights 2016 Veterans of NETL: John Lawson November 17, 2016 lawson.jpg John Lawson is a newly hired NETL civil service employee as the deputy chief operating officer. John served in the U.S. Army and was commissioned into the Armor branch serving in a variety of command and staff roles throughout his career from 2000-2011. Although he has retired from both active & reserve service as Captain, he has maintained enrollment in the Individual Ready Reserve. John is pictured here during a

  2. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range

    SciTech Connect

    Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

  3. Student Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    spotlight Student Spotlight Mekena McGrew Single-shot, Second Harmonic Generation Frequency Resolved Optical Gating (SHG FROG) system for damage testing. Nick Zobrist Optics inspection algorithms that evaluate the condition of NIF's optics. Maverick Chea Optimization of Ultrathin Films Alexandra Carlson Image Analysis Classification algorithm to automatically classify NIF optics damage sites. Nick Czapla Characterizing Scatter Plate Material

  4. Applications of Cu{sub 2}O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    SciTech Connect

    Zhai, Wei; Sun, Fengqiang; Chen, Wei; Zhang, Lihe; Min, Zhilin; Li, Weishan

    2013-11-15

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu{sub 2}O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu{sub 2}O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO{sub 4} solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could be randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H{sub 2}O{sub 2} under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu{sub 2}O microcrystals. Effects of electrodeposition time and H{sub 2}O{sub 2} amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions.

  5. Employee Spotlight: Baris Key | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Employee Spotlight: Baris Key Share

  6. Employee Spotlight: Brad Lounsbury

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ... PDF Employee Spotlight Sheila Armstrong John Bacik Sim Balkey Ron Barber Erica Larson ...

  7. Employee Spotlight: Jason Halladay

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Career Jobs Career Stories Employee Spotlight Jason Halladay Jason ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ...

  8. Employee Spotlight: Bryant Roybal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ... PDF Employee Spotlight Sheila Armstrong John Bacik Sim Balkey Ron Barber Monika Bittman ...

  9. Employee Spotlight: Gene Ortega

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ... PDF Employee Spotlight Sheila Armstrong John Bacik Sim Balkey Ron Barber Monika Bittman ...

  10. Employee Spotlight: Sim Balkey

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Career Jobs Career Stories Employee Spotlight Sim Balkey Sim Balkey-On the way up ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ...

  11. Employee Spotlight: Michael Torrez

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ... PDF Employee Spotlight Sheila Armstrong John Bacik Sim Balkey Ron Barber Monika Bittman ...

  12. Employee Spotlight: Michelle Ferran

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Career Jobs Career Stories Employee Spotlight Michelle Ferran Michelle ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ...

  13. Student Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    maverick chea Student Spotlight Maverick Chea default image Completing an MS in Chemical Engineering Stanford University Area of NIF: Target fabrication, particularly tents Project: Optimization of Ultrathin Films Tell us about your student internship experience. I was first here two years ago, also working with tents. As a senior figuring out a direction for job prospects, I became interested in polymers. Here I am studying them in "real life." I've found that it's been a great

  14. Student Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    czapla Student Spotlight Nick Czapla Nick Czapla Project Name: Image Analysis Classification algorithm to automatically classify NIF optics damage sites Project Description: Develop a classification system of potential damage sites on the NIF Final Optics based on the sites' morphology (i.e., shape, color, size, roughness of edges, etc.) and automate the classification process using a wavelet transformation algorithm, called the Image Analysis Classification (IAC), written by Wim deVries. The

  15. Student Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    mekena mcgrew Student Spotlight Mekena McGrew Mekena McGrew First-year physics PhD student University of California, Merced Area of NIF: Advanced Radiographic Capability (ARC) Project: Created a Single-shot, Second Harmonic Generation Frequency Resolved Optical Gating (SHG FROG) system for damage testing Tell us about your work at NIF.FROG is a technique for characterizing ultra-short pulses. With them, we can measure pulse parameters, such as the pulse intensity, pulse width, spectrum, and

  16. Student Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    zobrist Student Spotlight Nick Zobrist Nick Zobrist Junior (graduating spring 2015) Physics and Applied Mathematics, U.C. Berkeley, Area of NIF: Optics Inspection Tell us about your work at NIF. I'm here to contribute to the optics inspection algorithms that evaluate the condition of NIF's optics. One of the ways I've done this is by modeling reflection locations which is a new capability that they've needed, but I've helped my mentor, Laura Kegelmeyer, with parts of other projects as well. You

  17. Energy efficient alternatives to halogen torchieres

    SciTech Connect

    Siminovitch, M.; Marr, L.; Mitchell, J.; Page, E.

    1997-03-01

    A series of novel energy efficient torchiere systems have been developed using compact fluorescent lamps (CFLs). These systems were studied photometrically and compared with the performance of traditional commercially available tungsten halogen sources. Gonio-photometric data and power assessments indicate that significant lighting energy savings can be obtained by utilizing CFL sources instead of standard tungsten halogen sources. This energy savings is jointly due to the higher source efficacy of the CFLs and the surprisingly poor performance of the imported 300 Watt halogen lamps. Experimental data shows that a 50 to 60 Watt CFL will effectively lumen match a variety of 300 Watt tungsten halogen sources with 5 to 10 times the efficacy. CFL torchieres have additional benefits of higher power quality and cooler lamp operating temperature, making them safer fixtures.

  18. Employee Spotlight: Erica Larson Baron

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Disclaimer: The views and opinions expressed in the Employee Spotlight articles are solely ... PDF Employee Spotlight Sheila Armstrong John Bacik Sim Balkey Ron Barber Erica Larson ...

  19. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists in the Spotlight Scientists in the Spotlight WHEN: Dec 12, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight Every Second Saturday Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum features actual scientists and researchers talking to visitors about their favorite STEM (Science, Technology,

  20. Employee Spotlight: Ron Barber

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Barber works for the Accelerator Operations and Technology Division's Mechanical Design Engineering group. Disclaimer: The views and opinions expressed in the Employee Spotlight ...

  1. Employee Spotlight: Kristen Honig

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Honig works for the Operations and Infrastructure Program Office's Infrastructure Planning group. Disclaimer: The views and opinions expressed in the Employee Spotlight articles ...

  2. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: Apr 11, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about their favorite STEM topics. Join us at the

  3. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: Aug 08, 2015 10:00 AM - 12:00 PM WHERE: Bradbury Science Museum, 1350 Central Ave, Los Alamos, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about their favorite STEM topics. Join us at the museum every

  4. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists in the Spotlight Scientists in the Spotlight WHEN: Feb 14, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum, 1350 Central Ave, Los Alamos, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Scientist Spotlight Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum will have special scientists on the floor talking to people about their favorite STEM topics. The scientists

  5. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: Jun 13, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about their favorite STEM topics. Join us at the museum every

  6. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: May 09, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA SPEAKER: Steven Hayden, Chemist CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login scientist in the spotlight series Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about their

  7. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists in the Spotlight Scientists in the Spotlight WHEN: Nov 14, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum features actual scientists and researchers talking to visitors about their favorite STEM topics.

  8. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: Oct 10, 2015 11:00 AM - Feb 12, 2015 1:00 PM WHERE: Bradbury Science Museum 1350 Central Avenue, Los Alamos, New Mexico 87544 USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight every Second Saturday Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about

  9. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: Sep 12, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Avenue, Los Alamos, New Mexico, 87544 USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Scientists in the Spotlight every Second Saturday Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about their favorite

  10. Spotlight: Bryant Roybal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Issue:September 2015 all issues All Issues submit Spotlight: Bryant Roybal Champion chile and a recipe March 1, 2015 Bryant Roybal and his ingredient Bryant Roybal and his...

  11. Employee Spotlight: James Hunter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Career Jobs Career Stories Employee Spotlight Sim Balkey James Hunter-Discovering Oz ... Back row, l to r: Lab employee Brian Kendrick, Abby Tobin, Jen Foote, Lab employee John ...

  12. Spotlight: Claudia Mora

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spotlight: Claudia Mora Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Spotlight: Claudia Mora Geological Society of America selects Claudia Mora as president elect September 1, 2015 Claudia Mora Claudia Mora Contact Linda Anderman Email The Geological Society of America (GSA) recently elected Los Alamos National Laboratory scientist Claudia Mora as vice president/president elect. Mora is a stable-isotope geochemist

  13. Spotlight: Jenna Casias

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spotlight: Jenna Casias Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Spotlight: Jenna Casias Working with organizations to bring together other women at the Lab in construction, maintenance and project management so there's not only a support system for those already doing the work, but there's outreach as well. May 1, 2015 Jenna Casias works for the B-61-21's Life Extension Program Group Jenna Casias works for

  14. Scientist in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight Scientist in the Spotlight WHEN: Jan 09, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11 a.m. to 1 p.m., the Museum features actual scientists and researchers talking to visitors about their favorite Science, Technology, Engineering and Math

  15. Scientist in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight Scientist in the Spotlight WHEN: Jul 09, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description A chance to visit with our scientists and learn about their work. Nuclear forensics If a cache of stolen or dumped nuclear material is intercepted by a law enforcement agency, what would happen next? Christy Ruggiero, with the Lab's

  16. Scientist in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight Scientist in the Spotlight WHEN: Mar 12, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description MARK YOUR CALENDARS for this special event. Every second Saturday from 11 a.m. to 1 p.m., the Museum has scientists available to talk to visitors about their exciting topics. Fun for the whole family! Capturing an eggs-plosion on

  17. Scientist in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight Scientist in the Spotlight WHEN: Nov 12, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Join us the second Saturday of each month to interact with our Scientist Ambassadors. Highlighted this month: Aquatic biology Stop by and learn about some of the different things that could be as close as the nearest puddle or pond.

  18. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists In the Spotlight Scientists in the Spotlight WHEN: Mar 14, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Celebrating Women in Science Event Description MARK YOUR CALENDARS for this special event! Every second Saturday from 11:00 AM to 1:00 PM, the museum has scientists on the floor talking to people about their favorite STEM topics. Join us at the

  19. Spotlight on Seattle, Washington: Community Partnerships Work...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Seattle, Washington: Community Partnerships Work to Extend Program Reach Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Spotlight on Seattle, ...

  20. Employee Spotlight: Dances of India

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jobs Career Stories Employee Spotlight Alina Deshpande Alina Deshpande-Dances of India Lab scientist Alina Deshpande teaches classical Indian dance and writes, produces,...

  1. Spotlight: Christopher Lee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Christopher Lee Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Spotlight: Christopher Lee Lee was selected for his proposal on "Precision Probes of the Strong Interaction." July 1, 2015 Christopher Lee Christopher Lee Contact Linda Anderman Email Los Alamos National Laboratory researcher Christopher Lee is a recipient of the 2015 Early Career Research Program awards from the Department of Energy Office of

  2. Workers' Spotlight Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workers' Spotlight Newsletters Workers' Spotlight Newsletters Newsletters Available for Download December 4, 2014 Workers' Spotlight Newsletter - Issue 15 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. October/November/December 2014 issue covers Remembrance Quilt, National Day of Remembrance, JOTG Meeting in Paducah, University of Iowa

  3. Spotlight on Maine: Transition to a Sustainable Level of Incentives...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spotlight on Maine: Transition to a Sustainable Level of Incentives Spotlight on Maine: Transition to a Sustainable Level of Incentives Spotlight on Maine: Transition to a ...

  4. Workers' Spotlight Newsletter- Issue 4

    Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. February 2013 issue covers John Hopkins University Former Worker Program.

  5. Workers' Spotlight Newsletter- Issue 7

    Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. May 2013 issue covers WHPP and BTMed Roster Updates and WHPP Video Acknowledgement.

  6. Employee Spotlight: Sarah Owens | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Employee Spotlight: Sarah Owens Share Topic Environment Biology Operations Human Resources ... transmission --Smart Grid Environment -Biology --Computational biology --Environmental ...

  7. June Scientist in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June Scientist in the Spotlight June Scientist in the Spotlight WHEN: Jun 11, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Stop by for fun and learning with some of our sciencey folks Aquatic biology Stop by and learn about some of the different things that could be as close as the nearest puddle or pond. Jane Clements will help answer the

  8. Workers' Spotlight Newsletter- Issue 13

    Energy.gov [DOE]

    Worker's Spotlight Newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. May/June 2014 issue covers the Director's Note, the Cold War Patriots' Remembrance Quilt, Staff, the National Museum of Nuclear Science and History, Chest X-ray B-reading, and Calendar of Events.

  9. Workers' Spotlight Newsletter- Issue 14

    Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. July/August/September issue covers Director's Note, 2014 Sylvia Kieding Award, National Atomic Testing Museum, and Calendar of Events.

  10. Workers' Spotlight Newsletter- Issue 15

    Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. October/November/December 2014 issue covers Remembrance Quilt, National Day of Remembrance, JOTG Meeting in Paducah, University of Iowa Recognition Events, and Second Anniversary of Secure Electronics Records Transfer (SERT) System.

  11. Workers' Spotlight Newsletter- Issue 8

    Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Screening Program. July/August issue covers Site Information Sessions, Joint Outreach Task Group Meeting, and National Supplemental Screening Program Low-Dose CT Program.

  12. Workers' Spotlight Newsletter- Issue 10

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. November / December 2013 issue covers Remembrance, Beryllium, Secure Electronic Records Transfer (SERT), and Commemorating DOE Former Workers.

  13. Better Buildings: Financing and Incentives: Spotlight on Michigan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spotlight on Michigan: Experiment to Find the Right Mix of Incentives Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of ...

  14. Better Buildings: Workforce, Spotlight on Maine: Contractor Sales...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy...

  15. Spotlight on Key Program Strategies from the Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6 Spotlight on Key Program Strategies from the Better Buildings Neighborhood ...

  16. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability...

    Office of Environmental Management (EM)

    DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards Newsletter highlights the ...

  17. Better Buildings: Workforce: Spotlight on Fayette County, Pennsylvania...

    Energy.gov [DOE] (indexed site)

    Workforce: Spotlight on Fayette County, Pennsylvania: Developing the Skills and Tools for Workforce Success. Spotlight on Fayette County, Pennsylvania (411.63 KB) More Documents & ...

  18. Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time This Better ...

  19. Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces ...

  20. Better Buildings: Workforce: Spotlight on Portland, Oregon: Making...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for ...

  1. Employee Spotlight: Muge Acik | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    or partnering with Argonne to solve your R&D or production challenges, contact partners@anl.gov. Related People Muge Acik Next article: Employee Spotlight: Peter Friedman...

  2. DOE Sustainability SPOtlight | Department of Energy

    Energy.gov [DOE] (indexed site)

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards. PDF icon DOE SPOtlight - 2014 DOE ...

  3. Metal halogen electrochemical cell

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1988-08-23

    It has now been discovered that reduction in the coulombic efficiency of metal halogen cells can be minimized if the microporous separator employed in such cells is selected from one which is preferably wet by the aqueous electrolyte and is not wet substantially by the cathodic halogen.

  4. Better Buildings: Financing and Incentives: Spotlight on Michigan:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Experiment to Find the Right Mix of Incentives | Department of Energy Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives. Spotlight on Michigan (618.46 KB) More Documents & Publications Spotlight on Michigan:

  5. Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boosts Energy Upgrade Conversions | Department of Energy Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions. Spotlight on Maine (411.14 KB) More Documents & Publications Better Buildings: Financing and Incentives: Spotlight on Maine:

  6. Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Work for Contractors | Department of Energy Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors. Spotlight on Portland (536.02 KB) More Documents & Publications Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives

  7. Employee Spotlight: Peter Friedman | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (Click image to view larger.) (Click image to view larger.) Employee Spotlight: Peter Friedman By Jo Napolitano * September 25, 2015 Tweet EmailPrint Peter Friedman, 30, is a...

  8. Employee Spotlight: Jennifer Hogan | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    what it's like to work at Argonne in her Employee Spotlight video. Click the image to play the video. Hogan discusses what it's like to work at Argonne in her Employee...

  9. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  10. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  11. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, Paul K. (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM); Kinkead, Scott A. (Los Alamos, NM)

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  12. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

    1997-05-20

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

  13. Spotlight on Austin, Texas: Let Your Contractor Be Your Guide...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Let Your Contractor Be Your Guide for Big Rewards Spotlight on Austin, Texas: Let Your Contractor Be Your Guide for Big Rewards Spotlight on Austin, Texas: Let Your Contractor Be ...

  14. Workers' Spotlight Newsletter - Issue 11 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Workers' Spotlight Newsletter - Issue 11 January/February 2014, Issue 11 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker medical Screening Program. Janaury/February 2014 issue covers: Director''s Note Audiogram Staff Trivia Question Calendar of Events Workers' Spotlight Newsletter - Issue 11 (225.25 KB) More Documents & Publications Workers' Spotlight Newsletter -

  15. Workers' Spotlight Newsletter - Issue 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Workers' Spotlight Newsletter - Issue 2 December 2012, Issue 2 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. January 2013 issue covers: Director's Note Site Exposure Matrics (SEM) Advisory Board Calendar Workers' Spotlight Newsletter - Issue 2 (683.99 KB) More Documents & Publications Workers' Spotlight Newsletter - Issue 3

  16. Workers' Spotlight Newsletter - Issue 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Workers' Spotlight Newsletter - Issue 3 January 2013, Issue 12 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. January 2013 issue covers: Director's Note National Supplemental Screening Program (NSSP) Staff What's going on Trivia Calendar Workers' Spotlight Newsletter - Issue 3 (683.99 KB) More Documents & Publications Workers' Spotlight

  17. Better Buildings - Spotlight on Portland, Oregon; Financing and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Incetntives: Use Incentives to Get Attention and Encourage Deep Savings | Department of Energy - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings Better Buildings - Spotlight on Portland, Oregon; Financing and Incentives: Use Incentives to Get Attention and Encourage Deep Savings. Spotlight

  18. Building America Research Teams: Spotlight on Home Innovation and PARR

    Energy.gov [DOE]

    Read a spotlight article about the Partnership for Home Innovation and Partnership for Advanced Residential Retrofit teams.

  19. Better Buildings: Financing and Incentives: Spotlight on Maine: Transition

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to a Sustainable Level of Incentives | Department of Energy Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Spotlight on Maine: Transition to a Sustainable Level of Incentives (599.85 KB) More Documents &

  20. Employee Spotlight: John T. Murphy | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Employee Spotlight: John T. Murphy Share Topic Operations Human Resources Programs Mathematics, computing, & computer science Modeling, simulation, & visualization Security ...

  1. Scientist in the Spotlight August 13

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight August 13 Scientist in the Spotlight August 13 WHEN: Aug 13, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description A chance to chat and interact with Lab science types Forecasting disease Nick Generous, with the Lab's Information Systems and Modeling group, will be available to chat about how new social media tools help

  2. Scientist in the Spotlight October 8

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight October 8 Scientist in the Spotlight October 8 WHEN: Oct 08, 2016 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Come by to learn about software and measurement. Software surrounds us Join Sandy Frost, with the Lab's Technology Services and Solutions group, as she talks about how software is integral to our lives, including

  3. Scientist in the Spotlight event this month

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientist in the Spotlight event this month At the Bradbury Latest Issue:November 2016 all issues All Issues » submit Scientist in the Spotlight event this month Join us Saturday, November 12 from 11 a.m. to 1 p.m. Activities are designed for family members of all ages. Aquatic biology Stop by and learn about some of the different things that could be as close as the nearest puddle or pond. Jane Clements will help answer the questions: What's living in your water? and Do you want to get them

  4. SunShot Spotlight: Solar and Real Estate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SunShot Spotlight: Solar and Real Estate SunShot Spotlight: Solar and Real Estate SunShot Spotlight: Solar and Real Estate With nearly one million solar energy systems installed on ...

  5. Workers' Spotlight Newsletter - Issue 12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Workers' Spotlight Newsletter - Issue 12 March/April 2014, Issue 12 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker medical Screening Program. March/April issue covers: Director's Note Joint Outreach Task Group town hall meeting video Bradybury Science Museum Spirometry Staff Trivia Question Calendar of Events Workers' Spotlight Newsletter - Issue 12 (743.13 KB) More

  6. Workers' Spotlight Newsletter - Issue 5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Workers' Spotlight Newsletter - Issue 5 March 2013, Issue 12 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. May 2013 issue covers: Former Worker Medical Screening Program 2012 Annual Report Staff Trivia University of Iowa - Former Worker Program Calendar Workers' Spotlight Newsletter - Issue 5 (234.73 KB) More Documents & Publications

  7. Workers' Spotlight Newsletter - Issue 6 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Workers' Spotlight Newsletter - Issue 6 April 2013, Issue 6 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. May 2013 issue covers: BTMed takes aim at COPD, Lung Cancer Director's Note Staff Trivia Pantex Former Worker Medical Surveillance Program. Trivia Calendar Workers' Spotlight Newsletter - Issue 6 (244.69 KB) More Documents &

  8. Spotlight on Seattle, Washington: Community Partnerships Work to Extend

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Reach | Department of Energy Seattle, Washington: Community Partnerships Work to Extend Program Reach Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. Spotlight on Seattle, Washington (4.72 MB) More Documents & Publications Seattle Summary of Reported Data Better

  9. State and Local Spotlight Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the State & Local Solution Center » State and Local Spotlight Newsletters State and Local Spotlight Newsletters A monthly update from EERE's Weatherization and Intergovernmental Programs Office (WIP) for state, local, and K-12 officials featuring resources to advance successful, high-impact, and long-lasting clean energy policies, programs, and projects. November 3, 2016 State and Local Spotlight - November 2016 The November newsletter features news, resources and blogs on the

  10. High Performance Builder Spotlight: Green Coast Enterprises - New Orleans,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Louisiana | Department of Energy High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana This four-page case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again. green_coast_enterprises.pdf (3 MB) More Documents & Publications High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana

  11. Spotlight on Michigan: Sweeping the State for Ultimate Success...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives BetterBuildings for Michigan: ...

  12. Better Buildings: Financing and Incentives: Spotlight on Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Better ...

  13. Better Buildings - Spotlight on Portland, Oregon; Financing and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Get Attention and Encourage Deep Savings Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage ...

  14. Spotlight on Michigan: Sweeping the State for Ultimate Success

    Energy.gov [DOE]

    Spotlight on Michigan: Sweeping the State for Ultimate Success, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  15. Better Buildings: Workforce: Spotlight on Fayette County, Pennsylvania: Developing the Skills and Tools for Workforce Success

    Energy.gov [DOE]

    Better Buildings: Workforce: Spotlight on Fayette County, Pennsylvania: Developing the Skills and Tools for Workforce Success

  16. Under the OWASS Spotlight: Interview with Paul Azunre | MIT-Harvard Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Excitonics Under the OWASS Spotlight: Interview with Paul Azunre 9.4.2012

  17. Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Time | Department of Energy Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time This Better Buildings case study from April 2011 focuses on grantee partner Austin. Spotlight on Austin, Texas (296.86 KB) More Documents & Publications Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Let Your Contractor Be Your Guide for Big

  18. Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Time | Department of Energy Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. Spotlight on Austin, Texas (554.64 KB) More Documents & Publications Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time Spotlight on

  19. Spotlight on Austin, Texas: Let Your Contractor Be Your Guide for Big

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rewards | Department of Energy Let Your Contractor Be Your Guide for Big Rewards Spotlight on Austin, Texas: Let Your Contractor Be Your Guide for Big Rewards Spotlight on Austin, Texas: Let Your Contractor Be Your Guide for Big Rewards, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. Spotlight on Austin, Texas (444.88 KB) More Documents & Publications Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time Spotlight on

  20. Nuclear Fuels & Materials Spotlight Volume 4

    SciTech Connect

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  1. Hydrogen Production by PEM Electrolysis: Spotlight on Giner and Proton

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PRODUCTION BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON US DOE WEBINAR (May 23, 2011) 2 Webinar Outline *Water Electrolysis H 2 Production Overview DOE-EERE-FCT: Eric L. Miller *Spotlight: PEM Electrolysis R&D at Giner Giner Electrochemical Systems: Monjid Hamdan *Spotlight: PEM Electrolysis R&D at Proton Proton OnSite: Kathy Ayers *Q&A 3 DOE EERE-FCT Goals and Objectives Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost

  2. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  3. Employee Spotlight: John T. Murphy | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Click the image to watch his Employee Spotlight video. Connect Find an Argonne expert by subject. Follow Argonne on Twitter, Facebook, Google+ and LinkedIn. For inquiries on...

  4. White House Spotlights Solar Innovation as Summit Registration...

    Energy.gov [DOE] (indexed site)

    In case you missed it, last Thursday's White House Solar Champions of Change and Solar Summit shed a spotlight on all the amazing work that solar innovators around country are ...

  5. Building America Research Teams: Spotlight on Home Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Home Innovation and PARR Building America Research Teams: Spotlight on Home Innovation and PARR April 9, 2015 - 10:55am Addthis This article continues our series of profiles about ...

  6. White House Spotlights Solar Innovation as Summit Registration Continues

    Energy.gov [DOE]

    In case you missed it, last Thursday’s White House Solar Champions of Change and Solar Summit shed a spotlight on all the amazing work that solar innovators around country are doing to speed...

  7. Workers' Spotlight Newsletter - Issue 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workers' Spotlight Newsletter - Issue 1 November 2012, Issue 1 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. November 2012 issue covers: Director's Note National Day of Remembrance Secure Electronic Records Transfer (SERT) Early Lung Cancer Detection What's Going on Around the Complex (Richland) NIOSH Advisory Board on Radiation and Worker

  8. Workers' Spotlight Newsletter - Issue 9 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Workers' Spotlight Newsletter - Issue 9 September/October 2013, Issue 9 Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker medical Screening Program. September/October 2013 issue covers: Former Worker Medical Screening Program Milestone Director's Note Staff United States Preventive Services Task Force (USPSTF) Trivia John Hopkins Former Worker Program Calendar Workers'

  9. OSTI's .EDUconnections Spotlight Is on Purdue University | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information Spotlight Is on Purdue University Back to the OSTI News Listing for 2010 The Spotlight is on Purdue University. Each month OSTI's .EDUconnections features U.S. institutions committed to supporting and advancing DOE scientific research programs. Find professors of interest, exceptional students, and science and education news from Purdue. Visit the archive to see additional featured universities

  10. OSTI's .EDUconnections places spotlight on Princeton University | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information places spotlight on Princeton University Back to the OSTI News Listing for 2009 Connect to Princeton University's DOE-related research through .EDUconnections. .EDUconnections spotlights U.S. institutions committed to supporting and advancing DOE scientific research programs. Read about Princeton professors, the institution's exceptional students, and find Princeton Nobel Laureates associated with DOE. Quick links are available

  11. OSTI's .EDUconnections spotlights Jackson State University | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information spotlights Jackson State University Back to the OSTI News Listing for 2009 Connect to Jackson State University?s DOE-related research through .EDUconnections, OSTI?s latest tool to help university research departments and libraries get the resources they need. Check out the specialized tools and services; visit the spotlight page; find DOE grants, internships, fellowships and scholarships, and use the widget

  12. Polytechnic Institute of New York University in the Spotlight at

    Office of Scientific and Technical Information (OSTI)

    .EDUconnections | OSTI, US Dept of Energy Office of Scientific and Technical Information Polytechnic Institute of New York University in the Spotlight at .EDUconnections Back to the OSTI News Listing for 2011 Polytechnic Institute of New York University, where Energy Secretary Steven Chu offered remarks for the 2011 graduating class, is in the Spotlight at the OSTI .EDUconnections website. .EDUconnections features U.S. community colleges and universities committed to supporting and advancing

  13. ARPA-E Technology Showcase: Project Spotlight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    E Technology Showcase: Project Spotlight ARPA-E Technology Showcase: Project Spotlight March 1, 2011 - 1:49pm Addthis William Mouat explains the PolyPlus battery technology. | Energy Department photo, credit Ken Shipp. William Mouat explains the PolyPlus battery technology. | Energy Department photo, credit Ken Shipp. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last night, we had the chance to visit with a few of the researchers and scientists behind

  14. Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    International Meeting in Vienna | Department of Energy Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna October 22, 2012 - 12:00pm Addthis Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler presents at the Uranium

  15. Preparation of tungsten oxide

    DOEpatents

    Bulian, Christopher J.; Dye, Robert C.; Son, Steven F.; Jorgensen, Betty S.; Perry, W. Lee

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  16. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  17. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  18. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  19. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  20. Operation of thoriated tungsten cathodes

    SciTech Connect

    Polk, J.E. )

    1993-01-20

    The operating temperature of thoriated tungsten cathodes used in electric thrusters depends on the surface coverage of thorium, which is determined by a balance of rate processes which supply and deplete the surface layer. The fundamental processes and rates are first reviewed in detail, then a phenomenological model based on these rate processes is described. The model indicates that the thermionic emission capabilities of thoriated tungsten cathodes decay rapidly because of thorium depletion at temperatures encountered in electric thrusters.

  1. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  2. Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins

    Energy.gov [DOE]

    Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  3. #LabSpotlight - People of the National Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    #LabSpotlight - People of the National Labs #LabSpotlight - People of the National Labs #LabSpotlight - People of the National Labs Our #LabSpotlight series profiles standout individuals at the National Labs. From a theoretical physicist working to better understand one of the most elusive particles in the universe to a master optician hand-polishing precision optics used in high-powered lasers, the National Labs are home to some of the most exceptional people in their fields. These are their

  4. Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6

    Office of Energy Efficiency and Renewable Energy (EERE)

    Final Report: Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6, American Recovery and Reinvestment Act of 2009, June 2015.

  5. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Energy.gov [DOE]

    Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

  6. OSTIblog Articles in the spotlight Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    NYU-Poly's Professor Maurizio Porfiridevelops underwater robots that may steer fish populations away from hazards. EDUconnections spotlights the most amazing science programs at ...

  7. Method of synthesizing tungsten nanoparticles

    DOEpatents

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  8. In The Spotlight | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Who We Are In The Spotlight Allison Davis Sandia National Laboratories Allison Davis October 2009 NNSA Defense Programs Award of Excellence Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile

  9. State and Local Spotlight - April 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    April 2016 State and Local Spotlight - April 2016 April 8, 2016 - 4:41pm Addthis Clean Energy News and Events for State and Local Leaders A monthly update from EERE's Weatherization and Intergovernmental Programs Office (WIP) for state, local, and K-12 officials featuring resources to advance successful, high-impact, and long-lasting clean energy policies, programs, and projects. Featured Publication Photo of a school building. New Implementation Model: Nevada's School District Targets Facility

  10. State and Local Spotlight - February 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    February 2016 State and Local Spotlight - February 2016 February 17, 2016 - 4:36pm Addthis Clean Energy News and Events for State and Local Leaders A monthly update from EERE's Weatherization and Intergovernmental Programs Office (WIP) for state, local, and K-12 officials featuring resources to advance successful, high-impact, and long-lasting clean energy policies, programs, and projects. Featured Topic of Interest Photo of meters on a wall. New Resources for Energy Efficiency Savings

  11. State and Local Spotlight - June 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    June 2016 State and Local Spotlight - June 2016 June 9, 2016 - 4:48pm Addthis Clean Energy News and Events for State and Local Leaders A monthly update from EERE's Weatherization and Intergovernmental Programs Office (WIP) for state, local, and K-12 officials featuring resources to advance successful, high-impact, and long-lasting clean energy policies, programs, and projects. Featured Publication Energy Savings Performance Contracting (ESPC): A Primer for K-12 Schools This report provides K-12

  12. State and Local Spotlight - November 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    November 2016 State and Local Spotlight - November 2016 November 3, 2016 - 12:00pm Addthis Featured Publication New Cities-LEAP Report Showcases How Six Common City-Level Energy Policies Could Reduce Nationwide Carbon Emissions by Up to 480 Million Metric Tons Annually DOE's National Renewable Energy Laboratory recently examined the carbon abatement potential of city actions in six policy areas as part of the DOE's Cities Leading through Energy Analysis and Planning (Cities-LEAP) project. The

  13. State and Local Spotlight - October 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2016 State and Local Spotlight - October 2016 October 6, 2016 - 3:00pm Addthis Featured Toolkit Image of Weatherization Day logo. As we celebrate the 40th Anniversary of the Weatherization Assistance Program (WAP), October 30 also marks Weatherization Day. Communities across the country will be celebrating this day with events and actions, including social media campaigns. See these toolkits to learn how you can join in the festivities! WAP 40 Year Anniversary and Weatherization Day 2016

  14. State and Local Spotlight - July 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    July 2016 State and Local Spotlight - July 2016 July 7, 2016 - 4:50pm Addthis Clean Energy News and Events for State and Local Leaders A monthly update from EERE's Weatherization and Intergovernmental Programs Office (WIP) for state, local, and K-12 officials featuring resources to advance successful, high-impact, and long-lasting clean energy policies, programs, and projects. Featured Toolkit Energy Data Accelerator Toolkit: Blueprint for Action The Energy Data Accelerator Toolkit is a

  15. Special Summer Spotlight: Tribal Universities | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Special Summer Spotlight: Tribal Universities Back to the OSTI News Listing for 2011 Read about the unique partnership between DOE National Labs, the American Indian Higher Education Consortium, and the American Indian Science and Engineering Society bringing science, technology, engineering, and mathematics research and education funding to the Nation's Tribal Colleges and Universities. Find quick links such as: Energy Resource Development

  16. Healthcare Energy: Spotlight on Fans and Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fans and Pumps Healthcare Energy: Spotlight on Fans and Pumps Chilled water pumps at a central plant. Image by Warren Gretz, NREL/06196 Chilled water pumps at a central plant. Image by Warren Gretz, NREL/06196 The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for a few highlights from monitoring fan and pump energy use. Fans At the Massachusetts General Hospital (MGH) Gray Building, supply, return/exhaust, and

  17. Healthcare Energy: Spotlight on Lighting and Other Electric Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Lighting and Other Electric Loads Healthcare Energy: Spotlight on Lighting and Other Electric Loads Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two

  18. Healthcare Energy: Spotlight on Medical Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medical Equipment Healthcare Energy: Spotlight on Medical Equipment The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. Additional plug load data from medical office buildings were provided by Mazzetti, Inc. See below for a few highlights from monitoring large medical imaging equipment and medical office building plug loads. Graphic showing the average weekday energy use of a CT machine. Graph showing average weekday energy

  19. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  20. Process development for cladding APT tungsten targets

    SciTech Connect

    Horner, M H; Barber, R; Dalder, E

    2000-11-27

    This report describes development of processes for cladding APT Target tungsten components with a thin layer (0.127-mm) of Alloy 718, Alloy 600 or 316L stainless steel alloy. The application requires that the cladding be thermally bonded to the tungsten in order to transfer heat generated in the tungsten volume to a surrounding coolant. High temperature diffusion bonding using the hot isostatic processing (HIP) technique was selected as the method for creating a metallurgical bond between pure tungsten tubes and rods and the cladding materials. Bonding studies using a uniaxially loaded vacuum hot press were conducted in preliminary experiments to determine acceptable time-temperature conditions for diffusion bonding. The results were successfully applied in cladding tungsten rods and tubes with these alloys. Temperatures 800-810 C were suitable for cladding tungsten with Alloy 600 and 316L stainless steel alloy, whereas tungsten was clad with Alloy 718 at 1020 C.

  1. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOEpatents

    Reagen, William Kevin; Janikowski, Stuart Kevin

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  2. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  3. Retention of Halogens in Waste Glass

    SciTech Connect

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ?100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  4. Healthcare Energy: Spotlight on Chiller Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chiller Plants Healthcare Energy: Spotlight on Chiller Plants The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for a few highlights from monitoring chiller plant energy. Image of a chiller plant. Chiller Energy Annual site energy use intensities (EUIs) for chiller energy were estimated to be 27.7 kBtu/ft2-yr for the the Massachusetts General Hospital (MGH) Gray Building and 26.8 kBtu/ft2-yr for the State

  5. Healthcare Energy: Spotlight on Reheat and Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reheat and Heating Healthcare Energy: Spotlight on Reheat and Heating The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for a few highlights from monitoring heating and reheating energy use. Heating Chart.jpg Annual Site Energy Use Intensities Annual site energy use intensities (EUIs) for the "reheat and heating" category were 108.4 kBtu/ft2-yr at the Massachusetts General Hospital (MGH) Gray Building

  6. Tungsten Mtn Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, UT Geothermal Area Tungsten Mountain Geothermal Area Geothermal Region...

  7. Line spectrum and ion temperature measurements from tungsten...

    Office of Scientific and Technical Information (OSTI)

    Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths ...

  8. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew (Los Alamos, NM); Coogan, John J. (Los Alamos, NM)

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  9. Halogen bonding origin properties and applications

    SciTech Connect

    Hobza, Pavel

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  10. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  11. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  12. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  13. Performance Spotlight--Boise Paper: Process Pumping Optimization Saves Energy and Improves Production

    SciTech Connect

    2006-05-01

    This DOE Industrial Technologies Program spotlight describes how Boise Paper is saving 498,000 kWh annually after improving the process pumping system efficiency of its Wallula, Washington, mill.

  14. OSTIblog Articles in the spotlight Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information spotlight Topic Cool Connections by Kathy Chambers 24 May, 2012 in Products and Content 4315 edulogo.png Cool Connections Read more about 4315 The coolest people are found on OSTI's .EDUconnections Spotlights. Penn State's Dr. Prabhu and Dr. Paulsonresearch different fields but discovered a possible cure for leukemia over a pizza faculty lunch. Howard University's Binanca Baileyis a White House "Champion of Change for Women and Girls in

  15. EECBG Success Story: The City of Los Angeles Has Its Spotlight on Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency | Department of Energy The City of Los Angeles Has Its Spotlight on Energy Efficiency EECBG Success Story: The City of Los Angeles Has Its Spotlight on Energy Efficiency July 30, 2012 - 9:19am Addthis Mayor Antonio Villaraigosa and the Founding Partners of Los Angeles Better Buildings Challenge sign commitments to reduce energy use in their buildings. | Photo courtesy of the city of Los Angeles. Mayor Antonio Villaraigosa and the Founding Partners of Los Angeles Better Buildings

  16. Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time The Better Buildings Neighborhood Program is part of the national Better Buildings Initiative led by the U.S. Department of Energy. To learn how the Better Buildings Neighborhood Program is making homes more comfortable and businesses more lucrative and to read more from this Spotlight series, visit betterbuildings.energy.gov/neighborhoods. 1 Launch With a Short-Term Promotional Offer to Jump-Start Participation With

  17. Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    April 2011 Version 2 betterbuildings.energy.gov/neighborhoods Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins Driving Demand The Better Buildings Neighborhood Program is part of the national Better Buildings Initiative led by the U.S. Department of Energy. To learn how the Better Buildings Neighborhood Program is making homes more comfortable and businesses more lucrative and to read more from this Spotlight series, visit betterbuildings.energy.gov/neighborhoods.

  18. Home Energy Score Past Webinars and Video Spotlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Score » Home Energy Score Past Webinars and Video Spotlights Home Energy Score Past Webinars and Video Spotlights Here are past webinars and materials from Home Energy Score. March 17, 2016: Enhance Your Home Inspection Business with Home Energy Score Using DOE's free Home Energy Score, home inspectors can provide a miles-per-gallon type rating to their clients. By offering the rating and accompanying recommendations for efficiency improvements, home inspectors can help clients become

  19. Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program Final Evaluation Volume 6 American Recovery and Reinvestment Act of 2009 June 2015 Prepared For: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy DOE/EE-1207 DOE/EE-1207 Final Report Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program Final Evaluation Volume 6 American Recovery and Reinvestment Act of 2009 June 2015 Funded By: Prepared By: Research Into

  20. The City of Los Angeles Has Its Spotlight on Energy Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy The City of Los Angeles Has Its Spotlight on Energy Efficiency The City of Los Angeles Has Its Spotlight on Energy Efficiency July 30, 2012 - 9:19am Addthis Mayor Antonio Villaraigosa and the Founding Partners of Los Angeles Better Buildings Challenge sign commitments to reduce energy use in their buildings. | Photo courtesy of the City of Los Angeles. Mayor Antonio Villaraigosa and the Founding Partners of Los Angeles Better Buildings Challenge sign commitments to reduce energy

  1. Halogen eAppraisal - Performance Appraisals | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Halogen eAppraisal - Performance Appraisals 2015 Performance Appraisal Process 211 - 220: Employee writes self-appraisal. 221 - 310: Evaluating Supervisor writes appraisals for...

  2. Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated...

    Energy Saver

    Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Information flow ...

  3. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  4. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  5. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  6. Metal halogen battery construction with improved technique for producing halogen hydrate

    DOEpatents

    Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.

    1983-01-01

    An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.

  7. C3E Spotlights Women Leaders in Clean Energy Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    C3E Spotlights Women Leaders in Clean Energy Careers C3E Spotlights Women Leaders in Clean Energy Careers September 16, 2014 - 12:17pm Addthis Watch highlights from last year's Women in Clean Energy Symposium -- an annual event that is working to build a community of professionals dedicated to advancing the careers and goals of women in clean energy. | Video by Matty Greene, Energy Department. Caroline McGregor Acting Soft Costs Program Manager, SunShot Initiative How can I participate? Watch

  8. Collisional-radiative modeling of tungsten at temperatures of...

    Office of Scientific and Technical Information (OSTI)

    Collisional-radiative modeling of tungsten at temperatures of 1200-2400 eV Citation Details In-Document Search Title: Collisional-radiative modeling of tungsten at temperatures of ...

  9. Growth of tungsten oxide on carbon nanowalls templates

    SciTech Connect

    Wang, Hua; Su, Yan; Chen, Shuo; Quan, Xie

    2013-03-15

    Highlights: ? Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ? This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ? Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  10. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  11. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  12. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  13. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  14. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  15. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  16. Gas tungsten arc welder with electrode grinder

    SciTech Connect

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  17. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGES [OSTI]

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  18. CALiPER Benchmark Report: Performance of Halogen Incandescent MR16 Lamps and LED Replacement

    SciTech Connect

    Paget, M. L.; Lingard, R. D.; Myer, M. A.

    2008-11-01

    This benchmark report addresses the halogen MR16 lamp and its commercially available light-emitting diode (LED) replacements.

  19. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  20. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  1. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum organometallic species

    DOEpatents

    Voges, Mark; Bullock, R. Morris

    2000-01-01

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes. The functional group is selected from groups represented by the formulas R(C.dbd.O)R' and R(C.dbd.O)H, wherein R and R' are selected from hydrogen or any alkyl or aryl group. The active catalyst for the process has the form: [CpM(CO).sub.2 (PR*.sub.3) L].sup.+ A.sup.-, where Cp=.eta..sup.5 -R.sup..tangle-solidup..sub.m C.sub.5 H.sub.5-m and R.sup..tangle-solidup. represents an alkyl group or a halogen (F, Cl, Br, I) or R.sup..tangle-solidup. =OR' (where R'=H, an alkyl group or an aryl group) or R.sup..tangle-solidup. =CO.sub.2 R' (where R'=H, an alkyl group or an aryl group) and m=0 to 5; M represents a molybdenum atom or a tungsten atom; R*.sub.3 represents three hydrocarbon groups selected from a cyclohexyl group (C.sub.6 H.sub.11), a methyl group (CH.sub.3), and a phenyl group (C.sub.6 H.sub.5) and all three R* groups can be the same or different or two of the three groups can be the same; L represents a ligand; and A.sup.- represents an anion. In another embodiment, one, two or three of the R* groups can be an OR*.

  2. Understanding Helium-Hydrogen Plasma Mediated Tungsten Surface...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Helium-Hydrogen Plasma Mediated Tungsten Surface Response to Predict Fusion Plasma Facing ... The realization of fusion as a practical, 21st Century energy source requires improved ...

  3. Deuterium Retention in Tungsten-Coated Reduced Activation Ferritic...

    Office of Environmental Management (EM)

    material (PFM) in fusion reactor Development of tungsten coating on PFM (such as F82H) Bulk W is heavy Influences density control of fusion plasma, and safety ...

  4. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles...

    Office of Science (SC)

    Helium bubbles are detrimental to plasma-facing materials such as tungsten in fusion reactors, which could serve as a possible new power source. Thus, understanding how helium ...

  5. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst

    SciTech Connect

    Kim, Young-ho; Irie, Hiroshi; Hashimoto, Kazuhito

    2008-05-05

    A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

  6. Spotlight: Two Los Alamos scientists honored with E.O. Lawrence Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two Los Alamos scientists honored with E.O. Lawrence Awards Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Spotlight: Two Los Alamos scientists honored with E.O. Lawrence Awards Fryer and Dors noted for achievements in space physics, satellite radiation sensors July 1, 2015 Eric E. Dors (l) and Christopher L. Fryer (r) Eric E. Dors (l) and Christopher L. Fryer (r) Contact Linda Anderman Email Outstanding performance

  7. Building America Research Teams: Spotlight on ARIES and NorthernSTAR |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy ARIES and NorthernSTAR Building America Research Teams: Spotlight on ARIES and NorthernSTAR May 14, 2015 - 12:36pm Addthis This article continues our series of profiles about the Building America research teams-multidisciplinary industry partnerships that work to make high performance homes a reality for all Americans. This month's article focuses on Advanced Residential Integrated Energy Solutions and NorthernSTAR Building America Partnership-leaders in research and

  8. Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revised July 2011 Version 2 Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Getting Started 1 Seattle Moves the Needle With the Help of Its Partners Seattle's Community Power Works (CPW) program has engaged a vast network of partners to build on existing capacity and knowledge, extending the reach of its program in a short period of time. By evaluating potential partnerships and identifying strategic opportuni- ties to augment and enhance local ideas and

  9. DOE Sustainability SPOtlight U.S. Department of Energy Sustainability Performance Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issue 42 February 2015 DOE Sustainability SPOtlight U.S. Department of Energy Sustainability Performance Office SUSTAINABILITY NEWS SPO Launces Sustainability Financial Assistance Program On January 26th, the Sustainability Performance Office (SPO) launched the SPO Funding Opportunity Announcement (SPOFOA), a first- of-its-kind program designed to expand sustainable technologies and practices across the Department of Energy (DOE) complex. SPOFOA offers financial assistance to DOE programs,

  10. "Spotlight" on MIT at the OSTI .EDUconnections website | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Spotlight" on MIT at the OSTI .EDUconnections website Back to the OSTI News Listing for 2010 Connect to DOE-related research at the Massachusetts Institute of Technology when you visit .EDUconnections. Learn about MIT professors, the institution's exceptional students, and find MIT Nobel Laureates associated with DOE. Quick links are available to DOE grants, internships, fellowships and scholarships. An archive is available to other

  11. Clemson in the Spotlight at .EDUconnections | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Clemson in the Spotlight at .EDUconnections Back to the OSTI News Listing for 2012 Clemson University is addressing the challenges in advanced vehicle design and development, including life cycle impact of vehicles, energy use and emissions, reliability, manufacturing, cost of ownership, customer preference and public policy. Read about the CU-International Center for Automotive Research Gate Center of Excellence in Sustainable Vehicle Systems,

  12. Stanford in the Spotlight at .EDUconnections | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Stanford in the Spotlight at .EDUconnections Back to the OSTI News Listing for 2011 Stanford's list of Nobel Laureates is long and distinguished, as is its research relationship with the U.S. Department of Energy. Read about Stanford's research and resource connections to DOE at the OSTI .EDUconnections website. .EDUconnections features U.S. community colleges and universities committed to supporting and advancing DOE scientific research

  13. Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    betterbuildings.energy.gov/neighborhoods 1 Spotlight on Michigan: Experiment to Find the Right Mix of Incentives With support from the U.S. Energy Department's Better Buildings Neighborhood Program, a diverse coalition of partners under the banner of BetterBuildings for Michigan designed 27 neighborhood "sweeps" across the state. These targeted outreach campaigns applied varying incentives and outreach strategies to designated neighbor- hoods with a goal to understand which incentives

  14. Better Buildings: Workforce: Spotlight on Fayette County, Pennsylvania: Developing the Skills and Tools for Workforce Success

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    betterbuildings.energy.gov/neighborhoods 1 June 2012 Workforce Spotlight on Fayette County, Pennsylvania: Developing the Skills and Tools for Workforce Success Key Takeaways ■■ Engage local partners to fill program resource gaps, recruit participants, and avoid duplicating existing education and training efforts ■■ Provide a regular forum for contractors to obtain program information, offer feedback, and build relationships with one another ■■ Reduce the startup cost barrier for new

  15. Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    betterbuildings.energy.gov/neighborhoods 1 June 2012 Workforce Spotlight on Portland, Oregon: Making the Program Work for Contractors Key Takeaways ■■ Solicit ongoing feedback from contractors and participants and use information to guide program improvements ■■ Encourage formal contractor networks that are able to represent contractors' needs ■■ Design contractor incentives that align with program goals ■■ Reward high-performing contractors and support new professionals with

  16. Lab Spotlight: Sandia National Lab Team Wins Best in Class Sustainability

    National Nuclear Security Administration (NNSA)

    Award | National Nuclear Security Administration | (NNSA) Spotlight: Sandia National Lab Team Wins Best in Class Sustainability Award Monday, June 15, 2015 - 11:01am Sandia Team - Sustainability Award On June 8, Department of Energy's (DOE) National Nuclear Security Administration's (NNSA) Sandia Field Office Manager Jeffrey Harrell presented a Best in Class NNSA Sustainability Award to a team from Sandia National Laboratories. The award was in the Innovation and Holistic Approach Category

  17. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    SciTech Connect

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  18. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  19. Method for selective dehalogenation of halogenated polyaromatic compounds

    DOEpatents

    Farcasiu, Malvina; Petrosius, Steven C.

    1994-01-01

    A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

  20. Tungsten impurity transport experiments in Alcator C-Mod to address...

    Office of Scientific and Technical Information (OSTI)

    Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER Citation Details In-Document Search Title: Tungsten impurity ...

  1. Corrosion and wear resistance of tungsten carbide-cobalt and tungsten carbide-cobalt-chromium thermal spray coatings

    SciTech Connect

    Quets, J.; Alford, J.R.

    1999-07-01

    Tungsten carbide thermal spray coatings provide wear surfaces to new and overhauled components for various industries. Their wear resistance is obtained by incorporating small tungsten carbide particles into a metal matrix. This presentation will show what parameters influence their corrosion resistance in the ASTM B-117 Salt Spray Corrosion Test,

  2. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  3. High temperature annealing of ion irradiated tungsten

    DOE PAGES [OSTI]

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  4. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  5. Hydroprocessing with a catalyst containing non-hydrolyzable halogen

    SciTech Connect

    Moorehead, E.L.

    1989-07-04

    This patent describes a method for hydroprocessing a hydrocarbon oil. The method comprises contacting a hydrocarbon oil containing asphaltenes under hydroprocessing conditions with a particulate catalyst to convert at least a portion of the asphaltenes in the hydrocarbon oil so as to produce a product oil of reduced asphaltene content, the particulate catalyst comprising at least one active hydrogenation metal component on a support material comprising a zeolite or molecular sieve containing at least one non-hydrolyzable halogen component.

  6. Measurement of uptake and release of tritium by tungsten

    SciTech Connect

    Nakayama, M.; Torikai, Y.; Saito, M.; Penzhorn, R.D.; Isobe, K.; Yamanishi, T.; Kurishita, H.

    2015-03-15

    Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps or thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.

  7. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  8. Polaron absorption in amorphous tungsten oxide films

    SciTech Connect

    Berggren, Lars; Azens, Andris; Niklasson, Gunnar A.

    2001-08-15

    Amorphous thin films of tungsten oxide were deposited by sputtering onto glass substrates covered by conductive indium--tin oxide. The density and stoichiometry were determined by Rutherford backscattering spectrometry. Lithium ions were intercalated electrochemically into the films. The optical reflectance and transmittance were measured in the wavelength range from 0.3 to 2.5 {mu}m, at a number of intercalation levels. The polaron absorption peak becomes more symmetric and shifts to higher energies until an intercalation level of 0.25 to 0.3 Li{sup +}/W, where a saturation occurs. The shape of the polaron peak is in very good agreement with the theory of Bryksin [Fiz. Tverd. Tela 24, 1110 (1982)]. Within this model, the shift of the absorption peak is interpreted as an increase in the Fermi level of the material as more Li ions are inserted. {copyright} 2001 American Institute of Physics.

  9. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    At fast rates, the bubble grows more symmetrically and is larger when it bursts, creating ... such as tungsten in fusion reactors, which could serve as a possible new power source. ...

  10. DOE - Office of Legacy Management -- Callite Tungsten Co - NJ...

    Office of Legacy Management (LM)

    of various available metallurgical processes; November 7, 1944 NJ.36-2 - DOE Letter; J.Wagoner to Mayor Walter; Information regarding status of Callite Tungsten site; April 3, 1995...

  11. Predicting a Quaternary Tungsten Oxide for Sustainable Photovoltaic

    Office of Scientific and Technical Information (OSTI)

    Application by Density Functional Theory (Journal Article) | SciTech Connect Predicting a Quaternary Tungsten Oxide for Sustainable Photovoltaic Application by Density Functional Theory Citation Details In-Document Search Title: Predicting a Quaternary Tungsten Oxide for Sustainable Photovoltaic Application by Density Functional Theory Authors: Sarker, Pranab ; Al-Jassim, Mowafak M. ; Huda, Muhammad N. Publication Date: 2015-12-07 OSTI Identifier: 1236148 Report Number(s): NREL/JA-5K00-64682

  12. Ductile tungsten-nickel-alloy and method for manufacturing same

    DOEpatents

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  13. Irradiation effects in tungsten-copper laminate composite

    DOE PAGES [OSTI]

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; Byun, Thak Sang; Reiser, Jens; Rieth, Michael

    2016-09-19

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 1025 n/m2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa thismore » was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  14. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  15. Halogen-free benzoxazine based curable compositions for high TG applications

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan

    2015-03-10

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  16. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering

    SciTech Connect

    Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; Kim, Jin -Young; Eckert, Jürgen; Lee, Min -Ha

    2015-07-15

    Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grained tungsten matrix and reinforcement phase distribution.

  17. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  18. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES [OSTI]

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  19. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  20. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect

    Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-15

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. It is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  1. Employee Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    From shoring up floors to building a brand-new home in southern Africa, Laura McClellan spends much of her free time helping people in extreme poverty. 82316 Melissa Montoya ...

  2. Spotlights Archive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...

  3. Student Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Student Programs and Internships Student Programs and Internships Student Internships These student programs allow participants taking at least a half-time academic, technical, or vocational course load in an accredited high school, technical, vocational, two- or four- year college or university, graduate or professional school to be part of a cooperative-learning environment. The program is comprised of two different types of paid internships: The Student Temporary Employment Program (STEP)

  4. Ductile tungsten-nickel alloy and method for making same

    DOEpatents

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  5. Mechanism of vacancy formation induced by hydrogen in tungsten

    SciTech Connect

    Liu, Yi-Nan; Association EURATOM-TEKES, University of Helsinki, Helsinki, PO Box 64, 00560 ; Ahlgren, T.; Bukonte, L.; Nordlund, K.; Shu, Xiaolin; Yu, Yi; Lu, Guang-Hong; Li, Xiao-Chun

    2013-12-15

    We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  6. Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    betterbuildings.energy.gov/neighborhoods 1 June 2012 Financing and Incentives Spotlight on Portland, Oregon: Use Incentives to Get Attention and Encourage Deep Savings Key Takeaways ■■ Use performance-based incentives to nudge customers toward greater energy savings ■■ Promote recurring, limited- time bonus rebates to grab customers' attention, even when reducing incentive levels ■■ Approve financing early and make it an integral part of the program to reduce barriers to customer

  7. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    SciTech Connect

    NIKROO,A; BAUGH,W; STEINMAN,D.A

    2003-06-01

    OAK-B135 Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx} 0.15 {micro}m/hr coatings with {approx} 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {micro}m/hr, was considerably worse ({approx} 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C.

  8. Fabrication of Gas-Filled Tungsten-Coated Glass Shells

    SciTech Connect

    Nikroo, A.; Baugh, W.; Steinman, D.A.

    2004-03-15

    Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. We report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx}0.15 {mu}m/hr coatings with {approx}2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {mu}m/hr, was considerably worse ({approx}100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 deg. C.

  9. Tungsten-yttria carbide coating for conveying copper

    DOEpatents

    Rothman, Albert J.

    1993-01-01

    A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.

  10. Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigerant | Department of Energy Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Information flow schematic for an integrated heat pump design model and wrapped tank model. Image credit: Oak Ridge National Laboratory. Information flow schematic for an integrated heat pump design model and wrapped tank model. Image credit: Oak Ridge National Laboratory. Information flow schematic

  11. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES [OSTI]

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  12. Amorphous copper tungsten oxide with tunable band gaps

    SciTech Connect

    Chen Le; Shet, Sudhakar; Tang Houwen; Wang Heli; Yan Yanfa; Turner, John; Al-Jassim, Mowafak; Ahn, Kwang-soon

    2010-08-15

    We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps.

  13. The OPAL silicon-tungsten calorimeter front end electronics

    SciTech Connect

    Anderson, B.E.; Charalambous, A. . Dept. of Physics and Astronomy); Anderson, K. )

    1994-08-01

    A pair of small angle silicon-tungsten (Si-W) calorimeters has been built to measure the luminosity to a precision better than 0.1% in the OPAL experiment at the Large Electron Positron (LEP) collider at CERN near Geneva. Each calorimeter contains 19 layers of tungsten (W) plates and silicon (Si) detectors, corresponding to a total of 22 radiation lengths, sampled by about 1 m[sup 2] of detectors divided into 304 x64 independently read out channels. A complete electronics system has been developed, from the preamplifier up to the VME read out and control interface. It includes a fast trigger based on analogue sums. This paper describes how a large number of channels have been implemented in a dense environment, thanks to the use of ASIC's directly bonded on the detector.

  14. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  15. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  16. Studies on nickel-tungsten oxide thin films

    SciTech Connect

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  17. Deflection of light by using tungsten bronze crystals

    SciTech Connect

    Jelsma, L.F.; McWright, G.M.; Schumacher, F.A.; Neurgaonkar, R.R.

    1988-07-05

    This paper reports our preliminary results on an electrooptical light deflector for streak camera applications that uses tungsten bronze SBN:60% crystals. We found the performance of these ferroelectric crystals to be an order of magnitude better than the best LiNbO/sub 3/ crystals currently available. We discuss the theory and performance of this crystal as well as other bronze crystals for application to the streak camera. 8 refs., 5 figs., 2 tabs.

  18. Tungsten quasispherical wire loads with a profiled mass

    SciTech Connect

    Grabovskii, E. V.; Dzhangobegov, V. V. Oleinik, G. M.; Rodionov, R. N.

    2015-12-15

    Wire arrays made from micrometer tungsten wires with linear mass profiled along their height are developed for experiments on the generation of X-ray radiation upon pinch compression with a current of ∼3 MA at a pulse duration of ∼100 ns. Wires are imaged with a scanning electron microscope, and their diameter is determined. It is shown that the arrays have such a profile of height distribution of linear mass that allows for compact spherical compression upon current implosion.

  19. Modeling Helium--Hydrogen Plasma Mediated Tungsten Surface Response to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Predict Fusion Plasma Facing Component Performance in ITER | Argonne Leadership Computing Facility Helium--Hydrogen Plasma Mediated Tungsten Surface Response to Predict Fusion Plasma Facing Component Performance in ITER PI Name: Brian Wirth PI Email: bdwirth@utk.edu Institution: University of Tennessee Allocation Program: ALCC Allocation Hours at ALCF: 70 Million Year: 2016 Research Domain: Materials Science The purpose of this project is to develop high performance materials suitable for a

  20. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  1. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES [OSTI]

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  2. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  3. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  4. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering

    DOE PAGES [OSTI]

    Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; Kim, Jin -Young; Eckert, Jürgen; Lee, Min -Ha

    2015-07-15

    Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grainedmore » tungsten matrix and reinforcement phase distribution.« less

  5. RECENT PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS

    SciTech Connect

    Henager, Charles H.; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Odette, George R.; Cunningham, Kevin; Fields, Kirk A.; Gragg, David; Zok, Frank W.

    2014-03-03

    The objective of this study is to develop the materials science of fiber-reinforced tungsten composites as candidates for plasma-facing components in future fusion reactors.

  6. 2-M Probe At Tungsten Mountain Area (Shevenell, Et Al., 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Tungsten Mountain Area (Shevenell, Et Al., 2008) Exploration Activity Details...

  7. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    SciTech Connect

    Chu, Yueh-Chieh; Jiang, Gerald; Tu, Chia-Hao; Chang Chi; Liu, Chuan-pu; Ting, Jyh-Ming; Lee, Hsin-Li; Tzeng, Yonhua; Auciello, Orlando

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  8. Heat of combustion of tantalum-tungsten oxide thermite composites

    SciTech Connect

    Cervantes, Octavio G.; Kuntz, Joshua D.; Gash, Alexander E.; Munir, Zuhair A.

    2010-12-15

    The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 C. For samples consolidated at 25 C, the density of the CA composite is 61.65 {+-} 1.07% in comparison to 56.41 {+-} 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 C. The theoretical maximum density for the SG composite consolidated to 400 and 500 C are 81.30 {+-} 0.58% and 84.42 {+-} 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 C are 74.54 {+-} 0.80% and 77.90 {+-} 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 C in comparison to samples consolidated at 25 C. (author)

  9. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGES [OSTI]

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  10. Dynamics of femtosecond laser produced tungsten nanoparticle plumes

    SciTech Connect

    Harilal, S. S.; Hassanein, A.; Farid, N.; School of Physics and Optical Engineering, Dalian University of Technology, Dalian 116024 ; Kozhevin, V. M.

    2013-11-28

    We investigated the expansion features of femtosecond laser generated tungsten nanoparticle plumes in vacuum. Fast gated images showed distinct two components expansion features, viz., plasma and nanoparticle plumes, separated by time of appearance. The persistence of plasma and nanoparticle plumes are ?500 ns and ?100 ?s, respectively, and propagating with velocities differed by 25 times. The estimated temperature of the nanoparticles showed a decreasing trend with increasing time and space. Compared to low-Z materials (e.g., Si), ultrafast laser ablation of high-Z materials like W provides significantly higher nanoparticle yield. A comparison between the nanoparticle plumes generated by W and Si is also discussed along with other metals.

  11. Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation

    SciTech Connect

    Sun, Shih-Jye; Lin, Ken-Huang; Li, Jia-Yun; Ju, Shin-Pon

    2014-10-07

    The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.

  12. Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Imagery

    SciTech Connect

    DOREN,NEALL E.

    1999-10-01

    Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction

  13. Atomic data of tungsten for current and future uses in fusion and plasma science

    SciTech Connect

    Clementson, J.; Beiersdorfer, P.; Lennartsson, T.

    2013-04-19

    Atomic physics has played an important role throughout the history of experimental plasma physics. For example, accurate knowledge of atomic properties has been crucial for understanding the plasma energy balance and for diagnostic development. With the shift in magnetic fusion research toward high-temperature burning plasmas like those expected to be produced in the ITER tokamak, the atomic physics of tungsten has become important. Tungsten will be a constituent of ITER plasmas because of its use as a plasma-facing material able to withstand high heat loads with lower tritium retention than other possible materials. Already, ITER diagnostics are being developed based on using tungsten radiation. In particular, the ITER Core Imaging X-ray Spectrometer (CIXS), which is designed to measure the core ion temperature and bulk plasma motion, is being based on the x-ray emission of neonlike tungsten ions (W{sup 64+}). In addition, tungsten emission will at ITER be measured by extreme ultraviolet (EUV) and optical spectrometers to determine its concentration in the plasma and to assess power loss and tungsten sputtering rates. On present-day tokamaks tungsten measurements are therefore being performed in preparation of ITER. Tungsten has very complex spectra and most are still unknown. The WOLFRAM project at Livermore aims to produce data for tungsten in various spectral bands: Lshell x-ray emission for CIXS development, soft x-ray and EUV M- and N-shell tungsten emission for understanding the edge radiation from ITER plasmas as well as from contemporary tokamaks, and O-shell emission for developing spectral diagnostics of the ITER divertor.

  14. A Glove Box Enclosed Gas-Tungsten Arc Welding System

    SciTech Connect

    Reevr, E, M; Robino, C.V.

    1999-07-01

    This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

  15. Characterization of tungsten films and their hydrogen permeability

    SciTech Connect

    Nemani?, Vincenc Kova?, Janez; Lungu, Cristian; Porosnicu, Corneliu; Zajec, Bojan

    2014-11-01

    Prediction of tritium migration and its retention within fusion reactors is uncertain due to a significant role of the structural disorder that is formed on the surface layer after plasma exposure. Tungsten films deposited by any of the suitable methods are always disordered and contain a high density of hydrogen traps. Experiments on such films with hydrogen isotopes present a suitable complementary method, which improves the picture of the hydrogen interaction with fusion relevant materials. The authors report on the morphology, composition, and structure of tungsten films deposited by the thermionic vacuum arc method on highly permeable Eurofer substrates. Subsequently, hydrogen permeation studies through these films were carried out in a wide pressure range from 20 to 1000 mbars at 400?C. The final value of the permeation coefficient for four samples after 24?h at 400?C was between P?=?3.2??10{sup ?14}?mol?H{sub 2}/(m?s?Pa{sup 0.5}) and P?=?1.1??10{sup ?15}?mol H{sub 2}/(m s Pa{sup 0.5}). From the time evolution of the permeation flux, it was shown that diffusivity was responsible for the difference in the steady fluxes, as solubility was roughly the same. This is confirmed by XRD data taken on these samples.

  16. Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition

    SciTech Connect

    Xia, Min; Guo, Hongyan; Ge, Changchun; Yan, Qingzhi Lang, Shaoting

    2014-05-14

    A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (?-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, ?-CNTs/amorphous tungsten carbide, ?-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

  17. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES [OSTI]

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; Seaton, M. A.; Todorov, I. T.; Weber, William J.; Trachenko, Kostya

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  18. Recent progress on gas tungsten arc welding of vanadium alloys

    SciTech Connect

    Grossbeck, M.L.; King, J.F.; Alexander, D.J.

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  19. Mechanisms of gas precipitation in plasma-exposed tungsten

    SciTech Connect

    R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

    2012-05-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  20. Method of increments for the halogen molecular crystals: Cl, Br, and I

    SciTech Connect

    Steenbergen, Krista G.; Gaston, Nicola; Müller, Carsten; Paulus, Beate

    2014-09-28

    Method of increments (MI) calculations reveal the n-body correlation contributions to binding in solid chlorine, bromine, and iodine. Secondary binding contributions as well as d-correlation energies are estimated and compared between each solid halogen. We illustrate that binding is entirely determined by two-body correlation effects, which account for >80% of the total correlation energy. One-body, three-body, and exchange contributions are repulsive. Using density-fitting (DF) local coupled-cluster singles, doubles, and perturbative triples for incremental calculations, we obtain excellent agreement with the experimental cohesive energies. MI results from DF local second-order Møller-Plesset perturbation (LMP2) yield considerably over-bound cohesive energies. Comparative calculations with density functional theory and periodic LMP2 method are also shown to be less accurate for the solid halogens.

  1. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17 g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.

  2. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    SciTech Connect

    Cervantes, O

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  3. Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering

    SciTech Connect

    Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.; Munir, Zuhair A.

    2010-08-15

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3} or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)

  4. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  5. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  6. Molybdenum and tungsten nanostructures and methods for making and using same

    DOEpatents

    Kotaro, Sasaki; Chen, Wei-Fu; Muckerman, James T; Adzic, Radoslav R

    2015-01-06

    The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catlysts for hydrogen evolution reactions.

  7. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  8. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  9. Tungsten coating for improved wear resistance and reliability of microelectromechanical devices

    DOEpatents

    Fleming, James G.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Blewer, Robert S.

    2001-01-01

    A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 .degree. C. in the presence of gaseous nitrogen trifluoride (NF.sub.3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF.sub.6) at an elevated temperature, preferably about 450.degree. C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

  10. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    DOEpatents

    Hilsenbeck, Shane J. (Ames, IA); McCarley, Robert E. (Ames, IA); Schrader, Glenn L. (Ames, IA); Xie, Xiaobing (College Station, TX)

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

  11. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    SciTech Connect

    Hilsenbeck, Shane J.; McCarley, Robert E.; Schrader, Glenn L.; Xie, Xiaobing

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y ›MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

  12. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    DOEpatents

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  13. Activation energy of tantalum-tungsten oxide thermite reactions

    SciTech Connect

    Cervantes, Octavio G.; Munir, Zuhair A.; Kuntz, Joshua D.; Gash, Alexander E.

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)

  14. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  15. Adsorption of carbonyl sulfide on nickel and tungsten films

    SciTech Connect

    Saleh, J.M.; Nasser, F.A.K.

    1985-07-18

    The interaction of carbonyl sulfide with evaporated nickel and tungsten films has been investigated in the temperature range 195-450 K using gas pressures ranging from 1 to 13 N m/sup -2/. Rapid but mainly associative chemisorption of COS occurred on both metals at 195 K. Further adsorption of COS on W at temperatures 293-450 K was extremely slow and accompanied by more CO desorption than COS adsorbed. Sulfidation of Ni film by COS occurred at temperatures greater than or equal to 293 K with the liberation of carbon monoxide. The rate of adsorption increased with temperature but was independent of COS pressure. The activation energy (E/sub x/) increased with extent (X) of sulfidation to a limiting value of 97 kJ mol/sup -1/. A linear relationship was obtained from the plot of E/sub x/ against 1/X, suggesting the applicability of Cabrera-Mott theory to the sulfidation of Ni film by COS. 20 references, 2 figures, 1 table.

  16. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  17. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  18. Assembling supramolecular networks by halogen bonding in coordination polymers driven by 5-bromonicotinic acid

    SciTech Connect

    Gu, Jin-Zhong; Wu, Jiang; Kirillov, Alexander M.; Lv, Dong-Yu; Tang, Yu; Wu, Jin-Cai

    2014-05-01

    A series of six coordination compounds ([Zn(5-Brnic){sub 2}]·1.5H{sub 2}O){sub n} (1), [Cd(5-Brnic){sub 2}]{sub n} (2), [Co(5-Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (3), [Zn(5-Brnic){sub 2}(H{sub 2}biim)]{sub n} (4), ([Cd(5-Brnic){sub 2}(phen)]·H{sub 2}O){sub n} (5), and [Pb(5-Brnic){sub 2}(phen)] (6) have been generated by the hydrothermal method from the metal(II) nitrates, 5-bromonicotinic acid (5-BrnicH), and an optional ancillary 1,10-phenanthroline (phen) or 2,2′-biimidazole (H{sub 2}biim) ligand. All the products 1–6 have been characterized by IR spectroscopy, elemental, thermal, powder and single-crystal X-ray diffraction analyses. Their 5-bromonicotinate-driven structures vary from the 3D metal-organic framework with the seh-3,5-P21/c topology (in 2) and the 2D interdigitated layers with the sql topology (in 1 and 3), to the 1D chains (in 4 and 5) and the 0D discrete monomers (in 6). The 5-bromonicotinate moiety acts as a versatile building block and its tethered bromine atom plays a key role in reinforcing and extending the structures into diverse 3D supramolecular networks via the various halogen bonding Br⋯O, Br⋯Br, and Br⋯π interactions, as well as the N–H⋯O and C–H⋯O hydrogen bonds. The obtained results demonstrate a useful guideline toward engineering the supramolecular architectures in the coordination network assembly under the influence of various halogen bonding interactions. The luminescent (for 1, 2, 4, 5, and 6) and magnetic (for 3) properties have also been studied and discussed in detail. - Graphical abstract: Six coordination compounds driven by 5-bromonicotinic acid have been generated and structurally characterized, revealing diverse metal-organic networks that are further reinforced and extended via various halogen bonding interactions. - Highlights: • 5-Bromonicotinic acid is a versatile ligand for Zn, Cd, Co and Pb derivatives. • Careful selection of co-ligands and metals resulted in different network

  19. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    SciTech Connect

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  20. Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungstengraphene layered structure

    SciTech Connect

    Jagannadham, K.

    2014-09-01

    Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungstengraphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungstengraphenecopper samples were heated at different temperatures up to 900?C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900?C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650?C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900?C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.

  1. Observation of two distinct negative trions in tungsten disulfide monolayers

    SciTech Connect

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; Geohegan, David B.

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates through a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains

  2. Observation of two distinct negative trions in tungsten disulfide monolayers

    DOE PAGES [OSTI]

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; et al

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates throughmore » a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains from the dissociation of exciton XA is involved in the creation of this trion with a binding energy ~ 10 meV with respect to XA. The absorption peak that corresponds to trion T2 appears when λpump > 2.4 eV, which is just

  3. Observation of two distinct negative trions in tungsten disulfide monolayers

    SciTech Connect

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; Geohegan, David B.

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates through a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XBs characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using ?pump < 2.4 eV forms only trion T1, which implies that the electron that remains from

  4. Nanoparticles synthesis of tungsten disulfide via AOT-based microemulsions

    SciTech Connect

    Ghoreishi, S.M.; Meshkat, S.S.; Department of Chemical Engineering, Urmia University of Technology, Urmia 57155-419 ; Ghiaci, M.; Dadkhah, A.A.

    2012-06-15

    Graphical abstract: A controlled synthesis of WS2 nanoparticles (most probably inorganic fullerene (IF)) via microemulsion was applied for the first time to prepare WS2 (7–12 nm) by acidification of the water cores of the AOT reverse microemulsion. Highlights: ► An innovative reverse microemulsion technique was developed for WS{sub 2} synthesis. ► WS{sub 2} nanoparticles were obtained with narrow size distribution in range of 7–12 nm. ► Operating cost of microemulsion was lower in contrast to quartz reactor method. ► WS{sub 2} morphology could be controlled to obtain highly active and selective catalysts. ► Lower size of WS{sub 2} in this study overcomes the shortcoming of quartz reactor method. -- Abstract: The tungsten disulfide (WS{sub 2}) nanoparticles (most probably inorganic fullerene (IF)) with a narrow size distribution were synthesized by a reverse micelle technique for the first time. The particle size was controlled by varying water-to-surfactant molar ratio (W{sub 0}), aging time and reagent concentration. The synthesized WS{sub 2} nanoparticles were characterized by zetasizer, UV–visible spectrophotometers and transmission electron microscopy (TEM). The WS{sub 2} nanoparticles with particle diameter size of 7–12 nm were obtained via 24 h aging time. The particle size was controlled by changing the aging time and molar ratio of water/surfactant. Doubling W{sub 0} increased the amount and particle size of WS{sub 2} by 22 and 26%, respectively. The effect of aging time in the range of 6–24 h was investigated and the complete disappearance of yellowish color at 24 h resulted in an optically clear solution, which was the indication of WS{sub 2} formation with 100% conversion of reactant ((NH{sub 4}){sub 2}WS{sub 4}) in the batch reactor.

  5. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2000-01-01

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  6. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2003-05-27

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  7. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Golden, Jeffry

    2007-02-13

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  8. Characterization of selective tungsten films prepared by photo-chemical vapor deposition

    SciTech Connect

    Fang, Y.K.; Hwang, S.B.; Sun, C.Y. )

    1991-06-01

    This paper reports on selective photo-chemical vapor deposition (CVD) of tungsten films decomposed by direct photoexcitation of WF{sub 6}. Film deposition rate increased with increasing temperature but was only slightly dependent on WF{sub 6} gas concentration. The selectivity deteriorated with increasing deposition temperature, WF{sub 6} concentration, and deposition time. Typically, in order to achieve selectivity, the flow rate of WF{sub 6} must be lower than 35 sccm and the deposition temperature must be lower than 230{degrees}C. No encroachment and self-limited thickness problems were found as in the low-pressure chemical vapor deposition method. In general, tungsten films prepared by photo-CVD were amorphous as observed by x-ray diffraction analysis. After annealing, the tungsten had a polycrystalline structure with a resistivity of 18 {mu}{Omega}-cm.

  9. The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas

    SciTech Connect

    Angioni, C.; Pütterich, T.; Bilato, R.; Casson, F. J.; Giroud, C.; Mantica, P.; Helander, P.

    2015-05-15

    Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.

  10. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    SciTech Connect

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  11. Mass transport of tungsten and molybdenum during production of leucosapphire by horizontal directional crystallization

    SciTech Connect

    Samsonov, A.L.

    1986-05-01

    This paper investigates the mass-transport mechanism of tungsten and molybdenum in the heating unit of an apparatus of the SGVK-Sapphire type, intended for producing leucosapphire by the HDC method. Logarithms of the constants for reactions are presented. However high compared to tungsten oxides, the volatility of molybdenum oxides is determined by the considerable range of mass transport. A possible reason for the co-deposition of amorphous deposit of Mo and Al/sub 2/O/sub 3/ surface from dissociation in the system is examined.

  12. Nanostructured tungsten carbide/cobalt alloys: Processing and properties

    SciTech Connect

    Wu, Li

    1993-12-31

    This research represents an extension of previous work on the synthesis and processing of nanostructured WC/Co alloys. The earlier work resulted in a novel thermochemical process for making nanostructured WC/Co powders (3-30 wt% Co), which involved the reductive decomposition and gas phase carburization of homogeneous precursor powders, prepared by spray drying aqueous solution mixtures of W and Co salts. A shortcoming of the process was the formation of a relatively large amount of uncombined carbon during gas phase carburization using pre CO. AnOtherr unsolved problem was the rapid coarsening of WC particles during liquid phase sintering, making it difficult to achieve the desired nanostructures in the fully consolidated materials. In the present work, both problems have been addressed and successfully overcome. Carburization in CO/H{sub 2} gas mixtures has been shown to be superior to carburization in pure CO, in that it avoids the formation of excess carbon without sacrificing the desirable high carburization rate. Another advantage is the finer WC grain size achieved, because of the shorter reaction time at relatively low temperatures, 650-750{degrees}C. Othe carbon source gases, such as CH{sub 4}/H{sub 2} and C{sub 2}H{sub 4}/H{sub 2} gas mixtures, cannot produce tungsten monocarbide at such low temperatures. Thus, carburization in CO/H{sub 2} gas mixtures appears to be optimal for synthesizing nanostructured WC/Co powders. As to liquid phase sintering of powder compacts, it has been demonstrated that mechanical mixing of a small amount of VC powder with the nanograined WC/Co powder inhibits grain growth. A striking result was the linear increase in hardness of WC/7 wt% Co with the amount of VC added, at least up to the solubility limit (about 10 wt%) of VC in liquid cobalt at the sintering temperature. Preliminary work has also demonstrated the feasibility of plasma spraying low-density nanostructured powders to produce dense, wear resistant coatings.

  13. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    SciTech Connect

    Jonathan A. Webb; Indrajit Charit; Cory Sparks; Darryl P. Butt; Megan Frary; Mark Carroll

    2011-02-01

    Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

  14. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  15. Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution

    SciTech Connect

    Meng, Fanke; Hu, Enyuan; Zhang, Lihua; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2015-08-05

    We report a new class of highly active and stable tungsten-based catalysts to replace noble metal materials for the hydrogen evolution reaction (HER) in an acidic electrolyte. The catalyst is produced by heating an earth-abundant and low-cost mixture of ammonium tungstate, soybean powder and graphene nanoplatelets (WSoyGnP). The catalyst compound consists of tungsten carbide (W₂C and WC) and tungsten nitride (WN) nanoparticles decorated on graphene nanoplatelets. The catalyst demonstrates an overpotential (η₁₀, the potential at a current density of 10 mA cm⁻²) of 0.105 V, which is the smallest among tungsten-based HER catalysts in acidic media. The coupling with graphene significantly reduces the charge transfer resistance and increases the active surface area of the product, which are favorable for enhancing the HER activity. Therefore, the approach of employing biomass and other less expensive materials as precursors for the production of catalysts with high HER activity provides a new path for the design and development of efficient catalysts for the hydrogen production industry.

  16. Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution

    DOE PAGES [OSTI]

    Meng, Fanke; Hu, Enyuan; Zhang, Lihua; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2015-08-05

    We report a new class of highly active and stable tungsten-based catalysts to replace noble metal materials for the hydrogen evolution reaction (HER) in an acidic electrolyte. The catalyst is produced by heating an earth-abundant and low-cost mixture of ammonium tungstate, soybean powder and graphene nanoplatelets (WSoyGnP). The catalyst compound consists of tungsten carbide (W₂C and WC) and tungsten nitride (WN) nanoparticles decorated on graphene nanoplatelets. The catalyst demonstrates an overpotential (η₁₀, the potential at a current density of 10 mA cm⁻²) of 0.105 V, which is the smallest among tungsten-based HER catalysts in acidic media. The coupling with graphenemore » significantly reduces the charge transfer resistance and increases the active surface area of the product, which are favorable for enhancing the HER activity. Therefore, the approach of employing biomass and other less expensive materials as precursors for the production of catalysts with high HER activity provides a new path for the design and development of efficient catalysts for the hydrogen production industry.« less

  17. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  18. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  19. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 m) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 m) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 C/min up to 900 C, and the samples were annealed at 900 C for 0.5 hour. These procedures were repeated three (for 100 and 200 C samples) and four (for 500 C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 C to 600 C after 1st annealing for the

  20. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGES [OSTI]

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; Fang, Z. Z.; Ren, C.; Oya, Y.; Michibayashi, K.; Friddle, R. W.; Mills, B. E.

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 1022 m-2 s-1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG

  1. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  2. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide

    SciTech Connect

    Butler, E.C.; Hayes, K.F.

    2000-02-01

    The objectives of the experiments described here were 2-fold: first, to assess the relative rates and products of transformation of a variety of halogenated aliphatics by the soil mineral FeS under a uniform set of experimental conditions and, second, to establish whether there exists a relationship between rate constants for these transformations and free energy or molecular parameters. The transformation of nine halogenated aliphatic compounds by 10 g/L (0.5 m{sup 2}/L) FeS at pH 8.3 was studied in batch experiments. These compounds were as follows: pentachloroethane (PCA), 1,1,2,2- and 1,1,1,2-tetrachloroethanes (1122-TeCA and 1112-TeCA), 1,1,1- and 1,1,2-trichloroethanes (111-TCA and 112-TCA), 1,1- and 1,2-dichloroethanes (11-DCA and 12-DCA), carbon tetrachloride (CT), and tribromomethane (TBM). 11-DCA, 12-DCA, and 112-TCA showed no appreciable transformation by FeS over approximately 120 days, but the other compounds were transformed with half-lives of hours to days. PCA and 1122-TeCA underwent dehydrohalogenation faster than FeS-mediated reductive dehalogenation reactions under the conditions of these experiments. The remaining compounds for which significant transformation was observed underwent FeS-mediated reactions more rapidly than hydrolysis or dehydrohalogenation. For 1112-TeCA, the dihaloelimination product (1,1-dichloroethylene) was the only reaction product detected. For 111-TCA, CT, and TBM, hydrogenolysis products were the only products detected, although their mass recoveries were considerably less than 100%. Two simple log-linear correlations between rate constants and either one-electron reduction potentials or homolytic bond dissociation enthalpies were developed, with coefficients of determination (R{sup 2} values) of 0.48 and 0.82, respectively. These findings are consistent with a rate-limiting step involving homolytic bond dissociation. However, neither correlation accurately described the reactivity of all the compounds that were studied

  3. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions

    DOE PAGES [OSTI]

    Parish, Chad M.; Wang, Kun; Doerner, Russel P.; Baldwin, Matthew J.

    2016-09-19

    We grew nanotendril “fuzz” on tungsten via plasma exposure and performed transmission Kikuchi diffraction (tKD) in scanning electron microscopy of isolated nanotendrils. 900 °C, 1023 He/m2sec, 4 × 1026 He/m2 exposure of tungsten produced a deep and fully developed nanotendril mat. tKD of isolated nanotendrils indicated that there was no preferred crystallographic direction oriented along the long axes of the tendrils, and the grain boundary character showed slightly preferential orientations. In conclusion, tendril growth is sufficiently non-equilibrium to prevent any preference of growth direction to manifest measurably, and that new high-angle boundaries (with new grains and grain-growth axes) nucleate randomlymore » along the tendrils during growth.« less

  4. Spotlighting Howard University

    Energy.gov [DOE]

    Students at Howard University are helping to solve one of the biggest challenges facing renewable energy.

  5. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    development specialist and Nicole Lloyd-Ronning, an astrophysicist, both at Los Alamos National Laboratory will talk to people about computers and the electromagnetic spectrum....

  6. Employee Spotlight: Alessandro Cattaneo

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    a regular tourist taking a road trip through the American West with three Italian friends. ... Italy, he was a regular tourist taking a road trip through the American West with three ...

  7. Scientist in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    live in regional fresh water supplies. You'll also have an opportunity to talk to Jane about her interest in microbiology and see cool stuff normally invisible to the human eye...

  8. Employee Spotlight: Melissa Montoya

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Melissa Montoya "It's wonderful to see the kids' happiness when they get the job done." ... And it's wonderful to see the kids' happiness when they get the job done." Although no ...

  9. Employee Spotlight: Janice Lovato

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... One day at work, for example, a co-worker saw a spider and screamed. Lovato knew that her colleague probably would kill the creature, so she quickly rushed over with a sheet of ...

  10. Employee Spotlight: Ann Schlenker

    ScienceCinema

    Ann Schlenker

    2013-06-10

    Ann Schlenker, Director for the Center for Transportation Research, discusses mentoring and working at Argonne.

  11. Employee Spotlight: Monika Bittman

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monika Bittman has wanted to be an artist ever since she was a little girl in Prague, ... Monika Bittman has wanted to be an artist ever since she was a little girl in Prague, ...

  12. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    development specialist and Nicole Lloyd-Ronning, an astrophysicist, both at Los Alamos National Laboratory will talk to people about computers and the electromagnetic spectrum.

  13. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology, engineering, or math (STEM) subject. Conversations are intended for all ages and include interactive hands-on activities that make learning easy and fun. To learn...

  14. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    engineering, or math (STEM) subject. These conversations are intended for all ages, so bring your kids and stop by the museum for a chat. While you're here, be sure to...

  15. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the science of computer software and hardware. These conversations are intended for all ages and include interactive hands-on activities that make learning more fun. Be sure to...

  16. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    radiography to learn more about explosives. These conversations are intended for all ages, so bring your kids and stop by the museum for a chat. While you're here, be sure to...

  17. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology, engineering, or math (STEM) subject. Conversations are intended for all ages and include interactive hands-on activities that make learning easy and fun. On...

  18. Employee Spotlight: Dave Keller

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dave Keller Dave Keller-Sleepless in Los Alamos From the end of March into early May, Keller and the Laboratory's other wildlife biologists monitor the Mexican Spotted Owl's ...

  19. Employee Spotlight: Ian Tregillis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ian Tregillis Ian Tregillis-Master of Alternate Worlds Laboratory physicist creates intricate, exquisitely crafted settings for his genre-bending science fiction novels tregillis ...

  20. Employee Spotlight: Ann Schlenker

    SciTech Connect

    Ann Schlenker

    2013-03-20

    Ann Schlenker, Director for the Center for Transportation Research, discusses mentoring and working at Argonne.

  1. DOE Sustainability SPOtlight

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  2. Employee Spotlight: Jeff Martin

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    twice as high as the previous day-crotch-deep instead of knee-deep, with plenty of chest-deep sections, or deeper yet, interspersed with rapids. In addition, the river looks...

  3. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    talking to visitors about their favorite STEM (Science, Technology, Engineering and Math) topics. Featured in December: Teri Roberts and Isaac Salazar Stop by the Bradbury on...

  4. Employee Spotlight: Bill Purtymun

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bill Purtymun Bill Purtymun-Snow Angel Whether he's helping a hiker with altitude sickness or assisting with an airlift for an injured skier on Pajarito Mountain, EMT Bill Purtymun always finds "there's gratification in working hard at work worth doing." October 18, 2016 Bill Purtymum Bill Purtymum Bill Purtymum "Ski and bike patrollers at Pajarito Mountain are more likely to jump into action over a case of altitude sickness, a tweaked knee, or a dislocated shoulder than a serious

  5. Employee Spotlight: Jim Stein

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jim Stein Jim Stein-Photo finish In the "photographer's paradise" around Los Alamos, Jim Stein finds drama in the landscape. September 20, 2016 Jim Stein Jim Stein Jim Stein Jim Stein "I've made a vow to live my life to the fullest. Photography has helped me do that." Photo finish As a child, Jim Stein of the Voluntary Protection Program Office loved poring over the awe-inspiring photos of National Geographic magazine. With a small camera his parents bought for him, Jim's

  6. Employee Spotlight: Jonathan Engle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jon Engle Jonathan Engle-Saving lives with nuclear energy Jonathan (Jon) Engle, Reines Distinguished Postdoctoral Fellow at the Laboratory, is helping lay the scientific groundwork for a new and improved cancer treatment that uses the energy produced by radioactive isotopes. August 14, 2014 Jon Engle Jonathan (Jon) Engle, Reines Distinguished Postdoctoral Fellow at the Laboratory Los Alamos has been making radioisotopes since the 1970s and today is a global leader in the production of

  7. Employee Spotlight: Ronnie Bell

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ronnie Bell Ronnie Bell-Soulful vocals for modern times Genre-mixing singer Ronnie Bell of the Nuclear Process Infrastructure Group (NPI-2) takes personal joy in reaching as many people as possible. November 15, 2016 Ronnie Bell Ronnie Bell Ronnie Bell Ronnie Bell "R&B is not just something I do. It's me-I live it, breathe it, and make it my all." Soulful vocals for modern times bell From inspirational gospel to traditional rhythm and blues to his own distinct and seductive sound,

  8. Employee Spotlight: Alessandro Cattaneo

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office (58.17 KB) More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - GovTrip (DOE data)

  9. Employee Spotlight: Amy Spears

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Amy Spears Amy Spears-Inspired by the "dark place" Amy proved how tough she is on the CMT channel's grueling Broken Skull Challenge. But in everyday life, she's driven to help those around her achieve their fitness goals. spears spears spears spears spears spears 12 3 4 "I'm a mother, but I am also still Amy. I have big goals and dreams and it is so important for me to work towards those while I am raising my kids and, in turn, I think I am a better mom for it." Inspired by

  10. Employee Spotlight: Bill Purtymun

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bill Purtymun October 18, 2016 Snow Angel Bill Purtymun Several winters ago, Bill Purtymun and his fellow ski patrollers responded to a cry for help off in the trees while they were at the top of Pajarito Mountain. With a toboggan behind him, Bill skied downslope toward the cries. "We first thought the gentleman had skied into a tree," Bill says. "It turned out he had suffered a severe injury and we had to cut a tree to get him out of the woods. He was taken off the mountain by

  11. Employee Spotlight: Billy Turney

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Billy Turney Billy Turney-Devotion to song For the last 40-plus years, Billy Turney has been performing live music in churches, pubs, farmers markets, and a dozen other places from Santa Fe to Rome to Dublin. turney turney turney turney turney turney turney 12 3 4 5 6 7 "To understand how Billy Turney came to embrace both sacred music and Irish folk songs, you have to consider two ends of the keyboard continuum: the biggest of all, the pipe organ, and the most portable, the accordion."

  12. Employee Spotlight: Brad Lounsbury

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Brad Lounsbury June 28, 2016 Brad will be playing Santa on Christmas trains in December 2016. James "Brad" Lounsbury, an explosives safety officer in the Industrial Safety and Hygiene group, is very specific about the time he spends working on the steam- powered, narrow-gauge Cumbres & Toltec Scenic Railroad. "It's not a hobby," he says. "It's a passion, a labor of love." The passion hit him four years ago when he took his small RV to Chama's Rio Chama RV Park.

  13. Employee Spotlight: Bryant Roybal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bryant Roybal February 18, 2015 Champion chile New Mexico's first green chile stew champion, Bryant Roybal, is proud to add first prize at the First Annual Great Bowls of Fire Chili Cookoff on February 14, 2015, to his growing list of awards for his chile recipes. Roybal, who works for the Laboratory's Associate Directorate for Project Management, has been a chile competition contestant ever since entering the Hot Chili Days, Cool Mountain Nights Cookoff in Red River in 2011 and immediately

  14. Employee Spotlight: Dave Keller

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dave Keller June 2, 2014 It's 2 o'clock in the morning and pitch black. While most Laboratory employees are getting a good night's sleep, wildlife biologist Dave Keller and a colleague are up and about, stopping by the Environmental Protection Division's office in White Rock to pick up a four-wheel-drive government vehicle and head out to look for Mexican Spotted Owls, a federally listed threatened species living on Laboratory property. By the time Keller and his travel partner reach the first

  15. Employee Spotlight: Gene Ortega

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gene Ortega May 4, 2016 The eyes have it Gene Ortega paints portraits rich in color and symbolism. "My style is chaotic with a bit of refinement," says Gene, a systems engineer in Facility System Engineering. "It can be almost photo-realistic, but you can see the brushstrokes and the texture in it, and the chaos and the anger." Gene's vivid paintings explore religious iconography and Day of the Dead motifs in portraits, often drawing on the imagery of saints, the Virgin Mary,

  16. Employee Spotlight: Ian Tregillis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ian Tregillis Ian Tregillis-Master of Alternate Worlds Laboratory physicist creates intricate, exquisitely crafted settings for his genre-bending science fiction novels tregillis tregillis tregillis tregillis 12 3 4 "I had the misconception that the time would come when I had the time. As I got older and more mature, I realized I'd have to make the time." Master of Alternate Worlds Laboratory physicist Ian Tregillis of the Plasma Theory and Applications group (XCP-6 ) spends his work

  17. Employee Spotlight: Janice Lovato

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Janice Lovato March 10, 2015 A gift for imagination While the Associate Directorate for Nuclear and High Hazard Operations' Janice Lovato was still working as a cashier at Smith's Food and Drug Center in Los Alamos over a decade ago, a regular, usually friendly customer came through her line one day, but this time in an obviously disgruntled mood. As the shopper slowly placed his purchases on the cash register counter, he looked at Lovato in exasperation and told her that standing at the cash

  18. Employee Spotlight: Jeff Martin

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jeff Martin Jeff Martin-Going feral Two long-distance solo hikes on the breathtaking Colorado Plateau took Martin into the vicinity of Canyonlands National Park, the Glen Canyon National Recreation Area and Lake Powell martin martin martin martin martin martin martin martin martin 12 3 45 6 789 "There is not much sound down here, just the light crunch of my steps on the canyon floor's natural gravel and the occasional scrape of my pack as it touches the walls." Going feral It usually

  19. Employee Spotlight: Jim Stein

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jim Stein September 20, 2016 Photo finish As a child, Jim Stein of the Voluntary Protection Program Office loved poring over the awe-inspiring photos of National Geographic magazine. With a small camera his parents bought for him, Jim's passion for photography was ignited. "I started playing around with the camera like I was a Nat Geo photographer," he says. "And although I really was pretty awful, I've been hooked ever since." A photographer's paradise After spending 10

  20. Employee Spotlight: Jonathan Engle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jonathan Engle August 14, 2014 "You have cancer" are among the most feared words one can imagine hearing from one's physician, but if Jonathan (Jon) Engle, Reines Distinguished Postdoctoral Fellow at the Laboratory, has anything to do with it cancer patients may someday hope for a new and improved treatment option: Killing cancer cells from inside the body with the help of nuclear energy. "The three cancer remedies primarily used today-surgery, chemotherapy and radiation therapy

  1. Employee Spotlight: Melissa Montoya

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Melissa Montoya July 26, 2016 Helping students reach for the future Melissa Montoya of the Policy Office (ADMASER-IS) is devoted to raising a bright 11- year-old son whose passions include both basketball and math, but her dedication to young people goes beyond family. When she is not at her job, she is at her son's school, Tony E. Quintana Elementary, in Sombrillo (part of the Española School District). The students there have come to think of her as part of the staff. "I've known some of

  2. Employee Spotlight: Michael Torrez

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Michael Torrez August 26, 2014 Michael (Miguél) Torrez, by day a research technologist in the Laboratory's Materials Physics and Applications Division, spends much of his free time researching New Mexico's family histories and helping interested parties verify or fill in their family tree by complementing any existing document trail with the genetic testing that has become available in recent years. Torrez conducts research at the New Mexico State Library (photo courtesy of the Albuquerque

  3. Employee Spotlight: Monika Bittman

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monika Bittman June 2, 2014 Monika Bittman has wanted to be an artist ever since she was a little girl in Prague, Czechoslovakia, now the Czech Republic. Today Bittman applies her creative eye and attention to detail in her work as a web designer at the Laboratory and on weekends spends as much time as possible painting in her Santa Fe studio. Expressing herself artistically is a way to learn about herself and the world for Bittman. The upheavals of growing up in a Soviet-controlled country,

  4. Employee Spotlight: Ron Barber

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ron Barber September 9, 2014 Ron Barber, a mechanical engineer in the Laboratory's Accelerator Operations and Technology Division, has always enjoyed the great outdoors for fun and exploration, but six or seven years ago he began to combine his love of nature and open spaces with a personal interest in researching the astronomical knowledge of long-ago civilizations that once inhabited the American Southwest and the Sierra Madre Mountains in Mexico. "People have been watching, and to some

  5. Employee Spotlight: Ronnie Bell

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ronnie Bell November 15, 2016 Soulful vocals for modern times From inspirational gospel to traditional rhythm and blues to his own distinct and seductive sound, Ronnie "Mr. Cotton Candy" Bell of the Nuclear Process Infrastructure Group (NPI-2) takes personal joy in creating music that touches as many people as possible. After singing backup with the gospel group George Perkins and the Voices of Harmony, Ronnie began to explore his own musical style, subsequently releasing several

  6. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and are hitting the ground running spreading the word about topics such as sea ice, supernovae, or aquatic biology. These conversations are for ANY age audience, so bring your...

  7. DOE Sustainability SPOtlight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8 November 2014 U.S. Department of Energy Sustainability Performance Office SUSTAINABILITY ANNOUNCEMENTS DOE Releases 2014 SSPP and Climate Change Adaptation Plan On October 31, 2014, as part of the President's Climate Action Plan, the Department of Energy (DOE) released its 2014 Strategic Sustainability Performance Plan (SSPP) and Climate Change Adaptation Plan (CCAP). Required by Executive Order (E.O.) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, the SSPP

  8. DOE Sustainability SPOtlight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 October 2014 U.S. Department of Energy Sustainability Performance Office SUSTAINABILITY ANNOUNCEMENTS SPO Launches Sustainability Dashboard for Data Reporting and Analysis On October 7, the Sustainability Performance Office (SPO) launched the DOE Sustainability Dashboard to serve several important functions for DOE sustainability reporting. The Dashboard maintains historical datasets for each DOE site and National Laboratory and will collect current year data for reporting to the Office of

  9. DOE Sustainability SPOtlight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 September 2014 U.S. Department of Energy Sustainability Performance Office SUSTAINABILITY ANNOUNCEMENTS OMB/CEQ Ranks The Most Sustainable Agencies in the Federal Government In an effort to lead by example, the Obama administration has put forth multiple executive orders in hopes of leading agencies toward greener technology and lower greenhouse gas emissions. The Office of Management and Budget (OMB) has teamed up with the Council on Environmental Quality to track the progress of these

  10. Employee Spotlight: Kristen Honig

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and used spring break 2002 to complete the basic firefighting courses and physical fitness test." Honig was fortunate as well. "My mom was volunteering at Bandelier National...

  11. Scientists in the Spotlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    informative, but fun too On Saturday, June 13 from 11:00 AM to 1:00 PM, Teri Roberts, a software quality engineering and development specialist and Mandie Gehring, a physicist,...

  12. TUNGSTEN SHIELDS FOR CS-137 INLINE MONITORS IN THE CAUSTIC SIDE SOLVENT EXTRACTION PROCESS

    SciTech Connect

    Casella, V; Mark Hogue, M; Javier Reyes-Jimenez, J; Paul Filpus-Luyckx, P; Timothy Riley, T; Fred Ogden, F; Donald Pak, D

    2007-05-10

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). The CSSX process is a continuous process that uses a novel solvent to extract cesium from highly radioactive waste and concentrate it in dilute nitric acid. In-line analyses are performed with gamma-ray monitors to measure the C-137 concentration in the decontaminated salt solution (DSS) and in the strip effluent (SE). Sodium iodide (NaI) monitors are used to measure the Cs-137 concentration before the DSS Hold Tank, while Geiger-Mueller (GM) monitors are used for Cs-137 measurements before the SE hold tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to provide the needed reduction of the process background radiation at the detector positions. A one-inch tungsten cylindrical shield reduced the background radiation by a factor of fifty that was adequate for the GM detectors, while a three-and-one-half-inch tungsten cylindrical shield was required for the NaI detectors. Testing of the NaI shield was performed at the SRS Instrument Calibration Facility. Based on this testing, the as-built shield is predicted to be able to detect the MCU DSS stream at concentrations above 0.003 Ci/gal under the ''worst case'' field conditions with a MCU feed solution of 1.1 Ci/gal and all of the process tanks completely full. This paper discusses the design, fabrication, testing and implementation of the tungsten shields in the MCU facility.

  13. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. II. Bicrystals and polycrystals

    SciTech Connect

    Liv, J.M.; Shen, B.W.

    1986-06-01

    The experimental techniques for crack velocity measurements have been applied to bicrystals of tungsten with twist orientations about (100) and polycrystals. The hesitation of the propagating cleavage crack in the vicinity of the grain boundary is examined. The contributions to energy dissipation from deformation and fracture processes in the grain boundary region as well as the in direct effects of crack deceleration are discussed. These findings have been applied to explain th dynamic fracture resistance and crack arrest in polycrystals.

  14. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. 1. Single crystals

    SciTech Connect

    Liv, J.M.; Shen, B.W.

    1984-06-01

    The dependence of dynamic fracture resistance on crack propagation velocity on (100) in tungsten has been examined. A correlation is obtained between the measured local crack velocity with the surfac and subsurface deformations. Based on the experimental results on one pass, two passes, and prestrained, electron beam zone refined single crystals, a discussion is given on the slip modes activated at the crack tip, the contributions to the dynamic fracture resistance from dislocations and surface features and from the preexisting deformed microstructure.

  15. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    SciTech Connect

    D. SIEBE; K. PASAMEHMETOGLU

    2000-11-01

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  16. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  17. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    SciTech Connect

    Roedel, Erik Q.; Cafasso, Danielle E.; Lee, Karen W.M.; Pierce, Lisa M.

    2012-02-15

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W

  18. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES [OSTI]

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  19. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  20. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  1. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    SciTech Connect

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; Greaves, G.; Harilal, S. S.; Hassanein, A.

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover, at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.

  2. Properties of powders of a tungsten-free alloy produced by explosion mechanochemical synthesis

    SciTech Connect

    Popovich, A.A.; Maslyuk, V.A.

    1994-07-01

    Intensified milling is used extensively in conventional technology of production of tungsten-free hard alloys to produce a homogeneous mixture of titanium carbide with a binding component. The refining process lasts tens of hours and is energy-consuming. However, intensified milling can also be used for other purposes, in particulra for explosion mechanochemical synthesis (EMS). In this case, the role of mechanical activation is to initiate an exothermic reaction which then takes place spontaneously. It was shown that in mechanoactivation of the Ti-C-Ni composition in an enregy-stressed vibromill it is possible to synthesize a tungsten-free hard alloy over a short period of time (20-30 min). EMS of a tungsten-free hard alloy is characterized by the generation of a large amount of heat sufficient for melting the metallic binder - nickel, cobalt, and iron. Therefore, the resultant powder should differ from the powder produced by conventional technology, both in its structure and properties. The aim of this work was to examine these special features.

  3. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    DOE PAGES [OSTI]

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; Greaves, G.; Harilal, S. S.; Hassanein, A.

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover,more » at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.« less

  4. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGES [OSTI]

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment weremore » different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  5. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure

    SciTech Connect

    Ogorodnikova, O. V.

    2015-08-21

    An effect of enhanced trapping of deuterium in tungsten at high flux was discovered. It was shown analytically and confirmed experimentally that the deuterium trapping in a presence of high density of defects in tungsten (W) depends on the ion energy and ion flux. Newly developed analytical model explains experimentally observed discrepancy of deuterium trapping at radiation-induced defects in tungsten at different ion fluxes that significantly improves a prediction of hydrogen isotope accumulation in different plasma devices, including ITER and DEMO. The developed model can be used for many system of hydrogen in a metal in both normal and extreme environments (high fluxes, elevated temperatures, neutron irradiation, etc.). This new model allows, for the first time, to validate density function theory (DFT) predictions of multiple occupation of a defect with deuterium against experimental data that bridge the gap in length and time scale between DFT calculations and experiments. By comparing first-principle calculations based on DFT and semi-empirical “adsorption model,” it was proved that the mechanism of hydrogen isotope trapping in a vacancy cluster is similar to a chemisorption on a surface. Binding energies of deuterium with different types of defects in W were defined. Moreover, the surface barrier of deuterium to be chemisorbed on a clean W surface was found to be less than 1 eV and kinetics of deuterium release is limited by de-trapping from defects rather than to be limited by surface effects.

  6. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES [OSTI]

    Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  7. Halogenation and proteolysis of complement component C3 on Salmonella typhimurium during phagocytosis by human neutrophils

    SciTech Connect

    Joiner, K.A.; Schweinle, J.E.

    1989-05-01

    We examined the fate of C component C3 on the surface of Salmonella typhimurium during ingestion by human neutrophils. Initial experiments showed that C3 fragments and C3-acceptor complexes were the major serum ligands which were surface iodinated by canine myeloperoxidase on serum-incubated rough and smooth isolates of S. typhimurium. In contrast, labeled C3 was not identified when the same organisms were ingested by neutrophils in the presence of 125I-Na, a situation previously shown to iodinate particulate targets via the neutrophil myeloperoxidase-halide-H2O2 system. Pretreatment of neutrophils before phagocytosis with the lipid-soluble protease inhibitor diisopropylfluorophosphate (DFP), but not with other protease inhibitors (p-nitrophenylguanidinobenzoate, leupeptin, pepstatin), substantially blocked proteolysis of 125I-C3 on S. typhimurium strain RG108 during ingestion by neutrophils. Purification of neutrophil phagosomes containing S. typhimurium-bearing 125I-C3 showed that DFP but no other protease inhibitors blocked proteolysis of 125I-C3 within phagosomes. Iodinated C3-acceptor complexes were identified by immunoprecipitation from the detergent-insoluble fraction of phagosomes prepared from DFP-treated cells ingesting S. typhimurium in the presence of 125I-Na. These results show that C3 fragments on the surface of S. typhimurium are the major serum ligands which are halogenated and degraded by proteolysis during phagocytosis by human neutrophils, and suggest that the majority of proteolysis on the ingested target occurs within the neutrophil phagosome.

  8. EFFECTS OF B, C, N, O, P AND S IMPURITIES ON TUNGSTEN Σ27[110]{552} AND Σ3[110]{112} GRAIN BOUNDARIES

    SciTech Connect

    Setyawan, Wahyu; Kurtz, Richard J.

    2013-04-01

    The objective of this research is to support the design of tungsten-based materials with increased fracture resistance using first-principles computational methods.

  9. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    SciTech Connect

    Loarte, A.; Polevoi, A. R.; Hosokawa, M.; Reinke, M. L.; Chilenski, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Rice, J. E.; Walk, J.; Köchl, F.; Pütterich, T.; Dux, R.; Zhogolev, V. E.

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results, however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.

  10. Performance of Coupled Cluster Theory in Thermochemical Calculations of Small Halogenated Compounds

    SciTech Connect

    Feller, David F. ); Peterson, Kirk A.; De Jong, Wibe A. ); Dixon, David A. )

    2003-02-23

    Atomization energies at 0 K and heats of formation at 298 K were obtained for a collection of small halogenated molecules from coupled cluster theory including noniterative, quasi-perturbative triple excitations calculations with large basis sets (up through augmented septuple zeta quality in some cases). In order to achieve near chemical accuracy (1 kcal/mol) in the thermodynamic properties, we adopted a composite theoretical approach which incorporated estimated complete basis set binding energies based on frozen core coupled cluster theory energies and (up to) five corrections: (1) a core/valence correction; (2) a Douglas-Kroll-Hess scalar relativistic correction; (3) a first order atomic spin-orbit correction; (4) a second order spin-orbit correction for heavy elements and (5) an approximate correction to account for the remaining correlation energy. The last of these corrections is based on a recently proposed approximation to full configuration interaction via a continued fraction approximant for coupled cluster theory (CCSD(T)-cf). Failure to consider corrections (1) to (4) can introduce errors significantly in excess of the target accuracy of 1 kcal/mol. Although some cancellation of error may occur if one or more of these corrections is omitted, such a situation is by no means universal and cannot be relied upon for high accuracy. The accuracy of the Douglas-Kroll-Hess approach was calibrated against both new and previously published 4-component Dirac Coulomb results at the coupled cluster level of theory. In addition, vibrational zero point energies were computed at the coupled cluster level of theory for those polyatomic systems lacking an experimental anharmonic value.

  11. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, Edward J.; Anderson, Brian L.; Wijesinghe, Ananda M.; Viani, Brian E.

    1999-01-01

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

  12. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  13. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    SciTech Connect

    Hu, Lin; Maroudas, Dimitrios; Hammond, Karl D.; Wirth, Brian D.

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  14. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    SciTech Connect

    Moscicki, T. Hoffman, J.; Chrzanowska, J.

    2015-10-15

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1–100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm{sup 2} with a power density of 1 × 10{sup 9 }W/cm{sup 2} (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  15. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    SciTech Connect

    Yen, J. J. Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P.; Young, B. A.; Tortorici, E. C.; Brink, P. L.; Cherry, M.; Tomada, A.; Kreikebaum, J. M.

    2014-10-20

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  16. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    SciTech Connect

    Kanne, W.R. Jr.

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  17. Adhesion of diamond coatings synthesized by oxygen-acetylene flame CVD on tungsten carbide

    SciTech Connect

    Marinkovic, S.; Stankovic, S.; Dekanski, A.

    1995-12-31

    The results of a study concerned with chemical vapor deposition of diamond on tungsten carbide cutting tools using an oxygen-acetylene flame in a normal ambient environment are presented. Effects of preparation conditions on the adhesion of the coating have been investigated, including different surface treatment, different position of the flame with respect to the coated surface, effect of an intermediate poorly crystalline diamond layer, etc. In particular, effect of polishing and ultrasonic lapping with diamond powder was compared with that of a corresponding treatment with SiC powder.

  18. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    SciTech Connect

    Coudel, L. Kumar, K. Kishor; Arnas, C.

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  19. Progress report on a fully automatic Gas Tungsten Arc Welding (GTAW) system development

    SciTech Connect

    Daumeyer, G.J. III

    1994-12-01

    A plan to develop a fully automatic gas tungsten arc welding (GTAW) system that will utilize a vision-sensing computer (which will provide in-process feedback control) is presently in work. Evaluations of different technological aspects and system design requirements continue. This report summaries major activities in the plan`s successful progress. The technological feasibility of producing the fully automated GTAW system has been proven. The goal of this process development project is to provide a production-ready system within the shortest reasonable time frame.

  20. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    DOEpatents

    Hovis, V.M. Jr.; Northcutt, W.G. Jr.

    The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  1. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 C twice at the ion fluence of 510? m? to reach a total ion fluence of 110? m? in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 m depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 m depth for 0.025 dpa and 35 m depth for 0.025 dpa) at 500 C case even in the relatively low ion fluence of 10? m?.

  2. Microsegregation in high-molybdenum austenitic stainless steel laser beam and gas tungsten arc welds

    SciTech Connect

    Kujanpaeae, V.P.; David, S.A.

    1986-01-01

    An austenitic stainless steel with 6% molybdenum (thickness 6 mm) was welded using laser beam (LB) and gas tungsten arc (GTA) processes at various welding speeds. Depending on the welding speed the primary dendrite spacing ranged from 12 to 17 ..mu..m and from 2 to 7 ..mu..m for the GTA and LB welds, respectively. Extensive segregation of molybdenum was observed in the GTA welds. The segregation ratio for molybdenum, C/sub ID//C/sub D/, was found to be 1.9 in the GTA weld, and 1.2 in the LB weld. Distribution of iron, chromium and nickel was found nearly uniform in both welds. A recovered microstructure was observed after a post-weld annealing heat treatment. Annealing had a profound effect on the molybdenum segregation ratio in the laser weld. The critical pitting temperature (CPT) determined by a standard test was 55/sup 0/C for welds made using both processes, whereas it was 75/sup 0/C for the base metal. Upon homogenization the CPT of the laser beam weld increased to the base metal value, while that of the gas tungsten arc weld remained at 60/sup 0/C.

  3. Dynamics of tungsten hexacarbonyl, dicobalt octacarbonyl, and their fragments adsorbed on silica surfaces

    SciTech Connect

    Muthukumar, Kaliappan; Valent, Roser; Jeschke, Harald O.

    2014-05-14

    Tungsten and cobalt carbonyls adsorbed on a substrate are typical starting points for the electron beam induced deposition of tungsten or cobalt based metallic nanostructures. We employ first principles molecular dynamics simulations to investigate the dynamics and vibrational spectra of W(CO){sub 6} and W(CO){sub 5} as well as Co{sub 2}(CO){sub 8} and Co(CO){sub 4} precursor molecules on fully and partially hydroxylated silica surfaces. Such surfaces resemble the initial conditions of electron beam induced growth processes. We find that both W(CO){sub 6} and Co{sub 2}(CO){sub 8} are stable at room temperature and mobile on a silica surface saturated with hydroxyl groups (OH), moving up to half an Angstrm per picosecond. In contrast, chemisorbed W(CO){sub 5} or Co(CO){sub 4} ions at room temperature do not change their binding site. These results contribute to gaining fundamental insight into how the molecules behave in the simulated time window of 20 ps and our determined vibrational spectra of all species provide signatures for experimentally distinguishing the form in which precursors cover a substrate.

  4. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    SciTech Connect

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  5. Vaccum Gas Tungsten Arc Welding, phase 1. Technical report, October 1993-March 1995

    SciTech Connect

    Weeks, J.L.; Krotz, P.D.; Todd, D.T.; Liaw, Y.K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process`s ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  6. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE PAGES [OSTI]

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibitedmore » a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  7. Microstructural characterization of LPCVD (low pressure chemical vapor deposition) tungsten interfaces

    SciTech Connect

    Paine, D.C.; Bravman, J.C.; Saraswat, K.C.

    1985-01-01

    Three important interfacial morphologies are observed in LPCVD tungsten on silicon: lateral encroachment, interface roughness, and wormhole structures. They have been shown to be, in part at least, a result of defect condition. Defects positively identified using XTEM include residual native oxide and dislocations from ion implantation. A third phase, possibly tungsten silicide, has been observed but not uniquely identified. Extensive lateral encroachment has been shown to be related to the presence of residual implant damage. Specifically, dislocation loops under oxide grown over arsenic-implanted silicon were implicated. Interface roughness appears to result from both residual native oxide patches on the silicon surface as well as to the formation of small protrusions of a third, probably silicide phase. The electron-microscopy techniques of microdiffraction and Moire analysis were used in an attempt to identify the third phase. The presence of a third phase has led to the proposal of a mechanism for formation of the wormhole structure. Additional work, currently underway, will establish the identity of both the interfacial phase and the wormhole particles.

  8. Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500–2200 Å

    SciTech Connect

    Oishi, T. Morita, S.; Goto, M.; Huang, X. L.; Zhang, H. M.

    2014-11-15

    Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

  9. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of nickel to nickel-copper

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2301-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel, NO2200 or NO2201 (P-41) to nickel-copper NO4400 (P-42), in thickness range 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  10. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of nickel-copper

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-1302-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper NO4400 (P-42), in thickness range 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  11. Transforming dielectric coated tungsten and platinum wires to gaseous state using negative nanosecond-pulsed-current in vacuum

    SciTech Connect

    Wu, Jian; Li, Xingwen Wang, Kun; Yang, Zefeng; Shi, Zongqian; Jia, Shenli; Qiu, Aici; Li, Zhenghong

    2014-11-15

    With the help of thin dielectric coatings, corona free explosions were achieved in the region of about half a wire length (2?cm) for tungsten wires and nearly the whole wire length for platinum wires under a fast rising (46170?A/ns) negative polarity current in vacuum. Expansion velocity of the tungsten gas was over 10?km/s. Current waveforms from exploding coated wires were similar to those from bare wires in the air including a current pause stage. Coated wires with different coating parameters had a similar joule energy deposition before voltage collapsed, but a quite different scenario in the region near the electrodes. The axial field under negative current was the main reason for the axial inhomogeneity of coated tungsten wires. Tungsten or platinum gases in the vaporized region were tightly encompassed by the dielectric coating, while gaps or probably low density gases, were observed between the coating and the edge of the dense wire core in the core-corona structure region.

  12. Stepped-anneal and total helium/hydrogen measurements in high-energy proton-irradiated tungsten

    SciTech Connect

    Oliver, B.M.; Hamilton, M.L.; Garner, F.A.; Sommer, W.F.; Maloy, S.A.; Ferguson, P.D.

    1998-12-31

    To provide structural material design data for the Accelerator Production of Tritium (APT) project, a 1 mA, 800 MeV proton beam at the Los Alamos Neutron Science Center (LANSCE) was used to irradiate a large number of metal samples, including a tungsten target similar to that being considered as the neutron source for the tritium production. The maximum proton fluence to the tungsten target was {approximately} 10{sup 21} protons/cm{sup 2}. An unavoidable byproduct of spallation reactions is the formation of large amounts of hydrogen and helium. Postulated accident scenarios for APT involving the use of tungsten rods clad with Alloy 718, raise concerns as to the amount and rate of release of these gases due to temperatures increases from afterheat accumulation, with the major concern being pressurizing and possibly failure of the cladding. To address these issues, portions of the LANSCE tungsten rods were subjected to temperature histories calculated as likely to occur, and the time-dependent evolution of helium and hydrogen gases was measured. Stepped-anneal and total helium/hydrogen measurements were conducted on multiple samples of the tungsten material. Helium measurements were conducted at Pacific Northwest National Laboratory (PNNL) using a high-sensitivity magnetic-sector isotope-dilution helium analysis system. Stepped-anneal measurements were conducted at temperatures from {approximately} 25 C to {approximately} 1,600 C in {approximately} 100 C steps. Total helium measurements were conducted by rapid vaporization after completion of the stepped-anneal process, and are compared with Monte Carlo calculations performed at Los Alamos National Laboratory (LANL) using the LAHET code system. Hydrogen measurements were conducted between {approximately} 750 C and {approximately} 1,200 C using a high-temperature furnace that had been extensively modified for the application. Hydrogen detection was accomplished by periodic sampling of the furnace gas using a separate

  13. Growth of tungsten bronze family crystals. Final technical report, 6 May 1985-30 November 1988

    SciTech Connect

    Neurgaonkar, R.R.; Cross, L.E.

    1988-03-01

    A systematic investigation of tungsten bronze crystals for electro-optic and photorefractive applications was carried out successfully. The Sr{sub 1-X}BaXNb{sub 2}O{sub 6} (SBN) and Ba{sub 2-X}SrXK{sub 1-y}NaYNb{sub 5}O{sub 15} (BSKNN) system crystals were grown in optical quality with and without specific impurities whose purpose is to enhance photorefractive coupling and speed. Both SBN and BSKNN crystals appear to be excellent hosts for electro-optic applications, e.g., modulators, waveguides, and spatial light modulators (SLM) and photorefractive applications, e.g., phase conjugation, image processing, optical computing and laser hardening. For photorefractive applications, cerium and chromium doping show the largest effects on photorefractive coupling and speed.

  14. Analysis of shear banding in Armco IF iron, tungsten alloy, and depleted uranium

    SciTech Connect

    Barta, R.C.; Kim, C.H.

    1992-03-01

    We study the problem of the initiation and growth of shear bands in three materials by analyzing the thermomechanical deformations of a block of nonuniform thickness undergoing overall simple shearing deformations. Each of these materials is assumed to obey the Johnson-Cook law. It is found that, for each material, the deformations of the block have become nonhomogeneous by the time the shear stress attains its maximum value. For Armco IF iron, a narrow band at the center develops when the shear stress there has dropped to 85% of its peak value, and the same occurs for the tungsten alloy when the shear stress at the specimen center equals 80% of the maximum value. For the depleted uranium satisfactory results could be computed only till the shear stress dropped to 99% of the peak value.

  15. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    SciTech Connect

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J.; Robinson, Jeremy T.; Wallace, Robert M.; Mayer, Theresa S.; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A.

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supported by density functional theory that predicts a 1.6 eV barrier for transport from WSe2 to graphene.

  16. On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas

    SciTech Connect

    Brown, B. T.; Smirnov, R. D. Krasheninnikov, S. I.

    2014-02-15

    The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.

  17. Development of an improved GTA (gas tungsten arc) weld temperature monitor fixture

    SciTech Connect

    Hollar, D.L.

    1990-05-01

    An initial design weld temperature control fixture was implemented into final closure of an electronic assembly in November 1986. Use of this fixture indicated several areas that could be improved. Review of these areas with the process engineer and the weld operator provided the ideas to be incorporated into the new design Phase 2 fixture. Some primary areas of change and improvement included fixture mobility to provide better accessibility to the weld joint area, automatic timed blow cooling of the weld joint, and a feature to assure proper thermocouple placement. The resulting Phase 2 fixture design provided all of the essential weld temperature monitoring features in addition to several significant improvements. Technology developed during this project will pave the way to similar process monitoring of other manual gas tungsten arc (GTA) welding applications. 9 figs.

  18. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  19. High resolution electron microscopy study of as-prepared and annealed tungsten-carbon multilayers

    SciTech Connect

    Nguyen, T.D.; Gronsky, R.; Kortright, J.B.

    1988-12-01

    A series of sputtered tungsten-carbon multilayer structures with periods ranging from 2 to 12 nm in the as-prepared state and after annealing at 500/degree/C for 4 hours has been studied with high resolution transmission electron microscopy. The evolution with annealing of the microstructure of these multilayers depends on their period. As-prepared structures appear predominantly amorphous from TEM imaging and diffraction. Annealing results in crystallization of the W-rich layers into WC in the larger period samples, and less complete or no crystallization in the smaller period samples. X-ray scattering reveals that annealing expands the period in a systematic way. The layers remain remarkably well-defined after annealing under these conditions. 12 refs., 4 figs., 1 tab.

  20. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES [OSTI]

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; et al

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supported by density functional theorymore » that predicts a 1.6 eV barrier for transport from WSe2 to graphene.« less

  1. A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials.

    SciTech Connect

    Causey, Rion A.; Cowgill, Donald F.; Kolasinski, Robert D.

    2010-05-01

    The low solubility of hydrogen in tungsten leads to the growth of near-surface hydrogen precipitates during high-flux plasma exposure, strongly affecting migration and trapping in the material. We have developed a continuum-scale model of precipitate growth that leverages existing techniques for simulating the evolution of {sup 3}He gas bubbles in metal tritides. The present approach focuses on bubble growth by dislocation loop punching, assuming a diffusing flux to nucleation sites that arises from ion implantation. The bubble size is dictated by internal hydrogen pressure, the mechanical properties of the material, as well as local stresses. In this article, we investigate the conditions required for bubble growth. Recent focused ion beam (FIB) profiling studies that reveal the sub-surface damage structure provide an experimental database for comparison with the modeling results.

  2. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    SciTech Connect

    Lin, J.; Yan, K.; Zhou, Y.; Xu, L. X. Gu, C.; Zhan, Q. W.

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  3. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder

    SciTech Connect

    Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel

    2013-01-15

    Purpose: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. Methods: A complex collimator with 20 loftholes with 500 {mu}m diameter pinhole opening was designed and produced (16 mm thick and 70 Multiplication-Sign 52 mm{sup 2} transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 {mu}m thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. Results: The density of the collimator was equal to 17.31 {+-} 0.10 g/cm{sup 3} (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 {mu}m. The aperture positions have a mean deviation of 5 {mu}m, the maximum deviation was 174 {mu}m and the minimum deviation was -122 {mu}m. The mean aperture diameter

  4. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES [OSTI]

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  5. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum catalysts with increased lifetimes

    DOEpatents

    Bullock, R. Morris; Kimmich, Barbara F. M.; Fagan, Paul J.; Hauptman, Elisabeth

    2003-09-02

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes and the catalyst used in the process. The reactants include a functional group which is selected from groups represented by the formulas R*(C.dbd.O)R' and R*(C.dbd.O)H, wherein R* and R' are selected from hydrogen or any alkyl or aryl group. The process includes reacting the organic compound in the presence of hydrogen and a catalyst to form a reaction mixture. The catalyst is prepared by reacting Ph.sub.3 C.sup.+ A.sup.- with a metal hydride. A.sup.- represents an anion and can be BF.sub.4.sup.-, PF.sub.6.sup.-, CF.sub.3 SO.sub.3.sup.- or Bar'.sub.4.sup.-, wherein Ar'=3,5-bis(trifluoromethyl)phenyl. The metal hydride is represented by the formula: HM(CO).sub.2 [.eta..sup.5 :.eta..sup.1 --C.sub.5 H.sub.4 (XH.sub.2).sub.n PR.sub.2 ] wherein M represents a molybdenum (Mo) atom or a tungsten (W) atom; X is a carbon atom, a silicon atom or a combination of carbon (C) and silicon (Si) atoms; n is any positive integer; R represents two hydrocarbon groups selected from H, an aryl group and an alkyl group, wherein both R groups can be the same or different. The metal hydride is reacted with Ph.sub.3 C.sup.+ A.sup.- either before reacting with the organic compound or in the reaction mixture.

  6. Simultaneous impact of neutron irradiation and sputtering on the surface structure of self–damaged ITER–grade tungsten

    SciTech Connect

    Belyaeva, A. I. Savchenko, A. A.; Galuza, A. A.; Kolenov, I. V.

    2014-07-15

    Simultaneous effects of neutron irradiation and long–term sputtering on the surface relief of ITER–grade tungsten were studied. The effects of neutron–induced displacement damage have been simulated by irradiation of tungsten target with W{sup 6+} ions of 20 MeV energy. Ar{sup +} ions with energy 600 eV were used as imitation of charge exchange atoms in ITER. The surface relief was studied after each sputtering act. The singularity in the WJ–IG surface relief was ascertained experimentally at the first time, which determines the law of roughness extension under sputtering. As follows from the experimental data, the neutron irradiation has not to make a decisive additional contribution in the processes developing under impact of charge exchange atoms only.

  7. Growth of selective tungsten films on self-aligned CoSi/sub 2/ by low pressure chemical vapor deposition

    SciTech Connect

    van der Putte, P.; Sadana, D.K.; Broadbent, E.K.; Morgan, A.E.

    1986-12-22

    The selective deposition of tungsten films onto CoSi/sub 2/ and onto Co by low pressure chemical vapor deposition and their material properties have been investigated with Auger electron spectroscopy, transmission electron microscopy, and Rutherford backscattering. When using WF/sub 6/ and H/sub 2/, uniformly thick tungsten films can be deposited onto CoSi/sub 2/ without substrate alteration. In patterned structures, however, void formation was found at the perimeters of CoSi/sub 2/ contacts to silicon, indicating encroachment of WF/sub 6/ down the edge of the silicide-Si interface. In WF/sub 6/ and Ar, the film thickness was limited to 10 nm and some Si was locally consumed from the upper part of the CoSi/sub 2/ film. Transmission electron diffraction showed evidence of Co/sub 2/Si formation in these areas.

  8. Direct measurement of the work of fracture for grain boundaries of twist misorientation about (100) in tungsten

    SciTech Connect

    Liu, J.M.; Shen, B.W.

    1984-06-01

    The authors report results on the direct measurement of the work of fracture in twist boundaries in electron beam zone refined bicrystals of tungsten. The work of fracture is referred to as the energy required for crack extension. This approach may be used to advantage when the effects of impurities are present, for example, in problems related to grain boundary embrittlement in steels, copper and nickel.

  9. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    Energy Information Administration (EIA) (indexed site)

    B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square

  10. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    SciTech Connect

    Bartocci, Alessio; Cappelletti, David; Pirani, Fernando; Belpassi, Leonardo; Falcinelli, Stefano; Grandinetti, Felice; Tarantelli, Francesco

    2015-05-14

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl{sub 4} and CF{sub 4}. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl{sub 4} and Ng-CF{sub 4} and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF{sub 4}, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl{sub 4}, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential

  11. Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility

    SciTech Connect

    Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung; Kim, Tae Geun

    2013-12-15

    Graphical abstract: - Highlights: The resistive switching characteristics of WN{sub x} thin films. Excellent CMOS compatibility WN{sub x} films as a resistive switching material. Resistive switching mechanism revealed trap-controlled space charge limited conduction. Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately 2.2 V. The dominant conduction mechanisms at low and high resistance states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.

  12. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    SciTech Connect

    A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

    2014-07-01

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  13. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    SciTech Connect

    Wang, Liu; Liu, Jinxu Zhang, Xinbo; Li, Shukui

    2015-11-15

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm{sup 3}, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s{sup −1} coupled with the absorbed energy per unit volume of 120 J/cm{sup 3}, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  14. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    SciTech Connect

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K.; Gray, Stephen K.; Gupta, Mool C.

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.

  15. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles

    SciTech Connect

    Kang, Qiping; He, Xinbo Ren, Shubin; Liu, Tingting; Liu, Qian; Wu, Mao; Qu, Xuanhui

    2015-07-15

    An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO{sub 3} in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m{sup −} {sup 1} K{sup −} {sup 1}. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications.

  16. Tungsten oxide (WO{sub 3}) thin films for application in advanced energy systems

    SciTech Connect

    Gullapalli, S. K.; Vemuri, R. S.; Manciu, F. S.; Enriquez, J. L.; Ramana, C. V.

    2010-07-15

    Inherent processes in coal gasification plants produce hazardous hydrogen sulfide (H{sub 2}S), which must be continuously and efficiently detected and removed before the fuel is used for power generation. An attempt has been made in this work to fabricate tungsten oxide (WO{sub 3}) thin films by radio-frequency reactive magnetron-sputter deposition. The impetus being the use of WO{sub 3} films for H{sub 2}S sensors in coal gasification plants. The effect of growth temperature, which is varied in the range of 30-500 deg. C, on the growth and microstructure of WO{sub 3} thin films is investigated. Characterizations made using scanning electron microscopy (SEM) and x-ray diffraction (XRD) indicate that the effect of temperature is significant on the microstructure of WO{sub 3} films. XRD and SEM results indicate that the WO{sub 3} films grown at room temperature are amorphous, whereas films grown at higher temperatures are nanocrystalline. The average grain-size increases with increasing temperature. WO{sub 3} films exhibit smooth morphology at growth temperatures {<=}300 deg. C while relatively rough at >300 deg. C. The analyses indicate that the nanocrystalline WO{sub 3} films grown at 100-300 deg. C could be the potential candidates for H{sub 2}S sensor development for application in coal gasification systems.

  17. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  18. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    DOE PAGES [OSTI]

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K.; Gray, Stephen K.; Gupta, Mool C.

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control overmore » the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.« less

  19. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    SciTech Connect

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to produce carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.

  20. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect

    SciTech Connect

    Hao, Qiang; Chen, Wenzhe; Xiao, Gang

    2015-05-04

    We use a simple magnetron sputtering process to fabricate beta (β) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable β-W phase from 3.0 to 26.7 nm. The β-W phase remains intact below a critical thickness of 22.1 nm even after magnetic thermal annealing at 280 °C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1 nm) into the stable α-W phase. We analyze the structure and grain size of both β- and α-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10 K to at least 300 K on all samples. Very low switching current densities are achieved in β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in β-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.

  1. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    DOE PAGES [OSTI]

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to producemore » carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.« less

  2. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE PAGES [OSTI]

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; Buchenauer, D. A.; Wirth, B. D.

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, wemore » find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  3. Tungsten-incorporation induced red-shift in the bandgap of gallium oxide thin films

    SciTech Connect

    Rubio, E. J.; Ramana, C. V.

    2013-05-13

    Tungsten (W) incorporated Ga{sub 2}O{sub 3} films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. The structure and optical properties of W-incorporated Ga{sub 2}O{sub 3} films were evaluated using X-ray diffraction, scanning electron microscopy, and spectrophotometric measurements. No secondary phase formation was observed in W-incorporated Ga{sub 2}O{sub 3} films. W-induced effects were significant on the structure and optical properties of Ga{sub 2}O{sub 3} films. The bandgap of Ga{sub 2}O{sub 3} films without W-incorporation was {approx}5 eV. Red-shift in the bandgap was noted with increasing W-concentration indicating the electronic structure changes in W-Ga{sub 2}O{sub 3} films. A functional relationship between W-concentration and optical property is discussed.

  4. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    DOE PAGES [OSTI]

    Rudakov, D. L.; Wong, C. P. C.; Doerner, R. P.; Wright, G. M.; Abrams, T.; Baldwin, M. J.; Boedo, J. A.; Briesemeister, A. R.; Chrobak, C. P.; Guo, H. Y.; et al

    2016-01-22

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with littlemore » obvious damage except in the areas where unipolar arcing occurred. In conclusion, arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.« less

  5. A Review of Tungsten Heavy Alloy Utilization in Isotope Transport Containers - 13380

    SciTech Connect

    Caldwell, Steven G. [ATI Firth Sterling, Madison, AL (United States)] [ATI Firth Sterling, Madison, AL (United States)

    2013-07-01

    A common requirement for radioisotope transport containers is that they provide both durable and efficient shielding of penetrating gamma radiation. This is the case for transport of both spent nuclear fuel as well as intentionally created radioisotopes for medical or other uses. Tungsten heavy alloy (WHA) provides a unique engineering property set for such shielding - easily surpassing more commonly used lead alloys in both strength and attenuation. This family of alloys contains typically 90-98 wt.% W in combination with transition metals such as Ni and Fe. WHA is manufactured in near net shape blanks by liquid phase sintering of compacted powder shapes to full metallurgical density parts. This powder metallurgy approach is described in its ability to provide excellent material utilization and affords efficient manufacturing of various shapes required for gamma shields or collimators. WHAs offer very high density (approaching 19 g/cc) in combination with relatively high thermal conductivity, low thermal expansion, ambient corrosion resistance, and can be provided with mechanical properties comparable to many medium carbon steels. As such, they can be machined to complex, damage resistant geometries using common metal cutting tools and methods. WHA additionally provides a lower toxicity alternative to Pb- or U-based gamma shielding. Given the specialty nature of WHA, specific metallurgical characteristics are reviewed to assist shielding designers who may otherwise encounter difficulties locating important alloy selection and fabrication details. Contained within this materials and applications overview are guidelines for WHA component design, alloy selection, and practical machining, finishing, and assembly considerations. The microstructure of WHA is that of a metal matrix composite. This factor has specific implications in the design of components for stress service as well as their protection in the presence of electrolytes. WHA is also discussed in the

  6. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    SciTech Connect

    Mao, S. X.; Sikka, V. K.

    2006-06-01

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The project was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.

  7. Manufacturing Spotlight: Boosting American Competitiveness

    Energy.gov [DOE]

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  8. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200 Fire Suppression System. Installation of the new system began on June 11,...

  9. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    stakeholders and regulators to gather input on the effectiveness of DOE LM community communication strategies. www.lmsurveyaddress.com Survey ad for Quarterly Newsletter...

  10. Employee Spotlight: Dances of India

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... "Doll Story is about a little girl in India whose dolls come alive and dance with her when no one is around," Deshpande notes. "But on her sixteenth birthday the girl gets a new ...

  11. Employee Spotlights | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... opportunities --Postdoctoral Program --Science Bowl --Teacher training --Introduce a Girl to Engineering Day --Rube Goldberg Machine Contest --Science Careers in Search of Women ...

  12. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    sites located in 26 states. LM is also responsible for the administration of contractor pension plans and post-retirement benefits for over 10,000 former contractor workers...

  13. Spotlights Archive | Department of Energy

    Energy Saver

    July 18, 2016 Moab UMTRA ProjectLM Technical Exchange 01. EM-LM Tech Exchange.png ... of Legacy Management Business Center (LMBC) in Morgantown, West Virginia, in early May. ...

  14. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    expanding tribal educational programs. July 2, 2015 Environmental Justice: Made-for-Television-Climate Change: A Global Reality The U.S. Department of Energy was invited to be a...

  15. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a trip to the National Museum of Nuclear Science & History, teamwork and personal development training, as well as site visits within the Grants Mining District. October 15,...

  16. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    as a tribute to the nation's armed forces (see bottom of page for a history of the Blue Star Memorials). July 12, 2013 Next Generation (NextGen) Geospatial Information System...

  17. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    visitor to the Fernald Preserve in Ohio, enjoying activities like trail walks and bird watching. July 10, 2014 DOE Partners with Other Federal Agencies Working on the Wind...

  18. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    hosted a Northern Saw-Whet Owl banding demonstration by master bander, Tim Tolford. Bird banding is a technique used to study wild birds by attaching a tag to their leg to...

  19. Employee Spotlight: Erica Larson Baron

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Erica Larson Baron May 31, 2016 Fleet feet If you're a runner at a mountain trail race in New Mexico or even beyond, chances are you'll see Erica Larson Baron twice: once as she drops you in the first couple of miles and once at the finish line, cooling off as everyone else trickles in. She's that fast. And she's fast over long distances. The 2012 USA Track & Field 50K trail champion, Erica is a top distance runner with the résumé to prove it. Besides winning the Pikes Peak Marathon a

  20. Scientist Spotlight on February 13

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Event Description In this demonstration you will learn to weld with a glue gun Welding-With a glue gun? Typically when we think of welding (joining two metals together) we think ...

  1. Generation of WO{sub 3}-ZrO{sub 2} catalysts from solid solutions of tungsten in zirconia

    SciTech Connect

    Cortes-Jacome, Maria A.; Angeles-Chavez, Carlos; Bokhimi, Xim; Toledo-Antonio, J.A. . E-mail: jtoledo@imp.mx

    2006-08-15

    WO{sub 3}-ZrO{sub 2} samples were obtained by precipitating zirconium oxynitrate in presence of WO{sub 4} {sup =} species in solution from ammonium metatungstate at pH=10.0. Samples were characterized by atomic absorption spectroscopy, thermal analysis, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and energy filtered-TEM. The ammonia retained in the dried sample produced a reductive atmosphere to generate W{sup 5+} ions coexisting with W{sup 6+} ions to produce a solid solution of tungsten in the zirconia lattice to stabilize the zirconia tetragonal phase when the sample was annealed at 560 deg. C. When the sample was annealed at 800 deg. C, the W atoms near crystallite surface were oxidized to W{sup 6+}, producing patches of WO{sub 3} on the zirconia crystallite. The HR-TEM analysis confirmed the existence of the solid solution when the sample was annealed at 560 deg. C, and two types of crystalline regions were identified: One with nearly spherical morphology, an average diameter of 8 nm and the atomic distribution of tetragonal zirconia. The second one had a non-spherical morphology with well-faceted faces and dimensions larger than 30 nm, and the atom distribution of tetragonal zirconia. When samples were annealed at 800 deg. C two different zirconia crystallites were formed: Those where only part of the dissolved tungsten atoms segregated to crystallite surface producing patches of nanocrystalline WO{sub 3} on the crystallite surface of tetragonal zirconia stabilized with tungsten. The second type corresponded to monoclinic zirconia crystallites with patches of nanocrystalline WO{sub 3} on their surface. The tungsten segregation gave rise to the WO{sub 3}-ZrO{sub 2} catalysts. - Graphical abstract: WO {sub x} -ZrO{sub 2} catalysts were obtained by precipitating zirconium oxynitrate in presence of WO{sub 4} {sup =}species. Initially, the W atoms remained inside the crystallite after

  2. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    Energy Information Administration (EIA) (indexed site)

    8. Lighting Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",4657,4172,2193,3778,607,430,572 "Building Floorspace" "(Square Feet)"

  3. Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine

    SciTech Connect

    Weiss, Charles J.; Egbert, Jonathan D.; Chen, Shentan; Helm, Monte L.; Bullock, R. Morris; Mock, Michael T.

    2014-04-28

    Treatment of trans-[W(N2)2(dppe)(PEtNMePEt)] (dppe = Ph2PCH2CH2PPh2; PEtNMePEt = Et2PCH2N(Me)CH2PEt2) with three equivalents of tetrafluoroboric acid (HBF4∙Et2O) at -78 °C generated the seven-coordinate tungsten hydride trans-[W(N2)2(H)(dppe)(PEtNMePEt)][BF4]. Depending on the temperature of the reaction, protonation of a pendant amine is also observed, affording trans-[W(N2)2(H)(dppe)(PEtNMe(H)PEt)][BF4]2, with formation of the hydrazido complex, [W(NNH2)(dppe)(PEtNMe(H)PEt)][BF4]2, as a minor product. Similar product mixtures were obtained using triflic acid (HOTf). Upon acid addition to the carbonyl analogue, cis-[W(CO)2(dppe)(PEtNMePEt)], the seven-coordinate carbonyl-hydride complex, trans-[W(CO)2(H)(dppe)(PEtN(H)MePEt)][OTf]2 was generated. The mixed diphosphine complex without the pendant amine in the ligand backbone, trans-[W(N2)2(dppe)(depp)] (depp = Et2P(CH2)3PEt2), was synthesized and treated with HBF4∙Et2O, selectively generating a hydrazido complex, [W(NNH2)(F)(dppe)(depp)][BF4]. Computational analysis was used to probe proton affinity of three sites of protonation, the metal, pendant amine, and N2 ligand in these complexes. Room temperature reactions with 100 equivalents of HOTf produced NH4+ from reduction of the N2 ligand (electrons come from W). The addition of 100 equivalents HOTf to trans-[W(N2)2(dppe)(PEtNMePEt)] afforded 0.88 ± 0.02 equivalents NH4+, while 0.36 ± 0.02 equivalents of NH4+was formed upon treatment of trans-[W(N2)2(dppe)(depp)], the complex without the pendant amine. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  4. Influence of substrate properties and annealing temperature on the stress state of magnetron sputtered tungsten thin films

    SciTech Connect

    Oliveira, J. C.; Cavaleiro, A.

    2006-11-15

    The influence of substrate properties and annealing temperature on the stress state of tungsten thin films deposited by dc reactive magnetron sputtering was studied using 310 steel (AISI), Fecralloy registered and Invar registered substrates. Besides elemental tungsten, only residual amounts of contamination elements (O, C, Ar, etc.) were detected by electron probe microanalysis. Only the {alpha}-W crystalline structure, with a preferential <110> orientation, was detected in all the films by x-ray diffraction. The highest lattice parameters were measured for the films deposited on 310 steel substrates, while the smallest values were obtained for the films deposited on Invar registered substrates. These results are closely related to the thermal expansion coefficients of the substrates. All the as-deposited films were in a compressive stress state independent of the substrate type (-3 GPa for 310 steel and Fecralloy registered substrates and -2 GPa for Invar registered substrates). The residual compressive stresses of the films deposited on Fecralloy registered substrates strongly decrease with annealing temperatures up to {approx_equal}-8 GPa at 1175 K. This result shows that the measured compressive stresses are not real, and they are a direct consequence of plastic deformation of the substrate. On the contrary, the compressive stresses measured in the films deposited on Invar registered and 310 steel substrates are real as plastic deformation of the substrates is not observed.

  5. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  6. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    SciTech Connect

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  7. Analysis of a tungsten sputtering experiment in DIII-D and code/data validation of high redeposition/reduced erosion

    DOE PAGES [OSTI]

    Wampler, William R.; Brooks, J. N.; Elder, J. D.; McLean, A. G.; Rudakov, D. L.; Stangeby, P. C.

    2015-03-29

    We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 1019 m–3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. The tungsten surfacesmore » are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.« less

  8. Analysis of a tungsten sputtering experiment in DIII-D and code/data validation of high redeposition/reduced erosion

    SciTech Connect

    Wampler, William R.; Brooks, J. N.; Elder, J. D.; McLean, A. G.; Rudakov, D. L.; Stangeby, P. C.

    2015-03-29

    We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 1019 m–3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. The tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.

  9. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    SciTech Connect

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is more than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.

  10. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    DOE PAGES [OSTI]

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less

  11. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be

  12. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  13. Metal halogen electrochemical cell

    SciTech Connect

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  14. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    SciTech Connect

    Shen Jun You Guoqiang; Long Siyuan; Pan Fusheng

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in the initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.

  15. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    SciTech Connect

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  16. Mechanism of surface modification of the Ti-6Al-4V alloy using a gas tungsten arc heat source

    SciTech Connect

    Labudovic, M.; Kovacevic, R.; Kmecko, I.; Khan, T.I.; Blecic, D.; Blecic, Z.

    1999-06-01

    The surface modification of a Ti-6Al-4V alloy using a gas tungsten arc, as a heat source, was studied. The experimental results show that the titanium alloy surface can be melted and nitrided using pure nitrogen or a nitrogen/argon mixture shielding atmosphere. The resolidified surfaces are 0.9 to 1.2-mm thick and contain titanium nitride dendrites, {alpha}-titanium, and {alpha}{double_prime}-titanium (martensite). The average dendrite arm spacing is influenced by the electrode speed. Small titanium nitride dendrites are homogeneously distributed in the resolidified surfaces. The microstructure and phase constitution in the resolidified surfaces were determined and analyzed, and the mechanism of the formation of titanium nitrides is discussed. The results show that the nitriding kinetics obey parabolic laws and are, therefore, controlled by nitrogen diffusion. The nitrogen-concentration depth profiles, calculated using Fick`s second law of diffusion, are compared to experimental nitrogen depth profiles, showing satisfactory agreement.

  17. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    SciTech Connect

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Ouart, N. D.

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  18. Influence of deposition variables on LPCVD tungsten films deposited by the WF/sub 6//Si reduction

    SciTech Connect

    Tracy, M.E.

    1985-01-01

    In an effort to isolate and study the Si reduction of WF/sub 6/ by the reduction reaction 2 WF/sub 6/ + 3 Si ..-->.. 2 W + 3 SiF/sub 4/, a systematic study of the influence of temperature, substrate doping, deposition time and variable flow rates of tungsten hexafluoride (WF/sub 6/) was conducted. The effect of varying these parameters on film thickness, layer resistivity, encroachment and adhesion was investigated. A set of operating conditions has been defined that yield stable, adherent, self-limiting films of -100A thickness that are free from encroachment. Film quality was found to be relatively insensitive to moderate variations in process parameters, a favorable indication in terms of process integration and manufacturability.

  19. Mechanochemical synthesis of tungsten carbide nano particles by using WO{sub 3}/Zn/C powder mixture

    SciTech Connect

    Hoseinpur, Arman; Vahdati Khaki, Jalil; Marashi, Maryam Sadat

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Nano particles of WC are synthesized by mechanochemical process. ► Zn was used to reduce WO{sub 3}. ► By removing ZnO from the milling products with an acid leaching, WC will be the final products. ► XRD results showed that the reduction reactions were completed after 36 h. ► TEM and SEM images showed that the morphology of produced powder is nearly spherical like. -- Abstract: In this research we introduce a new, facile, and economical system for fabrication of tungsten carbide (WC) nano particle powder. In this system WO{sub 3}, Zn, and C have been ball-milled for several hours, which led to the synthesis of tungsten carbide nano particles. The synthesized WC can successfully be separated from the ball-milled product by subjecting the product powder to diluted HCl for removing ZnO and obtaining WC. X-ray diffraction (XRD) analysis indicates that the reduction of WO{sub 3} will be completed gradually by increasing milling time up to 36 h. Scanning electron microscope (SEM), and transmission electron microscope (TEM) images show that after 36 h of milling the particle size of the fabricated powder is nano metric (about 20 nm). Results have shown that this system can surmount some main problems occurred in previous similar WC synthesizing systems. For example carbothermic reduction reactions, which lead to the synthesis of W{sub 2}C instead of WC, would not be activated because in this system reactions take place gradually.

  20. Tungsten-rhenium composite tube fabricated by CVD for application in 1800/sup 0/C high thermal efficiency fuel processing furnace

    SciTech Connect

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800/sup 0/C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800/sup 0/C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described.

  1. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of chromium-nickel steel to nickel-copper

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2602-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of 300 series Cr-Ni steels (P-8-1) to nickel-copper N04400 (P-42), in thickness range 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  2. Welding procedure specification: gas tungsten arc welding of nickel-copper to nickel-chromium-iron. Supplement 1. Records of procedure qualification tests

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper N04400 (P-42) to nickel-chromium-iron N06600 (P-43), in thickness range of 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  3. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

    DOE PAGES [OSTI]

    Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; Buchenauer, Dean A.; Chikada, Takumi; Cowgill, Donald F.; Donovan, David; Friddle, Raymond William; Michibayashi, Katsu; Sato, Misaki

    2015-08-17

    We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 × 1022 m-2 s-1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230more » °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm–1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework developed here from

  4. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

    SciTech Connect

    Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; Buchenauer, Dean A.; Chikada, Takumi; Cowgill, Donald F.; Donovan, David; Friddle, Raymond William; Michibayashi, Katsu; Sato, Misaki

    2015-08-17

    We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 × 1022 m-2 s-1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230 °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm–1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical

  5. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    SciTech Connect

    Zhang, Z.D.; Liu, L.M. Shen, Y.; Wang, L.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{sub 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.

  6. Aging characteristics of electron beam and gas tungsten arc fusion zones of Al-Cu-Li alloy 2090

    SciTech Connect

    Sunwoo, A.J. . Center for Advanced Materials); Morris, J.W. Jr. . Dept of Materials Science and Engineering)

    1991-04-01

    A transmission electron microscopy (TEM) investigation of the electron beam (EB) and gas tungsten arc (GTA) fusion zones of 2090 indicates that in both the as-welded and aged conditions, the EB and GTA fusion zones lack the volume fraction and the homogeneity of strengthening precipitates found in the base metal. In the underaged and peak-aged conditions, the [delta][prime] phase is the primary strengthener, the volume fraction of T[sub 1] present being too low to be effective. The T[sub 1] precipitates are found either in the vicinity of other inclusions or at the dendrite boundaries. As the strength increases with postweld aging, the elongation decreased to 1%. The presence of the boundary phases and Cu- and Cl-containing inclusions at the boundaries leads to poor elongation. The joint efficiencies of the peak-aged EB and GTA weldments (EBWs and GTAWs, respectively) are 75 and 55% at 293 K and 75 and 50% at 77 K, respectively. Both EBWs and GTAWs have relatively low elongations.

  7. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    SciTech Connect

    Zhu Tianping Chen, Zhan W.; Gao Wei

    2008-11-15

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.

  8. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGES [OSTI]

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  9. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    SciTech Connect

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H.; Deeney, Christopher E.; Douglas, Melissa R.; Chittenden, Jerry

    2011-11-15

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to {approx}5.8 mg. The driver utilized was the {approx}20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of {approx}375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  10. High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  11. Narrow groove gas tungsten arc welding of ASTM A508 Class 4 steel for improved toughness properties

    SciTech Connect

    Penik, M.A. Jr.

    1997-04-01

    Welding of heavy section steel has traditionally used the automatic submerged arc welding (ASAW) process because of the high deposition rates achievable. However, the properties, particularly fracture toughness, of the weld are often inferior when compared to base material. This project evaluated the use of narrow groove gas tungsten arc welding (GTAW) to improve weld material properties. The welding procedures were developed for ASTM A508 Class 4 base material using a 1% Ni filler material complying to AWS Specification A.23-90-EF3-F3-N. A narrow groove joint preparation was used in conjunction with the GTAW process so competitive fabrication rates could be achieved when compared to the ASAW process. Weld procedures were developed to refine weld substructure to achieve better mechanical properties. Two heaters of weld wire were used to examine the effects of minor filler metal chemistry differences on weld mechanical properties. Extensive metallographic evaluations showed excellent weld quality with a refined microstructure. Chemical analysis of the weld metal showed minimal weld dilution by the base metal. Mechanical testing included bend and tensile tests to ensure weld quality and strength. A Charpy impact energy curve versus temperature and fracture toughness curve versus temperature were developed for each weld wire heat. Results of fracture toughness and Charpy impact testing indicated an improved transition temperature closer to that of the base material properties.

  12. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE PAGES [OSTI]

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  13. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    SciTech Connect

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  14. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    SciTech Connect

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  15. Evaluation of vost and semivost methods for halogenated compounds in the Clean Air Act amendments title III. Validation study at fossil fuel plant

    SciTech Connect

    Jackson, M.D.; Knoll, J.E.; Midgett, M.R.; McGaughey, J.F.; Bursey, J.T.

    1993-01-01

    The Clean Air Act Amendments of 1990 (CAAA), Title III, present a need for stationary source sampling and analytical methods for the list of 189 toxic air pollutants. The US Environmental Protection Agency (EPA) has used VOST and SemiVOST sampling and analytical methods for a wide variety of volatile and semivolatile organic compounds in the past, but these methodologies have been completely validated for only a few of the organic compounds. The applicability of VOST and SemiVOST techniques to the halogenated organic compounds listed in Title III of the Clean Air Act Amendments of 1990 has been evaluated under laboratory conditions for chromatographic separation, mass spectrometric response, sorbent recovery and analytical method detection limit. Dynamic spiking techniques for the sampling trains (both gaseous and liquid dynamic spiking) were also evaluated in the laboratory. In the study, the VOST and SemiVOST methods were evaluated in the field at a fossil fuel power plant. The source was selected to provide actual stationary source emissions with the compounds of interest present in trace amounts or not present. The paper presents the results of the field validation of the VOST and SemiVOST sampling and analytical methods.

  16. Immunomodulation in C57Bl/6 mice following consumption of halogenated aromatic hydrocarbon-contaminated coho salmon (Oncorhynchus kisutch) from Lake Ontario

    SciTech Connect

    Cleland, G.B.; McElroy, P.J.; Sonstegard, R.A. )

    1989-01-01

    This report describes studies designed to assess the immunomodulatory effects associated with the consumption of coho salmon containing halogenated aromatic hydrocarbons (HAHs) and other compounds naturally bioaccumulated from Lake Ontario. Diets containing 33% coho salmon from Lake Ontario or the Pacific Ocean were fed to juvenile C57Bl/6 mice for 2-4 mo. Following 60 d, the mice that consumed Lake Ontario salmon had reduced IgM, IgG, and IgA plaque-forming cell responses to sheep erythrocytes. No changes were observed in total numbers of spleen lymphocytes, total T-lymphocytes or T-lymphocyte subsets as determined by flow cytometry. Cellular immunity, assessed by the cytotoxic T-lymphocyte response to allogeneic tumor target cells, was not altered following dietary exposure to Lake Ontario coho salmon for 4 mo. The observed humoral immunomodulation correlated with elevated PCB levels in the Lake Ontario salmon diets. The levels of pollutants such as mercury, tin compounds and other metals, PCDDs, and PCDFs were not examined.

  17. Toxic effects in C57B1/6 and DBA/2 mice following consumption of halogenated aromatic hydrocarbon-contaminated Great Lakes coho salmon (Oncorhynchus kisutch Walbaum)

    SciTech Connect

    Cleland, G.B.; Leatherland, J.F.; Sonstegard, R.A.

    1987-11-01

    Diets containing coho salmon (Oncorhynchus kisutch Walbaum) from the Pacific Ocean or from Lakes Erie, Michigan, and Ontario (containing a gradation from low to high of halogenated aromatic hydrocarbons, (HAHs)) were fed to C57B1/6 and DBA/2 mice. Following a 4-month dietary exposure to Lake Ontario salmon, both strains of mice demonstrated hepatomegaly. The ethoxyresorufin-O-deethylase (ERR) enzyme levels were elevated in livers of C57B1/6 mice fed diets of salmon from all of the Great Lakes studied, with exceptionally high levels detected in C57B1/6 mice fed Lake Ontario salmon. Induction of ERR enzyme levels was detected in DBA/2 mice only following dietary exposure to Lake Ontario salmon. Serum levels of L-thyroxine (T4) and triiodo-L-thryonine (T3) were suppressed in C57B1/6 mice following consumption of Lake Ontario coho salmon, but T3 and T4 levels remained unchanged in DBA/2 mice. In general, pathobiological effects correlated with both dietary HAH exposure level and Ah receptor status.

  18. An experimental study on the uptake factor of tungsten oxide particles resulting from an accidentally dropped storage container

    SciTech Connect

    Gao, Zhi; Zhang, J. S.; Byington, Jerry G.A.

    2013-05-16

    A test procedure was developed and verified to measure the airborne concentrations of particles of different sizes (0.5–20 μm) within the vicinity of a dropped container when a significant portion of the tungsten oxide powder (simulating uranium oxide) is ejected from the container. Tests were carried out in a full-scale stainless steel environmental chamber with an interior volume of 24.1 m3. Thirty-two drop tests were performed, covering variations in dropping height, room air movement, landing scenario, and lid condition. Assuming a breathing rate of 1.2 m3/hr, the uptake factor during the first 10 min was calculated to be between 1.13 × 10–9 and 1.03 × 10–7 in reference to the amount loaded; or between 6.44 × 10–8 and 3.55 × 10–4 in reference to the amount spilled. Results provide previously unavailable data for estimating the exposure and associated risk to building occupants in the case of an accidental dropping of heavy powder containers. The test data show that for spills larger than 0.004 g, the power-law correlation between the spill uptake factor and the spilled mass (i.e., SUF = 2.5 × 10–5 × Spill_Mass–0.667) established from the test data is smaller and a more accurate estimate than the constant value of 10–3 assumed in the Department of Energy Nuclear Material Packaging Manual. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplementary resource: an online supplementary table of all cumulative uptake amounts at 10 min for all test data.

  19. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    SciTech Connect

    Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi; Irie, Hiroshi

    2014-11-07

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σ increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  20. Investigation of the flickering of La{sub 2}O{sub 3} and ThO{sub 2} doped tungsten cathodes

    SciTech Connect

    Hoebing, T.; Hermanns, P.; Bergner, A.; Ruhrmann, C.; Mentel, J.; Awakowicz, P.; Traxler, H.; Wesemann, I.; Knabl, W.

    2015-07-14

    Short-arc lamps are equipped with tungsten electrodes due to their ability to withstand a high thermal load during operation. Nominal currents of more than one hundred amperes lead to a cathode tip temperature near the melting point of tungsten. To reduce the electrode temperature and, thereby, to increase the maintenance of such lamps, ThO{sub 2} or tentatively La{sub 2}O{sub 3} are added to the electrode material. They generate a reduced work function by establishing a monolayer of emitter atoms on the tungsten surface. Emitter enrichments on the lateral surface of doped cathodes are formed. They are traced back to transport mechanisms of emitter oxides in the interior of the electrode and on the electrode surface in dependence of the electrode temperature and to the redeposition of vaporized and ionized emitter atoms onto the cathode tip by the electric field in front. The investigation is undertaken by means of glow discharge mass spectrometry, scanning electron microscope images, energy dispersive x-ray spectroscopy, and through measurements of the optical surface emissivity. The effect of emitter enrichments on the stability of the arc attachment is presented by means of temporally resolved electrode temperature measurements and by measurements of the luminous flux from the cathode-near plasma. They show that the emitter enrichments on the lateral surface of the cathode are attractive for the arc attachment if the emitter at the cathode tip is depleted. In this case, it moves along the lateral surface from the cathode tip to sections of the cathode with a reduced work function. It induces a temporary variation of the cathode tip temperature and of the light intensity from the cathode-near plasma, a so-called flickering. In particular, in case of lanthanated cathodes, strong flickering is observed.

  1. A photon shield capsule design for an {sup 241}Am/Be ({alpha},n) source using high density tungsten alloy

    SciTech Connect

    Clement, R.S.; Hsu, H.H.; Olsher, R.S.; Aikin, D.J.

    1997-01-01

    A photon shield capsule made of high density tungsten alloy was designed for a 400 GBq {sup 241}Am/Be ({alpha},n) NIST-traceable source using Monte Carlo calculations. The {sup 241}Am/Be ({alpha},n) source replaces a {sup 239}Pu/Be ({alpha},n) source used in the Los Alamos Neutron Well for dose rate calibrations of portable and fixed neutron rem meters. Potential operator exposure due to {sup 241}Am photon emission (E{sub {gamma}} = 59.5 keV, Y{sub {gamma}} = 0.357 {gamma} d{sup -1}) is a major practical concern in using this type of source. This has been recognized by the International Organization for Standardization (ISO 8529:1989), which recommends wrapping the source in a 1 mm thick lead shield. However, the optimum photon shield capsule design depends on source construction and other considerations. These considerations include minimizing source spectrum degradation and inelastic gamma production from shielding, structural integrity, toxicity, and cost effectiveness of available materials and construction. Investigations of several materials and combinations using stainless steel, high density tungsten alloy (composed of 90%W, 6% Ni and 4% Cu) and lead with various capsule thicknesses were simulated using the Los Alamos Monte Carlo N-Particle Transport Code. The final design was based on a 2 mm thick capsule using the high density tungsten alloy. This material resulted in a small change in the neutron spectrum accompanied with only a slight increase in inelastic gamma production, and unobservable 59.5 keV photon emissions compared to the bare {sup 241}Am/Be ({alpha},n) source.

  2. Parity violation in nuclear magnetic resonance frequencies of chiral tetrahedral tungsten complexes NWXYZ (X, Y, Z = H, F, Cl, Br or I)

    SciTech Connect

    Nahrwold, Sophie Berger, Robert; Clemens-Schöpf-Institute, Technical University Darmstadt, Petersenstr. 22, D-64287 Darmstadt ; Schwerdtfeger, Peter; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35032 Marburg

    2014-01-14

    Density functional theory within the two-component quasi-relativistic zeroth-order regular approximation (ZORA) is used to predict parity violation shifts in {sup 183}W nuclear magnetic resonance shielding tensors of chiral, tetrahedrally bonded tungsten complexes of the form NWXYZ (X, Y, Z = H, F, Cl, Br or I), as well as for the heavier systems NWHAtF and NWH(117)F for comparison. The calculations reveal that sub-mHz accuracy is required to detect such tiny effects in this class of compounds, and that parity violation effects are very sensitive to the choice of ligands.

  3. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    DOE PAGES [OSTI]

    de Broglie, I.; Beck, C. E.; Liu, W.; Hofmann, Felix

    2015-05-30

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.

  4. Relaxor nature in lead-free Sr{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30} tetragonal tungsten bronze ceramics

    SciTech Connect

    Li Zhu, Xiao; Department of Materials and Ceramic Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-193 Aveiro ; Li, Kun; Qiang Liu, Xiao; Ming Chen, Xiang; Asif Rafiq, Muhammad

    2013-09-28

    Lead-free tetragonal tungsten bronze Sr{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30} ceramics were prepared and the correlation of the relaxor nature and crystal structure was studied using dielectric spectroscopy and powder X-ray diffraction. Three dielectric relaxations were observed below the deviation temperature T{sub D}? 330 K. Relaxation I and II followed the Vogel-Fulcher law with the freezing temperatures of 189 K and ?90 K. Low temperature relaxation III, which was first observed in filled tungsten bronze, followed well the Arrhenius law. Dielectric response becomes static below 50 K. Polarization-field (P-E) hysteresis loops were evaluated from 183 K to 298 K. P{sub r} value of 0.41?C/cm{sup 2} was observed at 183 K. Deviation of lattice parameter c from the linear contraction and increasing of tetragonality (c/a ratio) were observed below T{sub D}, reflecting the structure change during the formation of polar nanoregions and the following freezing process. Opposite tendency was observed below 100 K for all the lattice parameters, corresponding to relaxation III. Generally, the main dielectric relaxation I and II were attributed to flipping and breathing of polar nanoregions along c axis, while the concerted rotations of the oxygen octahedra in the ab plane were suggested as the origin of relaxation III.

  5. High Performance Builder Spotlight: Baldwin Homes Inc.

    SciTech Connect

    2011-01-01

    Baldwin Homes of Arnold, Maryland, built a HERS 55 Builders Challenge-certified house as an “Eco-Model” home to showcase 69 green and energy-efficient features.

  6. Intern Spotlight: Gabrielle Kane | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the different potential accidents. For example, maybe the vent is blocked with trash debris or there is a backflow from the sump pump. I created a fault tree to organize...

  7. Employee Spotlight: Ali Erdemir | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to learn how to actually do research and adapt a very high-caliber research culture.'" To watch the video, click on the image at right. Ali Erdemir is an Argonne...

  8. Employee Spotlight: Sarah Soltau | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Diana Anderson at media@anl.gov or (630) 252-4593. Connect Find an Argonne expert by subject. Follow Argonne on Twitter, Facebook, Google+ and LinkedIn. For inquiries on...

  9. Intern Spotlight: Elise Burton | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Diana Anderson at media@anl.gov or (630) 252-4593. Connect Find an Argonne expert by subject. Follow Argonne on Twitter, Facebook, Google+ and LinkedIn. For inquiries on...

  10. State and Local Spotlight- August 2016

    Energy.gov [DOE]

    The August newsletter features resources and blogs on residential Property Assessed Clean Energy (PACE), a State Energy Program success story, Better Buildings Wastewater Accelerator and elevator pitches, and success stories map.

  11. Intern Spotlight: Kevin Banks | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kevin Banks is a freshman at the Milwaukee School of Engineering, where he studies biomedical engineering. As an intern within the Chicago Scholars Argonne Future Research...

  12. High Performance Builder Spotlight: Green Coast Enterprises ...

    Energy Saver

    Solutions for New Homes: Green Coast Enterprises, New Orleans, Louisiana Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid ...

  13. Employee Spotlight: Laura McClellan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    helping people in extreme poverty. August 23, 2016 Laura McClellan Laura McClellan Laura McClellan Laura McClellan "For people in extreme poverty, the first thing that helps is ...

  14. LANFILGAS(sm) process. Technology spotlight report

    SciTech Connect

    1995-08-01

    The United States is facing a garbage crisis. Several areas of the country have already run out of landfill space, and recent studies indicate that many other areas will be experiencing the same problem with the next ten years. Institute of Gas Technology (IGT) has patented an advanced biogasification technology called LANFILGAS that accelerates the stabilization of landfills through anaerobic composting and recovers the methane gas for its energy value. Anaerobic composting, or digestion, is a natural process that takes place in every landfill. It is generally uncontrolled, however, and can take up to 30 years to stabilize a landfill.

  15. High Performance Builder Spotlight: Imagine Homes

    SciTech Connect

    2011-01-01

    Imagine Homes, working with the DOE's Building America research team member IBACOS, has developed a system that can be replicated by other contractors to build affordable, high-performance homes. Imagine Homes has used the system to produce more than 70 Builders Challenge-certified homes per year in San Antonio over the past five years.

  16. State and Local Spotlight – July 2016

    Energy.gov [DOE]

    A monthly update from EERE's Weatherization and Intergovernmental Programs Office (WIP) for state, local, and K-12 officials featuring resources to advance successful, high-impact, and long-lasting clean energy policies, programs, and projects.

  17. Employee Spotlight: Ann Schlenker | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Description nn Schlenker, Director of the Center for Transportation Research, discusses working and mentoring at Argonne. Duration 1:48 Topic Energy Energy efficiency Vehicles...

  18. Shining a spotlight on intact proteins

    SciTech Connect

    Pasa-Tolic, Ljiljana; Masselon, Christophe

    2014-05-01

    Cells react to cues from their environment using various mechanisms that include changes in metabolites, gene expression, protein binding partners, protein localization, and protein posttranslational modifications (PTMs), all of which contribute to altered cellular signatures that enable appropriate cellular responses. Given the seemingly infinite number of mechanisms available to affect protein function and modulate biological processes, the question arises as to how cells manage to interpret protein readouts to accomplish the appropriate cell-type specific response to a particular stimulus.

  19. Employee Spotlight: José Valdez

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    James is a car mechanic and my brother Bento runs a paint and body shop like our dad. ... Division, Valdez enjoys all aspects of the car restoration process, from finding an old, ...

  20. Employee Spotlight: Jennifer Hogan | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    --Photosynthesis & biomimetics -Materials science --Complex oxides --Nanoscience --Materials simulation & theory --Surface & interface studies --Tribology -Mathematics,...