National Library of Energy BETA

Sample records for trucks air rail

  1. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  2. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  3. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  4. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  5. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  6. Microsoft PowerPoint - Rail_Kneitel [Compatibility Mode

    Office of Environmental Management (EM)

    Why Rail? Rail * 1 car hauls 197,000 pounds Gross Wt. 263,000 pounds * Approximately 18,000 per railcar Truck * 1 truck hauls 43,000 pounds Gross Wt. 80,000 pounds * ...

  7. CNG Imports by Truck into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Truck into the U.S. CNG Imports by Truck into the U.S. CNG Imports by Truck Form (Excel) (41 KB) CNG Imports by Truck Form (pdf) (14.11 KB) More Documents & Publications Other Exports by Rail out of the U.S. Other Imports by Truck into the U.S. CNG Imports by Rail

  8. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  9. Other Exports by Truck out of the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Truck out of the U.S. Other Exports by Truck out of the U.S. Other Exports by Truck Form (Excel) (40.5 KB) Other Exports by Truck Form (pdf) (10.88 KB) More Documents & Publications Other Exports by Rail out of the U.S. CNG Imports by Truck into the U.S. Other Imports by Truck

  10. LNG Imports by Rail into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail into the U.S. LNG Imports by Rail into the U.S. LNG Imports by Rail Form (Excel) (54.5 KB) LNG Imports by Rail Form (pdf) (11.21 KB) More Documents & Publications LNG Imports by Truck into the U.S. Form LNG Imports by Vessel into the U.S. Form LNG Exports by Truck

  11. Structural safety evaluation of the K Basin railcar and truck applications

    SciTech Connect

    Winkel, B.V.

    1995-08-01

    There are two rail spurs in the storage/transfer areas of both the K East and K West fuel storage basins. These rail spurs both end at the west edge of the basins. To avoid accidental entry of a railcar into a basin, administrative procedures and rail control hardware have been provided. Based upon a combination of historical documentation and existing adminstrative controls, a maximum credible impact accident was established. Using this design basis accident, the existing rail control hardware was evaluated for structural adequacy. The K Basin rail spurs are embedded in concrete, which permits truck/trailer entry into the same area. Safety issues for truck applications are also addressed.

  12. UPS CNG Truck Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center

    ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University

  13. California: SQAMD Replaces Drayage Trucks with CNG | Department...

    Energy Saver

    California: SQAMD Replaces Drayage Trucks with CNG California: SQAMD Replaces Drayage Trucks with CNG November 6, 2013 - 12:00am Addthis In 2008, the South Coast Air Quality ...

  14. Lift truck safety review

    SciTech Connect

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  15. Rail transportation of Fernald remediation waste

    SciTech Connect

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-24

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994.

  16. Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Vehicle Technologies Office Review Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Andrew DeCandis (P.I.) - Senior Air Quality Planner ...

  17. Heavy Truck Engine Program

    SciTech Connect

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  18. Truck Thermoacoustic Generator and Chiller

    SciTech Connect

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  19. Solar hydrogen for urban trucks

    SciTech Connect

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  20. Zero Emission Drayage Truck Demonstration (ZECT I)

    Energy Saver

    South Coast Air Quality Management District Zero Emission Drayage Truck Demonstration (ZECT I) P.I. - Matt Miyasato Presenter - Brian Choe South Coast Air Quality Management District 2016 DOE Vehicle Technologies Office Annual Merit Review June 9, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID# VS115 South Coast Air Quality Management District South Coast Air Quality Management District Overview Barriers & Targets 

  1. Raley's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  2. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  3. Radial arm strike rail

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.

    1991-01-01

    The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.

  4. Agenda: Rail, Barge, Truck Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sean Craig, Manager - Fuel Supply, Dairyland Power Cooperative John Gray, Senior Vice President for Policy and Economics, the Association of American Railroads (AAR) Dave Wanner, ...

  5. QER Public Meeting in Chicago, IL: Rail, Barge, Truck Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... (244.14 KB) John Gray, Senior Vice President for Policy and Economics, the Association of American Railroads (AAR) - Statement (592.32 KB) John Gray, Senior Vice President ...

  6. DIESEL TRUCK IDLING EMISSIONS - MEASUREMENTS AT A PM2.5 HOT SPOT

    SciTech Connect

    Parks, II, James E; Miller, Terry L.; Storey, John Morse; Fu, Joshua S.; Hromis, Boris

    2007-01-01

    The University of Tennessee and Oak Ridge National Laboratory conducted a 5-month long air monitoring study at the Watt Road interchange on I-40 in Knoxville Tennessee where there are 20,000 heavy-duty trucks per day traveling the interstate. In addition, there are 3 large truck stops at this interchange where as many as 400 trucks idle engines at night. As a result, high levels of PM2.5 were measured near the interchange often exceeding National Ambient Air Quality Standards. This paper presents the results of the air monitoring study illustrating the hourly, day-of-week, and seasonal patterns of PM2.5 resulting from diesel truck emissions on the interstate and at the truck stops. Surprisingly, most of the PM2.5 concentrations occurred during the night when the largest contribution of emissions was from idling trucks rather than trucks on the interstate. A nearby background air monitoring site was used to identify the contribution of regional PM2.5 emissions which also contribute significantly to the concentrations measured at the site. The relative contributions of regional background, local truck idling and trucks on the interstate to local PM2.5 concentrations are presented and discussed in the paper. The results indicate the potential significance of diesel truck idling emissions to the occurrence of hot-spots of high PM2.5 concentrations near large truck stops, ports or border crossings.

  7. LANL debuts hybrid garbage truck

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    key feature in the stop-and-go life of a garbage truck. Traditional trucks lose that energy as heat during braking. The "Hydraulic Launch Assist" system can generate up to 380...

  8. Empty WIPP truck overturns

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Washington TRU Solutions (505) 234-7204 www.wipp.energy.gov U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews For Immediate Release Empty WIPP truck overturns CARLSBAD, N.M., December 27, 2005 - The U.S. Department of Energy (DOE) Carlsbad Field Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at

  9. Truckstop -- and Truck!-- Electrification

    SciTech Connect

    Skip Yeakel

    2001-12-13

    The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet

  10. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by...

    Energy.gov [DOE] (indexed site)

    Notes: Air transport includes truck and air. The CFS data for pipeline exclude most shipments of crude oil. Multiple modes includes data for parcel, U.S. Postal Service, or ...

  11. The Rail Alignment Environmental Impact Statement: An Update

    SciTech Connect

    R. Sweeney

    2005-01-20

    scenario, the DOE would rely on a combination of rail, truck and possibly barge to transport to the repository site at Yucca Mountain up to 70,000 MTHM of spent nuclear fuel and high-level radioactive waste, with most of the spent nuclear fuel and high-level radioactive waste being transported by rail. This will ultimately require construction of a rail line in Nevada to the repository. In addition, the DOE has decided to select the Caliente rail corridor in which to examine potential alignments within which to construct that rail line. A corridor is a strip of land, approximately 400 meters (0.25 miles) wide, that encompasses one of several possible routes through which DOE could build a rail line. An alignment is the specific location of a rail line in a corridor, and would likely be 60 meters [200 feet] or less in width. Also on April 8, 2004, DOE issued a Notice of Intent to Prepare an Environmental Impact Statement for the Alignment, Construction, and Operation of a Rail Line to a Geologic Repository at Yucca Mountain, Nye County, NV. In the Notice of Intent, the Department announced its intent to prepare a Rail Alignment EIS to assist in selecting a possible alignment for construction of a rail line that would connect the repository at Yucca Mountain to an existing main rail line in Nevada. The Rail Alignment EIS also would consider the potential construction and operation of a rail-to-truck intermodal transfer facility, proposed to be located at the confluence of an existing mainline railroad and a highway, to support legal-weight truck transportation until the rail system is fully operational. This corridor is approximately 513 kilometers (319 miles) long and would cost an estimated $880 million (2001 dollars). Should DOE decide to build the Caliente corridor, it may be the longest rail line built in the United States since the Transcontinental Railroad was constructed in 1869. Some of the challenges in building this rail corridor are steep grades (the corridor

  12. Improving haul truck productivity

    SciTech Connect

    Fiscor, S.

    2007-06-15

    The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

  13. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  14. NREL: Transportation Research - Truck Stop Electrification Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Truck Stop Electrification Testing Photo of series of truck stop electrification pedestals near highway with heavy-duty truck parked in the background. NREL is monitoring the use of truck stop electrification sites across the nation. Photo courtesy of Shorepower Technologies NREL's fleet test and evaluation team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their

  15. Volvo Trucks North America | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volvo Trucks North America Jump to: navigation, search Name: Volvo Trucks North America Place: Dublin, VA Information About Partnership with NREL Partnership with NREL Yes...

  16. Volvo Super Truck Overview and Approach

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides overview and discusses approach of the Volvo Super Truck Team to develop a number of advanced technologies to significantly improve freight efficiency of long-haul trucks

  17. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect

    Larry Slone; Jeffery Birkel

    2007-12-31

    geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

  18. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  19. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking Fleets

    Energy.gov [DOE]

    The Goodyear Tire & Rubber Company is demonstrating its award-winning self-inflating tires by testing the Air Maintenance Technology (AMT) on U.S. trucking fleets. Goodyear has received...

  20. Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Daimler Trucks and Buses 1 Super Truck Program: Vehicle Project Review Recovery Act -Class 8 Truck Freight Efficiency Improvement Project Project ID: ARRAVT080 This presentation does not contain any proprietary, confidential, or otherwise restricted information Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck North America LLC June 19 th , 2014 Daimler Trucks and Buses 2 Overview * Project start: April 2010 * Project end: March 2015 * Percent complete: 80% * Resolve thermal &

  1. USDOE Top-of-Rail Lubricant Project

    SciTech Connect

    Mohumad F. Alzoubi; George R. Fenske; Robert A. Erck; Amrit S. Boparai

    2002-02-01

    Lubrication of wheel/rail systems has been recognized for the last two decades as a very important issue for railroads. Energy savings and less friction and wear can be realized if a lubricant can be used at the wheel/rail interface. On the other hand, adverse influences are seen in operating and wear conditions if improper or excessive lubrication is used. Also, inefficiencies in lubrication need to be avoided for economic and environmental reasons. The top-of-rail (TOR) lubricant concept was developed by Texaco Corporation to lubricate wheels and rails effectively and efficiently. Tranergy Corporation has been developing its SENTRAEN 2000{trademark} lubrication system for the last ten years, and this revolutionary new high-tech on-board rail lubrication system promises to dramatically improve the energy efficiency, performance, safety, and track environment of railroads. The system is fully computer-controlled and ensures that all of the lubricant is consumed as the end of the train passes. Lubricant quantity dispensed is a function of grade, speed, curve, and axle load. Tranergy also has its LA4000{trademark} wheel and rail simulator, a lubrication and traction testing apparatus. The primary task of this project was collecting and analyzing the volatile and semivolatile compounds produced as the lubricant was used. The volatile organic compounds were collected by Carbotrap cartridges and analyzed by adsorption and gas chromatography/mass spectrometry (GC/MS). The semivolatile fraction was obtained by collecting liquid that dripped from the test wheel. The collected material was also analyzed by GC/MS. Both of these analyses were qualitative. The results indicated that in the volatile fraction, the only compounds on the Environmental Protection Agency's (EPA) Superfund List of Analytes detected were contaminants either in the room air or from other potential contamination sources in the laboratory. Similarly, in the semivolatile fraction none of the detected

  2. French intensive truck garden

    SciTech Connect

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  3. Assessment of the risk of transporting propane by truck and train

    SciTech Connect

    Geffen, C.A.

    1980-03-01

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  4. Quantum Well Thermoelectric Truck Air Conditioning

    Energy.gov [DOE]

    Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode

  5. Raley's LNG Truck Site Final Data Report

    SciTech Connect

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  6. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  7. Vehicle Technologies Office: 21st Century Truck Technical Goals |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 1st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Improving fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components.

  8. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  9. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov [DOE] (indexed site)

    least 20% improvement through a heavy-duty diesel engine capable of ... Tractor Trailer 16.5% 2.4% (incl. hybrid) NEXT STEP: build the truck Approach Daimler Trucks and Buses ...

  10. HAND TRUCK FOR HANDLING EQUIPMENT

    DOEpatents

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  11. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  12. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Rail Conference Call Summaries TEC Working Group Topic Groups Rail Conference Call Summaries CONFERENCE CALL SUMMARIES Rail Topic Group Inspections Subgroup Planning Subgroup...

  13. Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...

    Office of Environmental Management (EM)

    Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives PDF icon Naval Spent Fuel Rail Shipment Accident Exercise ...

  14. TEC Working Group Topic Groups Rail Key Documents | Department...

    Office of Environmental Management (EM)

    Rail Key Documents TEC Working Group Topic Groups Rail Key Documents KEY DOCUMENTS Radiation Monitoring Subgroup Intermodal Subgroup Planning Subgroup Current FRA State Rail Safety ...

  15. Shipping Radioactive Waste by Rail from Brookhaven National Laboratory...

    Office of Environmental Management (EM)

    Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail ...

  16. EERE Success Story-SuperTruck Initiative Partner Improves Class 8 Truck

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency by 115% | Department of Energy SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% EERE Success Story-SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% June 23, 2015 - 3:21pm Addthis EERE Success Story—SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% With help from the Energy Department, Class 8 trucks recently hit a record of 12 miles per gallon (mpg) freight efficiency. This milestone is actually a 115%

  17. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  18. EERE Success Story-California: SQAMD Replaces Drayage Trucks with CNG |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy SQAMD Replaces Drayage Trucks with CNG EERE Success Story-California: SQAMD Replaces Drayage Trucks with CNG November 6, 2013 - 12:00am Addthis In 2008, the South Coast Air Quality Management District (AQMD) Heavy-Duty Natural Gas Drayage Truck Replacement Program started to address a significant need to reduce diesel emissions and associated public health risks from goods movement at the Ports of Los Angeles and Long Beach. In 2010, the two ports processed goods worth

  19. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    SciTech Connect

    Miyasato, Matt; Impllitti, Joseph; Pascal, Amar

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  20. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  1. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  2. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program) | Department of Energy Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11_deojeda.pdf (2.06 MB) More Documents & Publications Development and Demonstration of a

  3. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon...

  4. All aboard for high-speed rail

    SciTech Connect

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  5. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  6. NREL: Transportation Research - Truck Platooning Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Truck Platooning Testing Photo of two tractor trailer trucks driving in close proximity. NREL conducted track testing of platooned tractors with 53-ft trailers at the 8.5-mile Uvalde track in San Antonio, Texas. Photo courtesy of Peloton NREL's fleet test and evaluation team assesses the fuel savings potential of semiautomated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance

  7. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov [DOE] (indexed site)

    Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck ... controls integration (aux, hybrid, powertrain, waste heat, ... 20% improvement through a heavy-duty diesel engine capable ...

  8. PRB rail loadings shatter record

    SciTech Connect

    Buchsbaum, L.

    2008-09-15

    Rail transport of coal in the Powder River Basin has expanded, with a record 2,197 trains loaded in a month. Arch Coal's Thunder basin mining complex has expanded by literally bridging the joint line railway. The dry fork mine has also celebrated its safety achievements. 4 photos.

  9. Underground Salt Haul Truck Fire at the Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the ...

  10. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Energy Saver

    Volvo SuperTruck Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  11. Microsoft PowerPoint - Rail_Kneitel [Compatibility Mode]

    Office of Environmental Management (EM)

    1 Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Terri Kneitel, PE, PMP U.S. Department of Energy National Transportation Stakeholders Forum May 14, 2014 2 Discussion Topics * Why Rail? * How is waste shipped? * What do we ship by rail? * DOT Requirements * Where does the waste go? * Logistics * BNL Rail Shipment Overview * Extensive Outreach - BNL Transportation Working Group * BNL Rail Shipment & Notification Protocols 5/16/2014 2 3 Why Rail? Rail * 1 car hauls

  12. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  13. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and ...

  14. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  15. Super Truck-- 50% Improvement In Class 8 Freight Efficiency

    Energy.gov [DOE]

    Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project to demonstrate a 50 percent freight efficiency improvement

  16. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet ...

  17. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet ...

  18. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation PDF icon 2004deerstang2.pdf More Documents & ...

  19. Boondocks Truck Stop Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703, -93.5624 Show Map Loading map... "minzoom":false,"mappingservi...

  20. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Energy.gov [DOE] (indexed site)

    While the original SuperTruck goal was to improve freight efficiency by 50 percent compared to a baseline vehicle, Daimler Trucks North America (DTNA) announced that their ...

  1. Vehicle Technologies Office Merit Review 2015: Class 8 Truck...

    Office of Environmental Management (EM)

    Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review

  2. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Supertruck ...

  3. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain ...

  4. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck...

    Energy.gov [DOE] (indexed site)

    Peer Evaluation Meeting about Cummins SuperTruck program technology and system level ... Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies ...

  5. Progress in Thermoelectrical Energy Recovery from a Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric ...

  6. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  7. Energy Department, Volvo Partnership Builds More Efficient Trucks...

    Energy Saver

    Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants ...

  8. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells ...

  9. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May ...

  10. Volvo Truck Headquarters in North Carolina to Host Event With...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under ...

  11. DOE Seeks Trucking Services for Transuranic Waste Shipments ...

    Office of Environmental Management (EM)

    Seeks Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor ...

  12. Vehicle Technologies Office Merit Review 2014: Class 8 Truck...

    Energy Saver

    Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and ...

  13. Solid SCR Demonstration Truck Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology ...

  14. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  15. Hydrogen Industrial Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Trucks Hydrogen Industrial Trucks Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_harris.pdf (1.5 MB) More Documents & Publications Non-Metals Workshop Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop US DRIVE Hydrogen Codes and Standards Technical Team Roadmap

  16. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  17. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  18. The politics of Peacekeeper Rail Garrison. Doctoral thesis

    SciTech Connect

    Van Tassel, A.R.

    1992-01-01

    In 1985, the Congress capped at 50 the number of Peacekeeper ICBMs that could be deployed in vulnerable Minuteman silos, thereby sending the Reagan administration and the Air Force in search of another basing mode so that 100 of the ton-warhead missiles could be deployed as recommended by the Scowcroft Commission. The result was Peacekeeper rail garrison--a strategic nuclear weapon system that combined the Peacekeeper missile with railroad trains garrisoned at military installations. The missile trains would have dispersed across the nation's railways only during times of 'national need like the Cuban Missile Crisis. This case study examines the politics of that weapon system in order to contribute to the literature regarding weapons acquisition, test a number of propositions suggested by the bureaucratic politics model, and assess the influence of nonbureaucratic forces and actors on Peacekeeper rail garrison's fortunes.

  19. Top-of-Rail lubricant

    SciTech Connect

    Alzoubi, M. F.; Fenske, G. R.; Erck, R. A.; Boparai, A. S.

    2000-07-14

    Analysis of the volatile and semivolatile fractions collected after use of the TOR lubricant indicated that other than contaminants in the collection laboratory, no compounds on the EPA's Target Compound Lists (Tables 2 and 5) were detected in these fractions. The data of these qualitative analyses, given in the various tables in the text, indicate only the relative amounts of the tentatively identified compounds. The authors recommend that quantitative analysis be performed on the volatile and semivolatile fractions to allow confirmation of the tentatively identified compounds and to obtain absolute amounts of the detected compounds. Additionally, the semivolatile fraction should be analyzed by liquid chromatography/mass spectrometry to identify compounds that are not chromatographable under the temperature program used for determination of semivolatile compounds. Introducing the top-of-rail (TOR) lubricant into the wheel/rail interface results in a reduction of almost 60% of lateral friction force over the forces encountered under dry conditions. This reveals good potential for energy savings, as well as wear reduction, for railroad companies. In TOR lubrication, an increase in the angle of attack and axle load results in increased lateral friction and rate of lubricant consumption. The most efficient TOR lubricant quantity to be used in the wheel/rail interface must be calculated precisely according to the number of cars, axle loads, train speed, and angle of attack.

  20. Rail-to-rail differential input amplification stage with main and surrogate differential pairs

    DOEpatents

    Britton, Jr., Charles Lanier; Smith, Stephen Fulton

    2007-03-06

    An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.

  1. Running Line-Haul Trucks on Ethanol

    Alternative Fuels and Advanced Vehicles Data Center

    I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our

  2. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    SciTech Connect

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  3. Maryland Hybrid Truck Goods Movement Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt063_ti_rice_2012_o.pdf (1.07 MB) More Documents & Publications Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative Midwest Region Alternative Fuels Project

  4. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

    Energy.gov [DOE]

    In a test sponsored by the U.S. Department of Energy, a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours.

  5. Vehicle Technologies Office: 21st Century Truck Partnership | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 21st Century Truck Partnership Vehicle Technologies Office: 21st Century Truck Partnership Logo for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and heavy-duty trucks play a vital role in moving freight and passengers, serving as the backbone of America's economy. These trucks also play essential roles in other parts of society, such as maintaining our electricity

  6. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    SciTech Connect

    Eric Fluga

    2004-09-30

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle

  7. TEC Working Group Topic Groups Rail Archived Documents | Department...

    Office of Environmental Management (EM)

    Archived Documents TEC Working Group Topic Groups Rail Archived Documents ARCHIVED DOCUMENTS Inspections Summary Matrix (49.36 KB) TEC Transportation Safety WIPP-PIG Rail ...

  8. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction ...

  9. TEC Working Group Topic Groups Rail Meeting Summaries | Department...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Rail Meeting Summaries MEETING SUMMARIES PDF icon Kansas City TEC Meeting, Rail Topic Group Summary - July 25, 2007 PDF icon Atlanta TEC...

  10. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City

    Alternative Fuels and Advanced Vehicles Data Center

    Schools Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels

  11. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  12. POST 10/Truck Inspection Station (Map 3

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) ... Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and ...

  13. Slow speed object detection for haul trucks

    SciTech Connect

    2009-09-15

    Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

  14. Diesel Engine Light Truck Application

    SciTech Connect

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  15. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    SciTech Connect

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  16. National Academy of Sciences Reviews 21st Century Truck Partnership |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy National Academy of Sciences Reviews 21st Century Truck Partnership National Academy of Sciences Reviews 21st Century Truck Partnership January 29, 2016 - 11:54am Addthis Freightliner's SuperTruck, which improved Class 8 truck efficiency by 115%. The National Academy of Sciences reported the four SuperTruck projects are “impressive” and will “significantly reduce the fuel consumption of Class 8 tractor-trailer vehicles." Freightliner's SuperTruck,

  17. CNG Imports by Rail into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail into the U.S. CNG Imports by Rail into the U.S. CNG Imports by Rail Form (Excel) (40.5 KB) CNG Imports by Rail Form (pdf) (11.18 KB) More Documents & Publications LNG Exports by Rail out of the U.S. Other Imports by Rail into the U.S. Other Exports by Rail out of

  18. Other Imports by Rail into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail into the U.S. Other Imports by Rail into the U.S. Other Imports by Rail Form (Excel) (40.5 KB) Other Imports By Rail Form (pdf) (11.18 KB) More Documents & Publications LNG Exports by Rail out of the U.S. CNG Imports by Rail into the U.S. Other Exports by Rail out of

  19. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  20. Fact #699: October 31, 2011 Transportation Energy Use by Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    jet fuel, residual fuel oil, natural gas, and electricity) by various transporation sectors including light vehicles, mediumheavy trucks and buses, air, water, rail, and pipeline. ...

  1. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  2. Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja ...

  3. Fact #707: December 26, 2011 Illustration of Truck Classes

    Energy.gov [DOE]

    There are eight truck classes, categorized by the gross vehicle weight rating (GVWR) that the vehicle is assigned when it is manufactured. These categories are used by the trucking industry and...

  4. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The 21st Century Truck Partnership The 21st Century Truck Partnership 2002 DEER Conference Presentation: 2002deerhowden.pdf (268.3 KB) More Documents & Publications 21st Century ...

  5. Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks...

    Alternative Fuels and Advanced Vehicles Data Center

    Liquefied Natural Gas Trucks Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks Work? on Facebook Tweet about Alternative Fuels ...

  6. Alternative Fuels Data Center: Truck Stop Electrification for...

    Alternative Fuels and Advanced Vehicles Data Center

    ... into electrical outlets at the truck stop. To use dual-system electrification, trucks must be equipped with AC equipment or an inverter to convert 120-volt power, electrical ...

  7. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  8. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 ...

  9. Manhattan Project Truck Unearthed in Recovery Act Cleanup

    Office of Environmental Management (EM)

    April 20, 2011 Remnants of 1940s military truck buried in a Manhattan Project-era landfill ... uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. ...

  10. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Energy.gov [DOE] (indexed site)

    about SuperTruck Program: Engine Project Review. ace058singh2014o.pdf (1.9 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck ...

  11. Vehicle Technologies Office Merit Review 2015: SuperTruck Program...

    Energy.gov [DOE] (indexed site)

    about SuperTruck program: engine project review. ace058singh2015o.pdf (2.57 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: SuperTruck ...

  12. Vehicle Technologies Office: 21st Century Truck Partners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  13. Moab Resumes Rail Shipments After Rockslide

    Energy.gov [DOE]

    MOAB, Utah – EM’s Moab Uranium Mill Tailings Remedial Action Project recently resumed rail shipments after an almost two-month halt due to a major rockslide.

  14. PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES

    Energy.gov [DOE]

    Designed to promote energy efficiency in buildings in Phoenix, Arizona’s 10-mile-long Light Rail Corridor, Energize Phoenix focused on performing energy upgrades and reducing energy use in...

  15. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  16. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  17. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects

  18. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiological Release Phase I | Department of Energy - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt Haul Truck Fire Corrective Action Plan and the Radiological Release Event Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I (4.46

  19. Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and

  20. Alternative Fuels Data Center: Truck Stop Electrification Site Data

    Alternative Fuels and Advanced Vehicles Data Center

    Collection Methods Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods

  1. Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck Freight Efficiency Improvement Project. arravt080_vss_rotz_2014_o.pdf (1.59 MB) More

  2. LNG Exports by Truck out of the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exports by Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form LNG Exports by Truck Form (Excel) (40.5 KB) LNG Exports by Truck Form (pdf) (11 KB) More Documents & Publications CNG Exports by Truck out of the U.S. Form LNG Imports by Truck into

  3. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  4. SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115%

    Energy.gov [DOE]

    With help from the Energy Department, Class 8 trucks recently hit a record of 12 miles per gallon (mpg) freight efficiency. This milestone is actually a 115% increase in freight efficiency (which...

  5. Fire Department Gets New Trucks, Saves Money

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

  6. Volvo Trucks Manufacturing Plant in Virginia

    Energy.gov [DOE]

    Volvo Group North America’s 1.6-million-square-foot New River Valley Plant in Dublin, Virginia, is the company’s largest truck manufacturing plant in the world. The company has implemented many energy savings solutions as part of the Better Buildings, Better Plants Challenge.

  7. Manhattan Project truck unearthed at landfill cleanup site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL excavation crew working on a Recovery Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. April 8, 2011 image description Excavator operator Kevin Miller looks at the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. Contact Fred deSousa Communications Office (505) 665-3430 Email Remnants of a 1940s military truck

  8. CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint

    SciTech Connect

    Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

    2011-05-01

    In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

  9. FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION

    SciTech Connect

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-25

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at

  10. Oxidation catalyst systems for emission control of LPG-powered forklift trucks

    SciTech Connect

    Majewski, W.A.; Martin, E.P.; Pietrasz, E.

    1994-10-01

    An oxidation catalyst was installed on an industrial LPG-powered forklift truck. For high conversion efficiency in an oxidation system on a rich burning engine a secondary air supply to the catalyst is necessary. Two simple and cost-effective ways of secondary air supply were tested: an air valve and a venturi type injector. The amount of secondary air supplied by both devices was measured under a variety of conditions - different engine speed, load and exhaust system pressure. Carbon monoxide emissions and the catalyst performance were measured and evaluated in terms of the secondary air flow. Advantages and drawbacks of the air valve and venturi injector systems are discussed and compared. 1 refs., 11 figs., 3 tabs.

  11. Video: Volvo SuperTruck Visits Energy Department | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Video: Volvo SuperTruck Visits Energy Department Video: Volvo SuperTruck Visits Energy Department September 15, 2016 - 11:31am Addthis Mike Mueller Senior Digital Content Strategist, EERE Communications Infographic: How SuperTruck is making heavy duty vehicles more efficient Volvo Trucks North America's SuperTruck recently showcased a number of its advanced technologies at the Energy Department. The SuperTruck I initiative aims to make Class 8 trucks more fuel efficient. Three teams - Volvo,

  12. Keeping Climate Change Solutions on Track: The Role of Rail ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Keeping Climate Change Solutions on Track: The Role of Rail Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Keeping Climate Change Solutions on Track: The Role of Rail...

  13. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  14. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells and Electric Forklift Trucks Steve Medwin The Raymond Corporation December 10, 2008 Value Proposition and Fuel Cell Tax Credit * Federal fuel cell tax credit increased in "Bailout Bill" - $3000/kW or 30% of unit price whichever is less * Tax credits extended to 2016 * Has a significant impact on financial viability Sample Financial Analysis * Illustrate impact of key factors on value proposition - Tax credit - Labor rate - Battery change time - Productivity improvement *

  15. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  16. LNG Imports by Truck into the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Imports by Truck into the U.S. Form LNG Imports by Truck into the U.S. Form LNG Imports by Truck Form (Excel) (41 KB) LNG Imports by Truck Form (pdf) (14.14 KB) More Documents & Publications LNG Imports by Vessel into the U.S. Form LNG Exports by Truck out of

  17. Rail Networks Are Getting Smarter | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rail Networks Are Getting Smarter Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) RailConnect 360 makes rail networks and operations smarter RailConnect 360 includes Movement Planner, Yard Planner and Trip Optimizer RailConnect 360 increases efficiency Freight trains moving faster could save railroads millions yearly

  18. NREL: Transportation Research - NREL's Complete-Cab Truck Climate Control

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Package Showcased in Automotive Engineering NREL's Complete-Cab Truck Climate Control Package Showcased in Automotive Engineering Engineers examine data from a thermal camera on a long haul sleeper cab. June 6, 2016 Long-haul Class 8 trucks use approximately 7% of their fuel for rest period idling, consuming more than 667 million gallons of fuel each year nationwide. NREL has identified a package of climate control technologies that annually can save 774 gallons of fuel used per truck for

  19. Energy Department, Volvo Partnership Builds More Efficient Trucks and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Plants | Department of Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an

  20. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buses | Department of Energy Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press

  1. Environmental Management Headquarters Corrective Action Plan - Truck Fire |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Truck Fire Environmental Management Headquarters Corrective Action Plan - Truck Fire The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014. The report identified 22 Conclusions and 35 Judgments of

  2. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2012_o.pdf (2.58 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency

  3. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency

  4. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt051_ti_feinberg_2012_o.pdf (2.07 MB) More Documents & Publications CX-005345: Categorical Exclusion Determination NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure

  5. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the

  6. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiological Release | Department of Energy Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) actions for addressing issues identified in the March 2014, accident investigation report for the Underground Salt Haul Truck Fire at the Waste

  7. Super Duty Diesel Truck with NOx Aftertreatment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Super Duty Diesel Truck with NOx Aftertreatment Super Duty Diesel Truck with NOx Aftertreatment A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions. This profile is part of the U.S. Drive 2011 Accomplishment Report. U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment (246.82 KB) More Documents & Publications Development of the 2011MY Ford Super Duty

  8. Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding

  9. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Facility | Department of Energy Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck Manufacturing Facility Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck Manufacturing Facility April 10, 2014 - 5:30pm Addthis Thumbs up for Energy Efficiency 1 of 4 Thumbs up for Energy Efficiency Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan (center) visits the Volvo Trucks New River Valley (NRV) plant in Dublin, Virginia last

  10. Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Presentation given by DTNA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about class 8 truck freight efficiency improvement project. arravt080_vss_rotz_2015_o.pdf (2.28 MB) More Documents & Publications

  11. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Powertrain Technologies for Efficiency Improvement | Department of Energy Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Presentation given by Volvo at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck - powertrain technologies for efficiency improvement.

  12. Rail gun development for EOS research

    SciTech Connect

    Fowler, C.M.; Peterson, D.R.; Hawke, R.S.; Brooks, A.L.

    1981-01-01

    The status of a railgun program for EOS research in progress at Los Alamos and Livermore National Laboratories is described. The operating principle of rail guns, the power supplies used to drive them, diagnostic techniques used to monitor their performance and initial efforts to develop projectiles suitable for EOS research are discussed. (WHK)

  13. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Energy.gov [DOE] (indexed site)

    icon arravt051tifeinberg2011p.pdf More Documents & Publications NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse ...

  14. CoolCab Truck Testing Project Update (Presentation)

    SciTech Connect

    Proc, K.

    2007-10-31

    Presentation describes the CoolCab project, a DOE/NREL initiative to design efficient thermal management systems in heavy trucks to eliminate idling and reduce petroleum consumption.

  15. Emissions from Idling Trucks for Extended Time Periods | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Technical ...

  16. Truck Duty Cycle and Performance Data Collection and Analysis...

    Energy.gov [DOE] (indexed site)

    Collection and Analysis Program Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Roadmap and Technical White Papers for 21st Century Truck Partnership

  17. Truck fire Corrective Action Plan submitted to Carlsbad Field...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    fire Accident Investigation Board report. On February 5, an underground mine fire involving a salt haul truck occurred in WIPP's underground mine. The DOE-appointed Accident ...

  18. Fabrication of A Quantum Well Based System for Truck HVAC

    Energy.gov [DOE]

    Discusses performance differences between conventional modules and quantum well modules and details a conventional HZ-14 device, using bulk bismuth-telluride advantageous for truck HVAC applications.

  19. Cummins/DOE Light Truck Diesel Engine Progress Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins PDF icon 2002deerstang.pdf More Documents & ...

  20. The Role of Batteries in Auxiliary Power for Heavy Trucks

    SciTech Connect

    D. Crouch

    2001-12-12

    The problem that this paper deals with is that Heavy trucks leave their engines on while they are stopped and the driver is sleeping, eating, etc.

  1. Cummins/DOE Light Truck Clean Diesel Engine Progress Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CumminsDOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. PDF icon 2003deerstang.pdf More Documents & Publications Cummins Light ...

  2. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological ... Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. ...

  3. High Efficient Clean Combustion for SuperTruck | Department of...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Cummins SuperTruck Program - Technology Demonstration of Highly ...

  4. HD Truck and Engine Fuel Efficiency Opportunities and Challenges...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Comments of Tendril Networks Inc SuperTruck Development ...

  5. EERE: VTO - UPS Truck PNG Image | Department of Energy

    Energy Saver

    Red Leaf PNG Image EERE: VTO - Red Leaf PNG Image red_leaf_18215.png (11.54 MB) More Documents & Publications EERE: VTO - Hybrid Bus PNG Image EERE: VTO - UPS Truck PNG Image RedLeaf Resources Ecoshale Project

    UPS Truck PNG Image EERE: VTO - UPS Truck PNG Image ups_truck_18187.png (33.15 MB) More Documents & Publications EERE: VTO - Red Leaf PNG Image EERE: VTO - Hybrid Bus PNG Image Research Site Locations for Current EERE Postdoctoral Awards

  6. Thermoelectric Generator Development at Renault Trucks-Volvo Group

    Energy.gov [DOE]

    Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems

  7. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...

  8. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Energy.gov [DOE] (indexed site)

    ... the engine a step further, testing it in the company's mid-size truck, the Frontier. ... Atherton, President of International Motor Sports Association; pose with the Green ...

  9. New Truck Stop Electrification Station Maps Help Truckers Reduce...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    capabilities because reducing heavy-duty truck idling is an important step in reducing ... fuels and vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction

  10. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks...

    Energy.gov [DOE] (indexed site)

    Smith Newton all-electric delivery trucks in a variety of fleets. This research was conducted by the National Renewable Energy Laboratory (NREL). Smith Newton Vehicle Performance ...

  11. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report ...

  12. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of ...

  13. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Energy Saver

    Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient ... Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel ...

  14. NREL to Host Demonstration of Ford's Electric Ranger PU Truck

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewable Energy Laboratory to Host Demonstration of Ford's Electric Ranger Pickup Truck ... Media are invited to cover Ford's demonstration of the Electric Ranger at the National ...

  15. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Truck Duty Cycle and Performance Data Collection and Analysis Program 2010 ...

  16. CNG Exports by Rail out of the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail out of the U.S. CNG Exports by Rail out of the U.S. CNG Exports by Rail Form (Excel) (40.5 KB) CNG Exports by Rail Form (pdf) (11.06 KB) More Documents & Publications CNG Imports by Rail into the U.S. Other Exports by Rail out of the U.S. LNG Exports by Rail out of the U.S.

  17. Other Exports by Rail out of the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail out of the U.S. Other Exports by Rail out of the U.S. Other Exports by Rail Form (Excel) (53.5 KB) Other Exports by Rail Form (pdf) (11.05 KB) More Documents & Publications LNG Exports by Rail out of the U.S. CNG Exports by Rail out of the U.S. CNG Imports by Rail

  18. LNG Exports by Rail out of the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail out of the U.S. LNG Exports by Rail out of the U.S. LNG Exports by Rail Form (Excel) (40.5 KB) LNG Exports by Rail Form (pdf) (11.21 KB) More Documents & Publications CNG Imports by Rail into the U.S. Other Imports by Rail into the U.S. Other Exports by Rail out of the U.S.

  19. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    SciTech Connect

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.; Yeakel, S.; Zehme, J.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.

  20. Fact #620: April 26, 2010 Class 8 Truck Tractor Weight by Component...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: April 26, 2010 Class 8 Truck Tractor Weight by Component Fact 620: April 26, 2010 Class 8 Truck Tractor Weight by Component A typical class 8 truck tractor weighs about 17,000 ...

  1. Fact #899: November 16, 2015 World Production of Cars and Trucks...

    Energy Saver

    Trucks - Dataset Fact 899: November 16, 2015 World Production of Cars and Trucks - Dataset Excel file and dataset for World Production of Cars and Trucks fotw899web.xlsx More...

  2. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck ...

  3. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  4. Truck Roll Stability Data Collection and Analysis

    SciTech Connect

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database

  5. Fact #671: April 18, 2011 Average Truck Speeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1: April 18, 2011 Average Truck Speeds Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between 50 and 60 miles per hour (mph). The average operating speed of trucks is typically below 55 mph in major urban areas, border crossings, and in mountainous terrain. The difference in average speed between peak traffic

  6. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a ...

  7. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace060_amar_2012_o.pdf (1.54 MB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain

  8. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace060_amar_2013_o.pdf (1.73 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Volvo SuperTruck - Powertrain

  9. Anti-Idling Battery for Truck Applications

    SciTech Connect

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  10. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    SciTech Connect

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  11. RAIL ROUTING PRACTICES AND PROPOSED ALTERNATIVES

    Office of Environmental Management (EM)

    on "Strawman" Report: RAIL ROUTING PRACTICES AND PROPOSED ALTERNATIVES Number Section Comment Response RTG-1-AAR SECTION II Safeguards Routing Regulations, Para. 2 The NRC has identified five types of route characteristics that receive special consideration when NRC staff review routes for approval pursuant to 10 CFR 73: (1) routes through highly populated areas; (2) routes that would place the shipment or escort vehicle in a significantly disadvantageous position (for example, tunnels

  12. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  13. Chicago-St. Louis high speed rail plan

    SciTech Connect

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  14. TEC Working Group Topic Groups Rail | Department of Energy

    Office of Environmental Management (EM)

    The group's current task is to examine different aspects of rail transportation including inspections, tracking and radiation monitoring, planning and process, and review of ...

  15. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup PDF icon April 6, 2006 PDF icon February 23,...

  16. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Energy.gov [DOE] (indexed site)

    a Compression Ignition Engine Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure

  17. TEC Working Group Topic Groups Rail Key Documents Planning Subgroup...

    Office of Environmental Management (EM)

    Planning Subgroup Planning Subgroup PDF icon Rail Planning Timeline PDF icon Benchmarking Project: AREVA Trip Report More Documents & Publications TEC Meeting Summaries -...

  18. TEC Working Group Topic Groups Rail Key Documents Intermodal...

    Office of Environmental Management (EM)

    Intermodal Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup Intermodal Subgroup Draft Work Plan (206.83 KB) More Documents & Publications TEC Working ...

  19. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup Draft Work Plan - February 4, 2008 (114.02 KB) More Documents & ...

  20. Proposed Work Scope for the Rail Topic Group

    Office of Environmental Management (EM)

    The scope of the RTG interest in state inspections of OCRWM rail shipments includes: a. ... inspections (including structure and scope) 2. Effects on railroad safety and ...

  1. PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES | Department...

    Energy Saver

    in Phoenix, Arizona's 10-mile-long Light Rail Corridor, Energize Phoenix focused on performing energy upgrades and reducing energy use in commercial and residential spaces. ...

  2. Like no other, Kemmerer keeps on trucking

    SciTech Connect

    Buchsbaum, L.

    2008-03-15

    Despite its unique challenges, production at Chevron Mining's western Wyoming mine is increasing. The 1,200 foot deep pits consecutively terrace down (more similar to the open pits used in hard rock mining), exposing multiple splitting seams of varying coal qualities. The seams dip from 17 to 22{sup o} and vary in thickness from five to 80 feet or more. Generally three different pits, all of changing coal properties, are worked. The coal is blended to meet specific specifications. The article describes operations at the mine and its transport, once blended, to the nearby Naughton power station or by haul truck to the Elkol tipple. Employment at the mine, with its good safety record, is discussed.

  3. Remarks on Rail Transportation of Energy Resources John R. Birge

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Crude oil is a small but increasing component f. Public externalities: Accidents, ... Competition i. Taxes and subsidies for trucking ii. Pipeline regulation: construction and ...

  4. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  5. Volvo SuperTruck Visits the Energy Department | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Volvo SuperTruck Visits the Energy Department Volvo SuperTruck Visits the Energy Department Addthis Description Below is the text version for the "Volvo SuperTruck Visits the Energy Department" video. Mike Mueller, EERE Digital Team Look what rolled up to Energy Department headquarters-it's the Volvo SuperTruck. This is the latest class 8 truck to achieve more than 50% freight efficiency compared to a 2009 baseline model in our SuperTruck I program. Daimler trucks North America, along

  6. Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report

    SciTech Connect

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J; Siekmann, Adam; Thomas, Neil; LaClair, Tim J; Barker, Alan M; Knee, Helmut E

    2012-11-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and

  7. Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet

    Alternative Fuels and Advanced Vehicles Data Center

    Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay

  8. Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations

    Alternative Fuels and Advanced Vehicles Data Center

    Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop

  9. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Presentation given by Cummins Inc. at

  10. Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly This report describes a test of an instrumented surrogate PWR fuel assembly on a truck trailer conducted to simulate normal conditions of truck transport. The purpose of the test was to measure strains and accelerations on a Zircaloy-4 fuel rod during the transport of the assembly on the truck. This test complements tests conducted

  11. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Presentation given by Cummins at 2015 DOE Hydrogen and Fuel

  12. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Economy Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace060_tai_2011_o.pdf (434.09 KB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement SuperTruck Program: Engine Project Review

  13. Volvo Trucks Achieves Lofty Energy and Carbon Goals

    Energy.gov [DOE]

    This case study describes how Volvo Truck's New River Valley facility in Dublin, Virgina, was able to achieve plant-wide targets that surpassed both corporate and DOE program energy and carbon goals.

  14. The Increasing Role of Diesel Trucks in National Petroleum Use...

    Energy.gov [DOE] (indexed site)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  15. Emission Controls for Heavy-Duty Trucks | Department of Energy

    Energy.gov [DOE] (indexed site)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  16. Alternative Fuels Data Center: Kentucky Trucking Company Adds...

    Alternative Fuels and Advanced Vehicles Data Center

    Watch how family-owned trucking company M&M Cartage is converting its fleet to run on compressed natural gas (CNG) in Lousiville, Kentucky. Download QuickTime Video QuickTime ...

  17. Supercomputers, Semi Trucks and America’s Clean Energy Future

    Energy.gov [DOE]

    New aerodynamic components developed with the help of the Jaguar supercomputer at Oak Ridge National Laboratory are set to make semi trucks 7 to 12 percent more fuel efficient.

  18. ATVM Loans Help Boost Pickup Truck Efficiency | Department of...

    Energy Saver

    Trucks can be a symbol of independence and self-sufficiency, a reminder of an era that waxes nostalgic, a family connection, a way to make a living or just pursue happiness. That's ...

  19. NREL Highlight: Truck Platooning Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-21

    NREL's fleet test and evaluation team assesses the fuel savings potential of semi-automated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. In 2014, the team conducted track testing of three SmartWay tractor - two platooned tractors and one control tractor—at varying steady-state speeds, following distances, and gross vehicle weights. While platooning improved fuel economy at all speeds, travel at 55 mph resulted in the best overall miles per gallon. The lead truck demonstrated fuel savings up to 5.3% while the trailing truck saved up to 9.7%. A number of conditions impact the savings attainable, including ambient temperature, distance between lead and trailing truck, and payload weight. Future studies may look at ways to optimize system fuel efficiency and emissions reductions.

  20. Fuel economy and emissions reduction of HD hybrid truck over...

    Energy.gov [DOE] (indexed site)

    Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and ...

  1. Company Adds Commercial Trucks to List of Hybrids

    Energy.gov [DOE]

    Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system.

  2. Microsoft Word - 2011sr10-fire truck donation.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Site. In addition to job creation, assets may also be used to improve the "quality of life" of area residents. Such is the case in the fire truck donation. "This is...

  3. Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  4. Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells and Electric Forklift Trucks Hydrogen Fuel Cells and Electric Forklift Trucks Presentation for Dec. 17, 2008 hydrogen bimonthly informational call and meeting series for state and regional initiatives. nha_webinar_steve_medwin_pres.pdf (226.04 KB) More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment The Hydrogen Tax Incentive Act of 2008

  5. Shorepower Truck Electrification Project (STEP) - Cumulative through June 2014

    SciTech Connect

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  6. Shorepower Truck Electrification Project (STEP) - Cumulative through February 2015

    SciTech Connect

    2015-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  7. Shorepower Truck Electrification Project (STEP) - 2013 (Fact Sheet)

    SciTech Connect

    Not Available

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  8. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Delivery Trucks Vehicle Technologies Office - AVTA: All Electric Delivery Trucks The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and heavy-duty

  9. SANBAG Natural Gas Truck Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt044_kirkhoff_2010_p.pdf (691.34 KB) More Documents & Publications SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project Vehicle Technologies Office Merit Review 2016: Alternative Fuel Vehicle Curriculum Development and Outreach Initiative

  10. Vehicle Technologies Office: Lightweight Materials for Cars and Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Lightweight Materials for Cars and Trucks Vehicle Technologies Office: Lightweight Materials for Cars and Trucks PBS's Motorweek highlights the research and development on lightweight materials supported by the Vehicle Technologies Office at Oak Ridge National Laboratory. Read the text version. Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and

  11. Volvo Trucks Achieves Lofty Energy and Carbon Goals

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Volvo Trucks Achieves Lofty Energy and Carbon Goals Volvo's New River Valley facility achieves plant-wide targets that surpass both corporate and Save Energy Now goals; leverages company and ITP resources The New River Valley (NRV) plant is Volvo Trucks'-a sub-group of Volvo-largest and only North American manufacturing facility. Today, the NRV plant is ramping up the company's energy effciency efforts. Volvo, a company that is world renowned for its environmental consciousness, recently

  12. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    SciTech Connect

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  13. Impact of commuter-rail services in Toronto region

    SciTech Connect

    Wells, S.S.; Hutchinson, B.G.

    1996-07-01

    Ridership of the commuter-rail system that was implemented in the Greater Toronto Area (GTA) in 1967 increased at an annual, average compound rate of 11.4% until 1989. Demand has leveled substantially during 1990--94 and has averaged only 2.1% per year, which probably reflects the suburbanization of employment. Urban economic theory is used to explain the way in which central-business-district (CBD) employees respond differently to suburban commuter-rail services and rapid transit services, mainly serving the inner intermediate suburbs. Travel data collected in 1986 and 1991 confirmed the effects suggested by the theory. Commuter-rail passengers are drawn from the larger suburban households, living principally in single-family houses, and commuter-rail passengers are more sensitive to access and egress distances than subway passengers. Policies that improve the quality of access and egress components of commuting trips from the suburbs stimulate passenger demand. Also, land-use policies that promote high-density, residential development at suburban commuter-rail stations are unlikely to contribute significantly to commuter-rail demand, and the lakeshore commuter-rail line that has been in service since 1967 has not had a significant impact on residential sorting and on the generation of additional demands.

  14. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  15. SuperTruck Leading the Way for Efficiency in Heavy-Duty, Long-Haul Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy SuperTruck Leading the Way for Efficiency in Heavy-Duty, Long-Haul Vehicles SuperTruck Leading the Way for Efficiency in Heavy-Duty, Long-Haul Vehicles June 27, 2016 - 10:55am Addthis Heavy-duty trucks are getting more efficient thanks to the Energy Department's SuperTruck initiative. Heavy-duty trucks are getting more efficient thanks to the Energy Department's SuperTruck initiative. David Friedman David Friedman Assistant Secretary for Energy Efficiency and Renewable

  16. Robotics virtual rail system and method

    DOEpatents

    Bruemmer, David J.; Few, Douglas A.; Walton, Miles C.

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  17. Acceptance test report for core sample trucks 3 and 4

    SciTech Connect

    Corbett, J.E.

    1996-04-10

    The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

  18. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...

    Energy.gov [DOE] (indexed site)

    primary soot particles has been assessed as functions of load, rail pressure, and biodiesel content. p-20toops.pdf (536.66 KB) More Documents & Publications Fuel Effects on ...

  19. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure

    Energy.gov [DOE]

    Fractal dimensions of particle aggregates and the fringe lengths and fringe tortuosity within the primary soot particles has been assessed as functions of load, rail pressure, and biodiesel content.

  20. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  1. Coal-by-Rail Business-as-Usual Reference Case

    Energy.gov [DOE]

    As proposed carbon emission standards reduce domestic coal use, the role of coal in the U.S. energy mix may be expected to decline. If such a decline were to occur, how would it affect rail traffic? Today, coal represents a major share of rail tonnage and gross revenue. While growth in other traffic―most notably, crude oil―may offset some of any potential decline in coal shipments, would it be sufficient? This paper explores trends in coal production volumes and use, rail tonnage and revenue, and the distribution of traffic origins and destinations in order to consider the impact of potential changes in future coal traffic. Rather than modeling discrete flows, it draws on historical data and forecasts maintained by the U.S. Department of Energy’s Energy Information Administration (EIA), industry studies and analyses, and background knowledge of the rail industry, specific routes and service territories, and commodity-level traffic volumes.

  2. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002deereberhardt.pdf More...

  3. Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks...

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Class 8 Trucks Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks Work? on Facebook Tweet about Alternative Fuels Data ...

  4. Fact #714: February 13, 2012 Light Truck Sales on the Rise |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light trucks sales have gained market share in relation to car sales from 1970. In 2001, ... 2004. By 2008, truck sales had declined and once again and neared parity with car sales. ...

  5. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection ...

  6. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts CuZeolite SCR catalysts aged ...

  7. Design and Development of e-Turbo for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development of e-Turbo for SUV and Light Truck Applications Design and Development of ... More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck ...

  8. Design & Development of e-TurboTM for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER ... More Documents & Publications Design and Development of e-Turbo for SUV and Light Truck ...

  9. Roadmap and technical white papers for the 21st century truck partnership

    SciTech Connect

    None, None

    2006-12-01

    21st Century Truck Partnership will support the development and implementation of technologies that will cut fuel use and emissions and enhance safety, affordability, and performance of trucks and buses.

  10. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck ...

  11. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy Saver

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  12. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light ...

  13. Long-Haul Truck Idling Burns Up Profits

    SciTech Connect

    2015-08-12

    Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce pollution, but also help drivers get a better night's rest.

  14. Shorepower Truck Electrification Project (STEP) - 1Q - 2Q 2013

    SciTech Connect

    2014-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved. the ARRA. A total of 5,000 rebates will be approved.

  15. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    SciTech Connect

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002

  16. Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck

    Alternative Fuels and Advanced Vehicles Data Center

    Stop Electrification Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center:

  17. Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Some Routes - Dataset | Department of Energy 2: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes - Dataset Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes - Dataset Excel file and dataset for Longer Combination Trucks Are Only Permitted on Some Routes fotw#932_web.xlsx (198.09 KB) More Documents & Publications Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent - Dataset Fact #923: May 2, 2016 Cylinder

  18. Appendix of Supporting Information for the 21st Century Truck Technology Partnership

    SciTech Connect

    2009-01-18

    Appendix contains supporting information to the 21st Century Truck Partnership's Roadmap and Technical White Papers (21CTP-003)

  19. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Energy.gov [DOE]

    This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

  20. Firm Uses DOE's Fastest Supercomputer to Streamline Long-Haul Trucks

    DOE R&D Accomplishments

    2011-03-28

    Sophisticated simulation on the world's fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

  1. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  2. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Announces $80 Million in Funding to Increase SuperTruck Efficiency DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency March 1, 2016 - 2:59pm Addthis News release from the Department of Energy WASHINGTON - Building on the notable successes of the SuperTruck initiative, Deputy Assistant Secretary for Transportation Reuben Sarkar today announced SuperTruck II, an $80 million funding opportunity, subject to congressional appropriations, for research,

  3. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt045_ti_white_2012_o.pdf (517.25 KB) More Documents & Publications Heavy-Duty Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging the G

  4. CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)

    SciTech Connect

    Not Available

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

  5. CNG Exports by Truck out of the U.S. Form | Department of Energy

    Energy Saver

    CNG Exports by Truck out of the U.S. Form CNG Exports by Truck out of the U.S. Form Excel Version of CNG Exports by Truck out of the U.S. Form.xlsx (12.45 KB) PDF Version of CNG ...

  6. DOE Issues Request for Information on Medium- and Heavy-Duty Fuel Cell Electric Truck Targets

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Fuel Cell Technologies Office has issued a request for information to obtain feedback and opinions from truck operators, truck and storage tank manufacturers, fuel cell manufacturers, station equipment designers, and other related stakeholders on issues related to fuel cell electric truck targets.

  7. Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation You Can Depend On David Koeberlein- Principal Investigator Cummins Inc. Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks June 20, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ACE057 Innovation You Can Depend On Overview Budget: * Total: $77,662,230 * DoE share* $36,335,608 * CMI share* $36,335,608 * actuals as of 12/31/2013 Today

  8. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy How SuperTruck is Making Heavy Duty Vehicles More Efficient INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient March 1, 2016 - 10:45am Addthis Our latest infographic explains how heavy-duty trucks are more getting more sustainable thanks to the Energy Department's SuperTruck initiative. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Our latest infographic explains how heavy-duty trucks are more

  9. Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Energy Go? | Department of Energy 10: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? As with light vehicles, heavy trucks also have significant energy losses. The losses shown below are for a typical combination tractor-trailer, but these losses will vary depending on the weight, shape, and size of the truck, and the type of driving (the truck's duty cycle). On the

  10. Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 7: March 21, 2016 Work Truck Daily Idle Time by Industry Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry SUBSCRIBE to the Fact of the Week Results of the 2015 Work Truck Electrification and Idle Management Study showed the daily idle time for work truck fleets. Daily idle times by industry show that the truck fleets in the utility/telecommunications industry had the longest idle times. Thirty-nine percent of respondents indicated that their fleets idled

  11. Video: SuperTruck Barreling Down the Road of Sustainability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy SuperTruck Barreling Down the Road of Sustainability Video: SuperTruck Barreling Down the Road of Sustainability May 14, 2015 - 4:30pm Addthis New Energy 101 video shows how the Energy Department's SuperTruck initiative is making Class 8 trucks more fuel efficient and less expensive to operate. | Office of Energy Efficiency and Renewable Energy video. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS SuperTruck initiative helping make Class 8

  12. Coal-by-Rail: A Business-as-Usual Reference Case | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coal-by-Rail: A Business-as-Usual Reference Case Title Coal-by-Rail: A Business-as-Usual Reference Case Publication Type Report Year of Publication 2015 Authors Mintz, MM, Saricks,...

  13. Crude Oil Movements of Crude of by Rail between PAD Districts

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History From PADD 1 to PADD 2 0 0 0 0 0 0 2010-2015 ... See movements of crude oil by rail for movements by rail within PADDs and tofrom Canada. ...

  14. Turbine blade squealer tip rail with fence members

    DOEpatents

    Little, David A

    2012-11-20

    A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second location adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.

  15. Fact #896: October 26, 2015 More than 80% of Transportation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residual fuel oil is heavier oil which can be used in vessel bunkering. Fact 896 Dataset ... Type, 2013 Fuel Type Light Vehicles MedHeavy Trucks & Buses Air Water Rail Pipeline ...

  16. USED FUEL RAIL SHOCK AND VIBRATION TESTING OPTIONS ANALYSIS

    SciTech Connect

    Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Maheras, Steven J.

    2014-09-29

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges

  17. U.S. Energy-by-Rail Data Methodology

    Energy Information Administration (EIA) (indexed site)

    by-Rail Data Methodology June 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Energy-by-Rail Data Methodology i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  18. Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report

    SciTech Connect

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J

    2011-01-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so

  19. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect

    Klingler, James J

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  20. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  1. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  2. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  3. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  4. 08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

    SciTech Connect

    Kass, Michael D; Domingo, Norberto; Storey, John Morse; Lewis Sr, Samuel Arthur

    2008-01-01

    The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

  5. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large

  6. Rail assembly for use in a radioactive environment

    DOEpatents

    Watts, Ralph E.

    1989-01-01

    An improved rail assembly and method of construction thereof is disclosed herein that is particularly adapted for use with a crane trolley in a hot cell environment which is exposed to airborne and liquidborne radioactive contaminants. The rail assembly is generally comprised of a support wall having an elongated, rail-housing recess having a floor, side wall and ceiling. The floor of the recess is defined at least in part by the load-bearing surface of a rail, and is substantially flat, level and crevice-free to facilitate the drainage of liquids out of the recess. The ceiling of the recess overhangs and thereby captures trolley wheels within the recess to prevent them from becoming dislodged from the recess during a seismic disturbance. Finally, the interior of the recess includes a power track having a slot for receiving a sliding electrical connector from the crane trolley. The power track is mounted in an upper corner of the recess with its connector-receiving groove oriented downwardly to facilitate the drainage of liquidborne contaminants and to discourage the collection of airborne contaminants within the track.

  7. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  8. Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are Unreformed CAFE standards for model years (MY) 2008 through 2010 using the same CAFE calculations as in the past, and there are Reformed CAFE standards

  9. DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling January 29, 2004 Golden, Colo. - The U.S. Department of Energy's Advanced Vehicle Testing Activity has awarded separate project grants to Caterpillar Inc. and Schneider National Inc. to investigate technologies that reduce truck idling. According to industry experts, truck idling consumes more than 800 million gallons of fuel each year. Reducing the amount of fuel needed to support idling activities, such as

  10. Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams

    Energy.gov [DOE]

    Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

  11. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gaps for Lightweight and Propulsion Materials | Department of Energy Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials wr_trucks_hdvehicles.pdf (811.37 KB) More Documents & Publications WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials Summary of the Output

  12. EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed at

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Memphis International Airport | Department of Energy Fuel Cell Cargo Trucks Deployed at Memphis International Airport EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport June 25, 2015 - 1:57pm Addthis EERE Success Story—World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport Thanks to R&D funding from the Energy Department's Fuel Cell Technologies Office (FCTO), the Federal Express Hub at the Memphis International

  13. Fact #951: November 14, 2016 Medium and Heavy Trucks Are Responsible for a

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions - Dataset | Department of Energy 51: November 14, 2016 Medium and Heavy Trucks Are Responsible for a Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions - Dataset Fact #951: November 14, 2016 Medium and Heavy Trucks Are Responsible for a Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions - Dataset Excel file and dataset for Medium and Heavy Trucks Are Responsible for a Disproportionate Amount of Fuel

  14. Fact #951: November 14, 2016 Medium and Heavy Trucks Are Responsible for a

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions | Department of Energy Fact #951: November 14, 2016 Medium and Heavy Trucks Are Responsible for a Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions Fact #951: November 14, 2016 Medium and Heavy Trucks Are Responsible for a Disproportionate Amount of Fuel Use and Carbon Dioxide Emissions SUBSCRIBE to the Fact of the Week Medium and heavy trucks make up about 4% of the vehicle population but are responsible for a

  15. Volvo Truck Headquarters in North Carolina to Host Event With Acting Under

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretary of Energy Majumdar | Department of Energy Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro,

  16. Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  17. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how a new clean diesel engine could improve the fuel economy of full-sized pickup trucks by 40 percent while meeting new emissions standards.

  18. Vehicle Technologies Office Issues Notice of Intent for SuperTruck...

    Office of Environmental Management (EM)

    ... are "impressive" and will "significantly reduce the fuel consumption of Class 8 tractor-trailer vehicles." National Academy of Sciences Reviews 21st Century Truck Partnership

  19. Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 6: May 7, 2012 SUVs: Are They Cars or Trucks? Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? The Corporate Average Fuel Economy (CAFE) Standards set for model years (MY) 2011 through 2016 include small, 2-wheel drive sport utility vehicles (SUVs) with cars instead of light trucks. Until this regulation, all SUVs were categorized as light trucks, along with pickups and vans. A recent report by the Environmental Protection Agency shows how many SUVs fall into this new

  20. Fact #899: November 16, 2015 World Production of Cars and Trucks - Dataset

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 9: November 16, 2015 World Production of Cars and Trucks - Dataset Fact #899: November 16, 2015 World Production of Cars and Trucks - Dataset Excel file and dataset for World Production of Cars and Trucks fotw#899_web.xlsx (46.61 KB) More Documents & Publications Diesel Trucks - Then and Now Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon - Dataset Fact #851: December 15, 2014 The Average Number of Gears

  1. Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 7: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Excel file and dataset for Work Truck Daily Idle Time by Industry fotw#917_web.xlsx (15.85 KB) More Documents & Publications Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies - Dataset Fact #833: August 11, 2014 Fuel Economy

  2. Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dataset | Department of Energy 9: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent - Dataset Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent - Dataset Excel file and dataset for Heavy Truck Speed Limits Are Inconsistent fotw#929_web.xlsx (87.51 KB) More Documents & Publications Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes - Dataset Fact #923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of New Light

  3. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics DOEs Effort to Reduce Truck Aerodynamic Drag ...

  4. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency through Improved Aerodynamics DOEs Effort to Reduce Truck ... 2015: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics

  5. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  6. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Energy.gov [DOE] (indexed site)

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will ... Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next ...

  7. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Energy.gov [DOE] (indexed site)

    Heavy-Duty Truck Engine Program PDF icon 2004deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions ...

  8. State-of-the-Art and Emergin Truck Engine Technologies | Department...

    Energy.gov [DOE] (indexed site)

    DaimlerChrysler Powersystems PDF icon 2003deerschittler.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in ...

  9. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  10. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency...

    Energy.gov [DOE] (indexed site)

    and demonstrate technologies to improve heavy-truck freight efficiency by more than 100 ... plug in hybrid vehicle powertrain that reduces fuel consumption by 50 percent. ...

  11. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to focus on research, development and demonstration of plug-in electric powertrain ... for research, development and demonstration of long-haul tractor-trailer truck technology. ...

  12. Roadmap and Technical White Papers for 21st Century Truck Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roadmap document for 21st Century Truck Partnership developed to pursue detailed goals for engine systems, heavy-duty hybrids, parasitic losses, idle reduction, and safety,

  13. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck

    Energy.gov [DOE]

    Summarizes progress toward development of a durable urea SCR system to meet Tier 2 Bin 5 on 3780 lb light truck

  14. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  15. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    SciTech Connect

    Trucks, Daimler

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  16. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  17. SunFuel Midstream | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    acquires, builds, finances and operates biofuel infrastructure assets such as biofuel storage and blending terminals, rail, barge and truck receiving terminals and rail and truck...

  18. Fact #628: June 21, 2010 Truck Stop Electrification Sites | Department...

    Energy.gov [DOE] (indexed site)

    truckers to operate the heater, air conditioner, television, and other appliances without running the engine, which saves fuel, reduces air pollution, and reduces engine wear. ...

  19. U.S. Movements of Crude Oil by Rail

    Energy Information Administration (EIA) (indexed site)

    reports U.S. Movements of Crude Oil By Rail With Data through August 2016 | Release Date: October 31, 2016 | Next Release Date: November 30, 2016 Summary - mbbl/d Summary - mbbl Changes by PADD Crude oil movements by rail, August 2016 thousand barrels/day Receipts Shipments PADD 1 PADD 2 PADD 3 PADD 4 PADD 5 United States Canada PADD 1 0 0 0 0 0 0 0 PADD 2 135 0 24 0 138 297 0 PADD 3 0 0 0 0 1 1 0 PADD 4 0 0 47 0 0 47 0 PADD 5 0 0 0 0 3 3 0 United States 135 0 70 0 143 348 0 Canada 0 24 51 0 0

  20. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  1. Analysis of major trends in U.S. commercial trucking, 1977-2002.

    SciTech Connect

    Bertram, K. M.; Santini, D .J.; Vyas, A. D.

    2009-06-10

    This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

  2. Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 4: January 19, 2009 Energy Intensity of Light Rail Transit Systems Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems According to the 2007 National Transit Databases, the energy intensity of light transit rail systems in the U.S. ranges from about 2,000 Btu per passenger-mile to about 31,000 Btu per passenger-mile. There are only four light rail systems with energy intensity over 10,000 Btu per passenger-mile. These systems may have improved

  3. CNG-Hybrid: A Practical Path to "Net Zero Emissions" in Commuter Rail

    Energy.gov [DOE]

    This 3-stage project proposes modernizing and hybridizing commuter rail locomotives by conversion to natural gas, using waste heat recovery, and employing intercooled gas turbine engines.

  4. Cleaner Vehicles, Cleaner Fuel & Cleaner Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cleaner Vehicles, Cleaner Fuel & Cleaner Air Cleaner Vehicles, Cleaner Fuel & Cleaner Air 2002 DEER Conference Presentation: U.S. Environmental Protection Agency 2002_deer_mcdonald.pdf (2.16 MB) More Documents & Publications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Up

  5. Rail transport of western coal: the history of rail deregulation and its influence on western coal resource development; prospects for legislative change

    SciTech Connect

    Smith, J.N.; Rose, R.R.

    1985-04-01

    The one major cloud on the horizon for the future of western coal outside the region is the high cost of transportation. With rail transportation costs running as much as 75% of the delivered price to some of the Gulf States, the ability to keep rail costs in check becomes critical to the future of western coal. Four years of experience with deregulation of the railroads and the performance of the Interstate Commerce Commission (ICC) under the new regulatory environment have led many shippers and buyers of rail transported commodities to the belief that national legislation is needed to give better protection to shippers in monopoly service areas. A tentative legislative effort began in the last Congress. Proposals for rail rate relief for captive shippers are taking more formidable shape in the 99th Congress with the organization of a well-financed and staffed coalition of coal and utility companies. They are seeking amendments to the Staggers Act which more explicitly define the protections and procedures available to captive shippers in advancing complaints through the ICC. Industrial shippers have formed a coalition of their own for fair rail service practices. Finally, another group has emerged in recent months seeking a bolder strategy for rail rate relief. This group asserts that unfair rail practices violate the antitrust laws. At the same time, the railroads are building their defenses and developing alliances with interests in the shipping community that would resist a return to greater rail regulation. While the outcome of this controversy is uncertain, the issue of rail rate equity and reregulation promises to become one of the more active and hotly debated issues in the 99th Congress. However it comes out, the results will have a lasting impact on many western states, their present economy and future development.

  6. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  7. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE PAGES [OSTI]

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  8. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  9. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Diesel and WHR-ORC Engines | Department of Energy A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_regner.pdf (339.01 KB) More Documents &

  10. Technical documentation for the 1990 Nationwide Truck Activity and Commodity Survey Public Use File

    SciTech Connect

    Not Available

    1992-09-01

    The Nationwide Truck Activity and Commodity Survey (NTACS) provides detailed activity data for a sample of trucks covered in the 1987 Truck Inventory and Use Survey (TIUS) for days selected at random over a 12-month period ending in 1990. The NTACS was conducted by the US Bureau of the Census for the US Department of Transportation (DOT). A Public Use File for the NTACS was developed by Oak Ridge National Laboratory (ORNL) under a reimbursable agreement with the DOT. The content of the Public Use File and the design of the NTACS are described in this document.

  11. Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 1: April 2, 2012 Heavy Trucks Move Freight Efficiently Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently Though discussions of vehicle efficiency are often centered on a measurement of miles per gallon, it is also important to consider how efficiently a vehicle carries its payload. Although heavy vehicles like buses or class 8 trucks get much fewer miles per gallon than cars, a greater percentage of their mass is payload which means that they are much more efficient at

  12. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 19, 2014 - 12:37pm Addthis This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy Department today. | Photo by <a href="http://www.energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>, Energy Department This Class 8 tractor-trailer by

  13. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_jadin_2012_o.pdf (2.16 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

  14. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_oehlerking_2013_o.pdf (2.41 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: SuperTruck - Development

  15. Idling Reduction for Long-Haul Trucks: An Economic Comparison of On-Board

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Wayside Technologies | Argonne National Laboratory Idling Reduction for Long-Haul Trucks: An Economic Comparison of On-Board and Wayside Technologies Title Idling Reduction for Long-Haul Trucks: An Economic Comparison of On-Board and Wayside Technologies Publication Type Report Year of Publication 2016 Date Published 09/2016 Institution Argonne National Laboratory City Argonne, IL USA Report Number ANL/ESD-16/16 Abstract Reducing the idling of long-haul heavy-duty trucks has long been

  16. Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant

    SciTech Connect

    Blanchard, A.

    1999-04-15

    This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

  17. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  18. Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review

    Energy.gov [DOE]

    Presentation given by Detroit Diesel at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck program: engine...

  19. Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review

    Energy.gov [DOE]

    Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck Program...

  20. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  1. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  2. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, during which time they often park at truck stops idling the engines to provide heating,...

  3. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...

    Energy.gov [DOE] (indexed site)

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle ...

  4. Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The market share for import cars and light trucks has been growing nearly every year since the mid-1990's. Import car market share more than doubled in that time -- from 14.9% in ...

  5. Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among...

  6. Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    The median age of cars and trucks in the U.S. continued to grow in 2008. Due to the economic climate and high gasoline prices that summer, consumers held onto their vehicles longer and delayed new...

  7. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light...

  8. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  9. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  10. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  11. Fact #899: November 16, 2015 World Production of Cars and Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In 2013, China was the largest producer of both cars and trucks. In 2000, Japan produced ... World Production of Cars, 1983-2013 (thousands) Year China Japan Germany U.S. Brazil India ...

  12. Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Energy.gov [DOE]

    Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

  13. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE PAGES [OSTI]

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  14. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Energy.gov [DOE] (indexed site)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  15. Development of an ORC system to improve HD truck fuel efficiency

    Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  16. Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent...

    Energy.gov [DOE] (indexed site)

    Heavy Truck Speed Limits Are Inconsistent fotw929web.xlsx (87.51 KB) More Documents & Publications Fact 923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of ...

  17. Assessment of the Emissions Behavior of Higher Mileage Class-8 Trucks and Engines

    Energy.gov [DOE]

    Study of in-use emission levels of trucks near the mid-point of their regulatory useful life, including PEMS (on-road) testing as well as engine dynamometer testing

  18. Price of Liquefied U.S. Natural Gas Exports by Truck to Canada...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Canada (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports by Truck to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  19. Liquefied U.S. Natural Gas Exports by Truck to Canada (Million...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Canada (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Truck to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 2 2008 0 0 0 0 0 0...

  20. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  1. Fact #757: December 10, 2012 The U.S. Manufactures More Light Trucks than Cars

    Energy.gov [DOE]

    Most of the 16 States that manufacture light vehicles dedicated at least two-thirds of total production to light trucks in 2011. Kansas, Mississippi, and Tennessee are the only States that produced...

  2. Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity

    Alternative Fuels and Advanced Vehicles Data Center

    Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by

  3. Vehicle Technologies Office Issues Notice of Intent for SuperTruck II

    Energy Saver

    Funding Opportunity Announcement | Department of Energy SuperTruck II Funding Opportunity Announcement Vehicle Technologies Office Issues Notice of Intent for SuperTruck II Funding Opportunity Announcement February 10, 2016 - 10:40am Addthis The Vehicle Technologies Office (VTO) has issued a Notice of Intent (No. DE-FOA-0001447) to make interested parties aware of its plan to issue a Funding Opportunity Announcement entitled "Advanced Systems Level Technology Development, Integration

  4. At its Largest Truck Plant, Volvo Recognized for Leadership in Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency | Department of Energy At its Largest Truck Plant, Volvo Recognized for Leadership in Energy Efficiency At its Largest Truck Plant, Volvo Recognized for Leadership in Energy Efficiency April 1, 2014 - 3:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DUBLIN, Va. - Building on President Obama's Better Buildings Initiative and the Administration's broader efforts to double energy productivity by 2030, the Department of Energy today recognized Volvo Group North America for its

  5. SuperTruck Program: Engine Project Review, Recovery Act ?Class...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FE gear oil * Lightweight Aluminum Frame and cross members * Ultra Lightweight Air Suspension * Advanced Loadshift 6x2 * Solar reflective paint * Enhanced Trailer aerodynamics...

  6. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center

    ... Another option, suitable for hot, dry climates only, is evaporative cooling, which cools the air through the evaporation of water. Considerations: Storage cooling has low ...

  7. Compressed Air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  8. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring ...

  9. Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report

    SciTech Connect

    Gambrell, KP

    2002-01-11

    In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

  10. Steering system for a train of rail-less vehicles

    DOEpatents

    Voight, Edward T.

    1983-01-01

    A steering system for use with a multiple vehicle train permits tracking without rails of one vehicle after another. This system is particularly useful for moving conveyor systems into and out of curved paths of room and pillar underground mine installations. The steering system features an elongated steering bar pivotally connected to each of adjacent vehicles at end portions of the bar permitting angular orientation of each vehicle in respect to the steering bar and other vehicles. Each end portion of the steering bar is linked to the near pair of vehicle wheels through wheel yoke pivot arms about king pin type pivots. Movement of the steering bar about its pivotal connection provides proportional turning of the wheels to effect steering and tracking of one vehicle following another in both forward and reverse directions.

  11. Reducing the environmental impact of road and rail vehicles

    SciTech Connect

    Mayer, R.M.; Poulikakos, L.D.; Lees, A.R.; Heutschi, K.; Kalivoda, M.T.

    2012-01-15

    Methods have been developed to measure in situ the dynamic impact of both road and rail vehicles on the infrastructure and the environment. The resulting data sets have been analysed to quantify the environmental impacts in a transparent manner across both modes. A primary concern is that a small number of vehicles are being operated outside safe or regulatory limits which can have a disproportionate large impact. The analysis enables the various impacts to be ranked across both modes so enabling one to discern the benefits of intermodal transport. The impact of various policy options is considered and how to identify vehicles which can be classified as environmentally friendly. This would require European agreement as many heavy goods vehicle operate across country borders.

  12. Assessment of the risk of transporting liquid chlorine by rail

    SciTech Connect

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  13. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  14. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  15. EERE Success Story-California: SQAMD Replaces Drayage Trucks...

    Office of Environmental Management (EM)

    emissions in the region, and studies by the California Air Resources Board and AQMD have linked emissions from the ports to very high levels of cancer risks to nearby residents. ...

  16. Alternative Fuels in Trucking Volume 5, Number 3

    Alternative Fuels and Advanced Vehicles Data Center

    ... In unambiguous numbers they have said that compromises on clean air and water are unacceptable. Here again, natural gas and other clean fuels play a vital role. The greatest ...

  17. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  18. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOEpatents

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  19. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  20. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGES [OSTI]

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  1. Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tasked for the Transportation of Spent Nuclear Fuel | Department of Energy Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Task: Identify Shortline Railroads Serving Nuclear Power Plants Establish Contact Information with Railroads Officials Field Review of each Railroad's Physical and Operational

  2. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  3. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  4. ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED WITHDRAWAL OF PUBLIC LANDS WITHIN AND SURROUNDING THE CALIENTE RAIL CORRIDOR, NEVADA

    SciTech Connect

    DOE

    2005-12-01

    The purpose for agency action is to preclude surface entry and the location of new mining claims, subject to valid existing rights, within and surrounding the Caliente rail corridor as described in the Yucca Mountain FEIS (DOE 2002). This protective measure is needed to enhance the safe, efficient, and uninterrupted evaluation of land areas for potential rail alignments within the Caliente rail corridor. The evaluation will assist the DOE in determining, through the Rail Alignment environmental impact statement (EIS) process, whether to construct a branch rail line, and to provide support to the BLM in deciding whether or not to reserve a ROW for the rail line under the Federal Land Policy and Management Act (FLPMA). The BLM participated as a cooperating agency in preparing this EA because it is the responsible land manager and BLM staff could contribute resource specific expertise.

  5. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGRŽ System for Retrofit of In-UseŽ Trucks

    Energy.gov [DOE]

    Reports on truck fleet emission test results obtained from retrofitting in-useŽ old class-8 trucks with IMETs GreenPower’ DPF-Hydrated-EGR system

  6. Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Accident Prevention Investigation Board was appointed to investigate a fire at the Waste Isolation Pilot Plant that occurred on February 5, 2014. An aged EIMCO 985-T15 salt haul truck (dump truck) caught fire in an underground mine.

  7. NREL Collaborates with Trucking Industry to Prioritize R&D Opportunities -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Feature | NREL Collaborates with Trucking Industry to Prioritize R&D Opportunities September 15, 2015 Photo of a UPS heavy-duty truck by the NREL entrance sign. NREL's fleet test and evaluation team collaborates with industry partners to conduct real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Photo by Dennis Schroeder Six to seven seconds-that's the typical time between a pair of tractor-trailers traveling together at 65 mph. But, through the

  8. Secretary of Energy Bodman Remarks for 21st Century Truck Event |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by

  9. Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Some Routes | Department of Energy 2: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes SUBSCRIBE to the Fact of the Week Although all states allow the conventional combinations consisting of two 28-foot semi-trailers, only 14 states and six state turnpike authorities allow longer combination vehicles (LCVs) on some parts of their road networks. LCVs are tractors pulling a semi-trailer

  10. Timeline: A Path to Lightweight Materials in Cars and Trucks | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Timeline: A Path to Lightweight Materials in Cars and Trucks Timeline: A Path to Lightweight Materials in Cars and Trucks August 25, 2016 - 12:45pm Addthis Mike Mueller Senior Digital Content Strategist, EERE Communications What are the key facts? By reducing a car's weight, we can cut down on oil consumption, combat climate change and extend the range of our cars. A 10 percent reduction in vehicle weight can lead to an 8 percent improvement in fuel economy. Lightweight materials

  11. EERE Success Story-Cummins Improving Pick-Up Truck Engine Efficiency with

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE and Nissan | Department of Energy Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan EERE Success Story-Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan April 8, 2015 - 12:00am Addthis Cummins, the world's largest diesel engine manufacturer, has long partnered with the Vehicle Technologies Office's (VTO) advanced combustion program to develop high-efficiency, advanced engines for heavy and light-duty vehicles. While one major light-duty technology

  12. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  13. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  14. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  15. Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)

    Reports and Publications

    2010-01-01

    Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

  16. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  17. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  18. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  19. VP 100: Producing Electric Truck Vehicles with a Little Something Extra

    Energy.gov [DOE]

    Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) – is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used.

  20. Air Sealing

    SciTech Connect

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  1. Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program

    SciTech Connect

    Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

    2012-01-03

    Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

  2. Analysis of the D0 Crane Rail as a Support for a Horizontal Lifeline

    SciTech Connect

    Cease, H.; /Fermilab

    2000-03-02

    The D-Zero crane rail is analyzed for use as an anchor support for a one person Horizon{trademark} Horizontal Lifeline system that will span the pit area at D-Zero assembly hall. The lifeline will span 75 ft across the pit area, will be located out of the travel of the crane and above the concrete lentil wall. The crane rail is a suitable anchor for a one person Horizon TM Horizontal Lifeline system. The expected stress on the rail is 1,995 psi which has a factor of safety of 5.5 on the allowable stress. The anchor position is located 18 feet away from the concrete lentil wall and out of the travel of the overhead crane.

  3. Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  4. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

    Energy.gov [DOE]

    According to the preliminary 2012 Commodity Flow Survey (CFS) data, trucks transport the vast majority of freight by both weight and value. The two pie charts below show the share of freight moved...

  5. Vehicle Technologies Office 2013 Merit Review: A System for Automatically Maintaining Pressure in a Commercial Truck Tire

    Energy.gov [DOE]

    A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for automatically maintaining tire pressure in commercial truck tires.

  6. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  7. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE PAGES [OSTI]

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  8. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  9. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and mediumhigh (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  10. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies 1 SuperTruck - Development and Demonstration of a Fuel Efficient Class 8 Tractor & Trailer DE-EE0003303 This presentation does not contain any proprietary, confidential, or otherwise restricted information SuperTruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Systems DOE Contract: DE-EE0003303 NETL Project Manager: Ralph Nine Program Investigator : Dennis W. Jadin, Navistar DOE MERIT REVIEW WASHINGTON, D.C. May 17th, 2012 National

  11. Engineering tasl plan for the development, fabrication and installation of rotary mode core sample truck bellows

    SciTech Connect

    BOGER, R.M.

    1999-06-24

    The Rotary Mode Core Sampling Trucks (RMSCTs) currently use a multi-sectioned bellows between the grapple box and the quill rod to compensate for drill head motion and to provide a path for purge gas. The current bellows, which is detailed on drawing H-2-690059, is expensive to procure, has a lengthy procurement cycle, and is prone to failure. Therefore, a task has been identified to design, fabricate, and install a replacement bellows. This Engineering Task Plan (ETP) is the management plan document for accomplishing the identified tasks. Any changes in scope of the ETP shall require formal direction by the Characterization Engineering manager. This document shall also be considered the work planning document for developmental control per Development Control Requirements (HNF 1999a). This Engineering Task Plan (ETP) is the management plan document for accomplishing the design, fabrication, and installation of a replacement bellows assembly for the Rotary Mode Core Sampling Trucks 3 and 4 (RMCST).

  12. Air filter

    SciTech Connect

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  13. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  14. NREL Highlight: Truck Platooning Testing (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An NREL study found that platooning of long-haul trucks reduces fuel consumption at all tested highway speeds. Vehicle automation is a promising fuel-saving strategy; semiautomated platooning systems for heavy-duty vehicles represent a likely first step toward public acceptance. Platooning reduces aerodynamic drag by grouping vehicles and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. Researchers at the

  15. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  16. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss064_jadin_2011_o.pdf (1020.57 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor

  17. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  18. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect

    J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

    2005-08-15

    This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

  19. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  20. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset

    Energy.gov [DOE]

    Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

  1. Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck

    Energy.gov [DOE]

    Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current and future heavy-duty truck fleets

  2. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  3. Fact #923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015- Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015

  4. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    carried via barge, rail and truck. Foreign receipts via barge have declined slightly. click to enlarge Because truck and rail are less cost-effective options for moving crude,...

  5. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  6. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  7. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  8. High-speed rail transportation. Hearing before the Subcommittee on Transportation and Hazardous Materials of the Committee on Energy and Commerce, US House of Representatives, One Hundred Second Congress, First Session, October 16, 1991

    SciTech Connect

    Not Available

    1991-01-01

    H.R. 1087 would authorize a high speed rail transportation development and commercialization program, establish a national high speed rail transportation policy, and promote development and commercialization of high speed rail transportation by providing Federal guarantees of certain investments in high speed rail transportation facilities. Testimony was heard from representatives of MAGLEV USA, Federal Railroad Administration, National Railroad Passenger Corporation (Amtrak), the Office of Technology Assessment, MAGLEV, Inc., National Maglev Initiative, High Speed Rail Association, and the Texas High-Speed Rail Association. Additional information was supplied by the Coalition of Northeastern Governors, Republic Locomotive, Washington State High Speed Ground Transportation, and the Texas High Speed Authority.

  9. Powertrain Controls Optimization for HD Hybrid Line Haul Trucks - FY2014 Annual Report

    SciTech Connect

    Smith, David E.

    2014-12-01

    This is a vehicle system level project, encompassing analytical modeling and supervisory controls development as well as experimental verification/validation testing at the component, powertrain, and full vehicle system level. This project supports the goal of petroleum consumption reduction for medium and heavy trucks through the development of advanced hybrid technologies and control systems. VSST has invested previously in R&D to support hybrid energy storage systems (Li-ion plus ultra-caps) for light duty, passenger car applications. This research will be extended to the MD and HD sector where current battery technology is not mature enough to handle the substantial regenerative braking power levels these trucks are capable of producing. With this hybrid energy storage system, substantial gains in overall vehicle efficiency are possible. In addition, advanced combustion technologies, such as RCCI, will be implemented into an advanced hybrid powertrain for a Class 8 line haul application. This powertrain, leveraged from other VSST work (Meritor, a current ORNL/VSST partner), is ideal for taking advantage of the benefits of RCCI operation due to its series hybrid mode of operation. Emissions control is also a focus of this project, especially due to the fact that RCCI creates a low temperature exhaust stream that must addressed.

  10. UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA

    SciTech Connect

    Davis, S.C.

    2000-11-16

    The Energy Information Administration's (EIA's) National Energy Modeling System (NEMS) Freight Truck Stock Adjustment Model (FTSAM) was created in 1995 relying heavily on input data from the 1992 Economic Census, Truck Inventory and Use Survey (TIUS). The FTSAM is part of the NEMS Transportation Sector Model, which provides baseline energy projections and analyzes the impacts of various technology scenarios on consumption, efficiency, and carbon emissions. The base data for the FTSAM can be updated every five years as new Economic Census information is released. Because of expertise in using the TIUS database, Oak Ridge National Laboratory (ORNL) was asked to assist the EIA when the new Economic Census data were available. ORNL provided the necessary base data from the 1997 Vehicle Inventory and Use Survey (VIUS) and other sources to update the FTSAM. The next Economic Census will be in the year 2002. When those data become available, the EIA will again want to update the FTSAM using the VIUS. This report, which details the methodology of estimating and extracting data from the 1997 VIUS Microdata File, should be used as a guide for generating the data from the next VIUS so that the new data will be as compatible as possible with the data in the model.

  11. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  12. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect

    J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

    2005-08-01

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a

  13. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect

    Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

    2005-08-15

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a

  14. Copy of Forms FE-746R 2015 Edits v3 BAN (FINAL) LNG Exports - Truck.xls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LNG Exports (Truck) Monthly Sales and Price Report Month/Year: _______________Exporter (Authorization Holder):________________________________________________________________ E-Mail Address:_____________________________ Address:_______________________________________________________ Preparer of Report:__________________________ Telephone No.:______________________ FAX No.:____________________ Exports Made Pursuant to DOE Opinion and Order No.________, under FE Docket No._______________. (1) (2)

  15. Copy of Forms FE-746R 2015 Edits v3 BAN (FINAL) LNG Imports - Truck.xls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LNG Imports (Truck) Monthly Sales and Price Report Month/Year: _______________ Importer (Authorization Holder):_________________________________________________________________ E-Mail Address:_____________________________ Address:_______________________________________________________ Preparer of Report:__________________________ Telephone No.:___________________ FAX No.:____________________ Imports Made Pursuant to DOE Opinion and Order No.________, under FE Docket No._______________. (1) (2)

  16. EFFECT OF IMPACT LIMITER MATERIAL DEGRATION ON STRUCTURAL INTEGRITY OF 9975 PACKAGE SUBJECTED TO TWO FORKLIFT TRUCK IMPACT

    SciTech Connect

    Wu, T

    2007-07-09

    This paper evaluates the effect of the impact limiter material degradation on the structural integrity of the 9975 package containment vessel during a postulated accident event of forklift truck collision. The analytical results show that the primary and secondary containment vessels remain structurally intact for Celotex material degraded to 20% of the baseline value.

  17. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  18. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  19. UF{sub 6} tiedowns for truck transport - right way/wrong way

    SciTech Connect

    Stout, F.W. Jr.

    1991-12-31

    Tiedown systems for truck transport of UF{sub 6} must be defined and controlled to assure the least risk for hauling the material over the highways. This paper and an associated poster display will present the current status of regulatory criteria for tiedowns, analyze the structural stresses involved in tiedowns for two major UF{sub 6} packaging systems, the 21PF series of overpacks and the 48 in. diameter shipping cylinders, and will present photographs showing some {open_quote}right ways{close_quotes} and some {open_quotes}wrong (or risky) ways{close_quotes} currently used for tiedown systems. Risky tiedown methods must be replaced with safer less risky methods to insure the safe transport of UF{sub 6}.

  20. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  1. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    SciTech Connect

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  2. DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS

    SciTech Connect

    Balis, C; Middlemass, C; Shahed, SM

    2003-08-24

    The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

  3. Microstructural and mechanical characterization of postweld heat-treated thermite weld in rails

    SciTech Connect

    Ilic, N.; Jovanovic, M.T.; Todorovic, M.; Trtanj, M.; Saponjic, P.

    1999-10-01

    This paper describes a comparative study of the hardness characteristics, mechanical properties, microstructures, and fracture mechanisms of the thermite welded rail steel joints before and after heat treatment. It has been found that heat treatment of the welded joint improves the mechanical properties (UTS and elongation), and changes the fracture mechanism from brittle to ductile. Improved strength and elongation are attributed to the finer ferrite-pearlite microstructure and the different fracture mechanism. Microporosity and numerous inclusions were seen on the fracture surface of the welded joint. The chemical composition of the inclusions indicated that the molten thermite mixture had reacted with the magnesite lining of the ladle and the feeder.

  4. Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  5. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ¾ ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

  6. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  7. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  8. Maintaining System Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment.

  9. Tips: Air Conditioners

    Energy.gov [DOE]

    How to operate your air conditioner efficiently, or consider alternatives to air conditioning that can cool effectively in many climates.

  10. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect

    Blau, P.J.

    2003-02-03

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the

  11. Final regulatory impact analysis: Refueling emission regulations for light duty vehicles and trucks and heavy duty vehicles

    SciTech Connect

    Not Available

    1994-01-01

    Culminating a rulemaking process which has spanned more than a decade, the Environmental Protection Agency (EPA) is now promulating final regulations requiring all highway light-duty vehicles, light-duty trucks, and heavy-duty vehicles to meet onboard refueling vapor recovery (ORVR or onboard control) standards. The purpose of this analysis is to evaluate the costs, benefits, and overall cost effectiveness of onboard control for the reduction of refueling emissions from highway motor vehicles.

  12. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VEHICLE TECHNOLOGIES OFFICE WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  13. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2468 Published 09/24/2013 doi:10.4271/2013-01-2468 saecomveh.saejournals.org In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks Jonathan Burton, Kevin Walkowicz, Petr Sindler, and Adam Duran National Renewable Energy Laboratory ABSTRACT This study compared fuel economy and emissions between heavy-duty

  14. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  15. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  16. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    SciTech Connect

    Miller, J.D.

    1985-05-01

    A three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask to be used to transport radioactive waste by standard tractor-semitrailer truck is presented. The dynamic structural analysis code DYNA3D, run on Sandia's Cray-1 computer, was used to calculate the effects of the closure-end of the cask impacting a rigid, frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the 304 stainless steel and depleted uranium cask was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact and leakage would not be expected after the event. Interactive color computer graphics were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. 12 refs., 29 figs., 4 tabs.

  17. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  18. Independent design review report for truck {number_sign}1 modifications for flammable gas tanks

    SciTech Connect

    Wilson, G.W.

    1997-05-09

    The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

  19. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  20. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William; Mills, Andy

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  1. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  2. Vehicle Technologies Office Merit Review 2016: Zero Emission Drayage Truck Demonstration (ZECT I)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by South Coast Air Quality Management District (SCAQMD) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation...

  3. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  4. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  5. Preheated Combustion Air

    Energy.gov [DOE]

    This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners.

  6. Cromer Cycle Air Conditioner

    Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  7. Fire tests and analyses of a rail cask-sized calorimeter.

    SciTech Connect

    Figueroa, Victor G.; Lopez, Carlos; Suo-Anttila, Ahti Jorma; Greiner, Miles

    2010-10-01

    Three large open pool fire experiments involving a calorimeter the size of a spent fuel rail cask were conducted at Sandia National Laboratories Lurance Canyon Burn Site. These experiments were performed to study the heat transfer between a very large fire and a large cask-like object. In all of the tests, the calorimeter was located at the center of a 7.93-meter diameter fuel pan, elevated 1 meter above the fuel pool. The relative pool size and positioning of the calorimeter conformed to the required positioning of a package undergoing certification fire testing. Approximately 2000 gallons of JP-8 aviation fuel were used in each test. The first two tests had relatively light winds and lasted 40 minutes, while the third had stronger winds and consumed the fuel in 25 minutes. Wind speed and direction, calorimeter temperature, fire envelop temperature, vertical gas plume speed, and radiant heat flux near the calorimeter were measured at several locations in all tests. Fuel regression rate data was also acquired. The experimental setup and certain fire characteristics that were observed during the test are described in this paper. Results from three-dimensional fire simulations performed with the Cask Analysis Fire Environment (CAFE) fire code are also presented. Comparisons of the thermal response of the calorimeter as measured in each test to the results obtained from the CAFE simulations are presented and discussed.

  8. Correlation of FEA Prediction And Experiments On Dual-Phase Steel Automotive Rails

    SciTech Connect

    Du, C.; Chen, X. M.; Lim, T.; Chang, T.; Xiao, P.; Liu, S.-D.

    2007-05-17

    The North American Auto/Steel Partnership (A/SP) High-Strength Steel Forming Project Team has been studying the impact of advanced high-strength steels on stamping of structural components. Tooling was built to evaluate the effect of different grades of dual-phase steels on rail type stampings. The formed panels were laser scanned and the amount of springback was measured against the design intention. FEA simulation of the forming process was carried out to validate the numerical modeling techniques in the large and complex dual-phase steel stampings. The materials used in the study were Dual-Phase (DP) Steels DP600, DP780 and DP980. The FEA solver used was LS-Dyna version 971. The simulation results were correlated with the measurement data under various forming conditions including forming methods, trimming, binder and pad pressures. Reasonably good correlations were obtained across different grades of steels in terms of flange opening angles, wall opening angles, twist angles and dimensional deviations.

  9. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  10. Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996

    Alternative Fuels and Advanced Vehicles Data Center

    ... The C8.3G features advanced electronic controls, charge-air-cooling, and a water-cooled, wastegated turbo- charger. The C8.3G will join Cummins' L10G and B5.9 natural gas engines. ...

  11. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  12. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    SciTech Connect

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-15

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of JxB propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (T{sub e}) of hundreds of eV in the arc as revealed by the simulation. Hence T{sub e} of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90 eV, which is confirmed by Langmuir electric probe measurements. Density n{sub e} of this metal plasma is shown to be in the range 4x10{sup 21}-6x10{sup 21} m{sup -3} and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2x10{sup 6} cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  13. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  14. Simple Interactive Models for better air quality (SIM-air) |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  15. Fact #636: August 16, 2010 Transportation Energy Use by Mode | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 6: August 16, 2010 Transportation Energy Use by Mode Fact #636: August 16, 2010 Transportation Energy Use by Mode Highway vehicles were responsible for 80.7% of all transportation energy use in 2008. Light vehicles make up the majority of highway fuel use. Transportation Energy Use by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, medium/heavy trucks, and light vehicles) for 2008. For more detailed information, see supporting

  16. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    4 Nitrous Oxide Emissions Total, 1980-2009 By Source, 2009 Energy Sources by Type, 1980-2009 Agricultural Sources by Major Type, 1980-2009 312 U.S. Energy Information Administration / Annual Energy Review 2011 1 Adipic acid production (primarily for the manufacture of nylon fibers and plastics) and nitric acid production (primarily for fertilizers). 2 Emissions from passenger cars and trucks; air, rail, and marine transportation; and farm and construction equipment. 3 Consumption of coal,

  17. Maintaining Your Air Conditioner

    Energy.gov [DOE]

    Regular maintenance extends the life of your air conditioner and helps it run as efficiently as possible.

  18. Minimize Compressed Air Leaks

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

  19. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis

  20. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full