National Library of Energy BETA

Sample records for tropical cirrus clouds

  1. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G Satyanarayana, M. Krishnakumar, V. Dhaman, Reji k.

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  2. Evaluation of Tropical Cirrus Cloud Properties and Dynamical Processes Derived from ECMWF Model Output and Ground Based Mea...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Cirrus Cloud Properties and Dynamical Processes Derived from ECMWF Model Output and Ground-Based Measurements Over Nauru Island J. M. Comstock and J. H. Mather Pacific Northwest National Laboratory Richland, Washington C. Jakob Bureau of Meteorology Research Centre Melbourne, Australia Introduction Identifying the mechanisms responsible for the formation of cirrus clouds is important in understanding the role of cirrus in the tropical atmosphere. Thin cirrus clouds near the tropical

  3. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

  4. Lagrangian Diagnostics of Tropical Cirrus over TWP CART Sites

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lagrangian Diagnostics of Tropical Cirrus over TWP CART Sites Horvath, Akos University of Miami Soden, Brian UM/RSMAS Category: Cloud Properties Cirrus clouds associated with tropical deep convection play an important role in regulating Earth's climate by influencing the radiative and moisture budgets of the upper troposphere. In this study, we sought to better understand the evolution of such clouds using geostationary satellite observations coupled with ground-based radar and lidar

  5. Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale

    SciTech Connect (OSTI)

    Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

    2014-04-16

    In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative

  6. Testing a New Cirrus Cloud Parameterizaton

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Testing a New Cirrus Cloud Parameterization in NCAR CCM3 D. Zurovac-Jevtic, G. J. Zhang, and V. Ramanathan Center for Atmospheric Sciences Scripps Institute of Oceanography La Jolla, California Introduction Cirrus cloud cover and ice water content (IWC) are the two most important properties of cirrus clouds. However, in general circulation models (GCMs), their treatment is very crude. For example, in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3), IWC is

  7. Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical Western Pacific J. M. Comstock, J. H. Mather, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction Upper tropospheric humidity plays an important role in the formation and maintenance of tropical cirrus clouds. Deep convection is crucial for the transport of water vapor from the boundary layer to the upper troposphere and is

  8. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever collected will ...

  9. Observed Regimes of Mid-Latitude.and Tropical Cirrus Microphysical...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Observed Regimes of Mid-Latitude and Tropical Cirrus Microphysical Behavior A. D. Del Genio and A. B. Wolf National Aeronautics Space Administration Goddard Institute for Space ...

  10. A Comparison of Cirrus Cloud Visible Optical Depth Derived from...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Lo, Chaomei Pacific Northwest National Laboratory Comstock, Jennifer Pacific Northwest National Laboratory...

  11. Icy Cirrus Clouds to Be Studied This Spring

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4 Icy Cirrus Clouds to Be Studied This Spring Mid-latitude cirrus clouds, which are composed solely of ice crystals, will be the focus of an intensive operational period (IOP) in April and May 2004 at the ARM Climate Research Facility (ACRF) SGP site. Researchers will be probing the clouds with aircraft-based instruments to gather detailed information about the clouds' physical characteristics. To make measurements in cirrus clouds, which generally form in the atmosphere at and above 20,000 feet

  12. Tropical anvil cirrus evolution from observations and numerical...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    12 hours. Their cloud properties such as IWC and particle size decrease with the cirrus ages. While the mean ambient air motion changes very subtle after 6 hours old. Most...

  13. ARM - Publications: Science Team Meeting Documents: Cirrus Cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurements by the UAF Polarization Diversity Lidar during M-PACE Cirrus Cloud Measurements by the UAF Polarization Diversity Lidar during M-PACE Sassen, Kenneth University of Alaska Fairbanks Zhu, Jiang UAF During the final week of the September-October 2004 Mixed-Phase Cloud Experiment (M-PACE) conducted in and around the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska, cirrus clouds were unexpectedly prevalent. Overcoming earlier adversity, the

  14. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  15. Observed and Simulated Cirrus Cloud Properties at the SGP CART...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Simulated Cirrus Cloud Properties at the SGP CART Site A. D. Del Genio and A. B. Wolf National Aeronautics and Space Administration Goddard Institute for Space Studies New ...

  16. Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds K. Ivanova, H. N. Shirer, and E. E. Clothiaux Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction The state variables of the atmosphere exhibit correlations at various spatial and temporal scales. These correlations are crucial for understanding short- and long-term trends in climate. Cirrus clouds are important

  17. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  18. Characterization of 3D Cirrus Cloud and Radiation Fields Using

    Office of Scientific and Technical Information (OSTI)

    ARS/AIRS/MODIS data and its Application to Climate Model (Technical Report) | SciTech Connect Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model Citation Details In-Document Search Title: Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model During the report period, we have made the following research accomplishments. First, we performed analysis for a

  19. Radiative Energy Balance in the Tropical Tropopause Layer: An...

    Office of Scientific and Technical Information (OSTI)

    tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidar observations; (v) improving the parameterization of optical properties of cirrus ...

  20. Detecting Cirrus-Overlapping-Water Clouds and Retrieving their...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ou et al. (1996) presented a threshold test scheme to ... simple transformation of thermal radiance into temperature. ... G. Liu, 1997: Vertical stratification of tropical cloud ...

  1. Posters Sensitivity of Cirrus Cloud Radiative

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Takahashi, T., and K. Kuhara. 1993. Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. Meteor. Soc. Japan 71:21-31. Takano, Y., and K. N. Liou. 1989. Radiative ...

  2. Cirrus feedback on interannual climate fluctuations

    SciTech Connect (OSTI)

    Zhou, C.; Dessler, A. E.; Zelinka, M. D.; Yang, P.; Wang, T.

    2014-12-28

    Cirrus clouds are not only important in determining the current climate, but also play an important role in climate change and variability. Analysis of satellite observations shows that the amount and altitude of cirrus clouds (optical depth <3.6, cloud top pressure <440 hPa) increase in response to inter-annual surface warming. Thus, cirrus clouds are likely to act as a positive feedback on short-term climate fluctuations, by reducing the planet’s ability to radiate longwave radiation to space in response to planetary surface warming. Using cirrus cloud radiative kernels, the magnitude of cirrus feedback is estimated to be 0.20±0.21W/m2/°C, which is comparable to the surface albedo feedback. Most of the cirrus feedback comes from increasing cloud amount in the tropical tropopause layer (TTL) and subtropical upper troposphere.

  3. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  4. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  5. Airborne Open Polar/Imaging Nephelometer for Ice Particles in Cirrus Clouds

    Office of Scientific and Technical Information (OSTI)

    and Aerosols Field Campaign Report (Technical Report) | SciTech Connect Airborne Open Polar/Imaging Nephelometer for Ice Particles in Cirrus Clouds and Aerosols Field Campaign Report Citation Details In-Document Search Title: Airborne Open Polar/Imaging Nephelometer for Ice Particles in Cirrus Clouds and Aerosols Field Campaign Report The Open Imaging Nephelometer (O-I-Neph) instrument is an adaptation of a proven laboratory instrument built and tested at the University of Maryland,

  6. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lead Scientist : Shadrian Strong For data sets, see below. Abstract Through the National Geospatial-Intelligence Agency Characterization of Cirrus and Aerosol Properties (CCAP) ...

  7. ARM - Field Campaign - WB57 Midlatitude Cirrus Cloud Experiment (WB57

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MidCiX) govCampaignsWB57 Midlatitude Cirrus Cloud Experiment (WB57 MidCiX) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : WB57 Midlatitude Cirrus Cloud Experiment (WB57 MidCiX) 2004.04.14 - 2004.05.15 Lead Scientist : Gerald Mace For data sets, see below. Abstract In order to improve our understanding of the role clouds play in the climate system, NASA invested considerable effort in characterizing

  8. Evaluate the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction The earth's radiation budget is sensitive to changes in the microphysical properties of low-level stratiform clouds. Their extensive coverage can significantly reduce the solar energy

  9. Observations of tropical cirrus properties in the pilot radiation observation experiment using lidar and the CSIRO ARM filter radiometer

    SciTech Connect (OSTI)

    Platt, C.M.R.; Young, S.A.; Manson, P.J.; Patterson, G.R.

    1995-04-01

    A narrow beam fast filter radiometer has been developed for the Atmospheric Radiation Measurement (ARM) Program. The radiometer is intended to operate alongside a lidar at ARM sites in a lidar/radiometer (LIRAD) configuration. The radiometer detects in three narrow bands at 8.62-, 10.86-, and 12.04-m central wavelengths in the atmospheric window. In addition, it has a variable field aperture that varies the radiance incident on the detector and also allows the field of view to be tailored to that of a lidar used in the LIRAD technique. The radiometer was deployed in the ARM Pilot Radiation Observation Experiment (PROBE) at Kavieng, Papua New Guinea in January-February 1993. The radiometer worked satisfactorily and appeared to be very stable. The radiometer was compared with a previous CSIRO radiometer and the improved performance of the ARM instrument was very evident. The ARM radiometer was also compared with a National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratories (ETL) interferometer and gave closely equivalent radiances. The LIRAD method was used at Kavieng to obtain the optical properties of cirrus clouds. Continuous observations of water vapor path obtained by the NOAA ETL microwave radiometer were employed to allow for the strong tropical water vapor absorption and emission. Cirrus cells that developed on one morning, independent of other clouds, had measured infrared emittances varying from <0.1 to 1.0.

  10. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of

  11. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  12. Characterization of 3D Cirrus Cloud and Radiation Fields Using...

    Office of Scientific and Technical Information (OSTI)

    including a temperature classification to improve correlation, and Arctic ice clouds. ... Word Cloud More Like This Full Text preview image File size NAView Full Text View Full ...

  13. Positive low cloud and dust feedbacks amplify tropical North...

    Office of Scientific and Technical Information (OSTI)

    amplify tropical North Atlantic Multidecadal Oscillation: CLOUD AND DUST FEEDBACK AND AMO Title: Positive low cloud and dust feedbacks amplify tropical North Atlantic ...

  14. Tropical Cloud Properties and Radiative Heating Profiles (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Tropical Cloud Properties and Radiative Heating Profiles Title: Tropical Cloud Properties ... in that it uses the microwave radiometer to scale the radiosonde column water vapor. ...

  15. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  16. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water

  17. Tropical Cloud Life Cycle and Overlap Structure

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Cloud Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Luke, Edward Brookhaven National Laboratory Boer, Erwin LUEBEC Category: Cloud Properties The profile of cloud microphysical properties and how the clouds are overlapped within a vertical column have a profound impact on the radiative transfer and subsequent general circulation model simulations. We will

  18. Microsoft PowerPoint - Elisabeth_Cohen_Cirrus_Evolution.ppt [Compatibility Mode]

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cirrus Evolution from Convective Outflow during the Convective Outflow during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) (TWP ICE) Lis Cohen * Jay Mace G M F h * S ll B Greg McFarquhar * Sally Benson Based on contributions from Brian Soden and Min Deng. Contact: Lis Cohen liscohen@met.utah.edu Cirrus Evolution Study The goal is to discover how tropical cirrus clouds are maintained and either evolve into persistent cloud entities or dissipate soon after leaving a convective

  19. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  20. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  1. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE PAGES-Beta [OSTI]

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  2. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds

    SciTech Connect (OSTI)

    Spichtinger, Peter; Cziczo, Daniel J.

    2010-07-29

    The influence of initial heterogeneous nucleation on subsequent homogeneous nucleation events in cirrus clouds is investigated using a box model which includes the explicit impact of aerosols on the nucleation of ice crystals and sedimentation. Different effects are discussed, namely the impact of external mixtures of heterogeneous ice nuclei and the influence of size-dependent freezing thresholds. Several idealized experiments are carried out, which show that the treatment of external mixtures of ice nuclei can strongly change later homogeneous nucleation events (i.e., the ice crystal number densities) in different matters. The use of size-dependent freezing thresholds can also change the cloud prop erties when compared to more simple parameterizations. This size effect is most important for large IN concentrations. Based upon these findings, recommendations for future modeling and measurement efforts are presented.

  3. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by

  4. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    SciTech Connect (OSTI)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R.

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  5. ARM - Publications: Science Team Meeting Documents: Tropical Cloud Overlap

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Structure and Cloud Area Tropical Cloud Overlap Structure and Cloud Area Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Boer, Erwin LUEBEC The Tropical Western Pacific (TWP), with its vigorous cloud activity, is an excellent location to investigate the relationships between cloud properties and radiative fluxes. To unlock such issues first requires a better understanding of what the observed structures of clouds are and how they affect the

  6. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  7. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect (OSTI)

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  8. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  9. The Tropical Warm Pool International Cloud Experiment: Overview

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob,...

  10. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsTropical Cloud Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al.,

  11. Limiting Factors for Convective Cloud Top Height in the Tropics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Limiting Factors for Convective Cloud Top Height in the Tropics M. P. Jensen and A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies Columbia University New York, New York Introduction Populations of tropical convective clouds are mainly comprised of three types: shallow trade cumulus, mid-level cumulus congestus and deep convective clouds (Johnson et al. 1999). Each of these cloud types has different impacts on the local radiation and water budgets.

  12. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  13. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  14. Discrimination between thin cirrus and and tropospheric aerosol...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs...

  15. ARM - Field Campaign - Tropical Warm Pool - International Cloud Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (TWP-ICE) govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Tropical Warm Pool - International Cloud Experiment (TWP-ICE) 2006.01.21 - 2006.02.13 Website : http://www.arm.gov/campaigns/twpice/ Lead Scientist : Peter May For data sets, see below. Abstract The Tropical Warm Pool - International Cloud

  16. A GCM Parameterization of Ice Particle Mean Effective Sizes for High Latitude Cirrus Clouds and It's Comparison with Mid-Latitude Parmaterization

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    GCM Parameterization of Ice Particle Mean Effective Sizes for High Latitude Cirrus Clouds and It's Comparison with Mid-Latitude Parameterization F. S. Boudala Department of Oceanography Dalhousie University Halifax, Nova Scotia, Canada Q. Fu Department of Atmospheric Sciences University of Washington Seattle, Washington G. A. Issac Meteorological Service of Canada Toronto, Ontario, Canada Introduction Single-scattering properties of ice clouds depend on both ice water content (IWC) and effective

  17. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped

  18. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  19. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  20. “Using Statistical Comparisons between SPartICus Cirrus Microphysical Measurements, Detailed Cloud Models, and GCM Cloud Parameterizations to Understand Physical Processes Controlling Cirrus Properties and to Improve the Cloud Parameterizations”

    SciTech Connect (OSTI)

    Woods, Sarah

    2015-12-01

    The dual objectives of this project were improving our basic understanding of processes that control cirrus microphysical properties and improvement of the representation of these processes in the parameterizations. A major effort in the proposed research was to integrate, calibrate, and better understand the uncertainties in all of these measurements.

  1. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  2. arm_stm_2008_borg_cirrus_poster.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cirrus Case Study: 11082005 18:00UTC - 11112005 12:00 UTC Lori Borg, lori.borg@ssec.wisc.edu Introduction: Cirrus clouds play a significant role in the energy budget of the...

  3. A TWP-ICE High-Level Cloud Case Study

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near Darwin, Australia during January and February, 2006. One of the primary goals of this experiment is to develop an integrated meteorological and high-level cloud data set that will increase our understanding of the processes that result in the formation and maintenance of tropical anvils and extended cirrus layers. In

  4. ARM - Measurement - Cloud type

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. Cirrus 1 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cirrus 1 Jump to: navigation, search Name Cirrus 1 Facility Cirrus 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cirrus Wind Energy...

  6. Detecting and Evaluating the Effect of Overlaying Thin Cirrus...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    thin cirrus clouds and examining their potential effects on the DER retrievals (King et al. 1992; 2003). Case studies are presented here using MODIS data to investigate the...

  7. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES-Beta [OSTI]

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette massesmore » are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  8. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES-Beta [OSTI]

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette massesmore » are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by  ∼  0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from  ∼ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  9. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sciences University of Miami Miami, Florida Introduction The radar Doppler spectrum ... of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), is ...

  10. Interaction of clouds, radiation, and the tropical warm pool sea surface temperatures

    SciTech Connect (OSTI)

    Schneider, N.; Zhang, G.J.; Barnett, T.P.; Ramanathan, V.

    1996-04-01

    The primary focus of this study is the Tropical Western Pacific (TWP). In this study, we combine in-situ observations Tropical Ocean Global Atmosphere [TOGA]-Coupled Ocean Atmosphere Response Experiment [COARE] and Central Equatorial Pacific Experiment [CEPEX] with satellite cloud data.

  11. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  12. ARM - Small Particles In Cirrus (SPARTICUS)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Small Particles In Cirrus (SPARTICUS) As in most mid-latitude locales, cirrus clouds like these often appear over the SGP site from fall to spring. As in most

  13. Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific J. H. Mather and S. A. McFarlane Pacific Northwest National Laboratory Richland, Washington Introduction The microbase value added product (Miller et al. 2003) provides a standardized framework for calculating and storing continuous retrievals of cloud microphysical properties including liquid water content (LWC), ice water content (IWC), and cloud droplet size. Microbase is part of the larger broadband heating

  14. Radiative Energy Balance in the Tropical Tropopause Layer: An Investigation with ARM Data

    SciTech Connect (OSTI)

    Fu, Qiang

    2013-10-22

    The overall objective of this project is to use the ARM observational data to improve our understanding of cloud-radiation effects in the tropical tropopause layer (TTL), which is crucial for improving the simulation and prediction of climate and climate change. In last four and half years, we have been concentrating on (i) performing the comparison of the ice cloud properties from the ground-based lidar observations with those from the satellite CALIPSO lidar observations at the ARM TWP sites; (ii) analyzing TTL cirrus and its relation to the tropical planetary waves; (iii) calculating the radiative heating rates using retrieved cloud microphysical properties by combining the ground-based lidar and radar observations at the ARM TWP sites and comparing the results with those using cloud properties retrieved from CloudSat and CALIPSO observations; (iv) comparing macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidar observations; (v) improving the parameterization of optical properties of cirrus clouds with small effective ice particle sizes; and (vi) evaluating the enhanced maximum warming in the tropical upper troposphere simulated by the GCMs. The main results of our research efforts are reported in the 12 referred journal publications that acknowledge the DOE Grant No. DE-FG02-09ER64769.

  15. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect (OSTI)

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  16. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    SciTech Connect (OSTI)

    Webster, P.J.; Clayson, C.A.; Curry, J.A.

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  17. Observations of tropical clouds from the upgraded MMCR at Darwin and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    comparisons with C-Pol and satellite observations Observations of tropical clouds from the upgraded MMCR at Darwin and comparisons with C-Pol and satellite observations Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Vogelmann, Andrew Brookhaven National Laboratory Mather, James Pacific Northwest National Laboratory May, Peter Bureau or Meteorology Research Centre Category: Instruments The upgrade of the processor for the millimeter cloud radar

  18. Evaluation of cirrus statistics produced by general circulation models

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    using ARM data cirrus statistics produced by general circulation models using ARM data Hartsock, Daniel University of Utah Mace, Gerald University of Utah Benson, Sally University of Utah Category: Modeling Our goal is to evaluate the skill of various general circulation models for producing climatological cloud statistics by comparing them to the cirrus climatology compiled over the Southern Great Plains (SGP) ARM site. This evaluation includes quantifying similar cloud properties and

  19. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  20. ARM - Measurement - Cloud phase

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  2. ARM - Publications: Science Team Meeting Documents: Cirrus properties and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    air mean vertical motion retrieval using mm-wavelength Doppler radar moments Cirrus properties and air mean vertical motion retrieval using mm-wavelength Doppler radar moments Deng, Min University of Utah Mace, Gerald University of Utah Vertically pointing millimeter wavelength Doppler radar provides valuable information on upper tropospheric cloud properties and dynamics. We are developing an innovative algorithm to simultaneously retrieve cirrus microphysical parameters and air mean

  3. Cirrus and aerosol lidar profilometer - analysis and results

    SciTech Connect (OSTI)

    Spinhirne, J.D.; Scott, V.S.; Reagan, J.A.; Galbraith, A.

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  4. Environment and the Lifetime of Tropical Deep Convection in a Cloud-Permitting Regional Model Simulation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; McFarlane, Sally A.; Leung, Lai-Yung R.

    2013-08-01

    By applying a cloud tracking algorithm to tropical convective systems simulated by a regional high resolution model, the study documents environmental conditions before and after convective systems are initiated over ocean and land by following them during their lifetime. The comparative roles of various environmental fields in affecting the lifetime of convection are also quantified. The statistics of lifetime, maximum area, propagation speed and direction of the simulated deep convection agrees well with geostationary satellite observations. Over ocean, convective systems enhance surface fluxes through the associated wind gusts as well as cooling and drying of the boundary layer. A significant relationship is found between the mean surface fluxes during their lifetime and the longevity of the systems which in turn is related to the initial intensity of the moist updraft and to a lesser extent upper level shear. Over land, on the other hand, convective activity suppresses surface fluxes through cloud cover and the lifetime of convection is related to the upper level shear during their lifetime and strength of the heat fluxes several hours before the initiation of convection. For systems of equal lifetime, those over land are significantly more intense than those over ocean especially during early stages of their lifetime.

  5. ARM - Field Campaign - Small Particles in Cirrus (SPartICus)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsSmall Particles in Cirrus (SPartICus) Campaign Links SPARTICUS Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Small Particles in Cirrus (SPartICus) 2010.01.01 - 2010.06.30 Lead Scientist : Gerald Mace For data sets, see below. Abstract One of the overarching goals of ACRF is to characterize the properties of clouds so that their representation can be improved in Global Climate Models

  6. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect (OSTI)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  7. Mechanisms of Convective Cloud Organization by Cold Pools over Tropical Warm Ocean during the AMIE/DYNAMO Field Campaign

    SciTech Connect (OSTI)

    Feng, Zhe; Hagos, Samson M.; Rowe, Angela; Burleyson, Casey D.; Martini, Matus; de Szoeke, S.

    2015-06-01

    This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated and intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.

  8. Determining Best Estimates and Uncertainties in Cloud Microphysical...

    Office of Scientific and Technical Information (OSTI)

    Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North ...

  9. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiative Transfer Model and ARM Data Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model and ARM Data Yue, Qing Dept. of Atomspheric & Oceanic Sciences, UCLA Liou, Kuo-Nan UCLA Ou, Szu-cheng University of California, Los Angeles Kahn, Brian Jet Propulsion Laboratory Yang, Ping Texas A&M Mace, Gerald University of Utah Category: Radiation A thin cirrus cloud thermal infrared radiative transfer model has been developed to interpret AIRS

  10. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  11. Seasonal Variability in Clouds and Radiation at the Manus ARM Site

    SciTech Connect (OSTI)

    Mather, Jim H.

    2005-07-01

    The Atmospheric Radiation Measurement (ARM) program operates three climate observation stations in the tropical western Pacific region. Two of these sites, located on Manus island in Papua New Guinea and on the island republic of Nauru, have been operating for over five years. This data set provides an opportunity to examine variability in tropical cloudiness on a wide range of time scales. The focus of this study is on the annual cycle. The most obvious manifestation of the annual cycle in this region is the oscillation of monsoon convection between Asia and Australia. The impact of the annual cycle on Manus and Nauru is more subtle; however, analysis of radiation and cloud observations from the Manus and Nauru ARM sites reveals links to the annual monsoon cycle. One such link relates to the proximity of Manus to the Maritime Continent, the collection of islands separating the Pacific and Indian oceans. Convection over the large islands in the maritime continent exhibits a distinct annual cycle. Outflow from large-island convection is shown to modulate the cirrus population over Manus. During neutral or cool ENSO periods, convection over Nauru is relatively suppressed. During such periods, Nauru is shown to exhibit an annual cycle in local convective activity. During the inactive season, cirrus are often found near the tropopause over Nauru. These clouds are not formed directly by the outflow from convection. The seasonality and source of these clouds is also examined. Identifying the source of cirrus observed at Manus and Nauru is important because of the potential dependence of cirrus properties on the source of convection.

  12. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  13. Evidence for island effects and diurnal signals in satellite images of clouds over the tropical western pacific

    SciTech Connect (OSTI)

    Barr-Kumarakulasinghe, S.A.; Reynolds, R.M.; Minnett, P.J.

    1996-04-01

    Instruments to measure atmospheric radiation and ancillary meteorological variables will be set up on Manus Island as the first site of the tropical western pacific (TWP) locale of the Atmospheric Radiation Measurements (ARM) program. Manus is in the {open_quotes}warm pool{close_quotes} region of the TWP. This region is critical in establishing global atmospheric circulation patterns and is a primary energy source for the Hadley and Walker cells. The myriad islands and enclosed seas in the immediate vicinity of Manus have been referred to as the {open_quotes}maritime continent{close_quotes}, which has the deepest convective activity in the world. Manus is in a region having a global impact on climate and where island effects on clouds are likely to be important. In this preliminary analysis we have sought evidence of island effects in the cloud fields around Manus and have studied the variability of the diurnal cycles of cloud cover over Manus and over other islands and areas of open sea in the region.

  14. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE PAGES-Beta [OSTI]

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  15. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    SciTech Connect (OSTI)

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOT asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.

  16. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    SciTech Connect (OSTI)

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.

  17. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGES-Beta [OSTI]

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  18. Simulations of cirrus clouds using an explicit cloud model: integratin...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NASAGoddard Space Flight Center Starr, David NASAGoddard Space Flight Center Yang, Ping Texas A&M Category: Modeling Understanding the atmospheric conditions required to...

  19. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect (OSTI)

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  20. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect (OSTI)

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  1. Cirrus Technologies Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Inc. Place: Nevada Zip: NV 89704 Sector: Wind energy Product: A US-based wind turbine technology developer. References: Cirrus Technologies, Inc.1 This article is a stub. You...

  2. A Decade of Atmospheric Research in the Tropical Western Pacific...

    Office of Science (SC) [DOE]

    cloud systems in climate models, long-term measurements of tropical clouds, the environment in which they reside, and their impact on radiation and water budgets are needed. ...

  3. Cloud Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific G. D. Nowicki, M. L. Nordeen, P. W. Heck, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Atmospheric Sciences Division Langley Research Center Hampton, Virginia S. Sun-Mack Science Applications International Corporation Hampton, Virginia Introduction Utilization of the

  4. A Composite and Microphysical Study of Jet Stream Cirrus Over...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and error analysis of profiles retrieved from remote sounding measurements. Journal of Geophysical Research, 95, 5578-5595. Wylie, D., 2002: Cirrus and Weather: A...

  5. Remote Sensing of Cirrus Particle Size Vertical Profile Using 1.38 μm

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spectrum and MODIS/ARM Data Remote Sensing of Cirrus Particle Size Vertical Profile Using 1.38 μm Spectrum and MODIS/ARM Data Wang, Xingjuan UCLA Department of Atmospheric & Oceanic Sciences Liou, Kuo-Nan UCLA Ou, Szu-cheng University of California, Los Angeles Takano, Yoshihede UCLA Department of Atmospheric & Oceanic Sciences Chen, Yong UCLA Category: Cloud Properties The time series of backscattering coefficients derived from lidar and Doppler millimeter-wave radar returns, as

  6. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... National Aeronautics and Space Administration National ... Tropical Warm Pool - International Cloud Experiment United ... Daily meteorological measurments from the Momote station. ...

  7. Effect of particle nonsphericity on bidirectional reflectance of cirrus clouds

    SciTech Connect (OSTI)

    Mishchenko, M.I.; Rossow, W.B.; Macke, A.; Lacis, A.A.

    1996-04-01

    This paper describes the use of the fractal ice particle method to study the differences in bidirectional reflectance caused by the differences in the single scattering phase functions of spherical water droplets and nonspherical ice crystals.

  8. Characterization of 3D Cirrus Cloud and Radiation Fields Using...

    Office of Scientific and Technical Information (OSTI)

    We illustrated that the Twomey (solar albedo) effect can be statistically quantified based ... and delta-two-stream approximations for solar and IR flux calculations, respectively. ...

  9. Impact of Ice Crystal Roughness on Satellite Retrieved Cloud Properties

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ice Crystal Roughness on Satellite Retrieved Cloud Properties P. Minnis 1 , P. W. Heck 2 , R. F. Arduini 3 , R. Palikonda 3 , J. K. Ayers 3 , M. M. Khaiyer 3 , P. Yang 4 , Y. Xie 4 3 Science Systems & Applications, Inc. Hampton, VA 1 NASA Langley Research Center Hampton, VA Current Cirrus Models Inadequate Cirrus cloud optical depths τ (heights z e ) are often over (under) estimated when derived from solar reflectances. In situ data suggest smaller asymmetry factors, g, than used in most

  10. ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud

  11. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud

  12. ARM - Publications: Science Team Meeting Documents: Nighttime cirrus

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    detection using AIRS radiances and total column precipitable water Nighttime cirrus detection using AIRS radiances and total column precipitable water Kahn, Brian Jet Propulsion Laboratory Liou, Kuo-Nan UCLA A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced

  13. Radiative Heating Profiles in the Convective Tropics: A Comparison of Observations and Models

    SciTech Connect (OSTI)

    McFarlane, Sally A.; Mather, Jim H.; Ackerman, Thomas P.

    2005-01-10

    Radiative heating is one of the principal drivers of tropical circulation. While we have good knowledge of radiative fluxes at the top-of-atmosphere and at specific surface sites, observations of atmospheric profiles of radiative heating, particular in cloudy conditions, have been largely unavailable. The Atmospheric Radiation Measurement (ARM) Program has begun a program to compute radiative heating profiles routinely at its observational sites at Nauru and Manus Island, Papua New Guinea, using observed and retrieved inputs of water vapor and condensed water phase, particle size, and mass. The accuracy of these profiles can be assessed by comparing the calculated TOA and surface fluxes with observations. We have computed radiative heating profiles every 20 minutes for several months at each of these two sites in the 1999-2000 time period, which represent a unique dataset for model comparison. Here, we compare this dataset to model output from the European Center for Medium-Range Weather Forecasting (ECMWF) analysis, the NCAR Community Atmosphere Model (CAM 3.0) and the Multi-Scale Modeling Framework (MMF). These three models, all run using observed SST for this comparison, provide an interesting range of resolution from the 4 km cloud resolving model in the MMF to the approximately 280 km grid-scale of the CAM and a contrast between forecasting and climate models. In general, the model results fail to capture the structure of the observed heating in the upper troposphere because of their failure to simulate cirrus and stratiform cloud adequately.

  14. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES-Beta [OSTI]

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  15. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES-Beta [OSTI]

    Sullivan, S. C.; Morales Betancourt, R.; Barahona, D.; Nenes, A.

    2015-08-11

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the Barahona and Nenes cirrus formation parameterization to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically-derived spectrum,morea lab-based empirical spectrum, and two field-based empirical spectra that differ in the nucleation threshold for black carbon aerosol and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never unraveled as done here.less

  16. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES-Beta [OSTI]

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029...

  18. Final Report for Research Conducted at The Scripps Institution of Oceanography, University of California San Diego from 2/2002 to 8/2003 for ''Aerosol and Cloud-Field Radiative Effects in the Tropical Western Pacific: Analyses and General Circulation Model Parameterizations''

    SciTech Connect (OSTI)

    Vogelmann, A. M.

    2004-01-27

    OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.

  19. ARM - Lesson Plans: Making Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Making Clouds Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Making Clouds Objective The objective of this activity is to investigate the conditions that must be present for clouds to form. Materials Each student or group of students will need the following: 1 liter (or

  20. Intersecting Cold Pools: Convective Cloud Organization by Cold...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  1. Scanning ARM Cloud Radar Handbook (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical ... Subject: 54 ENVIRONMENTAL SCIENCES; ATTENUATION; CLOUDS; MANUALS; RADAR; WATER VAPOR Word ...

  2. ARM: Ka ARM Zenith Radar (KAZR): cirrus mode (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Ka ARM Zenith Radar (KAZR): cirrus mode Title: ARM: Ka ARM Zenith Radar (KAZR): cirrus mode Ka ARM Zenith Radar (KAZR): cirrus mode Authors: Bharadwaj, Nitin ; Widener, Kevin ; Johnson, Karen Publication Date: 2011-01-18 OSTI Identifier: 1025213 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US) Sponsoring Org: USDOE Office of Science (SC),

  3. Final Technical Report on Scaling Models of the Internal Variability of Clouds DoE Grant No. DE-FG02-04ER63773

    SciTech Connect (OSTI)

    Ivanova, Kristinka

    2008-04-24

    The purpose of this proposal is to gain a better understanding of the space-time correlations of atmospheric fluctuations in clouds through application of methods from statistical physics to high resolution, continuous data sets of cloud observations available at the Department of Energy Atmospheric Radiation Measurement Program archive. In this report we present the accomplishments achieved during the four year period. Starting with the most recent one, we report on two break-throughs in our research that make the fourth year of the project exceptionally successful and markedly outperforming the objectives. The first break-through is on characterization of the structure of cirrus radiative properties at large, intermediate and small, generating cells scales by applying the Fokker-Planck equation method and other methods to ARM millimeter wavelength radar observations collected at the Southern Great Plains site. The second break-through is that we show that different characterizations of the cirrus radiative properties are obtained for different synoptic scale environments. We outline a stochastic approach to investigate the internal structure of radiative properties of cirrus clouds based on empirical modeling and draw conclusions about cirrus dynamical properties in the context of the synoptic environment. Results on the structure of cirrus dynamical properties are consistent with the structure of cirrus based on aircraft in situ measurements, with results from ground-based Raman lidar, and with results from model studies. These achievements would not have been possible without the accomplishments from the previous years on a number of problems that involve application of methods of analysis such as the Fokker-Planck equation approach, Tsallis nonextensive statistical mechanics, detrended fluctuation analysis, and others. These include stochastic analysis of neutrally stratified cirrus layers, internal variability and turbulence in cirrus, dynamical model and

  4. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  5. Evaluating the MMF Using CloudSat

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CloudSat, ARM, and the Multi CloudSat, ARM, and the Multi - - scale scale Modeling Framework (MMF) in the Modeling Framework (MMF) in the Tropical Western Pacific Tropical Western Pacific Tom Ackerman Tom Ackerman University of Washington University of Washington Collaborators on the ARM Project Collaborators on the ARM Project Roger Marchand, U. Washington Roger Marchand, U. Washington Steve Klein, LLNL Steve Klein, LLNL Sally McFarlane, PNNL Sally McFarlane, PNNL Robert Pincus, U. Colorado (NY

  6. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo

    2014-05-19

    /hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain

  7. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  8. Cloud Property Retrieval Products for Graciosa Island, Azores

    SciTech Connect (OSTI)

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  9. Cloud Properties and Radiative Heating Rates for TWP (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Cloud Properties and Radiative Heating Rates for TWP Title: Cloud Properties and Radiative Heating Rates for TWP A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies

  10. Radiative properties of ice clouds

    SciTech Connect (OSTI)

    Mitchell, D.L.; Koracin, D.; Carter, E.

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  11. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    More on the Effect of Cirrus Cloud Bimodal Size Spectra on Thermal Infrared Radiative Properties Stackhouse, P.W., Jr. (a), Mitchell, D.L. (b), and Yang, P. (c), NASA Langley Research Center (a), Desert Research Institute (b), NASA Goddard Space Flight Center (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We continue to explore the effect of bimodal cirrus cloud particle size distributions on the radiative budget of tropical cirrus clouds. Using microphysical

  12. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect (OSTI)

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  13. Differences between nonprecipitating tropical and trade wind marine shallow

    Office of Scientific and Technical Information (OSTI)

    cumuli (Journal Article) | DOE PAGES Differences between nonprecipitating tropical and trade wind marine shallow cumuli Title: Differences between nonprecipitating tropical and trade wind marine shallow cumuli In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational

  14. The Dependence of Cirrus Cloud-Property Retrievals on Size-Distribution

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy The Department of Energy's Critical Materials Strategy The Department of Energy's Critical Materials Strategy The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical materials in clean energy technologies. In 2010 the Department developed its first-ever Critical Materials Strategy based on three strategic pillars: 1) diversifying global supply chains to mitigate

  15. Precipitating clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A suggestion for a new focus on cloud microphysical process study in the ARM program 1. Retrieving precipitating mixed- phase cloud properties Zhien Wang University of Wyoming zwang@uwyo.edu Retrieving Precipitating Mixed-phase Cloud Properties Global distribution of supercooled water topped stratiform clouds (top > 1 km and length> 14km) Most of them are mixed-phase with precipitation or virga An multiple sensor based approach to provide water phase as well as ice phase properties

  16. ARM - Publications: Science Team Meeting Documents: Interpretation of cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    structure anomalies over the tropical Pacific during the 1997/98 El Nino Interpretation of cloud structure anomalies over the tropical Pacific during the 1997/98 El Nino Cess, Robert State University of New York at Stony Brook Sun, Moguo State University of New York at Stony Brook The CERES/TRMM single satellite footprint (SSF) dataset, available for January 1998 to August 1998, provides not only radiometric data, but also data for cloud fraction, cloud top pressure and cloud optical depth.

  17. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Moisture Sources for Tropical Cirrus Boehm, M. T., Lee, S., and Verlinde, J., The Pennsylvania State University Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Thin cirrus layers are a prevalent feature of the upper tropical troposphere. Observations reveal that these clouds frequently have long lifetimes and cover large areas in the tropics, despite the continual loss of ice crystals to precipitation from the cloud layer. Observations also reveal that deep convection, the

  18. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  19. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  20. PowerPoint Presentation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Relationships Between Tropical Convection and Cirrus at Darwin Sally A. McFarlane and Jennifer M. Comstock Motivation *Properties of radiatively-important anvil cirrus are only weakly linked to properties of generating convection in climate models *Relationships between convective and cirrus anvil clouds need to be studied observationally and in process models * Combination of the C-Pol (precipitation radar), MMCR/MPL (cloud radar/lidar), and satellite data at Darwin provide a useful dataset for

  1. Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru W. M. Porch, P. Chylek, and B. Henderson Los Alamos National Laboratory Los Alamos, New Mexico Introduction The observations of island cloud trails have revealed a strong relationship between the character and frequency of occurrence of island cloud trails and the Tropical Ocean Southern Oscillation (MacFarlane et al. 2004 a, b). Island cloud trails from the U.S. Department of Energy's (DOE) Atmospheric and

  2. Final Technical Report for "Reducing tropical precipitation biases in CESM"

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Final Technical Report for "Reducing tropical precipitation biases in CESM" Citation Details In-Document Search Title: Final Technical Report for "Reducing tropical precipitation biases in CESM" In state-of-the-art climate models, each cloud type is treated using its own separate cloud parameterization and its own separate microphysics parameterization. This use of separate schemes for separate cloud regimes is undesirable because it

  3. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect (OSTI)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  4. ARM - Measurement - Cloud size

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. Differences between nonprecipitating tropical and trade wind marine shallow cumuli

    SciTech Connect (OSTI)

    Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping

    2015-11-13

    In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s–1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures

  6. Differences between nonprecipitating tropical and trade wind marine shallow cumuli

    DOE PAGES-Beta [OSTI]

    Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping

    2015-11-13

    In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scalemore » was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s–1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures« less

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  8. Numerical simulations of altocumulus with a cloud resolving model

    SciTech Connect (OSTI)

    Liu, S.; Krueger, S.K.

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  9. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Association of the Cirrus Properties Over the Western Tropical Pacific with Tropical Deep Convection Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), Univesity of Utah (a), Geophysical Fluid Dynamics Laboratory (b) The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar measurements in the tropics show that upper tropospheric clouds are observed above 10 km as much as

  10. Atmospheric Radiation Measurement (ARM) Data from the Tropical Western

    Office of Scientific and Technical Information (OSTI)

    Pacific (TWP) Site. () | Data Explorer Tropical Western Pacific (TWP) Site. Title: Atmospheric Radiation Measurement (ARM) Data from the Tropical Western Pacific (TWP) Site. The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of

  11. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  12. Dispelling Clouds of Uncertainty

    DOE PAGES-Beta [OSTI]

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  13. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES-Beta [OSTI]

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  14. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES-Beta [OSTI]

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  15. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  16. Cloud and Precipitation Fields Around Darwin in the Transition Season

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Precipitation Fields Around Darwin in the Transition Season P. T. May Bureau of Meteorology Research Centre Melbourne, 3001, Victoria, Australia Introduction An interesting, and very relevant question, for the Atmospheric Radiation Measurement (ARM) Program is how cloud characteristics and their seasonal and diurnal variation changes across the tropics. In particular, how does he cloud field around the new SRCS site compare with nearby regions. Thus, the aim of this study is to look at the

  17. »ÃµÆƬ 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Radiative Forcings of Thin Cirrus in the Tropical Atmosphere Using AIRS/ARM Data Qing Yue, K. N. Liou, and Y. Gu University of California, Los Angeles, Los Angeles, California Introduction and Motivation * Cirrus clouds are the highest clouds in the troposphere, regularly cover 20-30% of the globe (Liou 1986) and have been found to have a high frequency of occurrence (e. g. Wylie et al. 2004). * Given the high location, large coverage, and frequent occurrence, the effect of cirrus clouds on

  18. Microsoft PowerPoint - TWPICEwelcome-Wisco_2006.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TWP-ICE Workshop: Tropical Warm Pool - International Cloud Experiment, Darwin, Australia Warren Wiscombe ARM Chief Scientist Brookhaven National Lab Nov 2006 TWP-ICE Workshop 2 Thanks to Jim Mather, Peter May, and Christian Jakob for a great intelligently- designed experiment! Data to study: links between storm intensity and cirrus how cirrus "evolves" environmental control boundary layer structure and evolution unexpected: surface fluxes over tropical ocean at high wind speeds! Nov

  19. Dispelling Clouds of Uncertainty

    SciTech Connect (OSTI)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  20. ARM - Measurement - Cloud location

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ice supersaturation, particle growth, and number concentration in cirrus clouds." ... Cloud model simulations of cirrus clouds using large-scale forcing (left panel) and ...

  2. Multiwavelength observations of a devleoping cloud system: The FIRE II 26 November 1991 case study

    SciTech Connect (OSTI)

    Intrieri, J.M.; Eberhard, W.L.; Uttal, T.

    1995-12-01

    Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the cloud system is described in terms of lidar backscatter, radar reflectivity and velocity, interferometer atmospheric spectra, and radiometer brightness temperature, integrated liquid water, and water vapor paths. Utilizing the difference in wavelength between the radar and lidar, and therefore their independent sensitivity to different regions of the same cloud, the cloud top, base, depth, and multiple layer heights can be determined with better accuracy than with either instrument alone. Combining the radar, lidar, and radiometer measurements using two different techniques allows an estimation of the vertical profile of cloud microphysical properties such as particle sizes. Enhancement of lidar backscatter near zenith revealed when highly oriented ice crystals were present. The authors demonstrate that no single instrument is sufficient to accurately describe cirrus clouds and that measurements in combination can provide important details on their geometric, radiative, and microphysical properties.

  3. Science Cloud 2011

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Cloud 2011 Science Cloud 2011 June 17, 2011 The Magellan teams at NERSC and Argonne recently presented a joint paper detailing their progress and conclusions. At Science Cloud 2011: The Second Workshop on Scientific Cloud Computing, in a paper titled "Magellan: Experiences from a Science Cloud" (PDF, 320KB), lead author Lavanya Ramakrishnan outlined the groups' most recent achievements and conclusions, including a successful run of real-time data analysis for the STAR

  4. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  5. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  6. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  7. Slide 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spatial Variability of Tropical Cirrus from 2006 TWP-ICE Junshik Um, Greg M. McFarquhar, and Matt Freer University of Illinois, Urbana IL junum@earth.uiuc.edu 1. Introduction In-situ cloud data acquired during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) are used to determine if the microphysical properties of tropical cirrus formed under differing conditions can be characterized in terms of prognostic variables in large-scale models such as temperature and ice water

  8. Tropical Western Pacific

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govSitesTropical Western Pacific TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Tropical Western Pacific-Inactive Manus, Papua New Guinea: 2° 3' 39.64" S, 147° 25' 31.43" E Nauru Island: 0° 31' 15.6" S, 166° 54' 57.60" E Darwin, Australia: 12° 25' 28.56" S, 130° 53'

  9. Cloud Properties Working Group Low Clouds Update

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Properties Working Group Low Clouds Update Low Clouds Update Jennifer Comstock Jennifer Comstock Dave Turner Dave Turner Andy Andy Vogelmann Vogelmann Instruments Instruments 90/150 GHz microwave radiometer 90/150 GHz microwave radiometer Deployed during COPS AMF Deployed during COPS AMF Exploring calibration w/ DPR ( Exploring calibration w/ DPR ( Crewell Crewell & & L L ö ö hnert hnert ) ) See COPS Breakout, Wednesday evening See COPS Breakout, Wednesday evening 183 GHz (GVR)

  10. The ARM program in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Clements, W.E.; Barnes, F.J.; Ackerman, T.P.; Mather, J.H.

    1998-12-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) Program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains of the United States, the Tropical Western Pacific, and the North Slope of Alaska and Adjacent Arctic Ocean. This paper describes the ARM program in the Tropical Western Pacific locale.

  11. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  12. Scientific Cloud Computing Misconceptions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scientific Cloud Computing Misconceptions Scientific Cloud Computing Misconceptions July 1, 2011 Part of the Magellan project was to understand both the possibilities and the limitations of cloud computing in the pursuit of science. At a recent conference, Magellan investigator Shane Canon outlined some persistent misconceptions about doing science in the cloud - and what Magellan has taught us about them. » Read the ISGTW story. » Download the slides (PDF, 4.1MB

  13. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect (OSTI)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  14. A Lagrangian Interpretation of 3D Tropical Cloud Structure: ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Retrievals with Satellite Data A. M. Vogelmann, K. L. Johnson, M. P. Jensen, M. A. Miller, and M. J. Bartholomew Brookhaven National Laboratory Upton, New York M. P. Jensen...

  15. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    SciTech Connect (OSTI)

    Kenneth Sassen

    2007-03-01

    cloud modeling groups, such as the GEWEX Cloud Simulation Study (GCSS) Cirrus Working Groups. In this paper we summarize our IOP-related accomplishments.

  16. ARM - Cloud Twist

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  17. ARM - Cloud Word Seek

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  18. ARM - Cloud Memory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  19. ARM - Cloud and Rain

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  20. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES-Beta [OSTI]

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  1. 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cirrus Cloud Structure within the Fokker-Planck Equation Framework K. Ivanova, H.N. ... the internal variability of cirrus clouds within the Fokker-Planck equation framework. ...

  2. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A High-Altitude Cloud Climatology From Satellite Data Hobbs, R. and Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Tenuous, high-altitude cirrus clouds have, in recent years, been found to be very widespread in the tropics. These clouds, which are often nearly invisible from the ground and from satellite, impact the work of many groups, including the ARM community. Aeromet has long been concerned about the impact of these clouds on airborne

  3. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    None, None

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  4. ARM - Measurement - Cloud extinction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption and/or scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  5. ARM - Measurement - Cloud fraction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    fraction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance

  6. Finance Idol Word Cloud

    Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Small Irregular Ice Crystals in Tropical Cirrus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Nousiainen T, H Lindqvist, GM McFarquhar, and J Um. 2011. "Small irregular ice crystals in tropical cirrus." Journal of the Atmospheric Sciences, 68(11), doi:10.1175/2011JAS3733.1. Examples of small

  8. Boundary Layer Cloud Turbulence Characteristics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  9. ARM - Measurement - Cloud effective radius

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  10. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  11. TC_CLOUD_REGIME.cdr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    intensity (e.g. May and Ballinger, 2007) Resulting Cloud Properties Examine rain DSD using polarimetric radar Examine ice cloud properties using MMCR and MPL Expect...

  12. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  13. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Properties of Cirrus over the Western Tropical Pacific as a Function of Their Assocaition with Deep Convective Outflows Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), University of Utah (a), Geophysical Fluid Dynamics Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar

  14. ARM - Kiosks - Tropical Wester Pacific

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Wester Pacific Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Kiosks - Tropical Wester Pacific A Manus High School teacher is interviewed for the TWP kiosks. A Manus High School teacher is interviewed for the TWP kiosks. In July 2003, ARM Education and Outreach set out to develop

  15. Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations: TROPICAL CHANNEL REFINEMENT IN MPAS-A

    DOE PAGES-Beta [OSTI]

    Martini, Matus N.; Gustafson, William I.; O'Brien, Travis A.; Ma, Po-Lun

    2015-09-01

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configurationmore » using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. The relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in earlier

  16. The Occurrence of Particle Size Distribution Bimodality in Midlatitude Cirrus as Inferred from Ground-Based Remote Sensing Data

    SciTech Connect (OSTI)

    Zhao, Yang; Mace, Gerald G.; Comstock, Jennifer M.

    2011-06-01

    To better understand the role of small particles in the microphysical processes and the radiative properties of cirrus, the reliability of historical in-situ data must be understood. Recent studies call into question the validity of that data because of shattering of large crystals on probe and aircraft surfaces thereby artificially amplifying the concentration of crystals smaller than approximately 50 ?m. We contend that the general character of the in-situ measurements must be consistent, in a broad sense, with statistics derived from long-term remote sensing data. To examine this consistency, an algorithm using Doppler radar moments and Raman lidar extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. Using case studies and statistics compiled over one year we show that the existence of high concentrations (> 1 cm-3 ) of small (sub 50 ?m) particles in cirrus are not consistent with any reasonable interpretation of the remote sensing data. We conclude that the high concentrations of small particles found in many aircraft data sets are therefore likely an artifact of the in situ measurement process.

  17. Marine Cloud Brightening

    SciTech Connect (OSTI)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  18. ARM - Measurement - Cloud base height

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  19. Magellan: A Cloud Computing Testbed

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Magellan News & Announcements Archive Petascale Initiative Exascale Computing APEX TOKIO: Total Knowledge of I/O Home » R & D » Archive » Magellan: A Cloud Computing Testbed Magellan: A Cloud Computing Testbed Cloud computing is gaining a foothold in the business world, but can clouds meet the specialized needs of scientists? That was one of the questions NERSC's Magellan cloud computing testbed explored between 2009 and 2011. The goal of Magellan, a project funded through the U.S.

  20. Interactions between a tropical mixed boundary layer and cumulus convection in a radiative-convective model

    SciTech Connect (OSTI)

    Dean, C.L.

    1993-05-01

    This report details a radiative-convective model, combining previously developed cumulus, stable cloud and radiation parameterizations with a boundary layer scheme, which was developed in the current study. The cloud model was modified to incorporate the effects of both small and large clouds. The boundary layer model was adapted from a mixed layer model was only slightly modified to couple it with the more sophisticated cloud model. The model was tested for a variety of imposed divergence profiles, which simulate the regions of the tropical ocean from approximately the intertropical Convergence Zone (ITCZ) to the subtropical high region. The sounding used to initialize the model for most of the runs is from the trade wind region of ATEX. For each experiment, the model was run with a timestep of 300 seconds for a period of 7 days.

  1. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  2. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  3. Science on the Hill: Methane cloud hunting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  4. ARM - Evaluation Product - Cloud Type

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsCloud Type ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Type [ ARM research - evaluation data product ] This data product determines a cloud type using cloud boundaries derived from vertically pointing lidar and radar clouds. It uses Active Remotely Sensed Cloud Locations (ARSCL) data as

  5. Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations

    SciTech Connect (OSTI)

    Martini, Matus N.; Gustafson, Jr., William I.; O'Brien, Travis A.; Ma, Po -Lun

    2015-09-13

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configuration using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. Furthermore, the relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in earlier

  6. Evaluation of Tropical Channel Refinement using MPAS-A Aquaplanet Simulations

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; O'Brien, Travis A.; Ma, Po-Lun

    2015-09-13

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configuration using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. The relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in earlier studies that

  7. Evaluation of high‐level clouds in cloud resolving model...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model 10.10022015MS000478 simulations with ARM and KWAJEX observations Key Points: * Two-moment microphysics improves simulated ...

  8. Off-site Intensive Operational Period

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) intensive operational period (IOP), under way through July in South Florida. ...

  9. 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005 Figure 2. 1-km visible ... of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment. (http:...

  10. ARM - Field Campaign - CRYSTAL-FACE

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Regional Study of Tropical Anvils and Cirrus Layers -Florida Area Cirrus Experiment). ... of CRYSTAL would be held in that region. Florida was chosen for the initial phase of ...

  11. Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth

    Office of Scientific and Technical Information (OSTI)

    (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report (Technical Report) | SciTech Connect Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report This report describes

  12. Tropical Western Pacific site science mission plan. Semiannual project report, January--June 1998

    SciTech Connect (OSTI)

    Ackerman, T.; Mather, J.; Clements, W.; Barnes, F.

    1998-11-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains (SGP) of the United States, the Tropical Western Pacific (TWP), and the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO). This Site Science Mission Plan [RPT(TWP)-010.000] describes the ARM program in the Tropical Western Pacific locale.

  13. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K.

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  14. Bringing Clouds into Focus

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bringing Clouds into Focus Bringing Clouds into Focus A New Global Climate Model May Reduce the Uncertainty of Climate Forecasting May 11, 2010 Contact: John Hules, JAHules@lbl.gov , +1 510 486 6008 Randall-fig4.png The large data sets generated by the GCRM require new analysis and visualization capabilities. This 3D plot of vorticity isosurfaces was developed using VisIt, a 3D visualization tool with a parallel distributed architecture, which is being extended to support the geodesic grid used

  15. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  16. UPDATE: Tropical Storm Isaac | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UPDATE: Tropical Storm Isaac UPDATE: Tropical Storm Isaac August 27, 2012 - 6:30pm Addthis Satellite image of Tropical Storm Isaac. | Courtesy of NOAA. Satellite image of Tropical Storm Isaac. | Courtesy of NOAA. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Tropical Storm Isaac has impacted Florida and is expected to make landfall along the Gulf Coast by early morning on August 29. As thousands of Gulf Coast residents are without power, the Energy

  17. ARM - Measurement - Cloud condensation nuclei

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    condensation nuclei ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud condensation nuclei Small particles (typically 0.0002 mm, or 1/100 th the size of a cloud droplet) about which cloud droplets coalesce. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  18. ARM - Measurement - Images of Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  19. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  20. Evaluating and Constraining Ice Cloud Parameterizations in CAM5 using Aircraft Measurements from the SPARTICUS Campaign

    SciTech Connect (OSTI)

    Zhang, Kai; Liu, Xiaohong; Wang, Minghuai; Comstock, Jennifer M.; Mitchell, David; Mishra, Subhashree; Mace, Gerald G.

    2013-01-01

    This study uses aircraft measurements of relative humidity and ice crystal size distribution collected in synoptic cirrus during the SPARTICUS (Small PARTicles In CirrUS) field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. The probability density function (PDF) of ice crystal number concentration (Ni) derived from high frequency (1 Hz) measurements features a strong dependence on ambient temperature. As temperature decreases from -35C to -62C, the peak in the PDF shifts from 10-20 L-1 to 200-1000 L-1, while the ice crystal number concentration shows a factor of 6-7 increase. Model simulations are performed with two different insitu ice nucleation schemes. One of the schemes can reproduce a clear increase of Ni with decreasing temperature, by using either an observation based ice nuclei spectrum or a classical theory based spectrum with a relatively low (5%-10%) maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%), shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the auto-conversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient and 250 um for the critical ice crystal size can produce good agreements between model simulation and the SPARTICUS measurements in terms of ice crystal number concentration and effective radius. The climate impact of perturbing these parameters is also discussed.

  1. First observations of tracking clouds using scanning ARM cloud radars

    DOE PAGES-Beta [OSTI]

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  2. boehm-98.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    a cirrus cloud model. Model The cirrus model is a two-dimensional large-eddy simulation (LES) model with coupled dynamics, radiative transfer, and microphysics modules. The...

  3. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Authors: Liu, Zheng 1 ; Muhlbauer, Andreas 2 ; ...

  4. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France D. Gillotay Institute d'Aeronomie Spatiale de Belgique Brussels, Belgium Introduction In the effort to resolve uncertainties about global climate change, the Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) is improving the treatment of cloud radiative forcing and feedbacks in general

  5. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  6. First observations of tracking clouds using scanning ARM cloud...

    Office of Scientific and Technical Information (OSTI)

    These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator ...

  7. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW.

    SciTech Connect (OSTI)

    LIU,Y.; DAUM,P.H.; CHAI,S.K.; LIU,F.

    2002-02-12

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments.

  8. Holistic Interactions of Shallow Clouds,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems Research Instrumentation HI-SCALE will utilize the ARM Aerial Facility's Gulfstream-159 (G-1), as well as ground instrumentation located at the SGP megasite. 7e G-1 will complete transects over the site at multiple altitudes within the boundary layer, within clouds, and above clouds. 7e payload on the G-1 includes: * high frequency meteorological and radiation (both up and downwelling) measurements that also permit computing

  9. ARM - Measurement - Cloud droplet size

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    droplet size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for

  10. ARM - Measurement - Cloud ice particle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or

  11. Cumulus Clouds and Reflected Sunlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cumulus Clouds and Reflected Sunlight from Landsat ETM+ G. Wen and L. Oreopoulos National Aeronautics and Space Administration Goddard Space Flight Center University of Maryland Baltimore County Joint Center of Earth System Technology Greenbelt, Maryland R. F. Cahalan and S. C. Tsay National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction Cumulus clouds attenuate solar radiation casting shows on the ground. Cumulus clouds can also enhance solar

  12. ARM - Measurement - Cloud optical depth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TWST : Three Waveband Spectrally-agile Technique Sensor WRF-CHEM : Weather Research and Forecasting (WRF) Model Output Value-Added Products LBTM-MINNIS : Minnis Cloud Products...

  13. ARM - Measurement - Cloud top height

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    RUC : Rapid Update Cycle Model Data Field Campaign Instruments CO2LIDAR : Carbon Dioxide Doppler Lidar MPLCMASK : Cloud mask from Micropulse Lidar VARANAL : Constrained...

  14. Widget:LogoCloud | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LogoCloud Jump to: navigation, search This widget adds css selectors and javascript for the Template:LogoCloud. For example: Widget:LogoCloud Retrieved from "http:...

  15. Zenith Radiance Retrieval of Cloud Properties

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud

  16. Satellite determination of stratus cloud microphysical properties...

    Office of Scientific and Technical Information (OSTI)

    of liquid water path from SSMI, broadband albedo from ERBE, and cloud characteristics from ISCCP are used to study stratus regions. An average cloud liquid water path of ...

  17. Clouds Environmental Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Clouds Environmental Ltd Jump to: navigation, search Name: Clouds Environmental Ltd Place: Portsmouth, United Kingdom Zip: PO3 5EG Product: Independent consultancy specialising in...

  18. [Multifractal cloud properties data assessment

    SciTech Connect (OSTI)

    Gautier, C.; Ricchiazzi, P.; Peterson, P.; Lavallee, D. ); Frouin, R.; Lubin, D. ); Lovejoy, S. ); Schertzer, D. )

    1992-05-06

    Our group has been very active over the last year, analyzing a number of data sets to characterize multifractal cloud properties and assess the effects of clouds on surface radiation properties (spectral and broadband). The data sets analyzed include: AVHRR observations of clouds over the ocean, SPOT observations of clouds over the ocean, SSM/I observations of clouds over the ocean, pyranometer data with all-sky photographs, pyrgeometer data all-sky photographs, and spectral surface irradiance all-sky photographs. A number of radiative transfer computations have been performed to help in the interpretation of these observations or provide theoretical guidance for their analysis. Finally 4 number of radiative transfer models have been acquired and tested to prepare for the interpretation of ARM/CART data.

  19. Long-Term Operation Of Ground-Based Atmospheric Sensing Systems In The Tropical Western Pacific

    SciTech Connect (OSTI)

    Ivey, Mark; Jones, Larry J.; Porch, W. M.; Apple, Monty L.; Widener, Kevin B.

    2004-10-14

    Three semi-autonomous atmospheric sensing systems were installed in the tropical western Pacific region. The first of these Atmospheric Radiation and Cloud Stations (ARCS) began operation in 1996. Each ARCS is configured as a system-of-systems since it comprises an ensemble of independent instrument systems. The ARCS collect, process, and transmit large volumes of cloud, solar and thermal radiation, and meteorological data to support climate studies and climate-modeling improvements as part of the U.S Department of Energys Atmospheric and Radiation Measurement (ARM) Program. Data from these tropical ARCS stations have been used for satellite ground-truth data comparisons and validations, including comparisons for MTI and AQUA satellite data. Our experiences with these systems in the tropics led to modifications in their design. An ongoing international logistics effort is required to keep gigabytes per day of quality-assured data flowing to the ARM programs archives. Design criteria, performance, communications methods, and the day-to-day logistics required to support long-term operations of ground-based remote atmospheric sensing systems are discussed. End-to-end data flow from the ARCS systems to the ARM Program archives is discussed.

  20. Ecotoxicology of tropical marine ecosystems

    SciTech Connect (OSTI)

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  1. Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical...

    Office of Scientific and Technical Information (OSTI)

    A good range of cloud conditions were observed from clear sky to heavy rainfall. Authors: Niple, E. R. 1 ; Scott, H. E. 1 + Show Author Affiliations Aerodyne Research, Inc., ...

  2. Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations

    DOE PAGES-Beta [OSTI]

    Martini, Matus N.; Gustafson, Jr., William I.; O'Brien, Travis A.; Ma, Po -Lun

    2015-09-13

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configurationmore » using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. Furthermore, the relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in

  3. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Relationships Between Cirrus and Large-Scale Meteorology Benson, S., Mace, G.G., and Vernon, E.N., University of Utah Cirrus cloud properties are influenced by the large-scale meteorology in which they form and evolve. Studying the large-scale meteorology that exists during cirrus events, and the relationships between the large-scale meteorology and cirrus cloud properties, will improve our understanding of cirrus clouds. The NCEP/NCAR reanalysis product is used to examine the average

  4. Tropical Forest Foundation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Virginia. About "The Tropical Forest Foundation (TFF) is an international, non-profit, educational institution committed to advancing environmental stewardship, economic...

  5. Differences between nonprecipitating tropical and trade wind...

    Office of Scientific and Technical Information (OSTI)

    wind marine shallow cumuli This content will become publicly available on November 13, 2016 Prev Next Title: Differences between nonprecipitating tropical and trade wind ...

  6. cloud | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  7. TWP Island Cloud Trail Studies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pacific Island Cloud Trail Studies W. M. Porch Los Alamos National Laboratory Los Alamos, New Mexico S. Winiecki University of Chicago Chicago, Illinois Introduction Images and surface temperature measurements from the U.S. Department of Energy (DOE) Multi- spectral Thermal Imaging (MTI) satellite are combined with geostationary meteorological satellite (GMS) images during 2000 and 2001 to better understand cloud trail formation characteristics from the Atmospheric Radiation Measurement (ARM)

  8. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  9. The Role of the Tropics in Abrupt Climate Changes

    SciTech Connect (OSTI)

    Fedorov, Alexey

    2013-12-07

    Topics addressed include: abrupt climate changes and ocean circulation in the tropics; what controls the ocean thermal structure in the tropics; a permanent El Niño in paleoclimates; the energetics of the tropical ocean.

  10. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations Citation Details In-Document Search Title: Evaluation of high-level clouds in ...

  11. Arctic Stratus and Tropical Deep Convection. Integrating Measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Arctic Stratus and Tropical Deep Convection. Integrating Measurements and Simulations Citation Details In-Document Search Title: Arctic Stratus and Tropical Deep ...

  12. International Crops Research Institute for the Semi Arid Tropics...

    Open Energy Information (Open El) [EERE & EIA]

    Crops Research Institute for the Semi Arid Tropics Jump to: navigation, search Name: International Crops Research Institute for the Semi-Arid Tropics Place: India Sector: Biofuels...

  13. Lunty Tropical Fish Aquaculture Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Lunty Tropical Fish Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Lunty Tropical Fish Aquaculture Low Temperature Geothermal Facility Facility...

  14. Preliminary Studies on the Variational Assimilation of Cloud...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Studies on the Variational Assimilation of Cloud-Radiation Observations Using ARM ... A linearized cloud scheme and a radiation scheme including cloud effects have been ...

  15. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    Title: MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary Cloud droplet size and optical depth are the most fundamental properties for understanding cloud ...

  16. A novel approach for introducing cloud spatial structure into...

    Office of Scientific and Technical Information (OSTI)

    A novel approach for introducing cloud spatial structure into cloud radiative transfer ... Sponsoring Org: USDOE Country of Publication: United Kingdom Language: English Word Cloud ...

  17. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations...

    Office of Scientific and Technical Information (OSTI)

    the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. ...

  18. A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region

    SciTech Connect (OSTI)

    Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.; Trabachino, Lynne C.

    2015-09-09

    Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurements of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m–2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m–2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m–2, and varies widely from day to day.

  19. A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region

    DOE PAGES-Beta [OSTI]

    Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.; Trabachino, Lynne C.

    2015-09-09

    Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurementsmore » of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m–2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m–2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m–2, and varies widely from day to day.« less

  20. Radiative Effects of Cloud Inhomogeneity and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Note that the peak concentration of cloud water is independent of the cloud base height, ... The upper panel is for the SGP data, and the lower panel is for the CRM data (see text for ...

  1. ARM Cloud Properties Working Group: Meeting Logistics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to 1630: J. Comstock - Clouds with Low Optical Water Depth (CLOWD) 1630 to 1645: B. Albrecht - Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CLAP-MBL) 1645 to ...

  2. Radar detection of cloud-seeding effects

    SciTech Connect (OSTI)

    Hobbs, P.V.; Lyons, J.H.; Locatelli, J.D.; Biswas, K.R.; Radke, L.F.; Weiss, R.R. Sr.; Rangno, A.L.

    1981-09-11

    The effects on precipitation of artifically seeding clouds with dry ice were monitored from cloud to ground with a radar that has a wavelength of 8.6 millimeters.

  3. ARM - Field Campaign - Fall 1997 Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The primary objective of the Cloud IOP was to generate a multi-platform data set that can ... Given the diversity of cloud types sampled during the IOP, the analysis of this data set ...

  4. Researching Impact of Clouds on Solar Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sandia National Laboratories (SNL) researchers developed a new system to monitor how clouds affect large-scale solar photovoltaic (PV) power plants. By observing cloud shape, size and movement, the...

  5. Small Particles in Cirrus

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reactor Technologies » Small Modular Reactors (SMRs) Small Modular Reactors (SMRs) NuScale Power Reactors. ©NuScale Power, LLC, All Rights Reserved NuScale Power Reactors. ©NuScale Power, LLC, All Rights Reserved Small Modular Reactors (SMRs) are nuclear power plants that are smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). These smaller, compact designs are factory-fabricated reactors that can be transported by truck or rail to a nuclear

  6. Small Particles in Cirrus

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Aoril

  7. What Makes Clouds Form, Grow and Die?

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Makes Clouds Form, Grow and Die? What Makes Clouds Form, Grow and Die? Simulations Show Raindrops Physics May Affect Climate Model Accuracy February 19, 2015 thunderstorm Brazil shuttle NASA 1984 540 PNNL scientists used real-world observations to simulate how small clouds are likely to stay shallow, while larger clouds grow deeper because they mix with less dry air. Pictured are small and large thunderstorms growing over southern Brazil, taken from the space shuttle. Image: NASA Johnson Space

  8. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  9. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  10. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  11. Unlocking the Secrets of Clouds

    Energy.gov [DOE]

    Clouds may look soft, fluffy and harmless to the untrained eye, but to an expert climate model scientist they represent great challenges. Fortunately the Atmospheric Radiation Measurement (ARM) Climate and Research Facility is kicking off a five-month study which should significantly clear the air.

  12. Determination of Cloud Base Height, Wind Velocity, and Short-Range Cloud

    Office of Scientific and Technical Information (OSTI)

    Structure Using Multiple Sky Imagers Field Campaign Report (Technical Report) | SciTech Connect Determination of Cloud Base Height, Wind Velocity, and Short-Range Cloud Structure Using Multiple Sky Imagers Field Campaign Report Citation Details In-Document Search Title: Determination of Cloud Base Height, Wind Velocity, and Short-Range Cloud Structure Using Multiple Sky Imagers Field Campaign Report Clouds are a central focus of the U.S. Department of Energy (DOE)'s Atmospheric System

  13. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | DOE PAGES Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to

  14. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect (OSTI)

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  15. Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds

    DOE PAGES-Beta [OSTI]

    Terai, C. R.; Wood, R.; Kubar, T. L.

    2015-09-05

    Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (Nd) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. We note that consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equalmore » to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with Nd. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high Nd. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and Nd. This suggests other controls on precipitation apart from LWP and Nd and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects.« less

  16. Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds

    SciTech Connect (OSTI)

    Terai, C. R.; Wood, R.; Kubar, T. L.

    2015-09-05

    Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (Nd) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. We note that consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equal to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with Nd. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high Nd. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and Nd. This suggests other controls on precipitation apart from LWP and Nd and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects.

  17. DOE national user facility in the Tropical Western Pacific.

    SciTech Connect (OSTI)

    Jones, L. A.; Porch, W. M.; Sisterson, Doug L.; Mather, J. H.; Long, C. N.

    2004-01-01

    In July 2003, the Department of Energy's Office of Biological and Environmental Research designated the Atmospheric Radiation Measurement sites as National User Facilities and renamed them the ARM Climate Research Facility (ACRF). As a result, the former ARM Cloud and Radiation Test bed (CART) sites are now collectively called Climate Research Sites. Part of the conditions associated with funding for ACRF is that the ARM program must attract new users. Located in Australia, and the island nations of Papua New Guinea and the Republic of Nauru, the three Tropical Western Pacific (TWP) research facilities offer unique scientific opportunities to prospective users. Although the locations of the facilities pose significant logistical challenges, particularly the two island sites, the TWP Office addresses these issues so that prospective users can focus on their research. The TWP Office oversees the operation of these sites by collaborating with the governments of Australia, Papua New Guinea, and the Republic of Nauru. Local observers are trained to effectively operate and maintain the facilities, and the state-side TWP Office offers supporting resources including daily instrument monitoring; equipment shipping, inventory tracking; customs coordination; and a readily deployable technical maintenance team at relatively minimal cost to prospective users. Satellite communications allow continuous, near-real time data from all three stations. The TWP Office also works diligently to maintain good local government and community relations with active outreach programs. This paper presents the TWP research facilities as the valuable resources they are to the scientific community.

  18. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect (OSTI)

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  19. Study of Multi-Scale Cloud Processes Over the Tropical Western...

    Office of Scientific and Technical Information (OSTI)

    However, a significant challenge in using CRMs in the TWP is that the region lacks conventional data, so large uncertainty exists in defining the large-scale environment for ...

  20. ARM - Publications: Science Team Meeting Documents: The evolution of anvil

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    microphysics observed during CRYSTAL-FACE The evolution of anvil microphysics observed during CRYSTAL-FACE Comstock, Jennifer Pacific Northwest National Laboratory Mather, James Pacific Northwest National Laboratory Deep convective cloud systems produce extensive cirrus anvils that play an important role in humidifying the upper troposphere and lower stratosphere and strongly affect the radiative balance in the atmosphere, particularly in the tropics. Current general circulation models

  1. Vertical microphysical profiles of convective clouds as a tool for

    Office of Scientific and Technical Information (OSTI)

    obtaining aerosol cloud-mediated climate forcings (Technical Report) | SciTech Connect Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings Citation Details In-Document Search Title: Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud

  2. Clouds, Aerosols and Precipitation in

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 May 2009-December 2010 Rob Wood, University of Washington Rob Wood, University of Washington AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager CAP-MBL Proposal Team Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation,

  3. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud Imager J. A. Shaw and B. ... (ICI operated from late January into May at the North Slope of Alaska NSA ARM site). ...

  4. Storm Peak Lab Cloud Property Validation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peak Lab Cloud Property Validation Experiment (STORMVEX) Operated by the Atmospheric Radiation Measurement (ARM) Climate Research Facility for the U.S. Department of Energy, the second ARM Mobile Facility (AMF2) begins its inaugural deployment November 2010 in Steamboat Springs, Colorado, for the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX. For six months, the comprehensive suite of AMF2 instruments will obtain measurements of cloud and aerosol properties at various sites

  5. ARM - Measurement - Cloud particle number concentration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  6. ARM - Measurement - Cloud particle size distribution

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  7. Midlatitude Continental Convective Clouds Experiment Science Objective

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Midlatitude Continental Convective Clouds Experiment Science Objective Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth, and decay of clouds and precipitation associated with storm systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth. To

  8. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations

    SciTech Connect (OSTI)

    Qian, Yun; Long, Charles N.; Wang, Hailong; Comstock, Jennifer M.; McFarlane, Sally A.; Xie, Shaocheng

    2012-02-17

    , suggesting that the Arctic region continues to challenge cloud simulations in climate models. Most of the GCMs tend to underpredict CF and fail to capture the seasonal variation of CF at middle and low levels in the tropics. The high altitude CF is much larger in the GCMs than the observation and the inter-model variability of CF also reaches maximum at high levels in the tropics. Most of the GCMs tend to underpredict CF by 50-150% relative to the measurement average at low and middle levels over SGP. While the GCMs generally capture the maximum CF in the boundary layer and vertical variability, the inter-model deviation is largest near surface over the Arctic. The internal variability of CF simulated in ensemble runs with the same model is very minimal.

  9. Benefits of Tropical Forest Management Under the New Climate...

    Open Energy Information (Open El) [EERE & EIA]

    of Tropical Forest Management Under the New Climate Change Agreement-A Case Study in Cambodia Jump to: navigation, search Name Benefits of Tropical Forest Management Under the New...

  10. Tropical BioEnergia SA | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    BioEnergia SA Jump to: navigation, search Name: Tropical BioEnergia SA Place: Edeia, Goias, Brazil Product: Tropical BioEnergia SA is a joint venture which will build and operate...

  11. Characterizing Arctic Mixed-phase Cloud Structure

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    have two distinguished cloud base heights (CBHs) that can be defined by both ceilometer (black dots) and micropulse lidar (MPL; pink dots) measurements (Figure 1). For a...

  12. An Analysis of Cloud Absorption During

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Analysis of Cloud Absorption During ARESE II (Spring 2000) D. M. Powell, R. T. Marchand, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction...

  13. Exploring Stratocumulus Cloud-Top Entrainment Processes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Reference(s) Albrecht B, M Fang, and V Ghate. 2016. "Exploring Stratocumulus Cloud-Top ... Contributors Bruce A. Albrecht, University of Miami Entrainment velocities from the eddy ...

  14. ARM - Field Campaign - Cloud Radar IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of aerosol properties during clear-sky conditions. The ETL Radar Meteorology and Oceanography Division will field their NOAAK scanning cloud radar near the new ARM millimeter...

  15. ARM - Midlatitude Continental Convective Clouds - Single Column...

    Office of Scientific and Technical Information (OSTI)

    - Single Column Model Forcing (xie-scmforcing) Title: ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scmforcing) The constrained variational ...

  16. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  17. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds...

  18. ARM - Evaluation Product - Cloud Classification VAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    properties includes cloud boundaries, thickness, phase, type, and precipitation information, and hence provides a useful tool for evaluation of model simulations and...

  19. The LANL Cloud-Aerosol Model

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    that incorporates two unique aspects in its formulation. First, the model employs a nonlinear solver that requires cloud-aerosol parameterizations be smooth or contain reasonable...

  20. Mountain-induced Dynamics Influence Cloud Phase

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2010-2011 via coordinated projects targeting clouds, precipitation, and dynamics in the Park Range of Colorado. The National Science Foundation sponsored aircraft measurements as...

  1. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  2. ARM - Field Campaign - Spring Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsSpring Cloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior

  3. Ground-based Microwave Cloud Tomography

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Courtesy of Bernhard Mayer Cloud structure important to radiation - Cumulus (Benner & Evans 2001, Pincus et al. 2005), deep convection (DiGiuseppe & Tompkins 2003) - Horizontal...

  4. Section 2

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    JACCS/MRI Cirrus Group: S. Asano (Leader), A. Uchiyama, M. Shiobara, M. Fukabori, M. Murakami, H. Mizuno, Y. Yamada, N. Orikasa, A. Yamamoto, M. Hirota, T. Nagai, T. Fujimoto, T. Kobayashi, H. Nirasawa. 5 Ground-Based Cirrus Observation in the Japanese Cloud and Climate Study: A Sonde System for Radiation and Cloud Microphysics Measurement S. Asano and JACCS Cirrus Group (a) Meteorological Research Institute Tsukuba, Ibaraki 305 Japan Introduction Ground-Based Cirrus Clouds play a crucial role

  5. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  6. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  7. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  8. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Citation Details In-Document ...

  9. Climate Science: Tropical Expansion by Ocean Swing

    SciTech Connect (OSTI)

    Lu, Jian

    2014-04-01

    The tropical belt has become wider over the past decades, but climate models fall short of capturing the full rate of the expansion. The latest analysis of the climate simulations suggests that a long-term swing of the Pacific Decadal Oscillation is the main missing cause.

  10. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    SciTech Connect (OSTI)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W.

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  11. Macquarie Island Cloud and Radiation Experiment (MICRE) Science...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan RT Marchand SP ... DOESC-ARM-15-082 Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan ...

  12. ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    data. Cloud microphysical properties derived from Mace's data of atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates are regridded to a...

  13. An Improved Cloud Classification Algorithm Based on the SGP CART...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    clouds according to ground- based solar flux measurements. ... Great Plains (SGP) Cloud and Radiation Testbed (CART) site. ... Fuzzy sets are basics for fuzzy logic-based classification. ...

  14. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  15. Humidity trends imply increased sensitivity to clouds in a warming...

    Office of Scientific and Technical Information (OSTI)

    is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. ...

  16. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysic...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    these fields include cloud altitude, cloud amount, liquid and ice content, particle size spectra, and radiative fluxes at the surface and the TOA. Comparisons with Atmospheric...

  17. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  18. Joint retrievals of cloud and drizzle in marine boundary layer...

    Office of Scientific and Technical Information (OSTI)

    radar, lidar and zenith radiances Prev Next Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith ...

  19. Determining Cloud Ice Water Path from High-Frequency Microwave...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu ... A better understanding of cloud water content and its large-scale distribution ...

  20. City of Red Cloud, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Red Cloud, Nebraska (Utility Company) Jump to: navigation, search Name: Red Cloud Municipal Power Place: Nebraska Phone Number: 402-746-2215 Website: www.redcloudnebraska.comgover...

  1. ARM: Aerosol Observing System (AOS): cloud condensation nuclei...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data Aerosol Observing System (AOS): cloud condensation nuclei data Authors: Scott Smith ; Cynthia Salwen ; ...

  2. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website ARM ... Campaign : MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01 - 2005.07.30 ...

  3. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen MJ ... Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen, ...

  4. ARM: AOS: Cloud Condensation Nuclei Counter (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS: Cloud Condensation Nuclei Counter AOS: Cloud Condensation Nuclei Counter Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; ...

  5. Direct Numerical Simulations and Robust Predictions of Cloud...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...

  6. ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF...

    Office of Scientific and Technical Information (OSTI)

    transmitted RF power Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Authors: Karen ...

  7. Distribution and Validation of Cloud Cover Derived from AVHRR...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... maps developed for the Cloud's and the Earth's Radiant Energy System (CERES) Project. ... for the Cloud's and the Earth's Radiant Energy System (CERES) Experiment. J. Appl. ...

  8. Cloud microphysical relationships and their implication on entrainment...

    Office of Scientific and Technical Information (OSTI)

    Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project Citation Details ...

  9. Summary of workshop session F on electron-cloud instabilities...

    Office of Scientific and Technical Information (OSTI)

    Conference: Summary of workshop session F on electron-cloud instabilities Citation Details In-Document Search Title: Summary of workshop session F on electron-cloud instabilities ...

  10. Understanding and Improving CRM and GCM Simulations of Cloud...

    Office of Scientific and Technical Information (OSTI)

    of convection, clouds and radiative heating rate and fluxes using the ARM ... as well as cloud water contents in producing net radiative fluxes closer to observations. ...

  11. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  12. Towards a Characterization of Arctic Mixed-Phase Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    manual classification of cloud phase. Using collocated cloud radar and depolarization lidar observations, it is shown that mixed-phase conditions have a high correlation with a...

  13. Final Report on the Development of an Improved Cloud Microphysical...

    Office of Scientific and Technical Information (OSTI)

    Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative ... integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds ...

  14. Thin Liquid Water Clouds: Their Importance and Our Challenge...

    Office of Scientific and Technical Information (OSTI)

    Thin Liquid Water Clouds: Their Importance and Our Challenge Citation Details In-Document Search Title: Thin Liquid Water Clouds: Their Importance and Our Challenge Many of the ...

  15. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

    VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

  16. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  17. Modeling Incoherent Electron Cloud Effects

    SciTech Connect (OSTI)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  18. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  19. HOT HYDROGEN IN DIFFUSE CLOUDS

    SciTech Connect (OSTI)

    Cecchi-Pestellini, Cesare; Duley, Walt W.; Williams, David A. E-mail: wwduley@uwaterloo.ca

    2012-08-20

    Laboratory evidence suggests that recombination of adsorbed radicals may cause an abrupt temperature excursion of a dust grain to about 1000 K. One consequence of this is the rapid desorption of adsorbed H{sub 2} molecules with excitation temperatures of this magnitude. We compute the consequences of injection of hot H{sub 2} into cold diffuse interstellar gas at a rate of 1% of the canonical H{sub 2} formation rate. We find that the level populations of H{sub 2} in J = 3, 4, and 5 are close to observed values, and that the abundances of CH{sup +} and OH formed in reactions with hot hydrogen are close to the values obtained from observations of diffuse clouds.

  20. Interannual variation of the surface temperature of tropical forests from satellite observations

    SciTech Connect (OSTI)

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).

  1. Interannual variation of the surface temperature of tropical forests from satellite observations

    DOE PAGES-Beta [OSTI]

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less

  2. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Implications of Enhanced Relative Humidity in Cold Tropical Cirrus Jensen, E.J., NASA Ames Research Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In situ measurements of water vapor concentration and temperature in tropical cirrus during the CRYSTAL-FACE mission indicate that the equilibrium relative humidity within cirrus at T < 200 K is about 20-30% higher than ice saturation. This evidence comes from both persistent contrail sampling and cold anvil cirrus

  3. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE PAGES-Beta [OSTI]

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 % errorsmore » using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  4. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE PAGES-Beta [OSTI]

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations. Cloud-Jmore » is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  5. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE PAGES-Beta [OSTI]

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  6. Absorption of solar radiation in broken clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B.

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  7. Tropical Western Pacific: A Year in Darwin

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pacific: A Year in Darwin C. N. Long, J. H. Mather, and S. A. McFarlane Pacific Northwest National Laboratory Richland, Washington L. Jones, W. M. Porch, and A. Haruta Los Alamos National Laboratory Los Alamos, New Mexico Introduction In March 2002, the third Tropical Western Pacific (TWP) Atmospheric Radiation Measurement (ARM) site was installed adjacent to the international airport in Darwin, Australia (12.42 S latitude, 130.89 E longitude; Figure 1). Darwin is located on the northwest coast

  8. Albedo and transmittance of inhomogeneous stratus clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  9. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  10. Cloud-Resolving Model Simulation and Mosaic Treatment of Subgrid Cloud-Radiation Interaction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Energy Cloud-Based Transportation Management System Delivers Savings Cloud-Based Transportation Management System Delivers Savings October 21, 2014 - 1:53pm Addthis DOE's cloud based transportation management system (ATLAS) offers dramatically enhanced capabilities and modernization. ATLAS provides a powerful user-friendly system built to allow access to information to meet transportation needs. Its processes promote regulatory compliance, while providing access to qualified carriers and

  11. X.509 Authentication/Authorization in FermiCloud

    SciTech Connect (OSTI)

    Kim, Hyunwoo; Timm, Steven

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  12. Developing and Evaluating Ice Cloud Parameterizations by

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  13. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  14. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency...

  15. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw...

  16. ARM - Field Campaign - Boundary Layer Cloud IOP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at ...

  17. QER- Comment of Cloud Peak Energy Inc

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  18. Parameterizations of Cloud Microphysics and Indirect Aerosol...

    Office of Scientific and Technical Information (OSTI)

    A recent report published by the National Academy of Science states "The greatest ... 1977 and the "semi-direct" effect on cloud coverage e.g., Ackerman et al., 2000. ...

  19. Building a private cloud with Open Nebula

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Short Ryan Glenn Ross Nordeen Mentors: Andree Jacobson ISTI-OFF David Kennel DCS-1 LA-UR 10-05197 Why use Virtualized Cloud Computing for HPC? * Support Legacy Software Stacks *...

  20. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  1. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  2. Electron-Cloud Build-Up: Summary

    SciTech Connect (OSTI)

    Furman, M.A.

    2007-06-18

    I present a summary of topics relevant to the electron-cloud build-up and dissipation that were presented at the International Workshop on Electron-Cloud Effects 'ECLOUD 07' (Daegu, S. Korea, April 9-12, 2007). This summary is not meant to be a comprehensive review of the talks. Rather, I focus on those developments that I found, in my personal opinion, especially interesting. The contributions, all excellent, are posted in http://chep.knu.ac.kr/ecloud07/.

  3. Science on the Hill: Methane cloud hunting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Methane cloud hunting Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search of the sources.

  4. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  5. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  6. Magellan Explores Cloud Computing for DOE's Scientific Mission

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Explores Cloud Computing for DOE's Scientific Mission Magellan Explores Cloud Computing for DOE's Scientific Mission March 30, 2011 Cloud Control -This is a picture of the Magellan management and network control racks at NERSC. To test cloud computing for scientific capability, NERSC and the Argonne Leadership Computing Facility (ALCF) installed purpose-built testbeds for running scientific applications on the IBM iDataPlex cluster. (Photo Credit: Roy Kaltschmidt) Cloud computing is gaining

  7. Longwave scattering effects on fluxes in broken cloud fields

    SciTech Connect (OSTI)

    Takara, E.E.; Ellingson, R.G.

    1996-04-01

    The optical properties of clouds in the radiative energy balance are important. Most works on the effects of scattering have been in the shortwave; but longwave effects can be significant. In this work, the fluxes above and below a single cloud layer are presented, along with the errors in assuming flat black plate clouds or black clouds. The predicted fluxes are the averaged results of analysis of several fields with the same cloud amount.

  8. Simulating Arctic mixed-phase clouds: Sensitivity to environmental

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    conditions and cloud microphysics processes Simulating Arctic mixed-phase clouds: Sensitivity to environmental conditions and cloud microphysics processes Sednev, Igor Lawrence Berkeley National Laboratory Menon, Surabi Lawrence Berkeley National Laboratory McFarquhar, Greg University of Illinois Category: Field Campaigns The importance of Arctic mixed-phase clouds on radiation and the Arctic climate are evaluated using the NASA GISS single column model (SCM) and cloud microphysics and radar

  9. Cloud Property Retrieval Products for Graciosa Island, Azores (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Cloud Property Retrieval Products for Graciosa Island, Azores Title: Cloud Property Retrieval Products for Graciosa Island, Azores The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and

  10. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Title: Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during

  11. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    fraction - Cloud Inter-Compariosn IOP results Day and Night cloud fraction - Cloud Inter-Compariosn IOP results Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory We present results from the CIC IOP from March-may, 2003. Day time and night time cloud fraction retrieval algorithms have been presented and intercompared. Amount of low, middle and high cloud have been estimated and compared to

  12. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report Citation Details In-Document Search Title: Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report The last field campaign held at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility site on Manus Island, Papua New Guinea (PNG), was conducted in February 2014 as part of the Co-ordinated Airborne Studies in the Tropics

  13. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  14. ARM - Field Campaign - Year of Tropical Convection (YOTC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsYear of Tropical Convection (YOTC) Campaign Links Year of Tropical Convection Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Year of Tropical Convection (YOTC) 2008.05.01 - 2010.04.30 Lead Scientist : Sally McFarlane Abstract Example of a sonde profile available from the ARM Archive The realistic representation of tropical convection in global atmospheric models is a long-standing challenge for weather and global

  15. Ocean Barrier Layers Effect on Tropical Cyclone Intensification

    SciTech Connect (OSTI)

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  16. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Information (Open El) [EERE & EIA]

    Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStrai...

  17. Differences Between Tropical and Trade-Wind Shallow Cumuli

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  18. Slide 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ice Supersaturation and Particle Growth in Cirrus Understanding Ice Supersaturation and Particle Growth in Cirrus Clouds Clouds Jennifer Comstock 1 , Ruei-Fong Lin 2,3 , David O'C. Starr 2 , and Zhien Wang 4 1-PNNL, 2-NASA/GSFC, 3-UMBC, 4-Univ. of Wyoming Introduction Observations of large ice supersaturation in cirrus are explored using a 1D explicit-binned cirrus model. Particle growth rate (controlled through the deposition coefficient) and subgrid processes are examined as controlling

  19. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    SciTech Connect (OSTI)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapid intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.

  20. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE PAGES-Beta [OSTI]

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  1. A comparison of cloud properties at a coastal and inland site...

    Office of Scientific and Technical Information (OSTI)

    have examined differences in cloud liquid water paths (LWPs) at a coastal (Barrow) and an ... KEYWORDS: arctic clouds, cloud liquid water, microwave radiometer, ECMWF model, ...

  2. A study of Monte Carlo radiative transfer through fractal clouds

    SciTech Connect (OSTI)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  3. Cloud classification using whole-sky imager data

    SciTech Connect (OSTI)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  4. zuev-98.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Results of Lidar Studies of the Structure and Dynamics of Cirrus Clouds Above Western Siberia V. V. Zuev, M. I. Andreev, V. D. Burlakov, A. V. El'nikov, and A. N. Nevzorov Institute of Atmospheric Optics Tomsk, Russia Introduction Cirrus clouds occupy a special place among the earth's cloud formations. Their impact can be manifested through atmospheric warming or cooling (Cox 1971). Recurrence of cirrus clouds and their morphological and microphysical structures undergo significant variations

  5. Microsoft PowerPoint - ARM STM_Shree_Mar08

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Small Ice Crystals In Arctic Cirrus Clouds ABSTRACT ABSTRACT Measurement of small ice crystals (D < 60 µm) remains an unsolved and controversial issue in the cloud physics community. Concentrations of small ice crystals are hard to measure due to shattering of crystals at probe inlets. However, these small ice crystals alter cirrus cloud radiative properties and may affect the cirrus cloud feedback in global climate models. To facilitate better estimation of small ice crystal concentrations

  6. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Using ARM Radar Data to Parameterize the Moments of Cirrus Cloud Properties in Terms of Cloud Layer Thickness and Temperature Vernon, E.N.(a) and Mace, G.G.(b), University of Utah (a), University of Utah (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Improving the reperesentation of cirrus clouds in large-scale models has been identified as a way to reduce the uncertainty associated with climate change simulations in these models. Representing cirrus clouds in

  7. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGES-Beta [OSTI]

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfullymore » satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  8. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    SciTech Connect (OSTI)

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.

  9. The impact of vertical shear on the sensitivity of tropical cyclogenes...

    Office of Scientific and Technical Information (OSTI)

    The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state: TROPICAL CYCLOGENESIS AND SHEAR Citation Details ...

  10. The diverse use of clouds by CMS

    DOE PAGES-Beta [OSTI]

    Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; Colling, David; Dobson, Marc; Fayer, Simon; Girone, Maria; Grandi, Claudio; Huffman, Adam; Hufnagel, Dirk; et al

    2015-01-01

    The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of themore » trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.« less

  11. Magellan: experiences from a Science Cloud

    SciTech Connect (OSTI)

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  12. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect (OSTI)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  13. Observations of the Madden Julian Oscillation for Cloud Modeling...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dyn.) Manus MJO signal in downwelling SW cloud radiative forcing GRL paper submitted Y. Wang, C. Long, and J. Mather Manus MJO signal in retrieved cloud amount GRL paper...

  14. Analysis of In situ Observations of Cloud Microphysics from M...

    Office of Scientific and Technical Information (OSTI)

    Cloud Microphysics from M-PACE Final Report, DOE Grant Agreement No. DE-FG02-06ER64168 Citation Details In-Document Search Title: Analysis of In situ Observations of Cloud ...

  15. W-Band ARM Cloud Radar - Specifications and Design

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest ... to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. ...

  16. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with...

    Office of Scientific and Technical Information (OSTI)

    Title: Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) ...

  17. The relationship between interannual and long-term cloud feedbacks

    SciTech Connect (OSTI)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; Klein, Stephen A.

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual and long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.

  18. Biogenic Aerosols„Effects on Clouds and Climate (BAECC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary T Petj ... DOESC-ARM-15-051 Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign ...

  19. ARM - Evaluation Product - ARM Cloud Retrieval Ensemble Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cloud microphysical property ensemble data set created by assembling existing ARM cloud ... One purpose of developing such an ensemble data set is to provide a rough estimate of the ...

  20. E-Cloud Build-up in Grooved Chambers

    SciTech Connect (OSTI)

    Venturini, Marco

    2007-05-01

    We simulate electron cloud build-up in a grooved vacuumchamber including the effect of space charge from the electrons. Weidentify conditions for e-cloud suppression and make contact withprevious estimates of an effective secondary electron yield for groovedsurfaces.

  1. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Cloud Properties from Zenith...

  2. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  3. Joint retrievals of cloud and drizzle in marine boundary layer...

    Office of Scientific and Technical Information (OSTI)

    Specifically, the vertical structure of droplet size and water content of both cloud and ... cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g ...

  4. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    Simulation of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven ...

  5. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? ... Send Campaign : Deep Convective Clouds and Chemistry 2012.05.01 - 2012.06.30 Lead ...

  6. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2013.07.01, Lewis, AMF Marine ARM GPCI Investigation of Clouds (MAGIC): Shortwave Hyperspectral Observations 2013.07.01, McBride, AMF Marine ARM GPCI Investigation of Clouds ...

  7. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate...

    Office of Scientific and Technical Information (OSTI)

    Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud ...

  8. Nighttime Cloud Detection Over the Arctic Using AVHRR Data

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Table 3. SHEBA domain cloud statistics from the polar cloud mask for January-March 1998. ... Earth Radiation Budget Experiment (ERBE) and NOAA-9 AVHRR data from 1986 were matched to ...

  9. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect (OSTI)

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  10. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  11. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-09-27

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  12. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    DOE PAGES-Beta [OSTI]

    Huang, Dong; Liu, Yangang

    2014-09-27

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results inmoreup to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.less

  13. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field

    Office of Scientific and Technical Information (OSTI)

    Campaign Report (Technical Report) | SciTech Connect STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report Citation Details In-Document Search Title: STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part

  14. Direct Numerical Simulations and Robust Predictions of Cloud Cavitation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Collapse | Argonne Leadership Computing Facility Initiation of cloud cavitation collapse for 50,000 bubbles Initiation of cloud cavitation collapse for 50,000 bubbles. Jonas Sukys, ETH Zurich Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name: Petros Koumoutsakos PI Email: petros@ethz.ch Institution: ETH Zurich Allocation Program: INCITE Allocation Hours at ALCF: 72 Million Year: 2016 Research Domain: Engineering Cloud cavitation collapse-the evolution

  15. Surface based remote sensing of aerosol-cloud interactions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Surface based remote sensing of aerosol-cloud interactions Feingold, Graham NOAA/Environmental Technology Laboratory Frisch, Shelby NOAA/Environmental Technology Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties We will present an analysis of the effect of aerosol on clouds at the Southern Great Plains ARM site. New methods for retrieving cloud droplet effective radius with radar (MMCR), multifilter rotating shadowband radiometer (MFRSR), and microwave

  16. Prediction of cloud droplet number in a general circulation model

    SciTech Connect (OSTI)

    Ghan, S.J.; Leung, L.R.

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  17. Treatment of cloud radiative effects in general circulation models

    SciTech Connect (OSTI)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M.

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  18. Model of E-Cloud Instability in the Fermilab Recycler

    SciTech Connect (OSTI)

    Balbekov, V.

    2015-06-24

    Simple model of electron cloud is developed in the paper to explain e-cloud instability of bunched proton beam in the Fermilab Recycler. The cloud is presented as an immobile snake in strong vertical magnetic field. The instability is treated as an amplification of the bunch injection errors from the batch head to its tail. Nonlinearity of the e-cloud field is taken into account. Results of calculations are compared with experimental data demonstrating good correlation.

  19. To the Cloud! Apidae Helps Modelers Turn Information into Knowledge |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy To the Cloud! Apidae Helps Modelers Turn Information into Knowledge To the Cloud! Apidae Helps Modelers Turn Information into Knowledge October 26, 2015 - 2:41pm Addthis Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae

  20. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation

    Office of Scientific and Technical Information (OSTI)

    during TCAP Field Campaign Report (Technical Report) | SciTech Connect Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report Citation Details In-Document Search Title: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report The formation of clouds is an essential element in understanding the Earth's radiative budget. Liquid water clouds form when the relative humidity exceeds saturation

  1. Determining Best Estimates and Uncertainties in Cloud Microphysical

    Office of Scientific and Technical Information (OSTI)

    Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions (Technical Report) | SciTech Connect Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions Citation Details In-Document Search Title: Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for

  2. Arctic Clouds Infrared Imaging Field Campaign Report (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Arctic Clouds Infrared Imaging Field Campaign Report Citation Details In-Document Search Title: Arctic Clouds Infrared Imaging Field Campaign Report The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible

  3. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Structure at ARM-SGP site: How well can we Simulate Clouds from Space? LES Modeling of High Resolution Satellite Cloud Spatial and Thermal Structure at ARM-SGP site: How well can we Simulate Clouds from Space? Dubey, Manvendra DOE/Los Alamos National Laboratory Chylek, Petr DOE/Los Alamos National Laboratory Reisner, Jon Los Alamos National Laboratory Porch, William Los Alamos National Laboratory Category: Cloud Properties We report high fidelity observations of the spatial and thermal

  4. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming

  5. Methanol and the productivity of tropical crops

    SciTech Connect (OSTI)

    Ferguson, T.U.

    1995-12-31

    Studies are being conducted in Trinidad and Tobago, St. Lucia and St. Kitts/Nevis to determine the effect of aqueous solutions of methanol on the growth and yield of a wide range of vegetable, field and perennial crops. The paper presents a summary of results to data for ten of the crops studied. Six of these crops, lettuce, sweet pepper, tomato, mango and breadfruit, have shown significant increases in growth or yield with methanol application, while others such as pigeon pea, rice, banana and cocoa have shown more limited responses. There appears to be some potential for the use of methanol in tropical crop production but further studies are required before this apparent potential can be harnessed.

  6. Lacunarity as a texture measure for a tropical forest landscape

    SciTech Connect (OSTI)

    Su, Haiping; Krummel, J.

    1996-01-01

    Fragmentation and loss of tropical forest cover alters terrestrial plant and animal population dynamics, reduces biodiversity and carbon storage capacity, and, as a global phenomenon could affect regional and global climate patterns. Lacunarity as a texture measure can offer a simple solution to characterize the texture of tropical forest landscape and determine spatial patterns associated with ecological processes. Lacunarity quantifies the deviation from translational invariance by describing the distribution of gaps within a binary image at multiple scales. As lacunarity increases, the spatial arrangement of tropical forest gaps will also increase. In this study, we used the Spatial Modeler in Imagine as a graphic programming tool to calculate lacunarity indices for a tropical forest landscape in Southern Mexico and Northern Guatemala. Lacunarity indices were derived from classified Landsat MSS images acquired in 1974 and 1984. Random-generated binary images were also used to derive lacunarity indices and compared with the lacunarity of forest patterns derived from the classified MSS images. Tropical forest area declined about 17%, with most of the forest areas converted into pasture/grassland for grazing. During this period, lacunarity increased about 25%. Results of this study suggest that tropical forest fragmentation could be quantified with lacunarity measures. The study also demonstrated that the Spatial Modeler can be useful as a programming tool to quantify spatial patterns of tropical forest landscape by using remotely sensed data.

  7. A tropical influence on global climate

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1997-05-15

    A potential influence of tropical sea surface temperature on the global climate response to a doubling of the CO{sub 2} concentration is tested using an atmospheric general circulation model coupled to a slab mixed layer ocean. The warming is significantly reduced when sea surface temperatures in the eastern equatorial Pacific cold tongue region between latitudes 2.25{degrees}N and 2.25{degrees}S are held at the control simulation values. Warming of the global mean temperature outside of the cold tongue region is reduced from 2.4{degrees}C in the unconstrained case to 1.9{degrees}C when the sea surface temperature constraint is applied. The decrease in the warming results from a positive net heat flux into the ocean cold tongue region and implicit heat storage in the subsurface ocean, induced by horizontal atmospheric heat fluxes. The reduced surface temperature warming outside of the cold tongue region is due to reduction in the downward longwave radiative flux at the surface, caused in turn by reduced atmospheric temperature and moisture. The global mean surface temperature responds to the heat storage in the ocean as if the global mean radiative forcing due to the doubled CO{sub 2} (approximately 4 W m{sup {minus}2}) was reduced by the value of the global mean heat flux into the ocean. This mechanism also provides a possible explanation for the observed high correlation on interannual timescales between the global mean tropospheric temperature and sea surface temperature in the eastern tropical Pacific. The results emphasize the importance of correctly modeling the dynamical processes in the ocean and atmosphere that help determine the sea surface temperature in the equatorial eastern Pacific, in addition to the thermodynamical processes, in projecting global warming. 23 refs., 8 figs.

  8. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based...

    Office of Scientific and Technical Information (OSTI)

    Ground-based radiation measurements have been widely conducted to gain information on ... Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater ...

  9. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  10. Diffusion and scattering in multifractal clouds

    SciTech Connect (OSTI)

    Lovejoy, S.; Schertzer, D.; Waston, B.

    1996-04-01

    This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.

  11. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  12. The Energy Department Prepares for Tropical Storm Karen | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy The Energy Department Prepares for Tropical Storm Karen The Energy Department Prepares for Tropical Storm Karen October 4, 2013 - 3:00pm Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy and Communications What does this mean for me? Follow the latest news on Tropical Storm Karen by visiting the FEMA blog. Stay up-to-date on energy delivery impacts by reading twice-daily situation reports from the Energy Department. Visit ready.gov for more information about

  13. ARM - Field Campaign - Tropical Ocean Global Atmosphere Coupled

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ocean-Atmosphere Response Exp govCampaignsTropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Exp ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Exp 1992.07.11 - 1993.02.28 Lead Scientist : Chuck Long Data Availability Final data available. For data sets, see below. Summary IOP completed. Abstract The Tropical Ocean

  14. Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign B. Thurairajah and J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The Cloudiness Inter-Comparison Intensive Operational Period (CIC IOP) occurred at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility site in Lamont, Oklahoma from mid-February to mid-April 2003 (Kassianov et al. 2004).

  15. Water clouds in Y dwarfs and exoplanets

    SciTech Connect (OSTI)

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Lupu, Roxana; Greene, Tom; Saumon, Didier; Lodders, Katharina

    2014-05-20

    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid- to late T dwarfs. For brown dwarfs below T {sub eff} ∼ 450 K, water condenses in the upper atmosphere to form ice clouds. Currently, over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below T {sub eff} ∼ 350-375 K. Unlike refractory cloud materials, water-ice particles are significantly nongray absorbers; they predominantly scatter at optical wavelengths through the J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 μm. H{sub 2}O, NH{sub 3}, CH{sub 4}, and H{sub 2} CIA are dominant opacity sources; less abundant species may also be detectable, including the alkalis, H{sub 2}S, and PH{sub 3}. PH{sub 3}, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 μm in Y dwarfs around T {sub eff} = 450 K; if disequilibrium chemistry increases the abundance of PH{sub 3}, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary mass objects. Finally, we make predictions for the observability of Y dwarfs and planets with existing and future instruments, including the James Webb Space Telescope and Gemini Planet Imager.

  16. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  17. ARM - PI Product - Cloud Property Retrieval Products for Graciosa Island,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Azores ProductsCloud Property Retrieval Products for Graciosa Island, Azores ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Property Retrieval Products for Graciosa Island, Azores [ research data - ASR funded ] The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets

  18. ARM - Publications: Science Team Meeting Documents: A Climatology of Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Radiative Forcing Clouds and Radiative Forcing Liu, Yang University of North Dakota A Climatology of Clouds and Radiative Forcing at at the University of North Dakota Liu, Y., Dong, X. University of North Dakota Point of Contact: Yang Liu, yliu@aero.und.edu, 701-777-4877 A record of cloud fraction has been generated using ceilometer data collected at the UND ground observational site from January 1998 to December.2004. The total and low cloud (cloud-base height < 3 km) fractions are

  19. The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model

    DOE PAGES-Beta [OSTI]

    Haywood, Jim M.; Jones, Andy; Dunstone, Nick; Milton, Sean; Vellinga, Michael; Bodas-Salcedo, Alejandro; Hawcroft, Matt; Kravitz, Ben; Cole, Jason; Watanabe, Shingo; et al

    2016-01-14

    The Earth's hemispheric reflectances are equivalent to within ± 0.2 Wm–2, even though the Northern Hemisphere contains a greater proportion of higher reflectance land areas, because of greater cloud cover in the Southern Hemisphere. This equivalence is unlikely to be by chance, but the reasons are open to debate. Here we show that equilibrating hemispheric albedos in the Hadley Centre Global Environment Model version 2-Earth System coupled climate model significantly improves what have been considered longstanding and apparently intractable model biases. Monsoon precipitation biases over all continental land areas, the penetration of monsoon rainfall across the Sahel, the West Africanmore » monsoon “jump”, and indicators of hurricane frequency are all significantly improved. Mechanistically, equilibrating hemispheric albedos improves the atmospheric cross-equatorial energy transport and increases the supply of tropical atmospheric moisture to the Hadley cell. Furthermore, we conclude that an accurate representation of the cross-equatorial energy transport appears to be critical if tropical performance is to be improved.« less

  20. pCloud: A Cloud-based Power Market Simulation Environment

    SciTech Connect (OSTI)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  1. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    ... believe that this may be the result of a change in air-mass origin arriving at the site. ... 2014. "Rapid transport of East Asian pollution to the deep tropics," Atmospheric ...

  2. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  3. Microsoft PowerPoint - baeARM_5th_final1.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    comparison of arctic cirrus microphysical properties with mid-latitude and tropical cirrus features Kenny Bae 1 , Greg M. McFarquhar 1 , Gong Zhang 1 and Michael R. Poellot 2 1 University of Illinois, Urbana 2 University of North Dakota, Grand Forks Summary * Vertical profiles of crystal shapes observed in arctic cirrus consistent with 3-layer conceptual model of mid- latitude cirrus (nucleation zone of small crystals, growth zone of pristine crystals and sublimation zone with sublimating

  4. Clouds and snowmelt on the north slope of Alaska

    SciTech Connect (OSTI)

    Zhang, T.; Stamnes, K.; Bowling, S.A.

    1996-04-01

    Clouds have a large effect on the radiation field. Consequently, possible changes in cloud properties may have a very substantial impact on climate. Of all natural surfaces, seasonal snow cover has the highest surface albedo, which is one of the most important components of the climatic system. Interactions between clouds and seasonal snow cover are expected to have a significant effect on climate and its change at high latitudes. The purpose of this paper is to investigate the sensitivity of the surface cloud-radiative forcing during the period of snowmelt at high latitudes. The primary variables investigated are cloud liquid path (LWP) and droplet equivalent radius (r{sub e}). We will also examine the sensitivity of the surface radiative fluxes to cloud base height and cloud base temperature.

  5. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 4. 1. Cloud studies. Part 1. Cloud physics. Part 2. Development of the atomic cloud. Part 3. Cloud-tracking photography

    SciTech Connect (OSTI)

    Anderson, C.E.; Gustafson, P.E.; Kellogg, W.W.; McKown, R.E.; McPherson, D.E.

    1985-09-01

    The cloud-physics project was primarily intended to fulfill a requirements for detailed information on the meteorological microstructure of atomic clouds. By means of a tracking and photographic network extending halfway around Eniwetok Atoll, the behavior of the first three clouds of Operation Greenhouse were observed and recorded. The rise of the fourth cloud was observed visually from only one site. The analysis of these observations, combined with information about the local weather conditions, gives a fairly complete picture of the development of each of the clouds. Particular emphasis was placed on the earlier phases of development, and the heights and sizes of the cloud parts have been determined as functions of time. A summary of important features of some previous atomic clouds are included for comparison.

  6. Patterns of Convection in the Tropical Western Pacific

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Patterns of Convection in the Tropical Western Pacific J. H. Mather Pacific Northwest National Laboratory Richland, Washington Introduction Convection is ubiquitous throughout the maritime continent region. However, the frequency of convec- tion is not uniform. While much of this region does not experience seasons to the same degree as one finds in mid-latitudes, the annual cycle of the sun's passage does have a large impact on convection throughout the maritime continent and the tropical

  7. Section 86

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 Figure 1a. Computed TBB and BTD for effective radius of 10 µm for different cirrus cloud temperatures. Retrieval of Cirrus Cloud Properties from Split Window and 6.7 µm Measurements (IN N) T. Inoue and Y. Mano Meteorological Research Institute / JMA 1-1 Nagamine Tsukuba, Ibaraki 305, Japan Introduction Algorithm A major uncertainty in our present understanding of the Simulated brightness temperatures are computed from the climate system is the effect of clouds. Among these, cirrus radiative

  8. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cirrus Cloud and Upper Tropospheric Turbulence Properties Derived from MMCR Doppler Moments Mace, G. G., University of Utah Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We are developing an algorithm that uses the radar reflectivity, Doppler velocity and Doppler spectral width observed in cirrus cloud layers to derive the microphysical properties of the cloud and information regarding the mean vertical air motion and turbulence. This approach assumes that the cirrus

  9. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Impacts of Cirrus Contamination on Satellite Retrieved Microphysical Properties of Water Clouds Chang, F.-L. and Li, Z., University of Maryland Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Due to their ubiquitous presence, cirrus clouds can modify both solar reflected and terrestrial emitted radiances. Detecting the presence of cirrus clouds from satellite imagery data faces two major challenges. Firstly, they often reside in high altitude and overlap with a boundary

  10. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lagrangian Evolution of Cirrus Clouds Over the ARM/CART Sites Soden, B.J.(a) and Mace, G.G.(b), NOAA/GFDL (a), University of Utah (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Through their influence on the radiative and moisture budgets of the upper troposphere, cirrus clouds play an important role in regulating Earth's climate. This study seeks to better understand the evolution of cirrus clouds through a novel combination of geostationary satellites (which offer

  11. Energy-related pollution of semi-tropical and tropical nearshore ecosystems. Annual report, 1981-1982

    SciTech Connect (OSTI)

    Thorhaug, A.; Marcus, J.H.

    1982-01-01

    The major components of the nearshore marine ecosystems in the subtropics and tropics (seagrasses, mangroves, and corals) are examined and compound sublethal and lethal effects from extremes in some energy-related effects (temperature, salinity and light) are discussed.

  12. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  13. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  14. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  15. Cloud Properties Working Group Break Out Session

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Break Out Session ARM Science Team Meeting Louisville, KY 30 March 2009 The Chair's Objectives for CPWG *Maintain continuity of "base" instruments - We're building a climatology! *Advocate for sufficient programmatic support to make our measurements useful. *Better retrieval vetting framework - moving towards Cloud Properties Best Estimate *Build a stronger connection with the modeling community - Producing the products they want. CPWG Breakout Agenda 30 March 2009, 3-5 pm *3:00-3:15

  16. Size distributions of boundary-layer clouds

    SciTech Connect (OSTI)

    Stull, R.; Berg, L.; Modzelewski, H.

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  17. Filaments in simulations of molecular cloud formation

    SciTech Connect (OSTI)

    Gmez, Gilberto C.; Vzquez-Semadeni, Enrique

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ?15 pc and masses ?600 M {sub ?} above density n ? 10{sup 3} cm{sup 3} (?2 10{sup 3} M {sub ?} at n > 50 cm{sup 3}). The density profile exhibits a central flattened core of size ?0.3 pc and an envelope that decays as r {sup 2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ?30 M {sub ?} Myr{sup 1} pc{sup 1}.

  18. Cloud services for the Fermilab scientific stakeholders

    DOE PAGES-Beta [OSTI]

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; et al

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  19. Cloud services for the Fermilab scientific stakeholders

    SciTech Connect (OSTI)

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.

  20. Embracing the Cloud for Better Cyber Security

    SciTech Connect (OSTI)

    Shue, Craig A; Lagesse, Brent J

    2011-01-01

    The future of cyber security is inextricably tied to the future of computing. Organizational needs and economic factors will drive computing outcomes. Cyber security researchers and practitioners must recognize the path of computing evolution and position themselves to influence the process to incorporate security as an inherent property. The best way to predict future computing trends is to look at recent developments and their motivations. Organizations are moving towards outsourcing their data storage, computation, and even user desktop environments. This trend toward cloud computing has a direct impact on cyber security: rather than securing user machines, preventing malware access, and managing removable media, a cloud-based security scheme must focus on enabling secure communication with remote systems. This change in approach will have profound implications for cyber security research efforts. In this work, we highlight existing and emerging technologies and the limitations of cloud computing systems. We then discuss the cyber security efforts that would support these applications. Finally, we discuss the implications of these computing architecture changes, in particular with respect to malware and social engineering.

  1. Grids, virtualization, and clouds at Fermilab

    DOE PAGES-Beta [OSTI]

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  2. CHEMISTRY IN DIFFUSE CLOUDS WITH TRANSIENT MICROSTRUCTURE

    SciTech Connect (OSTI)

    Cecchi-Pestellini, C.; Casu, S.; Williams, D. A.; Viti, S.

    2009-12-01

    Microstructure is observed on many lines of sight in the diffuse interstellar medium, mainly through variations in atomic line absorptions on timescales of a decade or less. This timescale implies that microstructure exists on a size scale comparable with that of the solar system; it is overpressured and transient. Both observations and theory confirm that a specific chemistry occurs in microstructure. We therefore explore a model of diffuse interstellar gas in which the chemistry in diffuse clouds is supplemented by chemistry in many transient and tiny perturbations. These perturbations are here assumed to be of unidentified origin, but it is assumed that ambipolar diffusion occurs within them. For plausible physical parameters, we find that this model can account for the range of molecular column densities observed in diffuse clouds, including species not usually accounted for by conventional models. Some molecular ions, predicted to be generated in the microstructure (including HS{sup +}, CH{sup +} {sub 2}, CH{sup +} {sub 3}, H{sub 2}O{sup +}, and H{sub 3}O{sup +}) but not yet observed in diffuse clouds, should be present at levels that may allow their detection.

  3. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  4. 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... reflectivity measurements from cirrus clouds." In Proceedings of the Atmospheric Radiation Measurements (ARM) Science Team Meeting, Albuquerque, NM, March 22-26. (electronic ...

  5. Microsoft PowerPoint - Poster_ARM_ST2008_Protat.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    using TWPICE aircraft data. Next step : statistics of cirrus age+ retrieve cloud prop. Compare fraction of the domain area covered by various radar reflectivity levels,...

  6. arm_poster_2006.cdr

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Variability and Pattern Identification in Cirrus Cloud Structure within the Fokker-Planck ... or model-free equation --- the Fokker-Planck equation --- that governs the ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... to cirrus cloud formation during their transport in the upper free troposphere. ... Finally, twenty-eight presentations were given at international conferences, workshops and ...

  8. Microsoft PowerPoint - 2 McFarlane_VAP Update.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    - Results of AMFGNDRAD Reconfiguration on Upwelling Irradiances. 2:10 Jean-Charles Dupont - Observed cirrus cloud radiative forcing on surface-level shortwave and longwave ...

  9. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Szyrmer, W.; Rmillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  10. Atmospheric Radiation Measurement (ARM) Data from the Tropical...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  11. ARM - Publications: Science Team Meeting Documents

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3D Remote Sensing of Cirrus Cloud Parameters Using AVHRR and MODIS Data Coupled With Radar and Lidar Measurements Ou, S.C.(a), Liou, K.N.(a), Takano, Y.(a), Mace, G.G.(b), Sassen, K.(b), and Heymsfield, A.(c), University of California at Los Angeles, California (a), University of Utah, Utah (b), National Center for Atmospheric Research, Colorado (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite mapping of the optical depth in midlatitude and tropical regions has

  12. ARM - Evaluation Product - Scanning ARM Cloud Radar Corrections (SACRCOR)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsScanning ARM Cloud Radar Corrections (SACRCOR) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Scanning ARM Cloud Radar Corrections (SACRCOR) [ ARM research - evaluation data product ] This dataset contains moments from the Scanning ARM Cloud Radars (SACRs) which have been filtered and corrected

  13. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (MICRE): Ice Nucleating Particle Measurements govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE): Ice Nucleating Particle Measurements Related Campaigns Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01, Marchand, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE): Ice Nucleating Particle Measurements 2017.03.01 - 2018.03.31 Lead Scientist :

  14. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  15. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (BNL) Field Campaign Report (Technical Report) | SciTech Connect Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report Citation Details In-Document Search Title: Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July

  16. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (BNL) Field Campaign Report (Technical Report) | SciTech Connect Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report Citation Details In-Document Search Title: Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July

  17. Cloud properties derived from the High Spectral Resolution Lidar during

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MPACE Cloud properties derived from the High Spectral Resolution Lidar during MPACE Eloranta, Edwin University of Wisconsin Category: Field Campaigns Cloud properties were derived from data acquired with University of Wisconsin High Spectral Resolution Lidar during its 6-week MPACE deployment. This poster presents statistics on: 1) the altitude and temperature distribution of optical depth and cloud phase. 2) the dependence of lidar depolarization and backscatter phase function on

  18. Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Relationship to Adiabacity Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences and Relationship to Adiabacity Kim, Byung-Gon Kangnung National University Schwartz, Stephen Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties The microphysical properties of continental stratus clouds observed over SGP appear to be substantially influenced by micrometeorological

  19. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary

    SciTech Connect (OSTI)

    Chiu, J. -Y.C.; Gregory, L.; Wagener, R.

    2016-01-01

    Cloud droplet size and optical depth are the most fundamental properties for understanding cloud formation, dissipation and interactions with aerosol and drizzle. They are also a crucial determinant of Earth’s radiative and water-energy balances. However, these properties are poorly predicted in climate models. As a result, the response of clouds to climate change is one of the major sources of uncertainty in climate prediction.

  20. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan Citation Details In-Document Search Title: Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both

  1. Radiative Importance of ThinŽ Liquid Water Clouds

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Program Accomplishments of the Cloud Properties Working Group (CPWG) August 2006 Cloud Radiative Forcing at the ARM Climate Research Facility: Using ARM Data to Establish Testable Metrics for GCM Predictions of Cloud Feedback Gerald Mace University of Utah, Salt Lake City, Utah The scientific underpinning of the Atmospheric Radiation Measurement (ARM) Program is largely based on the premise that long term ground-based measurements of certain quantities provide information sufficient to test the

  2. Studies of Emissions and Atmospheric Composition, Clouds, and Climate

    Office of Scientific and Technical Information (OSTI)

    Coupling by Regional Surveys (SEAC4RS) Field Campaign Report (Technical Report) | SciTech Connect Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) Field Campaign Report Citation Details In-Document Search Title: Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) Field Campaign Report Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional

  3. The Midlatitude Continental Convective Clouds Experiment (MC3E) (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES The Midlatitude Continental Convective Clouds Experiment (MC3E) This content will become publicly available on December 18, 2016 Title: The Midlatitude Continental Convective Clouds Experiment (MC3E) The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy's Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma

  4. Enhanced Cloud-based Control System for Small Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Enhanced Cloud-based Control System for Small Commercial Buildings Enhanced Cloud-based Control System for Small Commercial Buildings Lead Performer: Pacific Northwest National Laboratory - Richland, WA Partner: NorthWrite Inc. - Portland, OR DOE Total Funding: $300,000 Project Term: June 1, 2016 - November 30, 2017 Funding Type: Small Business Vouchers Pilot PROJECT OBJECTIVE NorthWrite Inc. delivers services to owners of small commercial buildings, using a cloud-based

  5. Assessing the Radiative Impact of Clouds of Low Optical Depth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier Department of Geography and Institute for Computational Earth System Science University of California Santa Barbara, California Introduction Analysis from the International Satellite Cloud Climatology Project (ISCCP) reveals that the global mean cloud optical depth is surprisingly low (i.e., τ = 3.8).

  6. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National

    Office of Scientific and Technical Information (OSTI)

    Laboratory (Technical Report) | SciTech Connect 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory Citation Details In-Document Search Title: 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to

  7. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report Citation Details In-Document Search Title: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding

  8. ARM: AOS: Cloud Condensation Nuclei Counter (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AOS: Cloud Condensation Nuclei Counter Title: ARM: AOS: Cloud Condensation Nuclei Counter AOS: Cloud Condensation Nuclei Counter Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; Anne Jefferson Publication Date: 2014-01-25 OSTI Identifier: 1256093 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US);

  9. ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data Millimeter Wavelength Cloud Radar (MMCR): monitoring data Authors: Karen Johnson ; Nitin Bharadwaj Publication Date: 2015-01-09 OSTI Identifier: 1025231 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak

  10. Final Report: Investigations of Mixed-Phase Cloud Microphysical, Radiative,

    Office of Scientific and Technical Information (OSTI)

    and Dynamical Processes (Technical Report) | SciTech Connect Final Report: Investigations of Mixed-Phase Cloud Microphysical, Radiative, and Dynamical Processes Citation Details In-Document Search Title: Final Report: Investigations of Mixed-Phase Cloud Microphysical, Radiative, and Dynamical Processes This project supported the principle investigator's work on a number of studies regarding mixed-phase clouds and in various related collaborations with ARM and related scientists. This project

  11. ARM - Publications: Science Team Meeting Documents: Clouds and radiation in

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Arctic coastal system - effects of local heterogeneity Clouds and radiation in the Arctic coastal system - effects of local heterogeneity Key, Erica University of Miami, RSMAS Minnett, Peter University of Miami Improving our comprehension of the influence of clouds in the polar regions is important as a prerequisite to refining our understanding of the earth's climate system. Polar clouds modulate the radiative heat loss to space in the regions that serve as the heat sink of the climate

  12. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. ...

  13. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    for retrieving cloud liquid water content and drizzle characteristics using a K -band Doppler radar (Kropfli et al. 1990) and microwave radiometer (Hogg et al. 1983). The...

  14. ARSCL Cloud Statistics - A Value-Added Product

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    data from active remote sensors to produce an objective determination of cloud location, radar reflectivity, vertical velocity, and Doppler spectral width. Information about the...

  15. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in the Arctic, to measure the BRDF and albedos of various surfaces (ice, snow and tundra) and various cloud types, and to obtain these measurements whenever possible either...

  16. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES-Beta [OSTI]

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  17. Cloud Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cloud Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6761772, -80.0739308 Show Map Loading map... "minzoom":false,"mappingse...

  18. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  19. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    public from the National Technical Information Service, Springfield, VA at www.ntis.gov. ... depths larger than approximately 7. The retrieval assumes a single cloud layer consisting ...

  20. Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    COPS Aerosol and Cloud Microphysics (ACM) Subgroup Activities Dave Turner Space Science ... (ACM) - Chairs: Susanne Crewell, Dave Turner, Stephen Mobbs ACM Scientific Questions * ...